Loading...
2008-963 CN/FM/G/IENGINEERING SERVICES DEPARTMENT City Of Capital Improvement Projects Encinitas District Support Services Field Operations Sand Replenishment/Stormwater Compliance Subdivision Engineering Traffic Engineering April 15, 2013 Attn: INSCO Insurance Services, Inc. 17780 Fitch Suite 200 Irvine, California 92614 RE: Warmington Encinitas 41 LLC 1150 Melba Road APN 259- 180 -19 TM 06 -005 Grading permit 963 -G Final release of security Permit 963 -G authorized the grading, drainage, private improvements and erosion control, all needed to build the described project. The Field Operations Division has approved the grading and finaled this project. Therefore, a full release in the remaining security deposit is merited. Performance Bond 782510S, (in the original amount of $584,956.00), reduced by 75% to $146,239.00, can hereby be released in entirety. The document original is enclosed. Should you have any questions or concerns, please contact Debra Geishart at (760) 633- 2779 or in writing, attention this Department. Sincerely, al �:�- -- Debra Gei art Engineering Technician Subdivision Engineering CC Jay Lembach, Finance Manager Warmington Encinitas 41 LLC Debra Geishart File Enc. inancial Services TEL 760 -633 -2600 / FAX 760- 633 -2627 505 S. Vulcan Avenue. Encinitas. California 92024 -3633 TDD 760- 633-2700 recycled paper AD ENGINEERING SER VICES DEPARTMENT Capital Improvement Projects CZj�y Of District Support Services Encinitas Field Operations Sand Replenishment/Stormwater Compliance Subdivision Engineering Traffic Engineering February 19, 2013 Attn: INSCO Insurance Services, Inc. 17780 Fitch, Suite 200 Irvine, CA 92614 RE: Warmington Encinitas 41 LLC TM 06 -005 TM/CDP/DR 1150 Melba Road APN 259 - 180 -19 Grading Permit 963 -G Final release of monumentation bond Permit 963 -G authorized earthwork, storm drainage, and erosion control, all needed to build the described project. These bonds were to guarantee installation of monuments per the recorded map. A letter was received from the surveyor stating that the monuments were set per the recorded map and that they have been paid in full. Performance Bond 782511S, in the amount of $14,000.00 is hereby fully exonerated. The document originals are enclosed. Should you have any questions or concerns, please contact Debra Geishart at (760) 633- 2779 or in writing, attention this Department. Sincerely, Debra Geis,�art Engineering Technician Subdivision Engineering y L bach finance Manager Financial Services Cc: Jay Lembach, Finance Manager Warrington Encinitas 41 Debra Geishart File Enc. TEL ?60 -633 -2600 / FAX 60- 633 -2627 505 S. Vulcan Avenue. Enciniras. California 92024 -3633 TDD 760 -633 -2700 14 �� recycled paper ci o f ENGINEERING SERVICES DEPARTMENT Encinitas Capital Improvement Projects District Support Services Field Operations Sand Replenishment /Stormwater Compliance Subdivision Engineering Traffic Engineering September 21, 2012 Attn: INSCO Insurance Services, Inc. 17780 Fitch Suite 200 Irvine, California 92614 RE: Warmington Encinitas 41 LLC 1150 Melba Road APN 259- 180 -19 TM 06 -005 Improvement permit 963 -I Final release of security Permit 963 -I authorized the installation of improvements, all needed to build the described project. The Field Operations Division has approved the installation of improvements, finaled the project and approved the one -year warranty period. Therefore, a full release in the remaining security deposit is merited. Performance Bond 7825145, (in the original amount of $36,633.00), reduced by 75% to $9,158.25, is hereby released in entirety. The document original is enclosed. Should you have any questions or concerns, please contact Debra Geishart at (760) 633- 2779 or in writing, attention this Department. Sincerely, Debra Geish Engineering Technician Subdivision Engineering CC Jay Lembach, Finance Manager Warmington Encinitas 41 LLC Debra Geishart File Enc. J Lembach Finance Manager Financial Services TEL 760-633-2600 /FAX 760-633-2627 505 S Vulcan Avenue. Encinitas. California 9 024 -i63i -f DD '60 -6i, -2700 recycled paper ENGINEERING SERVICES DEPARTMENT City of Encinitas Capital Improvement Projects District Support Services Field Operations Sand Replenishment /Stormwater Compliance Subdivision Engineering Traffic Engineering March 26, 2012 Attn: INSCO Insurance Services, Inc. 17780 Fitch Suite 200 Irvine, California 92614 RE: Warmington Encinitas 41 LLC 1150 Melba Road APN 259 - 180 -19 TM 06 -005 Grading permit 963 -G Final release of security- Undergrounding of Overhead Utilities Pen-nit 963 -G authorized the grading, drainage, private improvements and erosion control, all needed to build the described project. The Field Operations Division has verified that the overhead utilities have been undcr(rround. Therefore, a full release in this security deposit is merited. Performance Bond 7825135, in the amount of 5203,600.00, may be released in entirety. The document original is enclosed. Should you have any questions or concerns, please contact Debra Geishart at (760) 633- 2779 or in writing, attention this Department. Sincerely, Debra Geislrt Engineering Technician Subdivision Engineering C'C Jay Lembach, Finance Manager Warmington Encinitas 41 LLC Debra Geishart File Fnc. ay Le bach Finance Manager Financial Services 760 -633 -2600 / FAS '60- C33 -Z6Z- 505 S ulcan Avenur. f_n'ini[as. California 9202a -3653 IDD 60- 633 -00 II ti� recycled paper J City OJENGINEERING SER VICES DEPARTMENT u Encinitas Capital Improvement Projects District Support Services Field Operations Sand Replenishment/Stormwater Compliance Subdivision Engineering Traffic Engineering July 26, 2011 Attn: INSCO Insurance Services, Inc. 17780 Fitch Suite 200 Irvine, California 92614 RE: Wannington Encinitas 41 LLC 1150 Melba Road APN 259- 180 -19 TM 06 -005 Grading permit 963 -G Partial release of security Pen-nit 963 -G authorized the grading, drainage, private improvements and erosion control, all needed to build the described project. The Field Operations Division has approved rough grading.. Therefore, a reduction in the security deposit is merited. Performance Bond 782510S, in the amount of $584,956.00, may be reduced by 75% to $146,239.00. The document original will be kept until such time it is fully exonerated. The retention and a separate assignment guarantee completion of finish grading. Should you have any questions or concerns, please contact Debra Geishart at (760) 633- 2779 or in writing, attention this Department. Sincerely, 7 Debra Geisha Engineering Technician Subdivision Engineering L r Jay Lembach Finance Manager Financial Services CC .lay Lembach, Finance Manager Warmington Encinitas 41 LLC Debra Geishart File TEL 760- 633 -2600 / FAX 760- 633 -2627 505 S. Vulcan Avenue, Encinitas, California 92024 -3633 TDD 760- 633 -2700 I recycled paper CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT DATE: PROJECT NAME: PROJECT NUMBER: STREET LOCATION• PERMIT NUMBER: CONTRACTOR: 'TELEPHONE: lr'C - /9on • f%O c�caT / iUri S. SQj o il;140 M /Z 2� /v Soc L r5 C --tom c ?7A � nIC , A-,,.+ A-/747- nriu:tl -&W fL L�mw4L , f uha-r -7 s'/ -e-ra� cow Z �Y2lc -lcs .Sfr ,L ,er1 I -7% L-ectcs - ,c. ,; z pt 7 / , fC'C�'t o•- /,c}c� r�F f v^., � �- ?y».�v . � r,�T ��� 7�nauQ) , rr b f � �'L AT %CN' S /� Lr /tiJ►/ i �1i' C� S'7�t Uy j�-/ �l/} -+•-r L �%�' �.�E7rt� �, I /L j, 1113/,, I.4-,T / /'Y/ [/ lr rr /r 777m jEy!F•ti 1 M,+ 0 •7� D fhv6 I,_;. brtiE7 . ,�r �u(accle on Gl t: Xt /Lc- m -"CfL 77�4t %2' e' 10 40 r f r C ut, i� Frn ,:1r '�l S �� L l- / v2.i7ry (, O!-- r r l r, -9Z4L. 1 i/i � // ova x - �o,�r�► A- ce /�r%�l - �av �rtil/�� /N 73rd oP t or % � v v v (C--- � , %S' � ire • / , ' y M14429 CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT PROJECT NAME: STREET LOCATION: CONTRACTOR: DATE: PROJECT NUMBER: PERMIT NUMBER: TELEPHONE: ,�L� /•i Lu 4z� / /410 b r M14429 r40= /= �t.n•.� A�T c-07S 14 - /6 - Cc. n� nti� �5 .� w-,v(:v �rS c! - (� • Lur � (v Aa- — Lv lr (-- L v. 5 C.( - V � c�-� h u m / 7 G X 7 u- �/1 -uCL�S • /? Nt0 /%y/N L jr N C,St ./fit "Tl. AJOrE L 07S A�7' D.(Z E')9 --a- .u,sK 2 3 19144 -c /-J &764!1 - f-- t.t._ usG.2t: t:c�..r 1��krt 5 /t7 L071. 116,Z119 E ytr�Z v� ,- y5 rr.v� pc �► /p.�rt.�Z ra �)75 ' • �— �/" �- 'Zl�.- Gc� T� I'k.l f�.S I "1 �- h L� � l7%" / v i l l � �.'Y.� � � (v / •��X , fizz, vt. S T79- -1_r�7 C��y .� G}nr� n Cc rT-s %�'Jc L � 77NUC- \/'I c> a l CC,¢f7c;•lia Lc rs 7, A-T- 6,24-oC /c> �C Si �4-i2 -T7�. v Tb LA--',q L' S C c��Yt,pLC-TL� t. u— vr, //-/S. AyO `ViI5 &VAj ' D 6i5-7 C-x TL-7vOfb TD or- ��/ (v bA-/ce cowow -r W' As L -ftvE0 R;r— %NE Fz,-n.t4 lS Aw o /= i�t�•kv ,C 7L�,� AT Lvirs - /�-/. !r, -,cP l(v , �-!is i'Yt �t'f��rr3t� i5 5 nc.� Gc:�c7' �-/E syio4'l�•iat. e► /,c-- LuTS ib b f y txT. OWL/ 2 7-!U /� rC c, � uSE� �Z�L � /tL rev ;j ' T L / ! Y- f>. %?ZL�'J G.I�- /L�4�- i4 L•onfSy", .tJ Gv. Li, a �5 � bFiir� / ECUCG/'cv StC 1,Ej,1 07' , !r _ R^09 '4Nor7-/tUz- .cL. 2Sc v,-'- 61'ooL S /J��t /G►U -trc S ,t s 5 t.+:,�Lc. Ac ,�L� /•i Lu 4z� / /410 b r M14429 r40= /= �t.n•.� A�T c-07S 14 - /6 - Cc. n� nti� �5 .� w-,v(:v �rS c! - (� • Lur � (v Aa- — Lv lr (-- L v. 5 C.( - V � c�-� h u m / 7 G X 7 u- �/1 -uCL�S • /? Nt0 /%y/N L jr N C,St ./fit "Tl. AJOrE L 07S A�7' D.(Z E')9 --a- .u,sK 2 3 19144 -c /-J &764!1 - f-- t.t._ usG.2t: t:c�..r 1��krt 5 /t7 L071. 116,Z119 E ytr�Z v� ,- y5 rr.v� pc �► /p.�rt.�Z ra �)75 ' • �— �/" �- 'Zl�.- Gc� T� I'k.l f�.S I "1 �- h L� � l7%" / v i l l � �.'Y.� � � (v / •��X , fizz, vt. S T79- -1_r�7 C��y .� G}nr� n Cc rT-s %�'Jc L � 77NUC- \/'I c> a l CC,¢f7c;•lia Lc rs 7, A-T- 6,24-oC /c> �C Si �4-i2 -T7�. v Tb LA--',q L' S C c��Yt,pLC-TL� t. u— vr, //-/S. CITY OF ENCINITAS — ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT PROJECT NAME: STREET LOCATION: CONTRACTOR: DATE: PROJECT NUMBER: PERMIT NUMBER: TELEPHONE: A- � Ls�-D � � � 1 • Lc'?�S '42t� A c.t77Z�"� eAdjQr' _rD GEr w ii IA) o i� n -- 3 4,, c! 33- 9. hrz ve UCe q flndere"- f- -/b- e�L - �l �H of w n r ecl .-Iii to 4nv (.e. -z ,, f e,-'S l 5 R l v or%- t;pe-s . f7M /.Si -YCt /f7- v/s / i7 C� -k �c 2NE�J �i /E fGQNcaL fi 0 k+Ca2�l�1� 77-ir- A-I _ t� : 5 C.9 SNP Cc�. tPE7j R-47 �J /t-Gr7V,7L/. ����C� r4-At� / P 21l7hl G,,! -ALE, GV/hl. -��i LSi A Li - 8 u 11-7- Gill t"IC3 % S Igoe '7lr / 1�o 5---77-f 5 ,LE TV LUG 16 r->` C.vX47 ,\w .2� ( lc-A)P AY—' �.fi2t� 7a L07- l r. ,r r g %l / F-7 A]/�' %! � %lam-/% i U r%%�1 Q .. to, 2/22/11 Loi-5 Oi ilr`hti; v Q Lam. ltiO K L;: o . 01 v5 i �`(LCffiS 7 iwe -r - 13oflAJ LUG u— 1 3 s i �� A� S �}►hi � c- i (T� c (� z'7 1� � 1 cy � �� IN fijba - R'�-,a -Q 6 C _ t<�t N �� ylL� '"pb f-lv^t �7 ►N n�� V vui Iddkh,el, Moo ("'vi Dn 4 Sf� I LL N Liao G;7 C-) R Ayo C0 c b &U t; o' 411 of ; NV geA-f, or= 1UTS 1- 3t L ZS 11 V\ LL- AT l L% 6T- -3 , W -+LL, c_20--s 1,A, LL , N,)L,, �140Jc r-+er M14429 CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT PROJECT NAME: STREET LOCATION: CONTRACTOR: DATE: PROJECT NUMBER: PERMIT NUMBER: TELEPHONE: rl . nisi c�, ✓Z,�4i� R, . /2-L -)(4 J Woa k iZ C 4r' I ^ H r-y2 S &-W t '7Z_ S714-2n'vC -� 7t(L3 6 3 11 W� LL— uQu-C t— C& D" T i ti. t V A-fcI uoS. L-vC m V1 PA LL s i �+�e-z r-E�: rn AG5e-t+LL�r-- \ ls� SCR. �jo r'tc -rlv, 77 owj, C e- s f r- ( AiSc�f L bt 4 ' q o N (.� LJ I �� ��0 i ZEE XJ✓ C I o L-!.o LO r l-GT� t� Z vG LC� u l X17 TLL Z L7O, `� �� t_,li:ta �l is All OA-) LO v/i- r S Nv "% FF Al_, S r• .t-in.- fit =�7J" Lv � v" ft'TZ =YL /'�'i A� pJ cam' 1-E- �i C � r�-i 3�a � ��,Z,�,; M : ✓� " C mac- ��+� [� �; %�.1 �`7.�,�� -�e ms`s n--r- 7VnC_7V j3At t w N L jF 1,4 "As �r2A�L� f 14 /-4(T-- Ive, r✓.11z-- T THc_ c5kd �VA�> a ma�v,Z .s�u,�ce of 6� �r�;�J SJZ � /r1 /.�,g,� -�L /1 -►./�v cfi� A- i 7•Nc-- Wo A- w M14429 Q LA C l_19 A-�4o T74 L- v ; ni�y E, H h r;}C4Ei Su rlr� Du _ A- t -A-Ts--v _ -i-7) Aare CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT PROJECT NAME: STREET LOCATION: CONTRACTOR: DATE: PROJECT NUMBER: PERMIT NUMBER: TELEPHONE: C 5 olaww c- 72_Tb Nom, bLi� .,77>., Am/SiC�Lr 7zf ft5 '7� wKr� $c3L Tb �.`r7 -C� �. / r 94-lb:v Lv w �p c ��o wo r7"�r� --VC, G-.(L-L ev-; /JCS L 7bvn �2i 3 2v -rr 6►gr2�giti /n. w9c� �4cv�L Cl�s�zi r✓ iu n Lf-x/t 7 oAJ 3 -zi - i ( aukk ��?•Z //i�pR.e�vG3- rtF3�T'S' vN7�j�/UL`7� o =-r- rti,,q -t, Wom 2V-r• w a-L -- A- — taO cW A lYE� iA, itA• -���s 1412 �ACYF►�AlloP 4 INc� i /nsL A-gvUt wALL PA�1 c C ups -ry Iw etc W�ii FU2_ S,yt�. Y1/ uft wAiv - s R V 7- 2x,-t,0l `17 r A.s -rjgUes y i iL SE7m: f a�- Af L / G LAJ - - �' t�'i" (� vC r►t 4,ni �'vmP LE7z� a�J ,� c.uE .T/f L% Rb . � � ArvO R� icon► L J< -t � -Z n." p A206.1L vt_q---7M rlbp An/,r7 o5tb A-,J � l �� iNV L A��yL/�L� o,t.J ��•,- S , ��. .5 � -�� /diet 1i lt� 0 A Al i--2-77A A/ i I t f stn L7 . R A vr+. O �nl10 <r a/57LUciu� c2t s u� !,� -a---X J Rc,Frc- c� 4 Ak it ' u 2 GC-iN 4 A, Loci +iii - T7�- I/�I Tli/k o,�2t,;yv . M14429 CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT PROJECT NAME: STREET LOCATION: DATE: PROJECT NUMBER: PERMIT NUMBER: CONTRACTOR: 'TELEPHONE: LI-7-11 L i rTL45- sue,; L--jZ t oXX 61-i a Lu Z:� 71+gc . -l3 l 2 Pl - wA) ` t`Xu6a9 4-u Lt4c4 7yg �c,g �97v 9 ib�tto iu• lyt.4 -�N � P rl- cic -rictr NC:� . c'✓L� 6�Z -�r-� 15 i (�v..u� -e LET /lv S,q t xr2 S-n LL 14 r L- . w , NLi Tp 6- r 14 c)v tulq 3 W LL ft e-'s u/h �'y) wig t. P A-u L- !2v.. �- C Patht i 5 r'j A-t-L bAr l q L oT Z y t- 6Qo w ;>> L�rsT w�u � 6�c.icF�cL �n• ,,� c:N r uT l u , .zrrG -r-f Gino (-o-cll- [-a °a' 4y . - ,-y -ir .,r��✓JK�.rt_ -w r= >Uv bi,LA-Qc- � T ( N 5 r A(j-? oi 6 i c StL 4 L` rr CROW vp Lj +)c 1 C' X- a 6r • A f°ax- "uLa= L f . 4�'1`b'il TGInrT t"n�Ct4 C�NrNL�L� GN St,q- ,2LL�" l� (�c ACGO Cc- T �tusr ��u A-Lc t Tl ��� rYLc��.cc�� oAJ 11-h tl tai 6 t:C')L- 1k Ar) 6C- r ti &P&t LEW- q UE (� �cft �in�weS tan SCE N F14t i �A tc�u ScS� v �' Fv� �('t P� r2 7 TwvLam- ser elAL0Q Z --S 1 s�-�Ve � (Z.t-wlA, �-, v C, s - (�(L(c 5 M14429 CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT PROJECT NAME: STREET LOCATION: CONTRACTOR: DATE: PROJECT NUMBER: PERMIT NUMBER: TELEPHONE: 6A; t� W At,) +1 aLE Ou k f e,0 Z>A) p �- r L, rj-;-� P TV efQ 04- 56�4EX-xLe-b 4/Lt/ t-UJ9- &j wnu-nvs j;UWbA,k -IT, p6uroD CVJ bt7L,t-lems e>rj swe Q-4 on 2A-wjt- bat V4 - WE2LTIMA� efiftt tm�,IJL-- h).q- LA..;&TttL oQ AT—EL49,A- L`�U A 0— vu A-Tt-:V— IP STyv-LLq7-w5kj Lt^o LTC -1n W-6--00!Q �-I-j 0 1 t AkA Ak -b -ZT ef SJ� ga's F2ttA;�- AoaafNr 2 155, M14429 r) tj,.; a, C-7 TA-cr- q-jz-,, olzi s IlE t, A-ri--a co Atee (cl&,,T-)0uL—'Eb Ok) 6LLEE- -300cct- - ft� el tJ I-, Ak A-10 ff I- b C3 Ire c0fOpLt�:� orj " Z , b - 2-15 5 A.;—( 6A Loule- IC-A 0-4 F 6A; t� W At,) +1 aLE Ou k f e,0 Z>A) p �- r L, rj-;-� P TV efQ 04- 56�4EX-xLe-b 4/Lt/ t-UJ9- &j wnu-nvs j;UWbA,k -IT, p6uroD CVJ bt7L,t-lems e>rj swe Q-4 on 2A-wjt- bat V4 - WE2LTIMA� efiftt tm�,IJL-- h).q- LA..;&TttL oQ AT—EL49,A- L`�U A 0— vu A-Tt-:V— IP STyv-LLq7-w5kj Lt^o LTC -1n W-6--00!Q �-I-j 0 1 t AkA Ak -b -ZT ef SJ� ga's F2ttA;�- AoaafNr 2 155, M14429 CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT PROJECT NAME: STREET LOCATION: CONTRACTOR: DATE: PROJECT NUMBER: PERMIT NUMBER: TELEPHONE: lv- r r 5r?»'