Loading...
1996-4766 G#sr'I,, ,eaavly aara�r�e r eon.• «. �� O • Gp O G G 6 ` QP A -3 t 0.29 as 1 O ° O ° 2s _ -- — - - o� \ s A -12 0.65 ac � \\ 24 ° i° �. •. 4 r / ° 0.27 cc A -9 0.89 ac 0.32 ° it 4, n 20 HYDROLOGY EXHIBIT 32 A -15 _n6 nr- °�/ X % / 23 ( ".20.2 dam% D !0.1 / / / 30 30 .2, 16 1 ° A- n o ° ° ° o ` c � r 0.050 ac 12 O 0 n ® n 0 A-5 a ' 0.99 !7 Z �j n ° A 6 n 0.56 ac G � r 0 r 29.1 ° 0 f -{ a A -13 / A -411 1.15 ac ° c ° T ° ' I I o� 0 1 � e ° c t° ° 29 ° ,f J 13 ..Legend. basin and sub -area designation. 1.15 ac area (acres) 3, node designation ®_ area boundary line w"-- -,'"`- 1` 1t 1 0 r 29.1 ° 0 f -{ a A -13 / A -411 1.15 ac ° c ° T ° ' I I o� 0 1 � e ° c t° ° 29 ° ,f J 13 ..Legend. basin and sub -area designation. 1.15 ac area (acres) 3, node designation ®_ area boundary line w"-- -,'"`- L 0 PACIFIC SOILS ENGINEERING, INC. 7715 CONVOY COURT, SAN DIEGO, CALIFORNIA 92111 TELEPHONE: (619) 560-1713, FAX: (619) 560-0380 FEB 1 3 2001 CALIFORNIA TRADITIONS, INC. 12526 High Bluff Drive - Suite 100 San Diego, CA. 92130-2065 September 5, 1997 Work Order 400567 Attention: Mr. Ken Norton, Project Manager Subject: Project Grading Report for Mendocino Project, Lots 1 thru 71, incl., Lot 43 of the Encinitas Ranch, Located in the City of Encinitas, CA. References: See Appendix Gentlemen: This report presents geotechnical data and testing results pertaining to the completion of earthwork for the Mendocino project, lots 1 through 71, inclusive, Lot 43 of the Enc- initas Ranch, located in the City of Encinitas, California. Project grading was conducted in two phases in June 1995 and August through No- vember of 1996. The initial phase of grading was conducted in conjunction with the overall Encinitas Ranch development, and it was reported on an interim basis (Leighton and Associates, Inc., 1995a). During this 1995 grading phase, most of the embank- ment was placed in two sheet graded super pads with temporary drainage controls as reflected in the underlying topography on the enclosed 20-scale grading plans. How- ever, due to property boundary restrictions, a structural setback was developed since complete alluvium removals could not be accomplished along the southerly and east- erly boundaries (Leighton and Associates, Inc., 1996 and 1995a). CORPORATE HEADQUARTERS LOS ANGELES COUNTY RIVERSIDE COUNTY SOUTH ORANGE COUNTY TEL:(714)220-0770 TEL:(213)325-7272 or 775-6771 TEL:(909)676-8195 TEL:(714)730-2122 FAX:(714)220-9589 FAX:(714)220-9589 FAX:(909)676.1879 FAX:(714)730-5191 Work Order 400567 Page 2 September 5, 1997 The final phase of grading, reported herein, utilized conventional cut and fill grading op- erations to develop building pads and access streets and to accomplish alluvium/ slope- wash removals to bedrock along the southerly and easterly project boundaries. The additional removals were accomplished such that the structural setback was eliminated. This grading was conducted as per the recommendations presented in PSE (1996) and Leighton and Associates, Inc. (1996). Data developed during this final phase of grading is summarized in the text of this re- port, on the 20-scale grading plans prepared by BHA, Inc. (sheets 3, 4 and 5 of 13), Ta- ble I and Table Il. Also presented herein are the foundation and slab design recommendations based upon field and laboratory testing of as-graded soil conditions. Completed work has been reviewed and is considered suitable for the construction now planned. Cuts, fills and processing of original ground covered by this report have been completed under Pacific Soils Engineering, Inc.'s (PSE's) testing and observation. Based upon the testing and observation, the work is considered to be in general compli- ance with the City of Encinitas grading code criteria, the approved as-built plans, and the preliminary soils report. Slopes are considered surficially and grossly stable and will remain so under normal conditions. To reduce exposure to erosion, landscaping of all graded slopes should be accomplished as soon as possible. Drainage berms and swales should be established and maintained to aid in long term slope protection. PACIFIC SOILS ENGINEERING, INC. Work Order 400567 Page 3 September 5, 1997 ENGINEERING GEOLOGY Geologic Units Residual soils, alluvium/colluvium and slopewash were removed so as to expose com- petent terrace deposit or Torrey Sandstone. The terrace deposit consists of a brownish red, moderately hard to hard, massive sandstone. This terrace deposit was not identi- fied by Leighton and Associates, Inc. (1995a). It was observed in the cleanout in the southern portion of the project, overlying the Torrey Sandstone. The Torrey Sandstone consists of a light tan, hard sandstone. Compacted fill was placed on the site after re- sidual soils, alluvium/colluvium and slopewash were removed. Structure The terrace deposit and Torrey Sandstone represent essentially horizontal units. Fault- , ing was not observed on the subject project. Minor joint attitudes, observed in the Tor- rey Sandstone, are shown on sheets 3 and 4 of 13. Subdrains Subdrains were not recommended during project grading due to the lack of well-defined canyon drainages. Conclusions From an engineering geologic viewpoint, the lots 1 through 71, a portion of Lot 43 of the Encinitas Ranch Mendocino project are suitable for their intended use. PACIFIC SOILS ENGINEERING, INC. I - _ Work Order 400567 Page 4 September 5, 1997 SOIL ENGINEERING A. PROJECT GRADING 1. Compaction test results are presented in Table I and approximate locations of tests are shown on the excerpt of the 20-scale grading plans prepared by BHA, Inc. (sheets 3, 4 and 5 of 13). 2. Cleanouts to terrace deposit, Torrey Sandstone, or previously placed compacted fill were accomplished in fill areas during this and the previous phase of grading operations. * Prior to placement of compacted fill the exposed surface was scarified, watered as necessary, and compacted in-place to project specifications in the removal excavations. 3. Fill consisting of the soil types indicated in Table I was placed in thin lifts (six to eight inches), moisture conditioned to optimum moisture or slightly above and compacted in-place to a minimum of 90 percent of the laboratory standard (ASTM:D 1557-91). This was accomplished utilizing self-propelled, rubber-tired and sheepsfoot compactors along with heavy earth moving equipment. Each succeeding fill lift was treated in a like manner. PACIFIC SOILS ENGINEERING, INC. Work Order 400567 Page 5 September 5, 1997 ► 4. Based upon the reference reports and PSE's field observations, fill materials placed on slope gradients steeper than 5-horizontal to 1-vertical were keyed and benched into terrace deposit or Torrey Sandstone. The upper soils were ► stripped and benched out on the shallow slopes in such a manner that com- pacted fill is in contact with terrace deposit or Torrey Sandstone. 5. Removals, excavations, cleanouts and processing in preparing fill areas were observed by this firm's representative for this phase of grading. 6. During this phase of grading, compaction tests were taken for each one (1) to two (2) feet of fill placed. The approximate maximum vertical depth of fill is on the order of 58± feet below lot 40. The approximate maximum vertical depth of fill for all phases of grading on individual lots is summarized in Table II. Much of the information presented in Table II is based upon cleanout elevations pre- sented in Leighton and Associates, Inc. (1995a). 