►E _ &At S!1 r <Jv /N j .771C-A104 "D/t 31-7 47) L, 71L�-S) 4c 14 n Al u �— N r✓� Lu — J-iq rC- 7t72 /� Gv�;�✓L L� rJ,j Z 2 E LA O/2ow G ?�� r't �1G. Cc� 1-!N e, EL A3 � - �iN-L c Ccr r w E 7U TN e- lti T bN 517E u-Pi. IILCI 444t3 R N L, K e !4 G + �4 i�c n o/-) f:sLu c Pa. umP ,ePt �► PU � Al c' . QeA -lv rr 1�4 LL oti i�LZ .41 � ��XN ...;=S ox� O ' ky I t - r — 1. �Z �Q•C K-F oti 4/14 Lt &A � � �� i� �� ini f2o�P E�r►��7s t3A� K Fi u EtJ `S ��'n 6 �a �Y-Clc . e4ucj / n rc b ?1E tdu R / U. W'f" / &rxli�� c o -F l v `.� i T�c-d--I s l "m ON , .) EST �/qi/l R-i�'YZrq -� Cam.- � -G-yn� yuC7" l,4� /INIV /A) I�iCT �t'-'-7Lrt-L(be- (lu t;r C-0 ar:- Lf "Ac `I L J S? JSICd r "% e reel e 5-a- t( nv�,� �*v b- 5 t'f pCi (f Pty i'n o f w c� r Cjnl z f- o. flit c L ' rn;o2lr:o.•-r -wurb fFn;a�lt✓� �/- o J �a,4zc fC5- t:-Ng TlL eyki cp Lu u'Uc At-:;u94 lU - Sb i N`r /.bj2tj Q rWi "n &C" c ON n i,uOD O,U P,4Lc'ufz , A LL- j?-,Ac 4�& i5 r SL-u 6-t-7 - l I i Air•+ Dw� ze' ; +u�' &Q ML-"-pt- A- ate% 6ili✓�il l M14429 CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT PROJECT NAME: STREET LOCATION: DATE: PROJECT NUMBER: PERMIT NUMBER: CONTRACTOR: 'TELEPHONE• Cr;N.rT' /nlS�u -C-'J v'v c,° T 4,4_ �'� Spa / / <</ -frt�c�i S�urrr PCB Mush L�Tl;'72au �•9-c � SIC "D r (� 7yd �- x�G� -� �J� /t'_f= �� Air. -c �"� L� � UtcE v�u LrxQ�L f✓ .-o , OA-t CCownNUE? 01U �koLi .nib � •tip L �� LJ _ GT�nrG, to rrt n .9G �'1� I 69-AorN& Ei �-. Ca :- i°'�"vti -� ,� : c i K c `J•1 �C_ /(J `• CiC�� p-C.a �� t� 4' a c C� J aim r�.(, 1l em r` X1AJ6 C �1 C,r �, t ,0GLA,1tL 147r.0 ,4s Fi tir s f �Eb �y ,� A rou IL - T&I,VT 72ZovCUI OA.J �- 1 /�„ . t sv, �- c{cf /t �-, rr�n' � �hN•rr r� .o � p i �T" f�-niU �-Z - ! I -Su 16 C--IaAo 6- 1 C o,4 C cl,7577X i_r 10A.) .9 1-4, c T.9rL i AzS" 0-A-) Scf►rt[r�T X A�0 457 f%prDltav sri 003 L 4r WL - wl,6 t tU rootc�y �pXo_je�5 ce,,W1qz._lXA), r� ,�+� cvr,,,2 i ✓r► f:� [.� r ��ti .Sfi� � �L�a .4 �°- vr` 1n14429 LiN'r A /4t v D2A-7N OJ/7Z*; t r CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT DATE: PROJECT NAME: PROJECT NUMBER: STREET LOCATION• PERMIT NUMBER: CONTRACTOR: 'TELEPHONE: S-31— ll gr466,1 C't7n,��! � �iyo��2�� -'lo cs� IF 'Lii� J HcK ( . oU (/j'1 EL Br9 Lrrrtss L c li"k n--27 4G-1Z-7 a ld D M.4-i if -dm '472 -72, ZS/1J S 'Th N la r r �t Q �SiIZ ti G L/ /4-e- - 7'2arr� ea tzcx,.ci r � /i J vi�t{i c�Aj k,1,� -F c1 d qc /)'1 P /b,g r.- ,CL ci /iLa �-� ?ten+ � �7l %✓ri "�-�.v� /'f� 1.�, Z,� 1 "AWffi Lill CLe2P,5 4 Cu jiL IL(�ZgA e JAXI, 4 it7q- LaNS C4 . tc5 1 9 �s, �► 1 -Tv - Su a. Cx" ALr G) N rnoi- , A- -3 ca oS56L rWjL Aj- 6ALov =2 6 Lu ,4cv c(. wAs �t "Pc s vfi > d (`�� T �✓ l lir CW CAC oQ c tT 5 E /k -�-r� . C l(2 r3 �C� tL�la 6N Cl aAos (� L- iI C1 � � M A��G1E v.o.3 Qlut J fl Cf_. 1t-�+� "x�..�-T w++•.,. c i A-4 'Mb- L4 t o ot)e o 1 (-),Is &-(3-ti G 4-N 712 NQ- -� art /Vi ta-+'3,+ AN o 5ALou�e- 103 , C L. S (3A � "f��+�, Ay,1 d C o co ul,(t x t1D Jlia &-I-(l ern E V ✓vtSC . OhNNI W,)rlc CE C j3.AJ5 f S%y} i c r ►>(o --n(cC A- L-yNC,� PAVr Nv 12C- �p aai L � VV `'tj✓j s� A-f-io PEE 5 ((3aAJ it -t,tL E ✓A E M14429 CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT PROJECT NAME: DATE: PROJECT NUMBER: STREET LOCATION: PERMIT NUMBER: CONTRACTOR: TELEPHONE: (o-(O-(k Awl -7j,.ca- i-taFS 10 +AA eL -F3►4 n .c f>A c-v,,. rL Iry 014::7 P,4-u tw (f L tT AT t- M �-x(n . E!>AC.c u vl-- w rom,- IC -,ca t` P clentee ti-.,)e 0 t o d A -C. lo(eec -e of n eld L pft c k i 1 -YLt A-(.. _ L� L,v c, 9- _ rL L �.i � S e c5 . l( lS ( r7w .5 l re 3 o C SS i �nS 2 c p Moot Fr L� 5 Lt bN n.44 pep ,� ��7- cociP oP CL( (as head I C1-a ,zed a+- L ocltpvxt5 (N , L- Mx4,Q< • r�1ac .c AtS L tIcL a fcH . "tans a ci s n c rl5 aL h Ctj / -icj� v5t- k- . a resu rct ofite -eS+ -erc . 4Li Ll r-wc ►.�5� W-151c r5t urec Lo. ,,4- � 4 t g- tom + /K G--L44 + 61 -(-� oN 3 C"'jryL0L M14429 tZaon&(65 4- fTiVNDh77oeVj 6Z,A-N (V oAj0A -j (o((3 aN i-OT-S -!Y nil Ivies 2 -S. t&c,,f- bit, Wiltilo {-�ciz..� o,. so.�•� -y, StaE or- tn4o=-,4- pci. (p °_ 0 t Aw ILA Alt- a-41& ev ALL- L %ps vF � v � Eri �fh5� �7Q+4*JE �Calr le-t w and 5-1' LAJ l - aL-V- P5+ n255Pc f ih i c of , L.) s (� -Zo - t W -%7�avto r�W'v WA,o fS vcAyuO(LO -E q (OtEl 57) LA- NtA?7L�0 . U cfit5 ra(SI-c+ '-Iv 19LAE grOk 6A Trcke- ( Cep 1b c t-ci,3,ro on (-A veN t 1n - tX -n-L4 SP n cF v -eS , t R TAT Gr► S �a- j0A �- oYj S -tpLA-( .T i,Fr 6•-Z7-11 cis won rl, otv r P7 1 l R iy 1 g� N L7 L - r M14429 CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT PROJECT NAME: STREET LOCATION: CONTRACTOR: DATE: PROJECT NUMBER: PERMIT NUMBER: TELEPHONE: 7-//-// ffeaJ �� f Pic �4T -sc ca�ivea2 7 �,— caG,i: �.� 7y Ca.�c/U --7E- `7V SLv kr,97't ,m`v� rn cam, F7��Z S �v i%Z'rv7 c.✓ g� nc t ��� 421- -5yJ CO,t - 6!)� 110 Lam` & 1-f vn'1 -/-v a -z� ioaurt +7- Lroi Zf " et, //v QLJA,� Vto //J 7-2-4o ll Jicll+lr..' /3r Ueo , M 4-A✓QrL&Z4 -3A Lou (L . -molm M14429 _ Aries. fUVr "PnJEn F;-)C- 2t u(-t- c 'Mro AL 'r►1o�(� - i1�f =3E tZl5,4 T Lln� csa eNw /i?nfiE, CO f-rJ t ;-Ds- tr D i9-�.►� fr�o�, l L� ;.5 %X- r✓(, ON 2 Alg�VitW ' p i ooeel fIAVC C 4ECIG •tTrKES 7a 1 Gf .LTLXl"if *I- s c p�.rre -►-►�- w r- 4EYt49- T-,-riq�,j V-4, -ns cN f 22 Arc tux s , -3A Lou (L . -molm M14429 _ Aries. fUVr "PnJEn F;-)C- 2t u(-t- c 'Mro AL 'r►1o�(� - i1�f =3E tZl5,4 CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT DATE: PROJECT NAME: PROJECT NUMBER: STREET LOCATION• PERMIT NUMBER: • CONTRACTOR: TELEPHONE: d r� /S !h v2Nl,v Ca bR �nQU409 L wC %%x-74 T/n S[.�,fiz. �r4 ilE T►-�E f� oL 7u r G L Ut,, iL J c u r,9- L4 /47/ o 6� N G/�tE /Z�r O� rr r, IA-) I'll ! ,P��'�rc -rJ Fv��n� s,o�o Cz �lVS If C� �rrP� f oc00, . 14"e fz �r�rr� 7„ s, fe c v �x- f t . Z-/ u �ie'c %/l void e t��J ( or eo [$ L C r (L 7- r72 � - G !q� /N Up S�l�iQ7Crl.Eb P �rc-" t pW .� 2E /�l/7�_ � � l�c/ 4 og %%C `, C . ��/17 �`�"�' 7 f►t l t �lo (.v F ' / h �/ 9 9 r% �/ �r ------7t Pcc �o 3 L 5 {.rt'nNd !,:,1' Rxfi - o� j- 4 Zr r ( sl v �nr c L� _ SET �'" /�r��9t /�/�. (�/) 5� KC�7'� L /l✓rrT GvC�fii7� � , .6E eh -Lle J . k/rr7, L-bv-1-`> 7Z) s•4E!u,,fL4 I? ul s r✓� r) , m1442 �( /N q EZW-n �Ex v to; 3 ,Qih - r/`r � � 3�f3 " &"er A-F 3 lqk�( place e-,19, CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT DATE: PROJECT NAME: PROJECT NUMBER: STREET LOCATION: PERMIT NUMBER: CONTRACTOR: TELEPHONE: I ol L-07S "f /'Y1 l2&3 7- ill 6) Luc t- /-s t-r 44l 41// (Z- 11 -"CD L 642 .C:L�t/ dL.-Ifu I C;'F / a tpl firJLY-A' 270/ . 13 AZ Tl 1 fi ... ... . .. .... (l 7 7 tie '5-646aj L&V 26 Ill -304ol. 14p 64fo/At— Axj1,e,-1 6t;f Irk?, Ay7'1'2oj ed� -12 /h C I lit- <-�'4 'rte vel L075 6, --A-, 6-144-Ill 17 azla02 6Z,AV 6' .... .... ....... re -/ 4? ('eS 5T-2 12- Aaa)%W L, 07-1-1 1(4 0-kX1 ill j ljl,� ¢Zoh tc:�nS-. re eerj ne,-O ooe-i 6VII-7F. r1or oil- tor be S-- ��pa 7&90. W57W 4 &-io 6 /,oll .. ... ...... .... . .... .. . .... o W'' &/24ijeL ills q I/vp :50 tZeyi-o-, W be—ir ao-ree/ /9 vvavLuj As M14429 CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT DATE: PROJECT NAME: PROJECT NUMBER- STREET LOCATION• PERMIT NUMBER: CONTRACTOR: 'TELEPHONE: ol . 14,,40 71) _ 6C- R ,� ��� s 110 •,uc , mv0 �Iw's �r ` 162 n l -f- �f1..s �uG• 2E� • f+pP2.cuc� Gvn�,yr./�o� iN •t� -tE.3 ht.— 'b►2m 5 l, L-73 °4 t:: /11" 2 a�c-n Sr o�.S Z oc -A-s54 -h> non 8r -i-7 B"'p swAU m -7 �Q 77�ts A'r Fors 7,r0,rr,1z, . c� c GAc 6 zb i L ry a,6,101 ��� A-�d r- ►�p2�u� ��-h_ Th � 3 y " cic OIL_ 6130142- Q,;:� — �nf U• 5u L, A-t L07"S I l3 I S A • Zo I Z f -LL- L oTS ©1J C'�. t't•£'�UAi� � (t��i�s -tred vtt� ca.'�Pj /�/� ��(itWt �l(S�►"n C�a C /O 30� — %ii:-L-0 0 Fa`t77/Zr TN flm/ii- AS �� • FU � /fit -'�'no �islt � �� c,�9A -t �m C�o'>— �R.- ,.t.4�• �a�.t � N!n A -LAii,H0 LC /o /Z �vAZOs cc�-�5t-• r"Ired 5-1;1K4A(6 IS in us 3/ /OWN 4L V 6 2 p �2 4S a 9 c . /I t /•Z f=v,2 IA o/t �kT r,G C 'r►-t 25 r)1oaae vim* C d17 wnt p-YL i4V t M . �SeG fIGY►s t �l r� ��/ In lv,r7 L�i/(te ,qc L W. . lCc w a rxp a off � (� {�tlS Z U lx //1 no �� 112,"7c .L� oe-7 1%4a/ /Af/% •7V> ii M14429 CITY OF ENCINITAS - ENGINEERING SERVICES DEPARTMENT ACTIVITY REPORT PROJECT NAME: STREET LOCATION: CONTRACTOR: UE Luf�-r2At �-� Ccy•�1l iA-)_ a h,e 1, Sini- d 4 DATE: PROJECT NUMBER: PERMIT NUMBER: TELEPHONE: f Mfv -7v jog 5,r-4E7 -= °there ��SS fai/ t wa r Lv d- ,tea 6rro f a U�� �acoGlS Shl _ iT� �x l y.m � ✓ S��tEou� 7aM t�.,Gq,cl / z l ,mss �3'u!� c.�c 7�-! /S •7�rvi� .� pC.gvSN.�rjPC 11q A -r- 3U7` f / S 1n tTS Lu E r9CL �lirl� f aPP' A/C ezrr lo'o . . 2 a r3 I)Et��ArlvE/ Pcc pvu24, K2/o rZ y> �s 4, P-" Cr4,1 tvAj /ATi-rrn 6 0104 WTL No; Sur`s trcG. �, Pcnre. �rfiej a+- s A'Is,AL U 1.r7"IF.S 7U C�2et�0� Z5 l3 PA,,o,"As p u�nr6 l�Emv'D c�7�iE(' �/Z ul-- & -4 DEC 2rt-��E o cRt.'TE C �.Sr.vG�. pi At &ten 6211 SCNEoUI-w '�,� u,2?.� i,J , r nr �� �n r SL'v t7Z�I L Of_9 ss, �-►s I Sfrz i/ 5moo owels ZV r3 I-� 27 (3 G7�ti: LI �� (�rcoa�'�= =5i2�� C�cSi.�►G c.�c �5 c..r Fl L� Civhll►Za S CS. /he �% N l3 fit.(,- �1�Y►S oN �t.r.��t�G�r r ?u,�:�,�ftr� �,,� .� �; m14429 71� lr Gk- aoy,�- &V lyn, 7b �v, tirT ouT •TN /S Cv,� 57�'r:u c. {� vn �; , E ti 72S i a' 2t /r e; A •7,6 toe rC l 3 l�A�orn �9 2 L lent,() ����Tt, r�2.�u 7v -5,7E7 ,4.,j_o {�� �y / I 1�7� -/ ,7% %�_!�/.�/ � •'•�7�) QI i ilf� // "i 6 � r,._. rr 1 S��tEou� 7aM t�.,Gq,cl / z l ,mss �3'u!� c.�c 7�-! /S •7�rvi� .� pC.gvSN.�rjPC 11q A -r- 3U7` f / S 1n tTS Lu E r9CL �lirl� f aPP' A/C ezrr lo'o . . 2 a r3 I)Et��ArlvE/ Pcc pvu24, K2/o rZ y> �s 4, P-" Cr4,1 tvAj /ATi-rrn 6 0104 WTL No; Sur`s trcG. �, Pcnre. �rfiej a+- s A'Is,AL U 1.r7"IF.S 7U C�2et�0� Z5 l3 PA,,o,"As p u�nr6 l�Emv'D c�7�iE(' �/Z ul-- & -4 DEC 2rt-��E o cRt.'TE C �.Sr.vG�. pi At &ten 6211 SCNEoUI-w '�,� u,2?.� i,J , r nr �� �n r SL'v t7Z�I L Of_9 ss, �-►s I Sfrz i/ 5moo owels ZV r3 I-� 27 (3 G7�ti: LI �� (�rcoa�'�= =5i2�� C�cSi.�►G c.�c �5 c..r Fl L� Civhll►Za S CS. /he �% N l3 fit.(,- �1�Y►S oN �t.r.��t�G�r r ?u,�:�,�ftr� �,,� .� �; m14429 PARCEL NO. JOB SITE ADDRESS: APPLICANT NAME MAILING ADDRESS: CITY: COSTA MESA CONTRACTOR : LICENSE NO.: ENGINEER PERMIT ISSUE PERMIT EXP. INSPECTOR: Ti C I T Y OF E N C I N I T A S ENGINEERING SERVICES DEPARTMENT 505 S. VULCAN AVE. ENCINITAS, CA 92024 GRADING PERMIT PERMIT NO.: 963GI 259 - 180 -1900 1150 MELBA ROAD WARMINGTON ENCINITAS 3090 PULLMAN STATE PLAN NO.: 963 -G 41 LLC CASE NO.: 06005 / TM PHONE NO.: 714 - 557 -5511 CA ZIP: 92626- BURTECH PIPELINE 718202 PLSA DATE: 12/22/10 DATE: 9/03/11 PERMIT ISSUED BY DDD BAUMBACH ----------- -------- - -- - -- PERMIT FEES & DEPOSITS PHONE NO.: 760 - 634 -2822 LICENSE TYPE: A PHONE NO.: 858 -259 -8212 ---------------------- - - - - -- 1. PERMIT FEE .00 2. GIS MAP FEE 3.75.00 3. INSPECTION FEE 23,935.00 4. INSPECTION DEPOSIT: 5. NPDES INSPT FEE 4,787.00 6. SECURITY DEPOSIT .00 731,195.00 7. FLOOD CONTROL FE 840.00 8. TRAFFIC FEE 9. IN -LIEU UNDERGRN 203,600.00 10.IN -LIEU IMPROVMT .00 14,000.00 11-PLAN CHECK FEE .00 12.PLAN CHECK DEPOSIT: .00 ------------------- - - - - -- DESCRIPTION OF WORK ------------------------- - - - - -- PERMIT TO GUARANTEE BOTH PERFORMANCE AND LABOR /MATERIALS FOR EARTHWORK, DRAINAGE, PRIVATE IMPROVEMENTS, AND EROSION CONTROL PER APPROVED GRADING PLAN 963 -G. CONTRACTOR MUST MAINTAIN TRAFFIC CONTROL PER APPROVED TRAFFIC CONTROL PLAN. LETTER DATED NOVEMBER 30,2009 (REV.DEC. 1,2010) APPLIES. - - -- INSPECTION ---------- - - - - -- DATE INITIAL INSPECTION /Z-Z7- /D COMPACTION REPORT RECEIVED = ENGINEER CERT. RECEIVED ROUGH GRADING INSPECTION 7 _2��- / FINAL INSPECTION 1- INSPECTOR'S SIGNATURE - - -- -------------------------------- I HEREBY ACKNOWLEDGE THAT I HAVE READ THE APPLICATION AND STATE THAT THE INFORMATION IS CORRECT AND AGREE TO COMPLY WITH ALL CITY ORDINANCES AND STATE LAWS REGULATING EXCAVATING AND GRADING, AND THE PROVISIONS AND CONDITIONS OF ANY PERMIT SUED PURSUANT TO THIS APPLICATION. S IGNA / Z Z Z DATE SIG D PRINT NAME TELEPHONE NUMBER CIRCLE ONE: 1. OWNER 2. AGENT 3. OTHER PASCO LARET SUITER & ASSOCIATES CIVIL ENGINEERING + LAND PLANNING + LAND SURVEYING February 15, 2013 City of Encinitas 505 South Vulcan Ave Encinitas, CA 92024 Attn Engineering: PLSA 1452 RE: MONUMENT BOND RELEASE FOR SUBDIVISION MAP 15827 (TM 06- 005) To Whom It Mat Concern, Please be advised that the monuments for the above referenced maps have been set and we have been paid for said work. If you have any questions regarding the above please feel free to contact me Sincerely, -/— /A Joseph uhas, PLS 5211 Principal Land Surveyor Pasco Laret Suiter & Associates, Inc. �t 533 N Coast Highway 101 Ste A Solana Beach, California 92075 1 ph 858.756.9374 1 tx 838.756.4231 � plsaengineering.com Mai HYDROLOGY CALCULATIONS For 1150 MELBA ROAD —18 LOT SUBDIVISION APN: 359-180-19 CITY OF ENCINITAS, CALIFORNIA Prepared For LAWRENCE HOLLAND 871 NEPTUNE AVENUE ENCINITAS, CA 92024 (760) 579 -1093 PE 1452F PREPARED BY: PASCO ENGINEERING, INC. �QF.AFESS /on, Jusr�N 535 N. HIGHWAY 101, SUITE A �` . SOLANA BEACH, CA 92075 us 3 c6-9 4 ;u (858)259 -8212 EXP DATE: 5 -8 -08 or.G✓ REVISED: W.. "JUSTIN$UITER, RCE 68964 1460" DATE HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 TABLE OF CONTENTS SECTION DISCUSSION................................................ ..............................A CONCLUSION............................................... ..............................B 100 YEAR PRE DEVELOPMENT HYDROLOGY CALCULATIONS. ........0 100 YEAR POST DEVELOPMENT HYDROLOGY CALCULATIONS .......D HYDRAULIC CALCULATIONS ........................ ..............................E APPENDIX................................................... ..............................F Isopluvials Intensity Duration Curve Runoff Coefficients Hydrology Node Map HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 A. INTRODUCTION The purpose of this report is to analyze the storm water runoff produced from the 100 year storm event of the existing and post - developed conditions of the Melba Road project site. The subject property is physically located at 1150 Melba Road, Encinitas, California and geographically located at 33 °02'30" N, 117 015'58" W. Pre - Developed Conditions The existing condition of the project site consists of several greenhouses covering most of the property at 1150 Melba Road. The northern portion of the property drains east to west and discharges onto Balour Drive. The southern portion of the property drains from the northeast corner to the southwest corner of the property and discharges onto Melba Road. The difference in elevation between the highpoint and low point is approximately 42', with the highpoint of the property at an elevation of 384 in the northeast corner of the property and the low point at an elevation of 338 in the west side of the property. For pre- developed conditions, the property lies within two hydrologic sub - basins. Drainage sub -basin 1 discharges onto Balour Drive and runoff is conveyed to an existing 18" drainage pipe at Guadalajara and consequently discharges into a canyon with a peak flow of 32.34 cfs. Drainage sub -basin 2 discharges onto Melba Road and runoff is conveyed to an existing inlet at Evergreen and consequently discharges into a canyon with a peak flow of 23.60 cfs. Post- Development Conditions The proposed development consists of the construction of eighteen single family residences. All proposed drainage from lots 7, 10 -15, 17, & 18 will be directed to a treatment swale along Balour Drive. This runoff will ultimately discharge onto Balour Drive and continue its natural course to the canyon. Approximately 1 acre of developed site will divert water to Melba Road that currently discharges onto Balour. The total post- development runoff discharging via Balour Drive at the 18" pipe on Guadalajara is 28.55 cfs. All proposed drainage from lots 1, 2, 4 -6, 8, & 9 will be directed to a treatment swale along Melba Road. This runoff will ultimately discharge onto Melba Road along with the runoff from lot 3. The total post - development runoff that discharges onto Melba Road including offsite drainage at Evergreen is 24.83 cfs. HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 Methodology and Results Introduction The hydrologic model used to perform the hydrologic analysis presented in this report utilizes the Ration Method (RM) equation, Q =CIA. The RM formula estimates the peak rate of runoff based on the variables of area, runoff coefficient, and rainfall intensity. The rainfall intensity (I) is equal to: I= 7.44xP6 xD -O "' Where: I = Intensity (in/hr) P6 = 6 -hour precipitation (inches) D = duration (minutes — use Tc) Using the Time of Concentration (Tc), which is the time required for a given element of water that originates at the most remote point of the basin being analyzed to reach the point at which the runoff from the basin is being analyzed. The RM equation determines the storm water runoff rate (Q) for a given basin in terms of flow (typically in cubic feet per second (cfs) but sometimes as gallons per minute (gpm)). The RM equation is as follows: Where: Q =CIA Q= flow (in cfs) C = runoff coefficient, ratio of rainfall that produces storm water runoff (runoff vs. infiltration /evaporation/absorption/etc) I = average rainfall intensity for a duration equal to the Tc for the area, in inches per hour. A = drainage area contributing to the basin in acres. The RM equation assumes that the storm event being analyzed delivers precipitation to the entire basin uniformly, and therefore the peak discharge rate will occur when a raindrop that falls at the most remote portion of the basin arrives at the point of analysis. The RM also assumes that the fraction of rainfall that becomes runoff or the runoff coefficient C is not affected by the storm intensity, I, or the precipitation zone number. The hydrologic soil group classification for the site is "D ". The methodology used herein to determine Q100 is the modified rational method. The computer modeling program utilized to perform the hydrologic analysis of the proposed project site is produced by Advanced Engineering Software (AES2003). The pre - development runoff coefficient was determined by using a weighted "C" average. HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 C= 0.90 x (% impervious) + Cp x (1- %impervious) - Where: Cp = pervious surface runoff coefficient (varies depending on soil type from 0.2 to 0.35 — since analysis assumes type d soils Cp =0.35) For the pre - development condition the runoff coefficient utilized for the hydrologic analysis of the project site was conservatively calculated to be 0.35, based on an impervious percentage of 0 %. For the post - developed condition the runoff coefficient utilized for the hydrologic analysis of the project site was 0.52, taken from the June 2003 edition of the San Diego County Hydrology Manual for medium density residential areas having a density of 4.3 DU /A or less. B. CONCLUSION Based on the information and calculations contained in this report it is the professional opinion of Pasco Engineering, Inc. that the storm drain system as proposed on the corresponding Grading Plan will function to adequately intercept, contain and convey Q100 to the appropriate points of discharge with the exception of the existing type B -1 catch basin on the south side of Melba Road at Evergreen Drive, which will be upsized accordingly — see Section E for curb inlet capacity calculations. HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 C. 100 YEAR PRE DEVELOPMENT HYDROLOGY CALCULATIONS I .Q �l Q I ! I •If I I { I 1 j ICI i I I I UI < Iall I I i I i I r 7- rJ {r, � _ V;M�I N Vi i { o rJ f lji o! o— I f ={ i o f � n r:1 ry1 I 4 T rz to M '��GSOCa .� N � n I I rn I ` j O II lb- j rn If ^ � st > Q �i i j I i I i i 'u z al r, i I \No 1 << 1 I i I I► N I d- I I vMi j; �Q�II <<J �j 6 `.,�. l- �? Q J �,_I� t- � J 0 D J i �i 2 o 11 J �! , J ., lL V U moo 1 v tj 3A- � t, n i IM I I Q I � i . rl '� M ,,n r' rl r, �°- P ip r ^, r j i I HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2001,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982 -2002 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2002 License ID 1452 Analysis prepared by: Pasco Engineering 535 N. Highway 101 Suite A Solana Beach, Ca 92075 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** * PRE DEVELOPMENT HYDROLOGY STUDY FOR 100 YEAR STORM EVENT * PE 1452 FOR WALID ROMAYA * PASCO ENGINEERING FILE NAME: 1452PRE.DAT TIME/DATE OF STUDY: 13:53 01/22/2007 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6 -HOUR DURATION PRECIPITATION (INCHES) = 2.500 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C "- VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER - DEFINED STREET- SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER - GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT - /PARK - HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE/ SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)* (Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 1.10 IS CODE = 21 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.4600 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW - LENGTH = 100.00 UPSTREAM ELEVATION= 403.00 DOWNSTREAM ELEVATION = 394.00 ELEVATION DIFFERENCE = 9.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 5.539 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 0.38 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) = 0.38 ********************************************* * * * * * * * * * * * * * * * * * * * * ** * * * * * * * ** FLOW PROCESS FROM NODE 1.10 TO NODE 1.20 IS CODE = 52 » » >COMPUTE NATURAL VALLEY CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA ««< ELEVATION DATA: UPSTREAM(FEET) = 394.00 DOWNSTREAM(FEET) = 340.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 720.00 CHANNEL SLOPE = 0.0750 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.38 FLOW VELOCITY(FEET /SEC) = 4.11 (PER LACFCD/RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.92 Tc(MIN.) = 8.92 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.20 = 820.00 FEET. FLOW PROCESS FROM NODE 1.20 TO NODE 1.20 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCWHOUR) = 4.534 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.4600 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 1.27 SUBAREA RUNOFF(CFS) = 2.65 TOTAL AREA(ACRES) = 1.41 TOTAL RUNOFF(CFS) = 3.03 TC(MIN) = 8.92 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.20 TO NODE 1.30 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 340.00 DOWNSTREAM ELEVATION(FEET) = 338.00 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.03 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 HALFSTREET FLOOD WIDTH(FEET) = 8.85 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.68 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.51 STREET FLOW TRAVEL TIME(MIN.) = 3.08 Tc(MIN.) = 12.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.745 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 1.41 PEAK FLOW RATE(CFS) = 3.03 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.85 FLOW VELOCITY(FEET /SEC.) = 1.68 DEPTH *VELOCITY(FT *FT /SEC.) = 0.51 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.30= 1130.00 FEET. FLOW PROCESS FROM NODE 1.30 TO NODE 1.30 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.745 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) = 2.43 TOTAL AREA(ACRES) = 2.13 TOTAL RUNOFF(CFS) = 5.45 TC(MIN) = 12.00 FLOW PROCESS FROM NODE 1.30 TO NODE 1.30 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM I ARE: TIME OF CONCENTRATION(MIN.) = 12.00 RAINFALL INTENSITY(INCH/HR) = 3.75 TOTAL STREAM AREA(ACRES) = 2.13 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.45 FLOW PROCESS FROM NODE 2.00 TO NODE 2.10 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.3500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH = 0.35 UPSTREAM ELEVATION= 384.00 DOWNSTREAM ELEVATION = 376.00 ELEVATION DIFFERENCE = 8.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 0.061 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 0.41 TOTAL AREA(ACRES) = 0.20 TOTAL RUNOFF(CFS) = 0.41 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.10 TO NODE 1.30 IS CODE= 52 ---------------------------------------------------------------------------- » » >COMPUTE NATURAL VALLEY CHANNEL FLOW « «< HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 » » >TRAVELTIME THRU SUBAREA ««< ELEVATION DATA: UPSTREAM(FEET) = 376.00 DOWNSTREAM(FEET) = 338.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 669.00 CHANNEL SLOPE = 0.0568 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.41 FLOW VELOCITY(FEET /SEC) = 3.57 (PER LACFCD/RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 3.12 Tc(MIN.) = 9.12 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 1.30= 669.35 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.30 TO NODE 1.30 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.470 *USER SPECIFIED(SUBAREA): USER- SPECIFIED RUNOFF COEFFICIENT =.3500 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 3.59 SUBAREA RUNOFF(CFS) = 5.62 TOTAL AREA(ACRES) = 3.79 TOTAL RUNOFF(CFS) = 6.03 TC(MIN) = 9.12 FLOW PROCESS FROM NODE 1.30 TO NODE 1.30 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 9.12 RAINFALL INTENSITY(INCH/HR) = 4.47 TOTAL STREAM AREA(ACRES) = 3.79 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.03 FLOW PROCESS FROM NODE 3.00 TO NODE 3.10 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS ««< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.8200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION= 352.00 DOWNSTREAM ELEVATION = 349.00 ELEVATION DIFFERENCE = 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 3.495 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 1.10 TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS) = 1.10 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.10 TO NODE 1.30 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW ««< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 349.00 DOWNSTREAM(FEET) = 338.00 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 CHANNEL LENGTH THRU SUBAREA(FEET) = 415.00 CHANNEL SLOPE = 0.0265 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.762 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.8200 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.05 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 2.27 Tc(MIN.) = 8.27 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.23 PEAK FLOW RATE(CFS) = 1.10 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET /SEC.) = 3.05 LONGEST FLOWPATH FROM NODE 3.00 TO NODE 1.30 = 515.00 FEET. FLOW PROCESS FROM NODE 1.30 TO NODE 1.30 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.762 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.8200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 2.43 SUBAREA RUNOFF(CFS) = 9.49 TOTAL AREA(ACRES) = 2.66 TOTAL RUNOFF(CFS) = 10.59 TC(MIN) = 8.27 FLOW PROCESS FROM NODE 1.30 TO NODE 1.30 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 8.27 RAINFALL INTENSITY(INCH/HR) = 4.76 TOTAL STREAM AREA(ACRES) = 2.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.59 ** CONFLUEN STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 5.45 12.00 2 6.03 9.12 3 10.59 8.27 CE DATA ** INTENSITY AREA (INCH/HOUR) (ACRE) 3.745 2.13 4.470 3.79 4.762 2.66 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 20.54 8.27 4.762 2 20.54 9.12 4.470 3 18.83 12.00 3.745 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 PEAK FLOW RATE(CFS) = 20.54 Tc(MIN.) = 9.12 TOTAL AREA(ACRES) = 8.58 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.30= 1130.00 FEET ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.30 TO NODE 1.40 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 338.00 DOWNSTREAM ELEVATION(FEET) = 328.00 STREET LENGTH(FEET) = 356.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.54 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.44 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.66 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.93 STREET FLOW TRAVEL TIME(MIN.) = 1.27 Tc(MIN.) = 10.39 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.109 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 8.58 PEAK FLOW RATE(CFS) = 20.54 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.42 HALFSTREET FLOOD WIDTH(FEET) = 14.44 FLOW VELOCITY(FEET /SEC.) = 4.66 DEPTH *VELOCITY(FT *FT /SEC.) = 1.93 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.40 = 1486.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.40 TO NODE 1.40 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.109 *USER SPECIFIED(SUBAREA): USER- SPECIFIED RUNOFF COEFFICIENT =.9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 1.11 TOTAL AREA(ACRES) = 8.88 TOTAL RUNOFF(CFS) = 21.65 TC(MIN) = 10.39 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.40 TO NODE 1.40 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.39 RAINFALL INTENSITY(INCH/HR) = 4.11 TOTAL STREAM AREA(ACRES) = 8.88 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 PEAK FLOW RATE(CFS) AT CONFLUENCE = 21.65 FLOW PROCESS FROM NODE 4.00 TO NODE 4.10 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.8200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION= 339.00 DOWNSTREAM ELEVATION = 336.00 ELEVATION DIFFERENCE = 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 3.495 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 1.01 TOTAL AREA(ACRES) = 0.21 TOTAL RUNOFF(CFS) = 1.01 FLOW PROCESS FROM NODE 4.10 TO NODE 1.40 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW ««< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 336.00 DOWNSTREAM(FEET) = 328.