7. The cut portion of transition zones on the building pads were overexcavated to a minimum depth of 36 inches and replaced as compacted fill over the entire build- ing pad. This occurred on lots 24 through 27 and lots 47 through 51. �► 8. The major fill slopes were over-built by approximately three feet horizontally to the slope face. Upon grading completion, the slopes were trimmed back to grade exposing a compacted slope face. The side yard slopes were built ap- proximately on-grade and backrolled with a sheepsfoot roller. They were later trimmed to grade. PACIFIC SOILS ENGINEERING, INC. Work Order 400567 Page 6 September 5, 1997 Finish slope surfaces have been probed and/or tested and the slopes are con- sidered to satisfy the project requirements and the grading codes of the City of Encinitas. The materials utilized to construct the fill slopes are granular in nature and subject to potential erosion. As such, landscaping and irrigation manage- ment are important elements in the long term performance of slopes and should be established and maintained as soon as possible. 9. Mechanically Stabilized Earth Walls (MSE) Twenty-five (25) MSE walls were constructed on the site at the locations shown on the enclosed plans. PSE performed compaction tests on the backfill soils placed behind the MSE walls listed in Table I. PSE also randomly tested the backfill soils on these walls to verify that these soils met or exceeded the strength parameters outlined in section C-6 of this report. Results indicate that soils tested meet this minimum criteria. B PROPOSED DEVELOPMENT The subject site is programmed for residential use. One- and two-story, wood frame, single family dwelling units are proposed. Post-tensioned slab-on-grade foundation systems are to be utilized for support of the structures. PACIFIC SOILS ENGINEERING, INC. Work Order 400567 Page 7 September 5, 1997 C. DESIGN RECOMMENDATIONS Material encountered in cut and utilized for compacted fill ranged from very low w to low in expansion potential. An evaluation of the post-grading soil conditions was conducted to classify materials per ASTM:D 442 and to determine the ex- pansion potential as per UBC Standard 18-2. Results of that evaluation and the laboratory test data are presented in the following Table A. TABLE A w► Expansion Expansion Lot Hydrometer Analysis Index Potential Nom. %Sand ° i °7°_ Clay_ (UBC Table 18-1-13) 1,2 69 12 19 18 Very Low 3,4 73 10 17 15 Very Low 5-7 76 13 11 5 Very Low 8-10 75 13 12 5 Very Low 11,12 77 11 12 7 Very Low 13-16 76 14 10 4 Very Low 17-19 71 12 17 3 Very Low 20-22 71 15 14 7 Very Low 23-25 74 16 10 2 Very Low 26,27 74 14 12 2 Very Low 28,29 74 12 14 1 Very Low 30-32 71 17 12 9 Very Low 33,34 78 10 12 0 Very Low 35-37 71 17 12 5 Very Low 38-40 76 12 12 5 Very Low 41-43 74 12 14 1 Very Low NA 44-46 76 14 10 5 Very Low 47-49 74 14 12 4 Very Low 50-52 76 14 10 3 Very Low PACIFIC SOILS ENGINEERING, INC. 1 Work Order 400567 Page 8 September 5, 1997 TABLE A cont Expansion Expansion Lot Hydrometer Analysis Index Potential No. %Sand ° ilt % Clay_ (UBC Table 18-1-B) 53-55 74 16 10 3 Very Low 56-59 75 13 12 5 Very Low 60-62 73 17 10 8 Very Low 63-65 76 10 14 5 Very Low 66-68 74 14 12 8 Very Low 69-71 72 16 12 1 Very Low Based upon the data presented in Table A, the following foundation design crite- ria is presented. 1. Foundations for structures should be designed based upon the following values: Allowable Bearing: 2000 lbs./sq.ft. Lateral Bearing: 350 lbs./sq.ft./foot of depth to a maximum of 2000 lbs./sq.ft. ' Sliding Coefficient: 0.35 Settlement: Total: 3/4 inch Differential: 1/2 inch across the building pad The above values may be increased as allowed by code to resist transient load- ing conditions, such as wind or seismic. PACIFIC SOILS ENGINEERING. INC. Work Order 400567 Page 9 September 5, 1997 2. Post-tensioned foundation systems should be designed based upon the fol- lowing: a) Allowable Bearing: 2000 lbs./sq.ft. b) VERY LOW EXPANSION POTENTIAL Loadina Em.(ft..) Ym (inches) Center Lift 5.0 1.14 Edge Lift 2.2 0.20 c) Settlement: Total: 3/4 inch Differential: 1/2 inch across the building pad R 3. Post-tensioned foundation design shall be accomplished by the structural engi- neer based upon the soil parameters provided by PSE. The post-tensioned foundation design method shall be determined by the responsible structural engi- neer based on their expertise utilizing those soil parameters and information con- tained in this report. 4. Footings If exterior footings adjacent to drainage swales are to exist within three (3.0) feet horizontally of the swale, the footing should be embedded sufficiently to ensure that embedment below swale bottom is maintained. Footings adjacent to slopes should be embedded sufficiently such that at least five (5)feet is provided hori- zontally from the bottom edge of footing to the face of the slope. PACIFIC SOILS ENGINEERING, INC. Work Order 400567 Page 10 September 5, 1997 5. Under-Slab Requirements A 10-mil polyvinyl membrane (minimum) should be placed below all slabs-on- grade within living areas. The membrane should be covered with a minimum of two (2) inches of clean sand to aid in the curing of the concrete and to protect the polyvinyl membrane. This membrane should also be underlain with two (2) inches of clean sand; however, native material (sands) may be used as long as it is free of objectionable materials. The slab subgrade soils should have a mini- mum of 110 percent of optimum moisture prior to placement of concrete. 6. Retaining Wall Design Retaining walls or other structural walls should be designed in accordance with the following parameters and recommendations. a) Friction Angle of Backfill Soils at Toe of Wall = 30 degrees. b) Cohesion = 150 psf. c) Passive Resistance = 350 psf/ft. of depth. d) Weight of Backfill Soil = 130 pcf. e) Allowable Bearing Capacity: 2000 psf (12 inch minimum embedment). 2500 psf (18 inch minimum embedment). f) Expansion Index: < 50 (per UBC 18-1-B). R PACIFIC SOILS ENGINEERING, INC. Work Order 400567 Page 11 September 5, 1997 The above values may be increased as allowed by code (UBC) to resist transient loading conditions, such as wind or seismic. g) Retaining walls should be backfilled with free draining material (SE> 30) to within 18 inches of grade. Native soils shall be utilized in the upper 18 inches. All backfill should be compacted to a minimum of 90 percent of the laboratory maximum density (ASTM: D 1557). Drainage systems should be provided for all walls for relieving hydrostatic pressure. h) All footing excavations for retaining walls should be inspected by the pro- ject soil engineer or his representative. 7. Exterior Slabs and Walkways a) The subgrade below garage slabs, sidewalks, driveways, patios, etc. should be moisture conditioned to a minimum of 110 percent of optimum moisture prior to concrete placement. b) Weakened plane joints should be installed on walkways at approximately eight (8) to ten (10) feet intervals. Other exterior slabs should be de- signed to withstand shrinkage of concrete. PACIFIC SOILS ENGINEERING, INC. Work Order 400567 Page 12 September 5, 1997 A D. OTHER DESIGN AND CONSTRUCTION CONSIDERATIONS 1. Positive drainage away from structures should be provided and maintained. 2. Utility trench backfill shall be accomplished in accordance with the prevailing cri- teria of the City of Encinitas. 3. Seismic design should be based upon current and applicable building code re- quirements. 4. Chemical testing has been conducted on selected samples of onsite soils. Labo- ratory tests indicate that these samples possess negligible soluble sulfate con- centrations. However, based on experience in the general area, there are soils which may possess moderate soluble sulfate concentrations and may be poten- tially aggressive to metal construction materials. Determination as to the need for sulfate resistant concrete and cathodic protection for metal construction mate- rials should be determined by an engineering specializing in corrosion. PACIFIC SOILS ENGINEERING, INC. Work Order 400567 Page 13 September 5, 1997 This report presents information and data relative to the mass grading and place- ment of compacted fill at the subject site. A representative of this firm conducted periodic tests and observations during the progress of the construction in an ef- fort to determine whether compliance with the project drawings, specifications and Building Code were being obtained. The presence of our personnel during w the work process did not involve any direct supervision of the contractor. Tech- nical advice and/or suggestions were provided to the owner and/or his desig- nated representative based upon the results of the tests and observations. Completed work under the purview of this report is considered suitable for the in- tended use. Conditions of the reference reports remain applicable unless spe- cially superseded herein. ,eSOFESSjO Respectfully `� I ACy� % "ELF Q� q� o. � PACIFIC �N ING, INC. Reviewed by: cc NO.2314 pO. 314 fn fn No.47238 9 • � i OFC By: DOUG CE 47238 JE E GE 231 * Civil Enginee En ee ing an r Reviewed by: a By: (. DAVID A. M RPHY, 1813 JO N HANSON, CEG 990 Engineering Geologi Vic resident Dist: (2) Addressee (4) California Traditions, Inc., Attn: Mr. Don Valdez (2) BHA, Inc., Attn: Mr. Ron Holloway DD/JAGDAW ARkr/0004 1 PACIFIC SOILS ENGINEERING, INC. Work Order 400567 A P P E N D I X September 5, 1997 1 REFERENCES 1. Pacific Soils Engineering, Inc., 1997, Interim Project Grading for the Mendocino �► Project, Lots 20 thru 29, incl., A Portion of Lot 43 of the Encinitas Ranch, Lo- cated in the City of Encinitas, CA., dated May 5, 1997 (Work Order 400567). 2. Pacific Soils Engineering, Inc., 1997, Interim Project Grading for the Mendocino Project, Lots 13 thru 19, incl., A Portion of Lot 43 of the Encinitas Ranch, Lo- cated in the City of Encinitas, CA., dated January 14, 1997 (Work Order 400567). 3. Pacific Soils Engineering, Inc., 1996, Interim Project Grading Report for Mendo- cino Project, Lots 5 thru 12, incl., a Portion of Lot 43 of the Encinitas Ranch, Lo- '+ cated in the City of Encinitas, CA, dated December 5, 1996 (Work Order 400567). 4. Pacific Soils Engineering, Inc., 1996, Project Grading Report for the Model Site, Montecito Project, Lots 1 thru 4, incl., a Portion of Lot 43 of the Encinitas Ranch, Located in the City of Encinitas, CA, dated November 13, 1996 (Work Order 400567). 5. Pacific Soils Engineering, Inc., 1996, Grading Plan Review, Encinitas Ranch, Montecito Lot 43 Project (TM 96-007), City of Encinitas, CA, dated September 9, ® 1996 (Work Order 400567). 6. Leighton and Associates, Inc., 1996, Supplemental Geotechnical Evaluation, Proposed Fill Areas, South of Lot 43, Encinitas Ranch (lots 11 thru 13 and 41 thru 46, Montecito), Encinitas, CA, dated August 5, 1996 (Project No. 4940028- �► 016). 6. Leighton and Associates, Inc., 1995a, As-Graded Report of Rough Grading, Lot 40 and 43, Encinitas Ranch, Phase 1, Encinitas, CA, dated December 22, 1995 (Project No. 4940028-006). s PACIFIC SOILS ENGINEERING, INC. Work Order 400567 A P P E N D I X September 5, 1997 REFERENCES cont. 8. Leighton and Associates, Inc., 1995b, Geotechnical Update and Geotechnical In- vestigation, Green Valley, Encinitas Ranch, Encinitas, CA, dated June 7, 1995 (Project No. 4940028-003). PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE II DEPTH OF FILL Lot Approx.Maximum Lot Approx.Maximum Lot Approx.Maximum No. Depth of Fill (ft.) No. Depth of Fill (ft.) No. Depth of Fill (ft.) 1 52.0 24 12.4 - cap 47 3.0 - cap 2 52.0 25 3.0 - cap 48 3.0 - cap 3 36.0 26 3.0 - cap 49 13.0 - cap 4 27.0 27 8.9 - cap 50 16.7 - cap 5 24.0 28 39.2 51 30.5 - cap 6 27.0 29 40.7 52 24.2 7 42.0 30 33.7 53 16.3 8 36.0 31 36.6 54 24.7 9 39.0 32 36.7 55 40.0 10 42.0 33 44.2 56 42.5 11 38.0 34 28.7 57 42.5 12 35.0 35 28.2 58 31.9 13 28.5 36 28.2 59 30.2 14 20.5 37 26.9 60 20.2 15 24.3 38 32.4 61 13.2 16 37.0 39 49.4 62 14.9 17 35.0 40 53.3 63 17.1 18 32.0 41 32.0 64 12.2 19 15.5 42 29.7 65 13.0 20 21.9 43 25.1 66 23.4 21 27.7 44 10.0 67 25.8 22 24.4 45 6.5 68 24.2 23 23.0 46 3.7 69 7.4 70 8.5 71 25.2 PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I SOIL TYPE Laboratory Maximum Density per ASTM:D 1557-91 (All Soil Types). Optimum Maximum Moisture Dry Density Soil Type and Classification M I ./ .ft. A - Dark Brown Clayey Sand 10.0 125.2 B - Brown Clayey Sand 10.5 123.0 C - Dark Brown Sand 11.0 122.0 D - Red Brown Sand 9.2 127.9 E - Brown Silty Sand 10.0 124.0 F - Gray Tan Silty Sand 12.0 117.5 G - Brown Silty Sand 10.5 122.2 I - Brown Silty Sand 12.0 121.8 J - Brown Clayey Sand 10.3 122.9 K - Light Brown Clayey Sand 11.0 122.3 L - Light Brown Sand 11.0 119.9 M - Brown Clayey Sand 10.6 123.7 P - Light Tan Sand 13.4 115.7 LEGEND Non-Designated Test - Test in compacted fill. Test Location - Indicated by unit number and/or adjacent unit number; or by wall number and wall stationing. Elevation -Approximate field elevation above mean sea level (feet). A - Indicates duplicate test numbers. R - Indicates retest of previously failing test in compacted fill. RW - Indicates test taken in retaining wall backfill. S - Indicates test taken on finish slope face. TEST TYPE All tests by Campbell Pacific Nuclear Test Gauge (per ASTM:D 2922-91 and D 3017-88), unless otherwise noted by: SC - Indicates test by Sand Cone Method (per ASTM:D 1556-90). (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 9/11/96 101 Adj. Unit 28 169.0 10.4 117.3 94 A 102 Adj. Unit 28 171.0 11.9 117.6 94 A 103 Unit 28 169.0 11.6 120.7 96 A 104 Adj. Unit 28 168.0 10.5 119.3 95 A 105 Adj. Unit 28 167.0 10.9 118.4 95 A 106 Adj. Unit 29 172.0 12.2 117.1 94 A 107 Adj. Unit 28 167.0 11.1 112.8 92 B 108 Adj. Unit 28 169.0 12.3 113.6 92 B 109 Adj. Unit 28 171.0 11.8 113.9 93 B SC 110 Adj. Unit 28 173.0 12.6 112.7 92 B 111 Unit 28 175.0 10.6 112.8 92 B '* 112 Adj. Unit 28 177.0 11.6 115.4 94 B 113 Adj. Unit 28 177.0 10.4 118.8 95 A 114 Adj. Unit 28 179.0 11.4 113.3 92 B 115 Adj. Unit 28 181.0 11.7 114.3 93 B 9/13/96 116 Unit 29 183.0 11.1 119.3 93 D 117 Adj. Unit 28 185.0 13.8 117.1 92 D 118 Adj. Unit 28 187.0 10.8 112.6 92 B 119 Adj. Unit 3 156.0 11.8 115.3 90 D 120 Adj. Unit 4 160.0 10.8 117.3 92 D a 9/14/96 121 Adj. Unit 3 162.0 10.9 108.1 88 B 121 R Adj. Unit 3 162.0 11.4 115.9 94 B 122 Adj. Unit 3 164.0 11.3 106.3 86 B 122R Adj. Unit 3 164.0 11.1 118.7 97 B 123 Adj. Unit 5 166.0 10.9 114.6 93 B SC 124 Unit 3 168.0 12.7 118.1 97 C SC 9/16/96 125 Adj. Unit 7 150.0 10.9 116.1 91 D 126 Unit 7 153.0 11.7 115.7 90 D 127 Adj. Unit 7 156.0 11.2 117.0 91 D (0004:kr) PACIFIC SOILS ENGINEERING. INC. Work Order 400567 September 5, 1997 TABLE I cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 9/16/96 cont. FA 128 Unit 7 158.0 13.0 117.7 92 D 129 Adj. Unit 8 160.0 13.3 114.6 93 B 130 Unit 8 162.0 11.7 108.3 88 B 131 Unit 6 164.0 10.9 109.5 89 B 130R Unit 8 162.0 12.0 114.9 93 B 131 R Unit 6 164.0 10.6 115.1 94 B 132 Adj. Unit 7 166.0 11.8 111.7 92 C 133 