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 458.00 CHANNEL SLOPE = 0.0175 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR= 0.015 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.510 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.8200 S.C.S. CURVE NUMBER (AMC 11) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.01 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.55 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 2.99 Tc(MIN.) = 8.99 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.21 PEAK FLOW RATE(CFS) = 1.01 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET /SEC.) = 2.55 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 1.40= 558.00 FEET. FLOW PROCESS FROM NODE 1.40 TO NODE 1.40 IS CODE = 81 ---------------------------------------------------------------------------- %» »ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.510 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.8200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 2.04 SUBAREA RUNOFF(CFS) = 7.55 TOTAL AREA(ACRES) = 2.25 TOTAL RUNOFF(CFS) = 8.55 TC(MIN) = 8.99 FLOW PROCESS FROM NODE 1.40 TO NODE 1.40 IS CODE _ HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.99 RAINFALL INTENSITY(INCH/HR) = 4.51 TOTAL STREAM AREA(ACRES) = 2.25 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.55 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 21.65 10.39 4.109 8.88 2 8.55 8.99 4.510 2.25 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONTLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 28.28 8.99 4.510 2 29.44 10.39 4.109 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 29.44 Tc(MIN.) = 10.39 TOTAL AREA(ACRES) = 11.13 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.40 = 1486.00 FEET. FLOW PROCESS FROM NODE 1.40 TO NODE 1.50 IS CODE = 61 » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 328.00 DOWNSTREAM ELEVATION(FEET) = 323.00 STREET LENGTH(FEET) = 173.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 29.44 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.59 AVERAGE FLOW VELOCITY(FEET /SEC.) = 5.13 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.35 STREET FLOW TRAVEL TIME(MIN.) = 0.56 Tc(MIN.) = 10.95 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.972 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 11.13 PEAK FLOW RATE(CFS) = 29.44 END OF SUBAREA STREET FLOW HYDRAULICS: HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 DEPTH(FEET) = 0.46 HALFSTREET FLOOD WIDTH(FEET) = 16.59 FLOW VELOCITY(FEET /SEC.) = 5.13 DEPTH *VELOCITY(FT *FT /SEC.) = 2.35 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.50 = 1659.00 FEET. FLOW PROCESS FROM NODE 1.50 TO NODE 1.50 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.972 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 0.79 TOTAL AREA(ACRES) = 11.35 TOTAL RUNOFF(CFS) = 30.23 TC(MIN) = 10.95 FLOW PROCESS FROM NODE 1.50 TO NODE 1.50 IS CODE _ » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM I ARE: TIME OF CONCENTRATION(MIN.) = 10.95 RAINFALL INTENSITY(INCH/HR) = 3.97 TOTAL STREAM AREA(ACRES) = 11.35 PEAK FLOW RATE(CFS) AT CONFLUENCE = 30.23 FLOW PROCESS FROM NODE 5.00 TO NODE 5.10 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.9000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW - LENGTH = 100.00 UPSTREAM ELEVATION = 324.00 DOWNSTREAM ELEVATION = 323.50 ELEVATION DIFFERENCE = 0.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 4.536 TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 0.90 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) = 0.90 FLOW PROCESS FROM NODE 5.10 TO NODE 1.50 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 323.50 DOWNSTREAM ELEVATION(FEET) = 323.00 STREET LENGTH(FEET) = 161.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.90 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.83 AVERAGE FLOW VELOCITY(FEET /SEC.) = 0.98 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.24 STREET FLOW TRAVEL TIME(MIN.) = 2.75 Tc(MIN.) = 8.75 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.593 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.17 PEAK FLOW RATE(CFS) = 0.90 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.83 FLOW VELOCITY(FEET /SEC.) = 0.98 DEPTH *VELOCITY(FT *FT /SEC.) = 0.24 LONGEST FLOWPATH FROM NODE 5.00 TO NODE 1.50= 261.00 FEET. FLOW PROCESS FROM NODE 1.50 TO NODE 1.50 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.593 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.4600 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.73 SUBAREA RUNOFF(CFS) = 1.54 TOTAL AREA(ACRES) = 0.90 TOTAL RUNOFF(CFS) = 2.44 TC(MIN) = 8.75 FLOW PROCESS FROM NODE 1.50 TO NODE 1.50 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.75 RAINFALL INTENSITY(INCH/HR) = 4.59 TOTAL STREAM AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.44 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 30.23 10.95 3.972 11.35 2 2.44 8.75 4.593 0.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCHIHOUR) 1 28.58 8.75 4.593 2 32.34 10.95 3.972 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 PEAK FLOW RATE(CFS) = 32.34 TC(MIN.) = 10.95 TOTAL AREA(ACRES) = 12.25 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.50 = 1659.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 6.10 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< *USER SPECIFIED(SUBAREA): USER- SPECIFIED RUNOFF COEFFICIENT =.9000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION= 388.00 DOWNSTREAM ELEVATION = 386.00 ELEVATION DIFFERENCE = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.857 TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 0.16 TOTAL AREA(ACRES) = 0.03 TOTAL RUNOFF(CFS) = 0.16 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.10 TO NODE 6.20 IS CODE = 61 » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA ««< » » >(STANDARD CURB SECTION USED)« «< UPSTREAM ELEVATION(FEET) = 386.00 DOWNSTREAM ELEVATION(FEET) = 362.00 STREET LENGTH(FEET) = 417.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.16 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.52 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.71 STREET FLOW TRAVEL TIME(MIN.) = 1.54 Tc(MIN.) = 7.54 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.055 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.03 PEAK FLOW RATE(CFS) = 0.16 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET)=0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 FLOW VELOCITY(FEET /SEC.) = 4.52 DEPTH *VELOCITY(FT* FT/SEC.) = 0.71 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 6.20 = 517.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW« «< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.055 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.96 TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) TC(MIN) = 7.54 ********************************************* * * ** * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.54 RAINFALL INTENSITY(INCH/HR) = 5.06 TOTAL STREAM AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.11 FLOW PROCESS FROM NODE 1.00 TO NODE 9.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): USER- SPECIFIED RUNOFF COEFFICIENT =.4600 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION = 403.00 DORVNSTREAM ELEVATION = 402.50 ELEVATION DIFFERENCE = 0.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 14.514 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.313 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.12 FLOW PROCESS FROM NODE 9.00 TO NODE 6.20 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 402.50 DOWNSTREAM(FEET) = 362.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 651.00 CHANNEL SLOPE = 0.0622 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.363 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.4600 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.12 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 1.09 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 9.98 Tc(MIN.) = 24.50 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.08 PEAK FLOW RATE(CFS) = 0.12 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET /SEC.) = 1.09 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.20= 751.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.20 TO NODE 6.201S CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCHIHOUR) = 2.363 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.4600 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 3.67 SUBAREA RUNOFF(CFS) = 3.99 TOTAL AREA(ACRES) = 3.75 TOTAL RUNOFF(CFS) = 4.11 TC(MIN) = 24.50 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = I » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 24.50 RAINFALL INTENSITY(INCH/HR) = 2.36 TOTAL STREAM AREA( ACRES) = 3.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.11 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.11 7.54 5.055 0.24 2 4.11 24.50 2.363 3.75 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 3.04 7.54 5.055 2 4.63 24.50 2.363 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.63 Tc(MIN.) = 24.50 TOTAL AREA(ACRES) = 3.99 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.20= 751.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.20 TO NODE 6.30 IS CODE = 61 » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA« «< » »>(STANDARD CURB SECTION USED)« «< UPSTREAM ELEVATION(FEET) = 362.00 DOWNSTREAM ELEVATION(FEET) = 354.00 STREET LENGTH(FEET) = 233.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STP EET PARKWAY CROSSFALL(DECIMAL) = 0.020 Mann in, s FRICTION FACTOR for Streetfl ow Section(curb -to -curb) = 0.0150 Mannino's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.63 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.33 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.54 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.96 STREET FLOW TRAVEL TIME(MIN.) = 1.10 Tc(MIN.) = 25.59 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.298 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 3.99 PEAK FLOW RATE(CFS) = 4.63 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 7.33 FLOW VELOCITY(FEET /SEC.) = 3.54 DEPTH *VELOCITY(FT *FT /SEC.) = 0.96 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.30 = 984.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * ** * * * * * * * * ** FLOW PROCESS FROM NODE 6.30 TO NODE 6.30 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 1 G J YEAR RAINFALL INTENSITY(INCIVHOUR) = 2.298 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.27 TOTAL AREA(ACRES) = 4.12 TOTAL RUNOFF(CFS) = 4.90 TC(MIN) = 25.59 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.30 TO NODE 6.30 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 25.59 RAINFALL INTENSITY(INCH/HR) = 2.30 TOTAL STREAM AREA(ACRES) = 4.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.90 FLOW PROCESS FROM NODE 1.00 TO NODE 8.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.4600 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION= 403.00 DOWNSTREAM ELEVATION = 402.50 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 ELEVATION DIFFERENCE = 0.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 14.514 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.313 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.12 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 8.10 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW « «< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 402.50 DOWNSTREAM(FEET) = 380.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 240.00 CHANNEL SLOPE = 0.0938 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.890 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.4600 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.12 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 1.17 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 3.42 Tc(MIN.) = 17.94 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.08 PEAK FLOW RATE(CFS) = 0.12 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET /SEC.) = 1.17 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.10= 340.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.10 TO NODE 8.10 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.890 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.4600 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 1.09 SUBAREA RUNOFF(CFS) = 1.45 TOTAL AREA(ACRES) = 1.17 TOTAL RUNOFF(CFS) = 1.57 TC(MIN) = 17.94 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.10 TO NODE 6.30 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW« «< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 380.00 DOWNSTREAM(FEET) = 354.00 CHANNEL LENGTH THRU SUnAREA(FEET) = 578.00 CHANNEL SLOPE = 0.0450 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL FN'TENSITY(INCH/HOUR) = 2.562 *USER SPECIFIED(SUBAREA): USER- SPECIFIED RUNOFF COEFFICIENT =.3500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.57 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.62 AVERAGE FLOW DEPTH(FEET) = 0.14 TRAVEL TIME(MIN.) = 3.68 Tc(MIN.) = 21.62 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 1.17 PEAK FLOW RATE(CFS) = 1.57 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.14 FLOW VELOCITY(FEET /SEC.) = 2.62 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.30 = 918.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.30 TO NODE 6.30 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.562 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =3500 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 1.70 SUBAREA RUNOFF(CFS) = 1.52 TOTAL AREA(ACRES) = 2.87 TOTAL RUNOFF(CFS) = 3.10 TC(MIN) = 21.62 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.30 TO NODE 6.30 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 21.62 RAINFALL INTENSITY(INCH/HR) = 2.56 TOTAL STREAM AREA(ACRES) = 2.87 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.10 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.90 25.59 2.298 4.12 2 3.10 21.62 2.562 2.87 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.49 21.62 2.562 2 7.68 25.59 2.298 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.68 Tc(MIN.) = 25.59 TOTAL AREA(ACRES) = 6.99 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.30 = 984.00 FEET. FLOW PROCESS FROM NODE 6.30 TO NODE 6.40 IS CODE = 61 » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA -«< » » >(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 354.00 DOWNSTREAM ELEVATION(FEET) = 316.00 STREET LENGTH(FEET) = 1030.