Unit 6 168.0 11.6 112.2 92 C 134 Adj. Unit 6 170.0 11.0 118.9 93 D 135 Unit 3 172.0 10.6 117.9 92 D SC 136 Adj. Unit 2 174.0 11.3 118.2 92 D 137 Adj. Unit 5 176.0 12.6 117.9 92 D SC 138 Adj. Unit 2 178.0 12.3 115.5 90 D 139 Adj. Unit 3 180.0 11.6 118.3 92 D SC 9/17/96 140 Adj. Unit 5 182.0 12.7 111.1 91 C R 141 Adj. Unit 2 184.0 13.9 110.8 91 C 142 Unit 3 186.0 11.3 112.2 92 C 9/18/96 143 Adj. Unit 7 167.0 11.3 113.8 93 B 144 Adj. Unit 6 180.0 12.7 114.6 93 B 145 Adj. Unit 9 160.0 10.9 115.3 90 D 146 Unit 9 162.0 13.1 112.9 93 C 147 Adj. Unit 10 164.0 11.3 116.3 91 D 148 Adj. Unit 9 167.0 12.4 115.7 90 D 149 Unit 7 176.0 10.7 118.2 92 D lk 150 Unit 5 186.0 11.3 117.6 92 D 151 Adj. Unit 10 166.0 10.8 113.6 92 B 152 Adj. Unit 11 163.0 10.7 115.4 94 B 153 Unit 11 165.0 12.2 113.8 93 B 154 Adj. Unit 10 167.0 11.9 113.7 92 B SC (0004:kr) PACIFIC SOILS ENGINEERING, INC. Ilk = Work Order 400567 September 5, 1997 TABLE I cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 9/19/96 R 155 Adj. Unit 11 169.0 10.9 118.0 92 D 156 Adj. Unit 9 171.0 11.8 116.2 91 D 157 Adj. Unit 6 180.0 10.1 116.6 91 D 158 Adj. Unit 9 174.0 13.5 114.3 93 B 159 Adj. Unit 11 176.0 12.3 115.9 91 D SC 160 Adj. Unit 7 181.0 11.2 117.1 92 D Sc 10/1/96 161 Adj. Unit 11 179.0 11.4 118.1 92 D 162 Adj. Unit 12 181.0 12.6 115.7 90 D 163 Unit 12 184.0 10.4 116.3 91 D 164 Adj. Unit 11 186.0 11.8 116.9 91 D 165 Adj. Unit 13 188.0 11.4 115.9 91 D 166 Adj. Unit 13 191.0 10.9 117.3 94 A 167 Adj. Unit 12 194.0 11.8 115.6 92 A 168 Adj. Unit 13 197.0 11.3 119.1 93 D 169 Adj. Unit 41 198.0 12.6 116.5 93 A 10/22/96 170 Adj. Unit 54 237.0 13.8 109.3 93 F 171 Adj. Unit 53 239.0 12.1 111.4 95 F 172 Adj. Unit 55 241.0 12.4 110.1 94 F 173 Unit 53 243.0 12.9 110.9 94 F 174 Adj. Unit 54 245.0 13.0 109.4 93 F 175 Unit 52 247.0 12.4 108.9 93 F 176 Adj. Unit 63 226.0 12.1 106.1 90 F 177 Unit 65 228.0 13.8 106.9 91 F 178 Adj. Unit 66 230.0 15.0 109.3 93 F 179 Adj. Unit 65 231.0 12.6 108.5 92 F 180 Adj. Unit 45 233.0 12.7 112.3 91 B 181 Adj. Unit 43 215.0 13.1 112.9 92 B 182 Unit 44 224.0 11.0 114.1 93 B SC 183 Adj. Unit 41 207.0 11.8 113.6 92 B (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I - cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 10/23/96 6 184 Unit 47 238.5 11.2 111.4 91 B 185 Unit 49 243.0 12.7 106.8 91 F 186 Unit 51 247.0 12.1 113.4 92 B 187 Adj. Unit 44 230.0 11.7 110.9 90 B 188 Unit 41 203.0 12.6 113.8 93 B 189 Unit 43 226.0 10.9 116.4 95 B 190 Adj. Unit 42 220.0 11.4 111.7 91 B Sc 191 Adj. Unit 18 193.0 13.1 113.4 92 B 192 Adj. Unit 20 195.0 12.7 112.1 91 B 193 Adj. Unit 17 197.0 14.3 108.6 88 B 194 Adj. Unit 21 197.0 13.8 107.4 87 B 193R Adj. Unit 17 197.0 13.9 114.1 93 B 194R Adj. Unit 21 197.0 13.3 111.3 90 B Wall 7L Station 101 RW 4+10 163.0 11.4 114 92 E 102RW 4+05 165.0 10.2 116 93 E 10/24/96 195 Adj. Unit 16 199.0 10.2 117.2 92 D 196 Adj. Unit 19 201.0 9.5 119.5 93 D 197 Adj. Unit 14 203.0 10.7 117.9 92 D 198 Adj. Unit 21 205.0 10.1 116.3 91 D 199 Adj. Unit 18 207.0 9.8 118.8 93 D 200 Adj. Unit 13 209.0 11.4 122.5 96 D SC Wall 7L Station 103RW 3+85 166.0 10.3 109.4 88 E 104RW 3+63 167.0 11.4 110.2 89 E 103RWR 3+85 166.0 12.1 114.2 92 E 104RWR 3+63 167.0 10.2 114.9 93 E (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 10/25/96 A 201 Adj. Unit 16 211.0 10.7 116.7 91 D 202 Adj. Unit 19 213.0 9.3 118.7 93 D 203 Adj. Unit 14 215.0 11.4 121.8 95 D 204 Adj. Unit 17 217.0 10.8 117.9 92 D SC Wall 7L Station 105RW 4+22 163.0 10.7 113.1 91 E 106RW 3+73 168.0 11.4 114.4 92 E 107RW 3+52 169.0 10.6 115.1 93 E 10/26196 Wall 7L A� Station 108RW 4+17 165.0 12.3 116.1 95 G 109RW 4+30 165.0 11.8 111.4 91 G 10/28/96 Wall 7L Station 11ORW 4+03 167.0 10.6 113.2 91 E 111 RW 4+42 167.0 11.1 112.7 91 E 112RW 4+75 168.0 11.7 112.6 92 G 10/29/96 Wall 7L Station 113RW 4+60 169.0 11.6 113.6 92 E 114RW 3+65 170.0 10.9 111.6 91 G 115RW 3+30 171.0 12.3 113.6 93 G 10/30/96 Wall 7L Ilk Station 116RW 3+13 173.0 11.3 114.6 92 E 11 7R 3+40 173.0 10.8 112.7 91 E R A (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 -- TABLE I cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBSJCU.FT.) %COMP. TYPE TYPE 10/31/96 Wall 7L Station 118RW 2+97 175.0 10.6 116.3 94 E 119RW 4+85 171.0 12.1 113.1 91 E 120RW 5+16 171.0 11.1 115.7 93 E 121 RW 5+05 173.0 11.1 113.8 92 E SC 122RW 5+55 173.0 10.9 114.2 92 E 11/1/96 205 Adj. Unit 13 211.0 10.9 112.7 91 E 206 Adj. Unit 41 213.0 12.6 117.8 95 E 123A Adj. Unit 3 169.0 10.7 118.8 96 E 6 124A Adj. Unit 3 171.0 10.6 116.7 94 E 125A Adj. Unit 3 173.0 10.0 115.4 93 E 126A Adj. Unit 3 174.0 11.4 114.5 92 E Wall 7L Station 127RW 5+40 175.0 11.6 112.2 90 E 128A Adj. Unit 3 175.0 11.6 113.1 91 E 129A Adj. Unit 3 176.0 10.3 112.9 91 E SC 130A Adj. Unit 2 177.0 12.6 113.9 92 E SC 11/2/96 207 Adj. Unit 40 215.0 11.8 116.7 94 E 208 Adj. Unit 41 217.0 12.6 113.1 91 E 209 Adj. Unit 38 219.0 10.1 114.9 93 E 210 Adj. Unit 41 221.0 11.1 111.8 90 E 131A Adj. Unit 4 178.0 12.3 117.7 95 E 132A Adj. Unit 2 179.0 11.1 115.1 93 E 133AS Adj. Unit 4 176.0 10.9 111.9 90 E 134AS Adj. Unit 3 170.0 11.3 112.6 91 E 135AS Adj. Unit 2 178.0 10.1 104.9 85 E 135ASR Adj. Unit 2 178.0 10.4 113.1 91 E (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 11/4/96 211 Adj. Unit 39 223.0 11.1 112.5 92 G 212 Unit 42 225.0 11.3 113.1 93 G 213 Unti 41 227.0 10.8 115.8 95 G 214 Unit 43 228.0 10.9 114.4 94 G Wall 7L Station 136RW 3+00 175.0 10.2 118.7 96 E 11/5/96 215 Unit 51 248.5 7.9 120.3 94 D 216 Unit 50 246.7 8.7 117.0 91 D 217 Unit 49 244.0 10.6 113.6 92 B 218 Unit 48 241.7 9.7 114.3 93 B 219 Unit 47 239.8 8.9 114.1 93 B 220 Unit 46 237.7 10.2 113.3 92 B 221 Unit 45 235.5 7.8 113.6 92 B 222 Unit 44 233.0 8.2 115.1 94 B Sc 223 Unit 59 226.3 8.0 114.6 93 B 224 Unit 58 230.9 7.7 113.8 93 B 225 Unit 57 234.5 8.0 112.7 92 B 226 Unit 56 237.5 9.6 113.4 92 B 227 Unit 55 242.0 9.8 113.9 93 B 228 Unit 54 245.7 10.1 113.8 93 B 229 Unit 53 247.3 8.7 114.9 93 B 230 Unit 52 248.2 10.0 115.4 94 B 231 Unit 51 248.5 8.9 113.6 92 B 232 Unit 43 231.1 8.2 111.9 92 G 233 Unit 42 229.7 9.3 114.5 94 G SC ' 234 Unit 41 229.0 8.7 113.1 93 G Wall 7L Station 137RW 2+70 176.0 12.1 118.1 95 E 138RW 2+55 177.0 11.3 113.8 92 E e (0004:kr) PACIFIC SOILS ENGINEERING. INC. Work Order 400567 September 5, 1997 TABLE I cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 11/6/96 235 Unit 68 234.2 8.2 109.1 93 F 236 Unit 67 233.8 8.9 119.7 94 D 237 Unit 66 233.4 9.3 119.4 93 D 238 Unit 65 230.0 9.0 112.3 91 E 239 Unit 69 232.4 7.2 107.3 91 F 240 Unit 70 229.5 9.9 109.4 93 F 241 Unit 71 228.2 12.2 115.4 94 B 242 Unit 30 227.7 10.9 113.2 92 B SC 243 Unit 31 225.6 9.5 110.7 90 B 244 Unit 32 222.7 8.6 111.3 90 B 245 Unit 33 220.2 8.9 109.8 90 C 246 Unit 34 218.7 9.3 111.4 91 C 247 Unit 35 218.2 8.9 112.9 93 C 11/7/96 248 Unit 10 186.0 12.2 112.8 91 E 249 Adj. Unit 8 183.0 11.4 114.9 93 E 250 Unit 7 185.0 10.2 113.4 91 E 251 Unit 9 188.0 11.4 111.9 90 E SC 252 Unit 60 222.2 8.4 111.8 90 E 253 Unit 61 220.2 9.4 113.6 92 E 254 Unit 62 219.9 7.2 115.9 93 E 255 Unit 63 222.1 8.3 111.9 90 E 256 Unit 64 224.2 6.0 114.0 92 E 257 Unit 36 218.2 6.9 115.7 90 D 258 Unit 37 219.9 8.2 117.3 92 D 259 Unit 38 222.4 7.0 118.8 93 D 260 Unit 39 224.4 6.8 115.9 91 D 261 Unit 40 226.3 7.3 116.4 91 D Wall 7U Station 139RW 4+35 180.0 11.6 112.0 90 E 140RW 5+10 180.0 10.9 113.1 91 E (0004:kr) PACIFIC SOILS ENGINEERING. INC. Work Order 400567 September 5, 1997 TABLE I cons TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 11/8/96 262 Adj. Unit 12 190.0 10.8 114.1 92 E 263 Unit 8 190.0 11.4 115.6 93 E SC Wall 7U Station 141 RW 3+75 180.0 12.4 115.6 93 E w 142RW 3+33 180.0 11.8 113.0 91 E 11/9196 Wall 7U Station 143RW 4+00 181.0 12.3 112.8 91 E 144RW 4+75 182.0 12.9 116.3 94 E 11/11/96 Wall 7U Station 145RW 3+50 181.0 10.3 115.6 93 E 146RW 3+20 182.0 10.2 112.3 91 E 147RW 4+94 184.0 10.3 112.7 91 E 148RW 4+23 184.0 11.4 114.9 93 E 149RW 3+65 184.0 10.4 113.3 91 E 11/12/96 Wall 7L Station 150RW 2+15 179.0 10.6 113.9 92 E 151 RW 1+73 180.0 12.4 112.6 91 E 152 RW 1+55 181.0 11.3 115.7 93 E 15314W 1+23 183.0 10.9 113.1 91 E SC 11/13/96 A 264 Unit 1 186.0 10.1 115.3 93 E 265 Unit 2 186.5 10.2 114.5 92 E 266 Unit 3 187.0 10.8 116.7 94 E 267 Unit 4 186.6 11.2 117.7 95 E Wall 7L Station 154RW 1+00 185.0 10.3 114.2 92 E 155RW 0+60 185.0 12.6 114.8 93 E Sc 156RW 0+49 187.0 11.1 117.8 95 E (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 11/15/96 268 Unit 11 192.0 10.8 115.8 93 E 269 Unit 8 194.0 10.7 117.7 92 D 270 Unit 13 196.0 11.1 115.5 90 D 271 Unit 10 198.0 11.7 112.0 91 B SC 272 Adj. Unit 12 200.0 10.3 117.4 95 E 11/16/96 Wall 7U Station 169RW 2+90 180.5 11.1 113.8 92 E 170RW 2+50 182.0 10.3 114.5 92 E 11/18/96 Wall 7U Station 173RW 2+32 182.5 11.7 115.2 93 E 174RW 2+83 182.5 11.1 113.9 92 E 11/19/96 273 Unit 12 201.6 8.9 121.9 95 D 274 Unit 13 201.4 9.3 120.3 94 D 275 Unit 14 200.6 9.2 117.9 94 A 276 Unit 15 197.3 10.4 120.3 94 D 277 Unit 16 194.1 10.0 122.3 96 D 278 Unit 17 192.1 9.1 118.7 93 D 279 Unit 18 190.1 6.9 119.4 93 D SC 280 Unit 19 188.5 8.3 120.0 94 D 281 Unit 20 186.9 7.3 118.5 93 D 282 Unit 21 186.7 7.9 116.8 93 A 283 Unit 22 187.4 6.5 119.0 95 A 284 Unit 23 189.5 10.3 116.8 93 A 285 Unit 24 194.4 9.2 114.3 91 A 286 Unit 25 195.3 8.8 115.7 92 A 287 Unit 26 195.7 8.1 116.2 93 A 288 Unit 27 194.9 8.9 114.9 92 A Ilk 289 Unit 28 189.2 7.2 118.2 94 A 290 Unit 29 187.7 9.1 117.4 94 A (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I - cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 11/19/96 cont. Wall 7U R Station 177RW 2+97 184.5 10.8 115.7 93 E 178RW 2+10 184.5 11.6 114.5 92 E 179RW 2+40 186.5 11.1 111.8 90 E 180RW 1+75 186.5 10.5 115.0 93 E I 11/20/96 Wall 7U Station 181 RW 2+08 187.5 10.8 115.1 93 E 182RW 1+32 188.5 10.1 111.9 90 E 183RW 0+11 190.5 11.6 112.8 91 E 1 184RW 0+85 190.5 10.7 116.3 94 E 185RW 1+68 190.5 10.9 114.0 92 E Sc 11/21/96 291S Adj. Unit 41 224.0 10.2 113.1 90 A 292S Adj. Unit 41 228.0 10.6 116.5 93 A Ik 293S Adj. Unit 39 222.0 11.1 117.7 95 E 294S Adj. Unit 36 208.0 11.4 114.6 94 C 295S Adj. Unit 34 210.0 10.8 118.9 93 D 296S Adj. Unit 31 200.0 11.6 114.0 93 C 297S Adj.Unit 54 241.0 12.1 112.2 91 B Ik 298S Adj. Unit 63 227.0 11.0 111.8 91 B 299 Adj. Unit 6 188.5 11.3 114.1 92 E SC 300 Adj. Unit 8 193.5 10.7 116.3 94 E SC Wall 7U Station 186RW 1+50 192.0 11.1 112.8 91 E 187RW 1+10 192.5 10.8 117.1 94 E 188RW 0+50 192.5 10.6 112.1 90 E 189RW 0+90 194.5 11.0 115.5 93 E SC 11/22196 Wall 7U Ik Station 190RW 0+68 196.0 14.1 113.6 92 E 191 RW 0+28 196.0 13.9 111.9 90 E (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I cont. �I TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 11/25/96 A, 301 Adj. Unit 11 195.0 11.1 113.7 92 E 302 Adj. Unit 10 198.5 10.6 112.1 90 E 303 Adj. Unit 11 199.0 12.7 112.9 91 E SC 304 Unit 5 188.1 10.3 114.0 92 E 305 Unit 6 189.9 11.4 116.4 94 E 306 Unit 7 192.0 10.9 115.2 93 E SC 11/26/96 307 Unit 8 194.5 12.6 112.1 90 E 308 Unit 9 197.0 11.1 112.8 91 E 309 Unit 10 199.5 10.8 117.9 95 E 6 310 Unit 11 200.2 10.9 115.0 93 E SC 11/27/96 Wall 5L 194RW 4+25 187.5 12.1 111.4 91 G 195RW 3+97 187.5 12.7 111.9 92 G 4 12/2/96 Wall 5L Station 196RW 3+75 189.5 13.1 110.1 90 1 197RW 4+12 189.5 12.2 113.3 93 1 198RW 2+97 191.5 12.9 112.1 92 1 1 199RW 2+55 194.0 14.0 114.2 94 1 12/4/96 Wall 5L Station 203RW 2+04 196.5 13.6 113.6 93 1 a 12/5/96 Wall 5L Station 204RW 1+71 199.5 12.3 103.2 85 1 205RW 1+95 198.0 12.9 111.7 92 1 206RW 2+20 198.0 14.1 110.1 90 1 207RW 2+62 196.0 13.0 107.4 88 1 SC (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %,(FIELD) (LBS./CU.FT.) %.COMP. TYPE TYPE 12/9/96 Wall 5L Station 208RW 1+50 201.0 13.0 111.2 91 1 209RW 0+70 202.0 12.6 110.4 91 1 12/12/96 Wall 5L Station 210RW 1+15 203.0 13.5 113.4 93 1 211 RW 0+35 203.0 12.5 112.5 92 1 204RWR 1+71 199.5 12.0 111.1 91 1 207RWR 2+62 196.0 12.5 114.6 94 1 Sc 12/13/96 Wall 5L Station 212RW 1+65 201.0 12.0 113.4 93 1 213RW 1+42 203.5 13.3 113.0 93 1 214RW 0+95 204.5 12.6 115.0 94 1 A 215RW 0+23 204.5 14.4 114.4 94 1 216RW 1+32 205.5 13.7 112.3 92 1 Sc 217RW 0+88 206.5 12.8 111.8 92 1 12/19/96 Wall 5U Station 4 228RW 0+75 207.0 12.0 114.0 93 G 229RW 0+35 207.0 13.1 112.3 92 G 12/20/96 Wall 5U Station 230RW 0+85 208.0 11.7 116.5 93 A 231 RW 0+20 206.0 12.1 113.7 91 A 232RW 0+45 208.0 11.3 115.4 94 J Sc 233RW 0+15 208.0 10.9 112.8 92 Ik (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I cont. R TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 12/21/96 Wall 5U ► Station 236RW 1+10 207.0 12.0 114.4 93 J 237RW 0+35 212.0 11.1 113.3 92 J 238RW 0+70 212.0 11.7 110.7 90 J 12/23/96 Wall 51-1 Station 239RW 0+60 214.0 10.4 114.1 93 J 240RW 0+40 214.0 10.9 115.8 94 J 12/31/96 Wall 6 Extension Station 241 RW -0+23 182.0 11.9 112.9 91 E 242RW -0+13 183.0 12.0 113.8 92 E 1/4/97 Wall 8 Station A 243RW 1+40 213.0 11.6 112.7 92 K 244RW 1+55 217.0 12.3 113.6 93 K 245RW 1+80 221.0 14.1 102.4 84 K 1/6/97 Wall 8 Station 246RW 2+45 227.0 12.3 111.5 91 K 247RW 1+15 209.0 11.6 114.1 93 K 248RW 1+47 216.0 12.9' 112.9 92 K 249RW 1+23 211.0 11.4 110.4 90 K Sc 250RW 2+11 228.0 11.6 114.2 93 K NA 245RWR 1+80 221.0 13.5 111.7 91 K 1/7/97 Wall 8 Station 251 RW 1+60 219.0 12.3 112.3 92 K 252RW 0+85 207.0 11.7 111.2 91 K R Wall 4 253RW 0+40 195.0 12.9 109.2 91 L 254RW 0+10 196.0 11.3 111.7 93 L 1► (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) e (LBS./CU.FT.) /o COMP. TYPE TYPE 1/8/97 Wall 2 h Station 255RW 0+23 196.0 13.1 112.7 94 L 1/9/97 Wall 3 Station 256RW 0+26 196.5 12.0 114.1 95 L Wall 1 257RW 0+09 195.0 11.8 111.6 93 L 1/11/97 311 Adj. Unit 39 208.0 10.6 112.1 90 E 312 Adj. Unit 39 211.0 11.4 112.7 91 E 313 Adj. Unit 39 218.0 11.8 108.7 88 E 314 Adj. Unit 41 210.0 11.6 109.4 88 E 313R Adj. Unit 39 218.0 11.4 113.8 92 E 314R Adj. Unit 41 210.0 12.1 112.6 91 E 315 Adj. Unit 39 217.0 12.0 110.0 90 G SC 316 Adj. Unit 40 220.0 11.6 111.6 92 1 1/13/97 Wall 13 Station 258RW 4+26 218.5 13.4 112.3 91 M 1/16/97 Wall 13 Station 279RW 3+85 217.0 12.7 114.6 93 M 280RW 3+94 219.0 13.9 109.8 89 M 281 RW 3+75 219.0 14.6 111.6 90 M SC 280RWR 3+94 219.0 13.6 113.0 91 M 1/17/97 Wall 13 Station 282RW 3+13 217.0 14.3 111.4 90 RW 3+33 M 283 h 219.0 16.1 106.8 86 IV1 (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I cont. Ilk TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 1/21/97 Wall 13 I Station 285RW 2+73 217.0 13.1 112.8 91 M 283RWR 3+33 219.0 13.8 113.6 92 M 286RW 2+15 217.0 12.7 114.1 92 M Sc 287RW 2+90 219.0 13.6 111.7 90 M Ilk 1/22/97 Wall 9 Station 292RW 1+11 223.0 12.6 112.4 91 M 293RW 1+36 223.0 13.1 114.0 92 M 294RW 1+75 221.0 12.2 112.8 91 M 295RW 1+40 223.0 11.9 117.1 95 M 1/23/97 Wall 9 Station 296RW 1+85 223.0 11.7 110.1 89 M 297RW 2+05 221.0 12.4 112.4 91 M Sc 296RWR 1+85 223.0 12.1 114.2 92 M Wall 10 299RW 1+25 222.5 12.4 113.5 92 M 1/24/97 Wall 10 Station 30ORW 1+15 224.5 11.3 111.6 90 M 301 RW 1+45 225.0 13.1 111.4 90 M Sc 302RW 1+65 225.0 12.6 114.8 93 M 1/25/97 Wall 10 A Station 303RW 1+56 227.0 12.9 116.5 94 M 304RW 1+37 227.0 11.9 113.0 91 M 1/27/97 Wall 14 Station 305RW 1+28 233.0 12.0 115.7 94 M (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TA B L E I cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %,(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 1/28/97 Wall 14 Station 306RW 1+53 235.0 11.2 107.9 87 M 307RW 1+90 235.0 12.4 108.9 88 M 306RWR 1+53 235.0 11.6 111.7 90 M 307RWR 1+90 235.0 11.9 114.8 93 M 308RW 2+50 231.0 13.2 108.5 88 M 308RWR 2+50 231.0 13.4 113.6 92 M 313RW 2+06 233.0 14.1 112.3 91 M SC 314RW 2+35 233.0 13.7 112.8 91 M 1/29/97 Wall 14 Station 320RW 2+80 229.0 14.2 111.7 90 M 321 RW 3+00 229.0 12.9 113.6 92 M 1/30/97 Wall 14 R Station 325RW 2+68 233.0 12.8 113.8 92 M 326RW 1+73 236.0 13.6 113.6 92 M Sc 1/31/97 Wall 19 Station 331 R 1+80 244.0 11.2 114.1 92 M 2/3/97 Wall 19 Station 332RW 1+47 242.0 10.8 1117 90 M 333RW 1+15 242.0 13.6 114.6 93 M 334RW 2+60 247.0 14.1 112.9 91 M 335RW 2+32 248.0 12.8 116.7 94 M SC 2/4/97 Wall 16 Station R 336RW 1+80 235.0 11.4 113.8 92 M 337RW 1+55 235.0 11.6 111.7 90 M (0004:kr) PACIFIC SOILS ENGINEERING. INC. 1 = Work Order 400567 September 5, 1997 TABLE k cont. TEST TEST ELEV. MOIST-CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) /.COMP. TYPE TYPE 2/5/97 Wall 16 Station 349RW 1+24 135.0 11.8 115.2 93 M 350RW 1+97 137.0 12.1 113.8 92 M 2/6/97 Wall 16 Station 351 RW 1+48 137.0 11.7 118.7 96 M 352RW 1+12 136.5 12.2 115.5 93 M Sc Wall 17 356RW 1+10 239.0 11.7 111.7 90 M 2/12/97 Wall 19 Station 369RW 2+18 249.5 11.4 112.8 91 M 370RW 1+98 246.0 12.1 116.5 94 M 371 RW 1+30 243.5 11.8 113.9 92 M 2/14/97 Wall 20 Station 382RW 1+07 247.0 11.4 114.9 93 M 383RW 1+50 250.0 12.6 113.0 91 M 2/17/97 Wall 20 Station 389RW 1+20 247.5 11.7 116.0 94 M 390RW 1+80 249.5 12.2 112.3 91 M 391 RW 2+10 252.0 12.2 113.6 92 M 2/18/97 Wall 20 Station 399RW 2+30 254.0 11.4 111.8 90 M 40ORW 1+97 254.0 13.9 107.4 93 P 401 RW 1+26 250.0 13.6 105.6 91 p (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 �1 LA_BL E I Cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) /.COMP. TYPE TYPE 2/19/97 Wall 20 Station 402RW 1+65 252.0 14.1 106.6 92 P 403RW 1+58 254.0 13.9 108.8 94 P 404RW 1+35 252.0 13.8 104.6 90 P 2/20197 Wall 20 Station 405RW 2+16 256.0 13.7 114.0 92 P 406RW 1+87 256.0 12.9 112.8 91 M 407RW 1+70 256.0 16.1 116.1 94 P 2/21/97 Wall 20 Station 415RW 2+06 258.0 13.6 104.8 91 P 2/24/97 Wall 15 Station 419RW 1+41 239.3 11.1 115.2 93 M 420RW 1+55 241.3 11.4 114.0 92 M 421 RW 1+14 241.3 14.1 106.2 92 P 2/25/97 Wall 15 * Station 424RW 1+08 243.3 14.6 106.7 92 P 425RW 1+39 243.3 15.1 105.1 91 P 2/26/97 Wall 15 Station 428RW 1+50 244.0 12.3 113.8 92 M 429RW 1+24 244.0 14.1 106.6 92 P 3/18/97 Wall 8 Station 439RW 1+87 223.0 12.3 115.1 94 K 440RW 1+98 225.0 11.1 116.6 95 K * (0004:kr) PACIFIC SOILS ENGINEERING, INC. Work Order 400567 September 5, 1997 TABLE I cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 3/26/97 Wall 13 Station 448RW 1+18 213.0 11.4 114.1 92 M 3/27/97 Wall 13 Station 449RW 1+41 215.0 12.3 115.3 93 M 450RW 1+25 215.0 10.9 112.6 91 M 3/31/97 Wall 13 Station 451 RW 1+54 217.0 11.7 114.2 92 M 452RW 1+38 217.0 12.3 113.6 92 M Wall 12 453RW 1+07 199.0 11.9 116.6 94 M 4/1/97 Wall 13 Station 454RW 1+07 211.0 12.6 114.7 93 M 455RW 1+12 213.0 11.8 112.9 91 M 4/2/97 Wall 13 Station 456RW 1+17 215.0 12.4 113.8 92 M 457RW 1+49 218.5 11.7 114.2 92 M Wall 12 458RW 2+00 209.0 12.1 118.3 96 M 459RW 1+84 207.0 11.4 112.6 91 M 460RW 1+58 205.0 11.9 114.6 93 M A 4/3/97 Wall 12 Station 461 RW 1+39 203.0 11.4 112.3 91 M 462RW 1+20 203.0 10.9 114.6 93 M I1 Wall 11 463RW 1+44 195.0 12.6 111.6 90 M (0004:kr) PACIFIC SOILS ENGINEERING, INC. 1 Work Order 400567 September 5, 1997 TABLE I cont. TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %(FIELD) (LBS./CU.FT.) %COMP. TYPE TYPE 4/3/97 cont. Wall 11 ' Station 464RW 1+08 191.0 11.4 113.8 92 M 465RW 1+21 193.0 10.9 111.7 90 M Wall 5L 466RW 4+54 187.5 11.9 110.3 90 G 4/4/97 Wall 5L Station 467RW 4+68 189.5 12.3 114.8 94 G 469RW 5+03 189.0 11.4 111.6 91 G �► 4/8/97 Wall 5L Station 503RW 4+51 190.0 11.4 110 90 G 504RW 1+62 197.0 12.3 111.5 91 G 4/9/97 Wall 5L Station 505RW 4+92 189.0 11.1 111.4 91 G 506RW 4+98 190.5 10.9 110.3 90 G Wall 13 507RW 1+80 217.0 12.2 115.1 93 M 4/10/97 Wall 13 Station 508RW 1+95 218.5 11.3 112.8 91 M 4/28/97 Wall -S. Units 42/43 Station 509RW 0+55 224.0 11.2 111.7 90 M 51ORW 0+41 226.0 10.8 113.9 92 M 511 RW 0+16 228.0 11.9 113.5 92 M A► (0004:kr) PACIFIC SOILS ENGINEERING, INC. 1 - Work Order 400567 September 5, 1997 1 TABLE I cont. 1 TEST TEST ELEV. MOIST.CONT. DRY DENSITY RELATIVE SOIL TEST DATE NO. LOCATION (FT.) %.(FIELD) (LBS./CU.FT.) %,COMP. TYPE TYPE 4/29/97 Wall-S.Units 42/43 Station 512RW 0+57 226.0 10.9 112.3 91 M 513RW 0+45 228.0 12.0 113 91 M 5/7/97 Slope Above Wall 20 6 514 " Adj. Unit 50 260.0 10.8 113.0 92 M 515 " Adj. Unit 49 257.0 11.2 111.8 90 M 7/21/97 517 Unit 49 241.0 12.1 111.8 92 C 518 Unit 49 242.5 12.7 112.1 92 C R (0004:kr) PACIFIC SOILS ENGINEERING, INC. HYDROLOGY REPORT & HYDRAULIC ANALYSIS FOR MENDOCINO (ENCINITAS RANCH, LOT 43) July 12, 1996 Revised: September 25, 1996 Revised: November 22, 1996 PREPARED FOR: California Traditions, Inc. 12526 High Bluff Drive #100 San Diego, California 92130-2065 DEC 0 6 2000 I.. �.N 1.3LL-ri V ix v,sraiTL PREPARED BY: bNA, Inc. land planning, civil engineering, surveying 5115 Avenida Encinas Suite L Carlsbad, California 92008-4387 (619) 931- 8700 FAX (619) 931-7780 W.O. 440-0675-600 bhA, Inc. 1 I Table of Contents I. Project Description II. Discussion III Calculations A. Basin A Developed Condition 10 Year Hydrology B. Basin A Developed Condition 100 Year Hydrology C. Basin B Developed Condition 10 Year Hydrology D. Basin B Developed Condition 100 Year Hydrology E. Lot 1 Developed Condition 100 Year Hydrology F. Northeast Retaining Wall Area 100 Year Hydrology G. Hydraulic Analysis of Main Storm Drain H. Curb Inlet Sizing IV Exhibit A. Developed Condition Hydrology Node and Area Map bhA, Inc. I. PROJECT DESCRIPTION II. DISCUSSION b�A, Inc PROJECT DESCRIPTION The Encinitas Ranch project is located along El Camino Real in the North portion of the City of Encinitas near the boundary with the City of Carlsbad and the Olivenhain Road/El Camino Real intersection. Mendocino(Lot 43) lies in Encinitas Ranch and is located adjacent to Via Cantebria and Garden View Road. The proposed project consists of the construction of 71 single family dwellings with associated structures, roadways and improvements on approximately 10-acres of land. The proposed Mendocino site storm drain system will connect to an existing storm drain system(30"RCP pipe)that runs southerly on Garden View Road. A very small portion of the site will drain to an existing storm drain system (18" RCP) that runs northerly on Via Cantebria. Mendocino(Lot 43) drainage basin is part of drainage basin "C" (System 800) in the Drainage Study for Encinitas Ranch Units 1 & 3 prepared by O'Day Consultants, Inc. DISCUSSION Drainage sub-basin areas were determined from the proposed finished grades as shown on the grading and improvement plans for the above referenced project. Using the Rational Method, the on-site drainage runoff was determined from the drainage sub-basins and single family use. The exhibit shows the proposed on-site drainage system, sub-areas, acreage, and nodal points. This study considers the run-off for both the 10 Year and 100 year Storm Frequency and the on-site drainage system shown in the grading and improvements plans for the above referenced is designed for the 100 year frequency. bhA, Inc. III. CALCULATIONS bhA, Inc. A. Basin A 10 Year Hydrology bhA, Inc. **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE REFERENCE: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (C) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) VER. 5. 