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.68 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.03 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.11 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.26 STREET FLOW TRAVEL TIME(MIN.) = 4.18 Tc(MIN.) = 29.77 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.084 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 6.99 PEAK FLOW RATE(CFS) = 7.68 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 9.03 FLOW VELOCITY(FEET /SEC.) = 4.11 DEPTH *VELOCITY(FT *FT /SEC.) = 1.26 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.40 = 2014.00 FEET. FLOW PROCESS FROM NODE 6.40 TO NODE 6.40 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.084 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 1.18 SUBAREA RUNOFF(CFS) = 2.21 TOTAL AREA(ACRES) = 8.17 TOTAL RUNOFF(CFS) = 9.89 TC(MIN) = 29.77 FLOW PROCESS FROM NODE 6.40 TO NODE 6.40 IS CODE = 10 » » >MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.9000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH= 100.00 UPSTREAM ELEVATION= 388.00 DOWNSTREAM ELEVATION = 386.00 ELEVATION DIFFERENCE = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.857 TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 100 YEAR RAINFALL INTENSITY(MCH/HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 0.21 TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) = 0.21 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 FLOW PROCESS FROM NODE 10.00 TO NODE 10.10 IS CODE = 61 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA « «< » » >(STANDARD CURB SECTION USED) « «< UPSTREAM ELEVATION(FEET) = 386.00 DOWNSTREAM ELEVATION(FEET) = 316.00 STREET LENGTH(FEET) = 1695.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.21 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0. 16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.83 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.60 STREET FLOW TRAVEL TIME(MIN.) = 7.37 Tc(MIN.) = 13.37 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.493 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.04 PEAK FLOW RATE(CFS) = 0.21 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET)=0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 FLOW VELOCITY(FEET /SEC.) = 3.83 DEPTH *VELOCITY(FT *FT /SEC.) = 0.60 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 10.10= 1795.00 FEET. FLOW PROCESS FROM NODE 10.10 TO NODE 10.10 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.493 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 1.11 SUBAREA RUNOFF(CFS) = 3.49 TOTAL AREA(ACRES) = 1.15 TOTAL RUNOFF(CFS) = 3.70 TC(MIN) = 13.37 FLOW PROCESS FROM NODE 10.10 TO NODE 10.10 IS CODE = 81 » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW ««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.493 *USER SPECIFIED(SUBAREA): USER- SPECIFIED RUNOFF COEFFICIENT =.5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) = 6.72 TOTAL AREA(ACRES) = 4.85 TOTAL RUNOFF(CFS) = 10.42 TC(MIN) = 13.37 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.10 TO NODE 10.10 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.37 RAINFALL INTENSITY(INCH/HR) = 3.49 TOTAL STREAM AREA(ACRES) = 4.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 11.10 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION = 340.00 DOWNSTREAM ELEVATION= 336.00 ELEVATION DIFFERENCE= 4.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 6.577 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.519 SUBAREA RUNOFF(CFS) = 0.95 TOTAL AREA(ACRES) = 0.33 TOTAL RUNOFF(CFS) = 0.95 FLOW" PROCESS FROM NODE 11.10 TO NODE 10.10 IS CODE = 51 » » >COMPUTE TRAPEZOIDAL CHANNEL FLOW ««< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)« «< ELEVATION DATA: UPSTREAM(FEET) = 336.00 DOWNSTREAM(FEET) = 316.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 650.00 CHANNEL SLOPE = 0.0308 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.752 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.5200 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.95 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.01 AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 5.39 Tc(MIN.) = 11.97 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.33 PEAK FLOW RATE(CFS) = 0.95 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET /SEC.) = 2.01 LONGEST FLOWPATH FROM NODE 11.00 TO NODE 10.10= 750.00 FEET. FLOW PROCESS FROM NODE 10.10 TO NODE 10.10 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW « «< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.752 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.5200 S.C.S. CURVE NUMBER (AMC 11) = 0 SUBAREA AREA(ACRES) = 3.50 SUBAREA RUNOFF(CFS) = 6.83 TOTAL AREA(ACRES) = 3.83 TOTAL RUNOFF(CFS) = 7.77 TC(MN) = 11.97 FLOW PROCESS FROM NODE 10.10 TO NODE 10.10 IS CODE = 51 » »> COMPUTE TRAPEZOIDAL CHANNEL FLOW ««< » » >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)««< ELEVATION DATA: UPSTREAM(FEET) = 316.00 DOWNSTREAM(FEET) = 315.99 CHANNEL LENGTH THRU SUBAREA(FEET) = 0.01 CHANNEL SLOPE = 1.0010 CHANNEL BASE(FEET) = 1.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL NTENSITY(INCH/HOUR) = 3.752 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT =.5200 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 7.77 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 16.75 AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MN.) = 0.00 Tc(MN.) = 11.97 2 17.66 13.37 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 3.83 PEAK FLOW RATE(CFS) = 7.77 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.29 FLOW VELOCITY(FEET /SEC.) = 16.75 LONGEST FLOWPATH FROM NODE 11.00 TO NODE 10.10= 750.01 FEET. FLOW PROCESS FROM NODE 10.10 TO NODE 10.10 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE « «< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES « «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION (MIN.) = 11.97 RAINFALL NTENSITY(INCH/HR) = 3.75 TOTAL STREAM AREA(ACRES) = 3.83 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.77 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (NCH/HOUR) (ACRE) 1 10.42 13.37 3.493 4.85 2 7.77 11.97 3.752 3.83 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. * * PEAK FLOW RATE TABLE * * STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (NCH,fHOUR) 1 17.48 11.97 3.752 2 17.66 13.37 3.493 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 17.66 Tc(MIN.) = 13.37 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 TOTAL AREA(ACRES) = 8.68 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 10.10= 1795.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.10 TO NODE 6.40 IS CODE = 41 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) « «< ELEVATION DATA: UPSTREAM(FEET) = 315.60 DOWNSTREAM(FEET) = 315.30 FLOW LENGTH(FEET) = 54.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 5.62 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 17.66 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 13.53 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 6.40 = 1849.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.40 TO NODE 6.40 IS CODE = 1 I » »> CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY « «< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 17.66 13.53 3.466 8.68 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 6.40 = 1849.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.89 29.77 2.084 8.17 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.40 = 2014.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 23.60 13.53 3.466 2 20.51 29.77 2.084 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 23.60 Tc(MIN.) = 13.53 TOTAL AREA(ACRES) = 16.85 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 16.85 TC(MIN.) = 13.53 PEAK FLOW RATE(CFS) = 23.60 END OF RATIONAL METHOD ANALYSIS HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 D. 100 YEAR POST DEVELOPMENT HYDROLOGY CALCULATIONS r ' ' i � r i I v I ice; JI 'r j U rv' I c f v IJ c � M I j Qo to �r Cj �cli a• ° 9 G t 0 1 1 9 rj I I $ I �� 1- - �� �• -I �I21 iL �2 — �Ip � � clZ �`� k Qj ao tQ .9 jc �� ;ti't r I i i ' ! I M r V^ M r r^ \to r M M L 1 " M� rA r� r^ `M j I i i I E I I I I i I I I I I � I I � 1 f v, i ls) o 0 r ° ct- 2 N I I ` 4�1 az i`� i �� �I �I�I�q v I i\ C Q � N V7 Fa� l.7 ��� C+p �1- 1�.7 •!� � � � Cj � � i � I I I ' N ol�, I 1 i i Q QCI N rj � rJ N M j � .s v1 � ! Q'Q � N M o —►�N rn� �- o L )I ..� ,, _�� _� Q _� ^v �^ � ! I I I I I I � I � 1 I I � I i � � � I . � i i I 1 I J � I � I � �I � i I I IM I ` � ' I � o I. �' j a `� � � . , � � � I l i .� i ' � � ' � 1� � � ! �<< Q � � � { � �� I I � li �i N � �" ' :Ci � +n ti o 1� I � • 4 I . 9 �� � � � ` �f' I i • I i I -I � 1v l , .� J W Q � � 2 � � � � � U ` C .� o � a. 41, I �. 2 � 4� ��� � �• �I I I � ! iii ! . v s MM °� v, � .`� ; L- I I �� �4- • � �i I i � �� � `�i � � I � I I l l l f a � ��� I ( � `,v �- r" - v� � V r� �� P I D . � O �, Q � � j i I ,. � � i ( I I � I � � I i I I I I I I I � � I I I I I 1 I I I HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2001,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982 -2002 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2002 License ID 1452 Analysis prepared by: Pasco Engineering 535 N. Highway 101 Suite A Solana Beach, Ca 92075 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY • POST DEVELOPMENT HYDROLOGY STUDY FOR 100 YEAR STORM EVENT * • PE1452 FOR WALID ROMAYA • PASCO ENGINEERING - REVISED 7 -9 -07 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 1452POST.DAT TIME /DATE OF STUDY: 15:27 07/09/2007 ----------------7----------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -------------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6 -HOUR DURATION PRECIPITATION (INCHES) = 2.500 SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00 SPECIFIED PERCE14T OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 SAN DIEGO HYDROLOGY MANUAL "C "- VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER - DEFINED STREET- SECTIONS FOR COUPLED PIPEFLOW AND STREETFLCW MODEL* HALF- CROWN TO STREET- CROSSFALL: CURB GUTTER- GEO_RIES: MANNING WIDTH CROSSFALL IN- / OUT- /PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.016/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW -DEPTH CONSTRAINTS: 1. Relative Flow -Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top -of -Curb) 2. (Depth)* (Velocity) Constraint = 6.0 (FT *FT /S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 1.00 TO NODE 1.10 IS CODE = 21 ---------------------------------------------------------------------------- » »> RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .4600 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW - LENGTH = 100.00 UPSTREAM ELEVATION = 403.00 DOWNSTREAM ELEVATION = 394.00 ELEVATION DIFFERENCE = 9.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 5.539 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 0.38 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) = 0.38 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.10 TO NODE 1.20 IS CODE = 52 » » >COMPUTE NATURAL VALLEY CHANNEL FLOW««< » »>TRAVELTIME THRU SUBAREA««< ELEVATION DATA: UPSTREAM(FEET) = 394.00 DOWNSTREAM(FEET) = 340.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 720.00 CHANNEL SLOPE = 0.0750 NOTE: CHANNEL FLOW OF 1. CFS WAS ASSUMED IN VELOCITY ESTIMATION CHANNEL FLOW THRU SUBAREA(CFS) = 0.38 FLOW VELOCITY(FEET /SEC) = 4.11 (PER LACFCD /RCFC &WCD HYDROLOGY MANUAL) TRAVEL TIME(MIN.) = 2.92 Tc(MIN.) = 8.92 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.20 = 820.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.20 TO NODE 1.20 IS CODE = 81 --------------------------------------------------------- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.534 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .4600 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 1.27 SUBAREA RUNOFF(CFS) = 2.65 TOTAL AREA(ACRES) = 1.41 TOTAL RUNOFF(CFS) = 3.03 TC(MIN) = 8.92 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.20 TO NODE 1.30 IS CODE = 61 ---------------------------------------------------------- » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 340.00 DOWNSTREAM ELEVATION(FEET) = 338.00 STREET LENGTH(FEET) = 310.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.03 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.85 AVERAGE FLOW VELOCITY(FEET /SEC.) = 1.68 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.51 STREET FLOW TRAVEL TIME(MIN.) = 3.08 Tc(MIN.) = 12.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.745 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 1.41 PEAK FLOW RATE(CFS) = 3.03 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 8.85 FLOW VELOCITY(FEET /SEC.) = 1.68 DEPTH *VELOCITY(FT *FT /SEC.) = 0.51 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.30 = 1130.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.30 TO NODE 1.30 IS CODE _ --------------------------------------------- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.745 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.72 SUBAREA RUNOFF(CFS) 5.45 = 2.43 TOTAL AREA(ACRES) = 2.13 TOTAL RUNOFF(CFS) = TC(MIN) = 12.00 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.30 TO NODE 1.30 IS CODs. = 1 -------------------------------------------------- » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ----- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.00 RAINFALL INTENSITY(INCH /HR) = 3.75 TOTAL STREAM AREA(ACRES) = 2.13 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.45 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.00 TO NODE 7.10 IS CODE = 21 --------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION = 364.00 DOWNSTREAM ELEVATION = 363.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.440 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.097 SUBAREA RUNOFF(CFS) = 0.60 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) = 0.60 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 7.10 TO NODE 1.30 IS CODE = 61 ----------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< » »>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 363.00 DOWNSTREAM ELEVATION(FEET) = 338.00 STREET LENGTH(FEET) = 522.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 16.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 HYDROLOGY STUDY for 1150 MELBA ROAD - PE 1452 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.60 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.13 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.64 STREET FLOW TRAVEL TIME(MIN.) = 2.11 Tc(MIN.) = 12.55 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.639 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.28 PEAK FLOW RATE(CFS) = 0.60 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 FLOW VELOCITY(FEET /SEC.) = 4.13 DEPTH *VELOCITY(FT *FT /SEC.) = 0.64 LONGEST FLOWPATH FROM NODE 7.00 TO NODE 1.30 = 622.