5A RELEASE DATE: 4/22/90 SERIAL # 5810_ ANALYSIS PREPARED BY: BHA, INC. 1615 MURRAY CANYON ROAD, SUITE 910 SAN DIEGO, CALIFORNIA 92108 (619) 298-8861 ************************* DESCRIPTION OF STUDY ************************** ENCINATAS RANCH *Lot 43 1 440-0675-600 FILE NAME: C: \PROJECTS\0675\DRAINAGE\43_IO.DAT TIME/DATE OF STUDY: 11: 11 7/11/1996 --------------------------------------------------------------- -USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 10.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18. 00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE _ . 95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ALL CONFLUENCE COMBINATIONS CONSIDERED FLOW PROCESS FROM NODE 1. 00 TO NODE 2.00 IS CODE = 2 ------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< . SOIL CLASSIFICATION IS "D"________________________________________________ SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50. 00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 SUBAREA RUNOFF(CFS) = 1.78 TOTAL AREA(ACRES) _ . 90 TOTAL RUNOFF(CFS) = 1. 78 FLOW PROCESS FROM NODE 1. 00 TO NODE 2. 00 IS CODE = 1 ------------------------------------------------- >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ------------------- ---------------------------------------------------------------------------- mrOTAL NUMBER OF STREAMS = 2 'ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN. ) = 7. 00 RAINFALL INTENSITY(INCH/HR) = 3. 61 FOTAL STREAM AREA(ACRES) = . 90 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1. 78 FLOW PROCESS FROM. NODE 3. 00 TO NODE 3. 10 IS CODE = 2 - -------------------------------------------------------------------------- -»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< --------------------------------- ---------------------------------------------------------------------------- SOIL CLASSIFICATION IS "D" TINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10.00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 ;UBAREA RUNOFF(CFS) _ . 02 TOTAL AREA(ACRES) _ . 00 TOTAL RUNOFF(CFS) _ . 02 ....FLOW PROCESS FROM NODE 3. 00 TO NODE 2. 00 IS CODE = 6 ---------------------------------------------------- >»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ---------------------------------- JPSTREAM ELEVATION 19. 00 DOWNSTREAM ELEVATION = ;TREET LENGTH(FEET) = 380. 00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 16. 00 STREET CROSSFALL(DECIMAL) _ . 0200 -SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ . 33 STREET FLOWDEPTH(FEET) = . 16 HALFSTREET FLOODWIDTH(FEET) = 1. 50 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 2. 38 PRODUCT OF DEPTH&VELOCITY = . 37 STREETFLOW TRAVELTIME(MIN) = 2. 66 TC(MIN) = 9. 66 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.929 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 SUBAREA AREA(ACRES) = 38 SUBAREA RUNOFF(CFS) _ . 61 'UMMED AREA(ACRES) _ . 39 TOTAL RUNOFF(CFS) = . 63 END OF SUBAREA STREETFLOW HYDRAULICS: )EPTH(FEET) = 17 HALFSTREET FLOODWIDTH(FEET) = 1. 95 =LOW VELOCITY(FEET/SEC. ) = 4. 04 DEPTH*VELOCITY = . 67 FLOW PROCESS FROM NODE 3. 10 TO NODE 3.00 IS CODE = 1 ----------------------------------------------------- >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< `TOTAL NUMBER OF STREAMS =--2______________________________________________ :ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 9. 66 IAINFALL INTENSITY(INCH/HR) = 2. 93 [OTAL STREAM AREA(ACRES) = . 39 PEAK FLOW RATE(CFS) AT CONFLUENCE _ . 63 ZAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. E* PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 2. 30 7. 00 3. 605 2 2. 08 9. 66 2. 929 S:OMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 'EAK FLOW RATE(CFS) = 2. 30 Tc(MIN. ) = 7. 00 tOTAL AREA(ACRES) = 1. 29 FLOW PROCESS FROM NODE 3. 10 TO NODE 2. 00 IS CODE = 10 -- -------------------------------------------------------------------------- >»»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< FLOW PROCESS FROM NODE 4. 00 TO NODE 5.00 IS CODE = 2 - -------------------------------------------------------------------------- >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ------------------------------- ---------------------------------------------------------------------------- �OIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50. 00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = .50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 SUBAREA RUNOFF(CFS) _ . 99 TOTAL AREA(ACRES) _ . 50 TOTAL RUNOFF(CFS) _ . 99 .FLOW PROCESS FROM NODE 4. 00 TO NODE 5.00 IS CODE = 1 ---------------------------------------------------------- >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< -TOTAL NUMBER OF STREAMS----2______________________________________________ 'ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7.00 RAINFALL INTENSITY(INCH/HR) = 3. 61 TOTAL STREAM AREA(ACRES) = . 50 PEAK FLOW RATE(CFS) AT CONFLUENCE _ . 99 • k************k****** k**********k�r�r**kklr�r*k�ririr* Ir**k*Ir********************** FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 2 ----------------------------------------------------------------------- >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ----------- --------------------------------------------------------------------------- -SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH (FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 SUBAREA RUNOFF(CFS) _ . 02 TOTAL AREA(ACRES) = .00 TOTAL RUNOFF(CFS) _ . 02 -rLOW PROCESS FROM NODE 7. 00 TO NODE 5. 00 IS CODE = 6 -------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< JPSTREAM ELEVATION = 16. 25 DOWNSTREAM ELEVATION = . 00 .STREET LENGTH(FEET) = 325. 00 CURB HEIGTH (INCHES) = 6. STREET HALFWIDTH(FEET) = 16.00 STREET CROSSFALL(DECIMAL) _ . 0200 -)PECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ . 26 STREET FLOWDEPTH(FEET) = . 16 HALFSTREET FLOODWIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1.82 PRODUCT OF DEPTH&VELOCITY = . 28 STREETFLOW TRAVELTIME(MIN) = 2. 97 TC(MIN) = 9. 97 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.869 SOIL CLASSIFICATION IS "D" -SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 SUBAREA AREA(ACRES) = 29 SUBAREA RUNOFF(CFS) _ . 46 SUMMED AREA(ACRES) _ . 30 TOTAL RUNOFF(CFS) = . 48 _.END OF SUBAREA STREETFLOW HYDRAULICS: )EPTH(FEET) = 16 HALFSTREET FLOODWIDTH(FEET) = 1. 50 S=LOW VELOCITY(FEET/SEC. ) = 3. 40 DEPTH*VELOCITY = . 53 FLOW PROCESS FROM NODE 7. 00 TO NODE 5. 00 IS CODE = 1 - -------------------------------------------------------------------------- >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< FOTAL NUMBER OF STREAMS = 2 , ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 9. 97 -'ZAINFALL INTENSITY(INCH/HR) = 2.87 TOTAL STREAM AREA(ACRES) = .30 PEAK FLOW RATE(CFS) AT CONFLUENCE _ .48 2AINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. k* PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 1. 37 7. 00 3. 605 2 1. 27 9. 97 2.869 fOMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 'EAK FLOW RATE(CFS) = 1. 37 Tc(MIN. ) = 7. 00 TOTAL AREA(ACRES) _ .80 FLOW PROCESS FROM NODE 5. 00 TO NODE 2. 00 IS CODE = 3 -- -------------------------------------------------------------------------- -»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ----------------------------------- -------------- =STIMATED PIPE DIAMETER(INCH) INCREASED TO 18. 