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.30 TO NODE 1.30 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.639 *USER SPECIFIED(SUBAREA): USER- SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 2.52 SUBAREA RUNOFF(CFS) = 4.77 TOTAL AREA(ACRES) = 2.80 TOTAL RUNOFF(CFS) = 5.36 TC(MIN) = 12.55 FLOW PROCESS FROM NODE 1.30 TO NODE 1.30 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.55 RAINFALL INTENSITY(INCH /HR) = 3.64 TOTAL STREAM AREA(ACRES) = 2.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.36 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.00 TO NODE 3.10 IS CODE = 21 ---------------------------------------------------------------------------- »» >RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .8200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVA ^_ION = 352.00 DOWNSTREAM ELEVATION = 349.00 ELEVATION DIFFERENCE = 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 3.495 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 1.10 TOTAL AREA(ACRES) = 0.23 TOTAL RUNOFF(CFS) = 1.10 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 3.10 TO NODE 1.30 IS CODE = 51 » »> COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »» >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 349.00 DOWNSTREAM(FEET) = 338.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 415.00 CHANNEL SLOPE = 0.0265 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.762 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .8200 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.10 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 3.05 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 2.27 Tc(MIN.) = 8.27 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.23 PEAK FLOW RATE(CFS) = 1.10 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET /SEC.) = 3.05 LONGEST FLOWPATH FROM NODE 3.00 TO NODE 1.30 = 515.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.30 TO NODE 1.30 IS CODE = 81 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.762 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .8200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 2.43 SUBAREA RUNOFF(CFS) = 9.49 TOTAL AREA(ACRES) = 2.66 TOTAL RUNOFF(CFS) = 10.59 TC(MIN) = 8.27 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.30 TO NODE 1.30 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« <<< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 8.27 RAINFALL INTENSITY(INCH /HR) = 4.76 TOTAL STREAM AREA(ACRES) = 2.66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.59 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 5.45 12.00 3.745 2.13 2 5.36 12.55 3.639 2.80 3 10.59 8.27 4.762 2.66 RAINFALL INTENSITY AND TIME OF CONCENTRATION PATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 18.98 8.27 4.762 2 19.00 12.00 3.745 3 18.76 12.55 3.639 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 19.00 Tc(MIN.) = 12.00 TOTAL AREA(ACRES) = 7.59 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.30 = 1130.00 FEET. FLOW PROCESS FROM NODE 1.30 TO NODE 1.40 IS CODE = 61 ---------------------------------------------------------------------------- » » >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 338.00 DOWNSTREAM ELEVATION(FEET) = 328.00 STREET LENGTH(FEET) = 356.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 19.00 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 13.99 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.58 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.86 STREET FLOW TRAVEL TIME(MIN.) = 1.30 Tc(MIN.) = 13.29 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.505 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 7.59 PEAK FLOW RATE(CFS) = 19.00 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.41 HALFSTREET FLOOD WIDTH(FEET) = 13.99 FLOW VELOCITY(FEET /SEC.) = 4.58 DEPTH *VELOCITY(FT *FT /SEC.) = 1.86 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.40 = 1486.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.40 TO NODE 1.40 IS CODE = 81 ---------------------------------------------------------------------------- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.505 *USER SPECIFIED(SUBAREA): USER- SPECIFIED RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 0.95 TOTAL AREA(ACRES) = 7.89 TOTAL RUNOFF(CFS) = 19.94 TC(MIN) = 13.29 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.40 TO NODE 1.40 IS CODE = 1 ---------------------------------------------------------------------------- » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.29 RAINFALL INTENSITY(INCH /HR) = 3.51 TOTAL STREAM AREA(ACRES) = 7.89 PEAK FLOW RATE(CFS) AT CONFLUENCE = 19.94 FLOW PROCESS FROM NODE 4.00 TO NODE 4.10 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS«« < *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .8200 S.C.S. CURVE NUMBER (AMC II) = 0 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X -A) WITH 10- MINUTES ADDED = 11.04(MINUTES) INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION = 339.00 DOWNSTREAM ELEVATION = 336.00 ELEVATION DIFFERENCE = 3.00 NATURAL WATERSHED TIME OF CONCENTRATION = 11.04 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.951 SUBAREA RUNOFF(CFS) = 0.23 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) = 0.23 FLOW PROCESS FROM NODE 4.10 TO NODE 1.40 IS CODE = 51 »»>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 336.00 DOWNSTREAM(FEET) = 328.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 458.00 CHANNEL SLOPE = 0.0175 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.126 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .8200 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.23 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 1.58 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 4.83 Tc(MIN.) = 15.88 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.07 PEAK FLOW RATE(CFS) = 0.23 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.04 FLOW VELOCITY(FEET /SEC.) = 1.58 LONGEST FLOWPATH FROM NODE 4.00 TO NODE 1.40 = 558.00 FEET. FLOW PROCESS FROM NODE 1.40 TO NODE 1.40 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.126 *USER SPECIFIED(SUBAREA): USER- SPECIFIED RUNOFF COEFFICIENT = .8200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 2.04 SUBAREA RUNOFF(CFS) = 5.23 TOTAL AREA(ACRES) = 2.11 TOTAL RUNOFF(CFS) = 5.46 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 TC(MIN) = 15.88 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.40 TO NODE 1.40 IS CODE = 1 -------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< » »>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 15.88 RAINFALL INTENSITY(INCH /HR) = 3.13 TOTAL STREAM AREA(ACRES) = 2.11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.46 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 19.94 13.29 3.505 7.89 2 5.46 15.88 3.126 2.11 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 26.06 13.29 3.505 2 23.24 15.88 3.126 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 26.06 Tc(MIN.) = 13.29 TOTAL AREA(ACRES) = 10.00 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.40 = 1486.00 FEET. FLOW PROCESS FROM NODE 1.40 TO NODE 1.50 IS CODE = 61 -------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »» >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 328.00 DOWNSTREAM ELEVATION(FEET) = 323.00 STREET LENGTH(FEET) = 173.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 26.06 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.44 HALFSTR.EET FLOOD WIDTH(FEET) = 15.80 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.98 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 2.20 STREET FLOW TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 13.87 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.410 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 TOTAL AREA(ACRES) = 10.00 PEAK FLOW RATE(CFS) = 26.06 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.44 HALFSTREET FLOOD WIDTH(FEET) = 15.80 FLOW VELOCITY(FEET /SEC.) = 4.98 DEPTH *VELOCITY(FT *FT /SEC.) = 2.20 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.50 = 1659.00 FEET. FLOW PROCESS FROM NODE 1.50 TO NODE 1.50 IS CODE = 81 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«« < 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.410 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 0.68 -- TOTAL AREA(ACRES) = 10.22 TOTAL RUNOFF(CFS) = 26.74 TC(MIN) = 13.87 FLOW PROCESS FROM NODE 1.50 TO NODE 1.50 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.87 RAINFALL INTENSITY(INCH /HR) = 3.41 TOTAL STREAM AREA(ACRES) = 10.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 26.74 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.00 TO NODE 5.10 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION = 324.00 DOWNSTREAM ELEVATION = 323.50 ELEVATION DIFFERENCE = 0.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 4.536 TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 0.90 TOTAL AREA(ACRES) = 0.17 TOTAL RUNOFF(CFS) = 0.90 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 5.10 TO NODE 1.50 IS CODE = 61 ---------------------------------------------------------------------------- » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »» >(STANDARD CURB SECTION USED)<<<<< --------------------------------------- UPSTREAM ELEVATION(FEET) = 323.50 DOWNSTREAM ELEVATION(FEET) = 323.00 STREET LENGTH(FEET) = 161.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 17.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.90 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.83 AVERAGE FLOW VELOCITY(FEET /SEC.) = 0.98 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.24 STREET FLOW TRAVEL TIME(MIN.) = 2.75 Tc(MIN.) = 8.75 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.593 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.17 PEAK FLOW RATE(CFS) = 0.90 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 5.83 FLOW VELOCITY(FEET /SEC.) = 0.96 DEPTH *VELOCITY(FT *FT /SEC.) = 0.24 LONGEST FLOWPATH FROM NODE 5.00 TO NODE 1.50 = 261.00 FEET. FLOW PROCESS FROM NODE 1.50 TO NODE 1.50 IS CODE = 81 ---------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.593 *USER SPECIFIED(SUBAREA): USER- SPECIFIED RUNOFF COEFFICIENT = .4600 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.73 SUBAREA RUNOFF(CFS) = 1.54 TOTAL AREA(ACRES) = 0.90 TOTAL RUNOFF(CFS) = 2.44 TC(MIN) = 8.75 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.50 TO NODE 1.50 IS CODE = 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.75 RAINFALL INTENSITY(INCH /HR) = 4.59 TOTAL STREAM AREA(ACRES) = 0.90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.44 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 26.74 13.87 3.410 10.22 2 2.44 8.75 4.593 0.90 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 22.29 8.75 4.593 2 28.55 13.87 3.410 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 28.55 Tc(MIN.) = 13.87 TOTAL AREA(ACRES) = 11.12 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 1.50 = 1659.00 FEET. ----------------------------------------------- I I I I I --------- - - - - -+ ----------------------------------------------- ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 6.10 IS CODE = 21 -------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION = 388.00 DOWNSTREAM ELEVATION = 386.00 ELEVATION DIFFERENCE = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.857 TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 0.16 TOTAL AREA(ACRES) = 0.03 TOTAL RUNOFF(CFS) = 0.16 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.10 TO NODE 6.20 IS CODE = 61 ---------------------------------------------------------------------------- »» >COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »» >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 386.00 DOWNSTREAM ELEVATION (FEET) = 362.00 STREET LENGTH(FEET) = 417.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GP.ADEBREAK(FEET) INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.16 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.52 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.71 STREET FLOW TRAVEL TIME(MIN.) = 1.54 Tc(MIN.) = 7.54 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.055 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.03 PEAK. FLOW RATE(CFS) = 0.16 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 FLOW VELOCITY(FEET /SEC.) = 4.52 DEPTH *VELOCITY(FT *FT %SEC.) = 0.71 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 6.20 = 517.00 FEET. HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = 81 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.055 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.96 TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) TC(MIN) = 7.54 FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = 1 ---------------------------------------------------------------------------- » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.54 RAINFALL INTENSITY(INCH /HR) = 5.06 TOTAL STREAM AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) AT CONFLUENCE ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 1.00 TO NODE 9.00 IS CODE = 21 ---------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .4600 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION = 403.00 DOWNSTREAM ELEVATION = 402.50 ELEVATION DIFFERENCE = 0.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 14.514 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.313 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.12 FLOW PROCESS FROM NODE 9.00 TO NODE 6.20 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) «« < ELEVATION DATA: UPSTREAM(FEET) = 402.50 DOWNSTREAM(FEET) = 362.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 651.00 CHANNEL SLOPE = 0.0622 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.363 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .4600 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.12 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 1.09 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 9.98 Tc(MIN.) = 24.50 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.08 PEAK FLOW RATE(CFS) = 0.12 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET /SEC.) = 1.09 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.20 = 751.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = 81 ---------------------------------------------------------------------- » »>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.363 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .4600 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 3.67 SUBAREA RUNOFF(CFS) = 3.99 TOTAL AREA(ACRES) = 3.75 TOTAL RUNOFF(CFS) = 4.11 TC(MIN) = 24.50 FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 24.50 RAINFALL INTENSITY(INCH /HR) = 2.36 TOTAL STREAM AREA(ACRES) = 3.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.11 FLOW PROCESS FROM NODE 1.00 TO NODE 8.00 IS CODE = 21 ---------------------------------------------------------------------------- » »>RATIONAL METHOD INITIAL SUBAREA F.NALYSIS««< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .4600 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION = 403.00 DOWNSTREAM ELEVATION = 402.50 ELEVATION DIFFERENCE = 0.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 14.514 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.313 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.12 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.00 TO NODE 8.10 IS CODE = 51 ---------------------------------------------------------------------------- »» >COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 402.50 DOWNSTREAM(FEET) = 380.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 230.00 CHANNEL SLOPE = 0.0978 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.905 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .4600 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.12 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 1.17 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 AVERAGE FLOW DEPTH(FEET) = 0.03 TRAVEL TIME(MIN.) = 3.28 Tc(MIN.) = 17.79 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.08 PEAK FLOW RATE(CFS) = 0.12 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.03 FLOW VELOCITY(FEET /SEC.) = 1.17 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.10 = 330.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.10 TO NODE 8.10 IS CODE = 81 --------------------------------------------------------------------------- » » >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.905 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .4600 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 1.09 SUBAREA RUNOFF(CFS) = 1.46 TOTAL AREA(ACRES) = 1.17 TOTAL RUNOFF(CFS) = 1.58 TC(MIN) = 17.79 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 8.10 TO NODE 6.20 IS CODE = 51 »»> COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »»>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 380.00 DOWNSTREAM(FEET) = 362.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 490.00 CHANNEL SLOPE = 0.0367 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.715 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .4600 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.58 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET /SEC.) = 4.16 AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME(MIN.) = 1.96 Tc(MIN.) = 19.76 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 1.17 PEAK FLOW RATE(CFS) = 1.58 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.12 FLOW VELOCITY(FEET /SEC.) = 4.16 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.20 = 820.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.20 TO NODE 6.20 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 19.76 RAINFALL INTENSITY(INCH /HR) = 2.71 TOTAL STREAM AREA(ACRES) = 1.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.58 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 1 1.11 7.54 5.055 0.24 2 4.11 24.50 2.363 3.75 3 1.58 19.76 2.715 1.17 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 3.88 7.54 5.055 2 5.76 19.76 2.715 3 6.01 24.50 2.363 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.01 Tc(MIN.) = 24.50 TOTAL AREA(ACRES) = 5.16 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.20 = 820.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.20 TO NODE 6.30 IS CODE = 61 --------------------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 362.00 DOWNSTREAM ELEVATION(FEET) = 354.00 STREET LENGTH(FEET) = 233.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Sect ion (curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.01 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.22 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.79 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.10 STREET FLOW TRAVEL TIME(MIN.) = 1.03 Tc(MIN.) = 25.52 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.302 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 5.16 PEAK FLOW RATE(CFS) = 6.01 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 8.22 FLOW VELOCITY(FEET /SEC.) = 3.79 DEPTH *VELOCITY(FT *FT /SEC.) = 1.10 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.30 = 1053.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.30 TO NODE 6.30 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.302 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.27 TOTAL AREA(ACRES) = 5.29 TOTAL RUNOFF(CFS) = 6.28 TC(MIN) = 25.52 FLOW PROCESS FROM NODE 6.30 TO NODE 6.30 IS CODE = 1 ------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 25.52 RAINFALL INTENSITY(INCH /HR) = 2.30 TOTAL STREAM AREA(ACRES) = 5.29 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.28 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 2.00 TO NODE 2.10 IS CODE = 21 ---------------------------------------------------------------------------- » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION = 374.00 DOWNSTREAM ELEVATION = 373.00 ELEVATION DIFFERENCE = 1.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.440 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 4.097 SUBAREA RUNOFF(CFS) = 0.38 TOTAL AREA(ACRES) = 0.18 TOTAL RUNOFF(CFS) = 0.38 FLOW PROCESS FROM NODE 2.10 TO NODE 2.20 IS CODE = 51 » »>COMPUTE TRAPEZOIDAL CHANNEL FLOW««< » »>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 373.00 DOWNSTREAM(FEET) = 368.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 200.00 CHANNEL SLOPE = 0.0250 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.554 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.38 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY (FEET /SEC.) = 1.29 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 2.58 TC(MIN.) = 13.02 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.18 PEAK FLOW RATE(CFS) = 0.38 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET /SEC.) = 1.29 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 2.20 = 300.00 FEET. FLOW PROCESS FROM NODE 2.20 TO NODE 2.20 IS CODE = 81 ---------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.554 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 0.30 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 0.48 TOTAL RUNOFF(CFS) = 0.94 TC(MIN) = 13.02 FLOW PROCESS FROM NODE 2.20 TO NODE 6.30 IS CODE = 61 ------------------------------------------------------------ » »> COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » »>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 368.00 DOWNSTREAM ELEVATION(FEET) = 354.00 STREET LENGTH(FEET) = 498.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 16.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.94 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.22 HALFSTREET FLOOD WIDTH(FEET) = 4.69 AVERAGE FLOW VELOCITY(FEET /SEC.) = 2.77 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.61 STREET FLOW TRAVEL TIME(MIN.) = 2.99 Tc(MIN.) = 16.01 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.110 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.48 PEAK. FLOW RATE(CFS) = 0.94 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.22 HALFSTREET FLOOD WIDTH(FEET) = 4.69 FLOW VELOCITY(FEET /SEC.) = 2.77 DEPTH *VELOCITY(FT *FT /SEC.) = 0.61 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 6.30 798.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.30 TO NODE 6.30 IS CODE = 81 ------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.110 *USER SPECIFIED(SUBAREA): 17SER- SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 2.25 SUBAREA RUNOFF(CFS) = 3.64 TOTAL AREA(ACRES) = 2.73 TOTAL RUNOFF(CFS) = 4.58 TC (MIN) = 16.01 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.30 TO NODE 6.30 IS CODE = 1 ------------------------------------------------------------------- »» >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.01 RAINFALL INTENSITY(INCH /HR) TOTAL STREAM AREA(ACRES) = PEAK FLOW RATE(CFS) AT CONF ** CONFLUENCE DATA ** STREAM RUNOFF Tc NUMBER (CFS) (MIN.) 1 6.28 25.52 2 4.58 16.01 = 3.11 2.73 LUENCE = 4.58 INTENSITY AREA (INCH /HOUR) (ACRE) 2.302 5.29 3.110 2.73 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 9.22 16.01 3.110 2 9.66 25.52 2.302 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.66 TC(MIN.) = 25.52 TOTAL AREA(ACRES) = 8.02 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.30 = 1053.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.30 TO NODE 6.40 IS CODE = 61 ------------------------------------------------------------------------ » »>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< » » >(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION(FEET) = 354.00 DOWNSTREAM ELEVATION(FEET) = 316.00 STREET LENGTH(FEET) = 1030.00 CURB HEIGHT(INCHES) = 6.0 STREET HP_LFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb -to -curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.66 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.00 AVERAGE FLOW VELOCITY(FEET /SEC.) = 4.32 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 1.41 STREET FLOW TRAVEL TIME(MIN.) = 3.97 Tc(MIN.) = 29.49 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.097 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 8.02 PEAK FLOW RATE(CFS) = 9.66 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.33 HALFSTREET FLOOD WIDTH(FEET) = 10.00 FLOW VELOCITY(FEET /SEC.) = 4.32 DEPTH *VELD,ITY(FT *FT /SEC.) = 1.41 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.40 = 2083.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.40 TO NODE 6.40 IS CODE = 81 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 --------------------------------------------------- »» >ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 2.097 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 1.16 SUBAREA RUNOFF(CFS) = 2.19 TOTAL AREA(ACRES) = 9.18 TOTAL RUNOFF(CFS) = 11.85 TC(MIN) = 29.49 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.40 TO NODE 6.40 IS CODE = 10 ------------------------------------------------------------- »»>MAIN- STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE = 21 ----------------------------------------------------------------- » »>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW- LENGTH = 100.00 UPSTREAM ELEVATION = 388.00 DOWNSTREAM ELEVATION = 386.00 ELEVATION DIFFERENCE = 2.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 2.857 TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.856 SUBAREA RUNOFF(CFS) = 0.21 TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) = 0.21 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.00 TO NODE 10.10 IS CODE = 61 --------------------------------------------------------------- »»>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA««< »»>(STANDARD CURB SECTION USED) ««< UPSTREAM ELEVATION (FEET) = 386 00 DOWNSTREAM .ELEVATION (FEET) = 316.00. STREET LENGTH(FEET) = 1695.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 1.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section (curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back -of -Walk Flow Section = 0.0200 * *TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.21 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET /SEC.) = 3.83 PRODUCT OF DEPTH &VELOCITY(FT *FT /SEC.) = 0.60 STREET FLOW TRAVEL TIME(MIN.) = 7.37 Tc(MIN.) = 13.37 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.493 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 TOTAL AREA(ACRES) = 0.04 PEAK FLOW RATE(CFS) = 0.21 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 FLOW VELOCITY(FEET /SEC.) = 3.83 DEPTH *VELOCITY(FT *FT /SEC.) = 0.60 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 10.10 = 1795.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.10 TO NODE 10.10 IS CODE = 81 ---------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.493 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .9000 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 1.11 SUBAREA RUNOFF(CFS) = 3.49 TOTAL AREA(ACRES) = 1.15 TOTAL RUNOFF(CFS) = 3.70 TC(MIN) = 13.37 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.10 TO NODE 10.10 IS CODE = 81 --------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.493 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 3.70 SUBAREA RUNOFF(CFS) = 6.72 TOTAL AREA(ACRES) = 4.85 TOTAL RUNOFF(CFS) = 10.42 TC(MIN) = 13.37 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.10 TO NODE 10.10 IS CODE = 1 ------------------------------------------------------------------------ » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 13.37 RAINFALL INTENSITY(INCH /HR) = 3.49 TOTAL STREAM AREA(ACRES) = 4.85 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.42 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.00 TO NODE 11.10 IS CODE = 21 ------------------------------------------------------------------------ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« «< *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW - LENGTH = 100.00 UPSTREAM ELEVATION = 340.00 DOWNSTREAM ELEVATION = 336.00 ELEVATION DIFFERENCE = 4.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 6.577 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.519 SUBAREA RUNOFF(CFS) = 0.95 TOTAL AREA(ACRES) = 0.33 TOTAL RUNOFF(CFS) = 0.95 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 11.10 TO NODE 10.10 IS CODE = 51 »»> COMPUTE TRAPEZOIDAL CHANNEL FLOW««< »» >TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 336.00 DOWNSTREAM(FEET) = 316.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 650.00 CHANNEL SLOPE = 0.0308 CHANNEL BASE(FEET) = 4.00 "Z" FACTOR = 2.000 MANNING'S FACTOR = 0.030 MAXIMUM DEPTH(FEET) = 500.00 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.752 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.95 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET /SEC.) = 2.01 AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 5.39 Tc(MIN.) = 11.97 SUBAREA AREA(ACRES) = 0.00 SUBAREA RUNOFF(CFS) = 0.00 TOTAL AREA(ACRES) = 0.33 PEAK FLOW RATE(CFS) = 0.95 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET /SEC.) = 2.01 LONGEST FLOWPATH FROM NODE 11.00 TO NODE 10.10 = 750.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.10 TO NODE 10.10 IS CODE = 81 ----------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 3.752 *USER SPECIFIED(SUBAREA): USER - SPECIFIED RUNOFF COEFFICIENT = .5200 S.C.S. CURVE NUMBER (AMC II) = 0 SUBAREA AREA(ACRES) = 3.50 SUBAREA RUNOFF(CFS) = 6.83 TOTAL AREA(ACRES) = 3.83 TOTAL RUNOFF(CFS) = 7.77 TC(MIN) = 11.97 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 10.10 TO NODE 10.10 IS CODE = 1 » »>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.97 RAINFALL INTENSITY(INCH /HR) = 3.75 TOTAL STREAM AREA(ACRES) = 3.83 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.77 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 10.42 13.37 3.493 4.85 2 7.77 11.97 3.752 3.83 RAINFALL INTENSITY AND TIME. OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 NUMBER (CFS) (MIN.) (INCH /HOUR) 1 17.48 11.97 3.752 2 17.66 13.37 3.493 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 17.66 TC(MIN.) = 13.37 - TOTAL AREA(ACRES) = 8.68 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 10.10 = 1795.00 FEET. FLOW PROCESS FROM NODE 10.10 TO NODE 6.40 IS CODE = 41 ------------------------------------------------------- »» >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA««< » » >USING USER - SPECIFIED PIPESIZE (EXISTING ELEMENT) ««< ELEVATION DATA: UPSTREAM(FEET) = 315.60 DOWNSTREAM(FEET) = 315.30 FLOW LENGTH(FEET) = 54.00 MANNING'S N = 0.013 ASSUME FULL - FLOWING PIPELINE PIPE -FLOW VELOCITY(FEET /SEC.) = 5.62 PIPE FLOW VELOCITY = (TOTAL FLOW) /(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 17.66 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 13.53 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 6.40 = 1849.00 FEET. ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FLOW PROCESS FROM NODE 6.40 TO NODE 6.40 IS CODE = 11 ------------------------------------------------------------ --------------- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN- STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 17.66 13.53 3.466 8.68 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 6.40 1849.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 11.85 29.49 2.097 9.18 LONGEST FLOWFATH FROM NODE 1.00 TO NODE 6.40 = 2083.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 24.83 13.53 3.466 2 22.53 29.49 2.097 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.83 Tc(MIN.) = 13.53 TOTAL AREA(ACRES) = 17.86 END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 17.66 TC(MIN.) = 13.53 PEAK FLOW RATE(CFS) = 24.83 END OF RATIONAL METHOD ANALYSIS HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 E. HYDRAULIC CALCULATIONS HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 Existing 24" "Smooth Flow CMP" at Melba Dr. & Evergreen Dr. PRESSURE PIPE -FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFD, LACRD, & OCEMA HYDRAULICS CRITERION) (c) Copyright 1982 -2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1452 Analysis prepared by: Pasco Engineering 535 N. Highway 101 Suite A Solana Beach, Ca 92075 * * * * * * * * * * * * * * * * * * * * * * * * ** DESCRIPTION OF STUDY * * * * * * * * * * * * * * * * * * * * * * * * ** • HYDRAULIC CALCULATIONS FOR STORM DRAIN SYSTEM AT MELBA AND EVERGREEN • PE1452 FOR WALID ROMAYA • PASCO ENGINEERING - REVISED 7 -11 -07 ******************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** FILE NAME: 1452PIPE.DAT TIME /DATE OF STUDY: 11:05 07/11/2007 NOTE: STEADY FLOW HYDRAULIC HEAD -LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PRESSURE PIPE FLOW CONTROL DATA: NODE NUMBER = 6.50 FLOWLINE ELEVATION = 314.00 PIPE DIAMETER(INCH) = 24.00 PIPE FLOW(CFS) = 24.83 ASSUMED DOWNSTREAM CONTROL HGL = 316.000 L.A. THOMPSON'S EQUATION IS USED FOR JUNCTION ANALYSIS NODE 6.50 : HGL= < 316.000 >;EGL = < 316.970>;FLOWLINE= < 314.000> PRESSURE FLOW PROCESS FROM NODE 6.50 TO NODE 6.40 IS CODE = 1 UPSTREAM NODE 6.40 ELEVATION = 315.30 ------------------------------------------------------------------------ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 24.83 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 250.00 FEET MANNINGS N = 0.01100 SF= (Q /K) * *2 = (( 24.83)/( 267.355)) * *2 = 0.0086253 HF =L *SF = ( 250.00) *( 0.0086253) = 2.156 NODE 6.40 : HGL= < 318.156 >;EGL = < 319.126>;FLOWLINE= < 315.300> ----- - - - - -- PRESSURE FLOW PROCESS FROM NODE 6.40 TO NODE 6.40 IS CODE - 5 UPSTREAM NODE 6.40 ELEVATION = 315.30 -------------------------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 17.7 24.00 3.142 5.621 45.000 0.491 2 24.8 24.00 3.142 7.904 -- 0.970 3 0.0 0.00 0.000 0.000 0.000 - 4 0.� 0.00 0.000 0.000 0.000 - HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 5 7.2 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01100 DOWNSTREAM MANNINGS N = 0.01100 UPSTREAM FRICTION SLOPE = 0.00436 DOWNSTREAM FRICTION SLOPE = 0.00863 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00649 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.032 ENTRANCE LOSSES = 0.194 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = 1.246+ 0.491- 0.970 +( 0.032) +( 0.194) = 0.993 NODE 6.40 : HGL= < 319.629> ;EGL= < 320.120>;FLOWLINE= < 315.300> PRESSURE FLOW PROCESS FROM NODE 6.40 TO NODE 10.10 IS CODE = 1 UPSTREAM NODE 10.10 ELEVATION = 315.60 ------------------------------------------------------------ CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): PIPE FLOW = 17.66 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 55.00 FEET MANNINGS N = 0.01100 SF= (Q /K) * *2 = (( 17.66)/( 267.355)) * *2 = 0.0043632 HF =L *SF = ( 55.00) *( 0.0043632) = 0.240 NODE 10.10 HGL= < 319.869 >;EGL = < 320.360 >;FLOWLINE = < 315.600> PRESSURE FLOW PROCESS FROM NODE 10.10 TO NODE 10.10 IS CODE = 5 UPSTREAM NODE 10.10 ELEVATION = 315.60 ----------------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 17.7 18.00 1.767 9.993 45.000 1.551 2 17.7 24.00 3.142 5.621 -- 0.491 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 0.0 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI)-Q3*V3*COS(DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01355 DOWNSTREAM MANNINGS N = 0.01100 UPSTREAM FRICTION SLOPE = 0.03071 DOWNSTREAM FRICTION SLOPE = 0.00436 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01754 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.088 ENTRANCE LOSSES = 0.000 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) +(ENTRANCE LOSSES) JUNCTION LOSSES = - 0.323+ 1.551- 0.491 +( 0.088) +( 0.000) = 0.825 NODE 10.10 : HGL= < 319.634>;EGL= < 321.184 >;FLOWLINE = < 315.600> PRESSURE FLOW PROCESS FROM NODE 10.10 TO NODE 10.01 IS CODE = 1 UPSTREAM NODE 10.01 ELEVATION = 316.50 ----------------------------------------------------------- CALCULATE PRESSURE FLOW FRICTION LOSSES(LACFCD): 24" SMOOTH FLOW CMP AT MELBA ROAD Cross Section for Circular Pipe - 1 Project Description Flow Element: Circular Pipe Friction Method: Manning Formula Solve For: Full Flow Capacity Section Data Roughness Coefficient: 0.011 Channel Slope: 0.00500 ft/ft Normal Depth: 2.00 ft Diameter: 2.00 ft Discharge: 18.90 ft3 /s .00 ft 2A0 tt V:1 Ft 1 HYDROLOGY STUDY for 1150 MELBA ROAD - PE 1452 PIPE FLOW = 17.66 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 18.50 FEET MANNINGS N = 0.01355 SF= (Q /K) * *2 = (( 17.66)/( 100.779)) * *2 = 0.0307070 HF =L *SF = ( 18.50) *( 0.0307070) = 0.568 NODE 10.01 : HGL= < 320.202 >;EGL = < 321.753 >;FLOWLINE = < 316.500> PRESSURE FLOW PROCESS FROM NODE 10.01 TO NODE 10.01 IS CODE = 5 UPSTREAM NODE 10.01 ELEVATION = 316.50 ----------------------------------------------------- CALCULATE PRESSURE FLOW JUNCTION LOSSES: NO. DISCHARGE DIAMETER AREA VELOCITY DELTA HV 1 0.0 18.00 1.767 0.000 0.000 0.000 2 17.7 18.00 1.767 9.993 -- 1.551 3 0.0 0.00 0.000 0.000 0.000 - 4 0.0 0.00 0.000 0.000 0.000 - 5 17.7 = = =Q5 EQUALS BASIN INPUT = == LACFCD AND OCEMA PRESSURE FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1* COS (DELTAI)-Q3*V3* COS (DELTA3)- Q4 *V4 *COS(DELTA4)) /((A1 +A2) *16.1) UPSTREAM MANNINGS N = 0.01355 DOWNSTREAM MANNINGS N = 0.01355 UPSTREAM FRICTION SLOPE = 0.00000 DOWNSTREAM FRICTION SLOPE = 0.03071 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01535 JUNCTION LENGTH(FEET) = 5.00 FRICTION LOSS = 0.077 ENTRANCE LOSSES = 0.310 JUNCTION LOSSES = DY +HV1 -HV2 +(FRICTION LOSS) + (ENTRANCE LOSSES) JUNCTION LOSSES = 3.102+ 0.000- 1.551 +( 0.077) +( 0.310) = 1.938 NODE 10.01 : HGL = < 323.690>;EGL= < 323.690 >;FLOWLINE = < 316.500> END OF PRESSURE FLOW HYDRAULICS PIPE SYSTEM HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 Existing 24" Type B -1 Catch Basin at Melba Dr. & Evergreen Dr. » »SUMP TYPE BASIN INPUT INFORMATION «« Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 17.66 BASIN OPENING(FEET) = 0.50 DEPTH OF WATER(FEET) = 0.50 » »CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 16.18 HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 Proposed Treatment Swale Calculations 85TH PERCENTILE PEAK FLOW AND VOLUME DETERMINATI( Modified Rational Method - Effective for Watersheds < 1.0 mil Note: Only Enter Values in Boxes - Spreadsheet Will Calculate Remaining Values BMP Location Northern Treatment Swale 85th Percentile Rainfall = 0.60 inches (from County Isopluvial Map) Developed Drainage Area L 2.8 lacres Natural Drainage Area = 1 0.0 jacres Total Drainage Area to BMP = 2.8 acres Dev. Area Percent Impervious = 11 % Overall Percent Impervious = 11 A = Dev. Area Runoff Coefficient = 0.52 Nat. Area Runoff Coefficient = 0.00 1 = Runoff Coefficient = 0.52 0.60 inches Time of Concentration = 13.6 minutes (from Drainage Study) RATIONAL METHOD RESULTS Z Q = CIA where Q = 85th Percentile Peak Flow (cfs) C = Runoff Coefficient I = Rainfall Intensity (0.2 inch /hour per RWQCB mandate) A = Drainage Area (acres) V = CPA where V = 85th Percentile Runoff Volume (acre -feet) C = Runoff Coefficient P = 85th Percentile Rainfall (inches) A = Drainage Area (acres Using the Total Drainage Area: C = 0.52 1 = 0.2 inch /hour P = 0.60 inches A = 2.8 acres Q = 0.29 cfs V = 0.07 acre -feet Using Developed Area Only: C= 1= P= A= Q= V= 0.52 0.2 inch /hour 0.60 inches 2.8 acres 0.29 cfs 0.07 acre -feet Grassy Swale Design Spreadsheet Balour Drive Given: Design flow 0.29 cfs Residence time (req) 9 minutes Trapezoid Channel Design Parameters: y 0.25 feet t 6 feet w 4 feet z 4 ft/ft A 1.25 sq ft Find Qmax of channel: Find Velcoity in channel V =Q /A Q= (1.49/n) * A * R ^(2/3) " s ^.5 Therefore: n 0.2 V = 0.232 fps s 0.01 ft/ft (long. Slope) r 0.217391 ft Q= 0.336688 cfs Required Length of Channel: L =vt Therefore: L= 125.28 L= 100 S F Height = Peak flow rate, cfs d SS1 ;;SS2 rr- W Diagram of Swale Variables Used in Spreadsheet 85TH PERCENTILE PEAK FLOW AND VOLUME DETERMINATIC Modified Rational Method - Effective for Watersheds < 1.0 mil Note: Only Enter Values in Boxes - Spreadsheet Will Calculate Remaining Values BMP Location Northern Treatment Swale 85th Percentile Rainfall = 1 0.60 inches (from County Isopluvial Map) Developed Drainage Area = 2.8 acres Natural Drainage Area = 0.0 acres Total Drainage Area to BMP = 2.8 acres Dev. Area Percent Impervious = 13 % Overall Percent Impervious = 13 % Dev. Area Runoff Coefficient = 0.52 Nat. Area Runoff Coefficient Runoff Coefficient = 0.52 Time of Concentration = 17.3 minutes (from Drainage Study) N RATIONAL METHOD RESULTS Q = CIA where Q = 85th Percentile Peak Flow (cfs) C = Runoff Coefficient I = Rainfall Intensity (0.2 inch /hour per RWQCB mandate) A = Drainage Area (acres) V = CPA where V = 85th Percentile Runoff Volume (acre -feet) C = Runoff Coefficient P = 85th Percentile Rainfall (inches) A = Drainage Area (acres Using the Total Drainage Area: C= 1= P= A= Q= V= 0.52 0.2 inch /hour 0.60 inches. 2.8 acres 0.29 cfs 0.07 acre -feet Using Developed Area Only: C= 1= P= A= Q= V= 0.52 0.2 inch /hour 0.60 inches 2.8 acres 0.29 cfs 0.07 acre -feet Grassy Swale Design Spreadsheet - Melba Road Given: Design flow 0.29 cfs Residence time (req) 9 minutes Trapezoid Channel Design Parameters: y 0.25 feet t 6 feet w 4 feet Z 4 ft/ft A 1.25 sq ft Find Qmax of channel: Find Velcoity in channel V =Q /A Q= (1.49/n) " A " R ^(2/3) ` s ^.5 Therefore: n 0.2 V = 0.232 fps s 0.01 ft/ft (long. Slope) r 0.217391 ft Q= 0.336688 cfs Required Length of Channel: L =vt Therefore: L= 125.28 L= 100 S Height = Peak flow rate, cfs d 1 —_ SSl SS2 Diagram of Swale Variables Used in Spreadsheet HYDROLOGY STUDY for 1150 MELBA ROAD PE 1452 F. APPENDIX rcli rL, c 91 4--4 4 1. 45 Imperial County ........... % ....... ........... .......... Q. Ir .9vML 0 - A pi. .00.LL M.LLL 2-4 41. Id ... ......... 0 C, -N AIE.LL 0 C) art r�}1 09 � t UO O U o Imperial County Q b - - - -- - -- - -- in 9. tt %' •- • ��RL`. st.sti ststt �. .. �? ... t N • b. ....fY.Qr' ................... ' #-; wt ��...•, Vii_ X ........ -w art+ •!l tt• t •1.71 '% . .•� •... •''1 Q'• ....• ( - _` i•t :5 ° rF r o ° .. V 9 .'° 0GCaC\ •• � - z � •� � G .. -- � � Pao 'OE.LLL �. AEJI � T , " J � C ca t M Y'•) _N O 1�O G' U CO J O r•i 1 M con F _V rr� O U G=+ O r4 r_ c R �.o O O C c'� � o o� U N � c A v� A U C •O u y 4+ O C L: e C G C s a E w C E U C4 z R G � C R kn L C\ N r- O M O\ C\ N h Ln r- M O O O O O O O O O O O O O O O OA u v a u CA O �O N %n w Vr r- O C� w 00 •--• et •c7 N M M `7 t7 '11� h N %q M: r- oc oG OC OC v O O O O O O O O O O O O O O O y Q ►u. C Vn. CC G `J N V Ln — ":r oc t- C-- r O 'Cr. v r- M •3 N f•1 f�i 't? et �1 ' v1 in r- r-- w w = " C O O O O O O b O O O O O O O O C ca U R u C_ .b G V :. C O r- 'cr M — ao N V•1 V 1O v O M M rl •U 00 oc oc .> O O C O C O O O C O C p u cn .D • a �. E •U u O O •ic # O O v1 O O W1 Cl h O O N O O H u U O N N M C ":r w W OC O\ O\ C, 4+ C a C.w UO o � a c C V: Vl V1 N ^�' •••• 6r u u u- d 7 7 V u O O. O G O E 'C• •U O u •= U o ' o c u c .� �I NJ O O O M M O � � M 'v: � 'O O •-+ CV N rz - N cr p to �= u u O p 4: � < C r Q RS c Q R C •!�". U � .C. ti C •C •15 •C •C •C •C •C 7A •C C, r U u u u u u u„ :O :O 'o -0 :G :O :D u U u R tj lu u u u u u ai u u' U u ��"- u u o y r r a' E cz Q Q o o U c U U v c, C 2 .v U 3 •O z U Cv. u u u U 'O n O V, cn ' C G a u u u h H -o rn '2 u C R Z �' C C c a ❑ c c 1=6 p �j o u u u u S iv r a u U C u q 0 'L 'u -30 2 A A di V Q o o? A A u u u u u cn c o 0 o u a•°i u 'men o 0 o 0 o U U U U U M 1 1 _• 1 1 LM _ = .. z L C4 tD p I .. 1 N I 1 1 IIFI 1 1 1 ,• V O E L O sn T a N �•... _ o r_ O c w J = _ _ N ID I _ I oc G E L O CO a aN N O r I U D O C Lpp N O = 'r •f' n O � GOY 0.= C ^ r O L VV 0 O C Y L V h • p p C i P Il O tr• L on >. O>r a V O • V O O C O L N Lo 'a— > c n $ p_ 1� co cr, Lp O; - 4 .F IZt - p 0 0 n 0 . O aNa n c 1 V 0Y E 'r- q �cl o N OM O N C '1 r ~ O c + Ot17 „ O o•• V ONO+ .j.. 60, 0 ' O ` O $Idw H N 0• 7 C Z � C� L J sn l^s y O 8 a0d 0 � ~ L co O o .._ L pY G { Ll y In O P C ul �tt OI O L_ ~ �' N = O N N C �f0- 11 OrOi a O .... C a C a^ L a � U P� .0r• E p 'c' � l "• C pr ti.G �+ � 8 O � N 0 �- L2t! F l 1 •} • W C G V L G.f� 0 N G O O GO N LNG l0 .� N N ��� a ~} Y o • _ }•C„ o s O 0 0 0 0 Oprl��� _ o V0 O+- p 1 ul