000 DEPTH OF FLOW IN 18. 0 INCH PIPE IS 4.4 INCHES _PIPEFLOW VELOCITY(FEET/SEC. ) = 4. 1 1PSTREAM NODE ELEVATION = 218.49 DOWNSTREAM NODE ELEVATION = 218. 04 FLOWLENGTH(FEET) = 42.01 MANNING'S N = .013 -:STIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 'IPEFLOW THRU SUBAREA(CFS) = 1. 37 TRAVEL TIME(MIN. ) _ . 17 TC(MIN. ) = 7. 17 ..FLOW PROCESS FROM NODE 5. 00 TO NODE 2. 00 IS CODE = 11 -- -------------------------------------------------------------------------- -•»»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< * PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY CUMBER (CFS) (MIN. ) (INCH/HOUR) 1 3. 65 7. 00 3. 605 2 3. 63 7. 17 3. 550 3 3. 31 9. 66 2. 929 4 3. 28 10. 15 2.838 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: WEAK FLOW RATE(CFS) = 3. 65 Tc(MIN. ) = 7.00 °OTAL AREA(ACRES) = 2. 09 rLOW PROCESS FROM NODE 5. 00 TO NODE 2. 00 IS CODE = 12 -------------------------------------------------------------------------- .»»CLEAR MEMORY BANK # 1 ««< FLOW PROCESS FROM NODE 2. 00 TO NODE 8.00 IS CODE = 3 -- ------------------------------------------------------------------------- -»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ------------------------------------- ---------------------------------------------------------------------------- ­STIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 +EPTH OF FLOW IN 18. 0 INCH PIPE IS 4.8 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 9. 6 -''PSTREAM NODE ELEVATION = 218. 00 DOWNSTREAM NODE ELEVATION = 207. 35 FLOWLENGTH(FEET) = 204.89 MANNING'S N = . 013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 aIPEFLOW THRU SUBAREA(CFS) = 3. 65 TRAVEL TIME(MIN. ) _ . 36 TC(MIN. ) = 7. 36 --FLOW PROCESS FROM NODE 2.00 TO NODE 8.00 IS CODE = 10 - -------------------------------------------------------------------------- >»»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< -FLOW PROCESS FROM NODE 9. 00 TO NODE 10. 00 IS CODE = 2 - -------------------------------------------------------------------------- >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ------------- ---------------------------------------------------------------------------- �50IL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50. 00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 SUBAREA RUNOFF(CFS) = 1.05 TOTAL AREA(ACRES) . 53 TOTAL RUNOFF(CFS) = 1. 05 --SLOW PROCESS FROM NODE 9. 00 TO NODE 10. 00 IS CODE = 1 - -------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< -------------- ----------------------------------------------------------------------------- tOTAL NUMBER OF STREAMS = 2 ZONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7.00 -tAINFALL INTENSITY(INCH/HR) = 3. 61 TOTAL STREAM AREA(ACRES) = . 53 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1. 05 FLOW PROCESS FROM NODE 11. 00 TO NODE 12.00 IS CODE = 2 - --------------------------------------------------------------------------- >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------- ---------------------------------------------------------------------------- -'-;OIL CLASSIFICATION IS "D" TINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9.50 ELEVATION DIFFERENCE = .50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 aUBAREA RUNOFF(CFS) _ . 02 TOTAL AREA(ACRES) _ . 00 TOTAL RUNOFF(CFS) _ .02 -FLOW PROCESS FROM NODE 12. 00 TO NODE 10. 00 IS CODE = 6 - -------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = STREET LENGTH(FEET) = 200. 00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 16. 00 STREET CROSSFALL(DECIMAL) _ . 0200 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ . 17 STREET FLOWDEPTH(FEET) = .16 HALFSTREET FLOODWIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 1. 19 PRODUCT OF DEPTH&VELOCITY = .19 .-STREETFLOW TRAVELTIME(MIN) = 2.79 TC(MIN) = 9.79 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.903 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 SUBAREA AREA(ACRES) _ . 18 SUBAREA RUNOFF(CFS) _ . 29 SUMMED AREA(ACRES) _ . 19 TOTAL RUNOFF(CFS) = .31 --END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = . 16 HALFSTREET FLOODWIDTH(FEET) = 1. 50 FLOW VELOCITY(FEET/SEC. ) = 2. 18 DEPTH*VELOCITY = . 34 FLOW PROCESS FROM NODE 12. 00 TO NODE 10.00 IS CODE = 1 - -------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ------------ -------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: .TIME OF CONCENTRATION(MIN. ) = 9.79 RAINFALL INTENSITY(INCH/HR) = 2.90 TOTAL STREAM AREA(ACRES) = . 19 PEAK FLOW RATE(CFS) AT CONFLUENCE _ .31 ;RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN. ) . (INCH/HOUR) 1 1.30 7. 00 3. 605 2 1. 15 9.79 2. 903 �OMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.30 Tc(MIN. ) = 7.00 TOTAL AREA(ACRES) _ . 72 FLOW PROCESS FROM NODE 10. 00 TO NODE 8.00 IS CODE = 3 - I-------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< 'STIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18. 0 INCH PIPE IS 2. 1 INCHES 4IPEFLOW VELOCITY(FEET/SEC. ) = 11.4 IPSTREAM NODE ELEVATION = 212. 20 DOWNSTREAM NODE ELEVATION = 207.40 rLOWLENGTH(FEET) = 24. 00 MANNING'S N = . 013 :STIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 ?IPEFLOW THRU SUBAREA(CFS) = 1. 30 .TRAVEL TIME(MIN. ) _ . 04 TC(MIN. ) = 7. 04 VLOW PROCESS FROM NODE 10.00 TO NODE 8.00 IS CODE = 11 . 1------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< x* PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY 7UMBER (CFS) (MIN. ) (INCH/HOUR) 1 4.84 7. 04 3. 594 2 4. 91 7. 36 3.492 3 4.88 7. 53 3. 441 4 4. 42 9.83 2.896 5 4. 45 10. 03 2.859 6 4. 39 10. 51 2.774 �OMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4. 91 Tc(MIN. ) = 7.36 OTAL AREA(ACRES) = 2.81 *LOW PROCESS FROM NODE 10. 00 TO NODE 8.00 IS CODE = 12 --------------------------------------------------------------------------- >>>CLEAR MEMORY BANK # 1 ««< LOW PROCESS FROM NODE 8. 00 TO NODE 3.00 IS CODE = 3 --------------------------------------------------------------------------- -»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< .»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ----------------------------------------- 'ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 !EPTH OF FLOW IN 18. 0 INCH PIPE IS 8.4 INCHES . IPEFLOW VELOCITY(FEET/SEC. ) = 6.0 UPSTREAM NODE ELEVATION = 207.24 °OWNSTREAM NODE ELEVATION = 206.37 'LOWLENGTH(FEET) = 75. 40 MANNING'S N = 013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 -PIPEFLOW THRU SUBAREA(CFS) = 4.91 'RAVEL TIME(MIN. ) _ . 21 TC(MIN. ) = 7. 56 LOW PROCESS FROM NODE 8. 00 TO NODE 13. 00 IS CODE = 1 ------------------------------------------------------------- --------------- »»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ---------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 JCONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7. 56 RAINFALL INTENSITY(INCH/HR) = 3.43 TOTAL STREAM AREA(ACRES) = 2.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4. 91 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 2 ---------------------------------------------------------------------------- >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< SOIL CLASSIFICATION IS "D" ,SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50. 00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9.50 ELEVATION DIFFERENCE = .50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 --SUBAREA RUNOFF(CFS) _ . 02 TOTAL AREA(ACRES) _ .00 TOTAL RUNOFF(CFS) _ . 02 FLOW PROCESS FROM NODE 15. 00 TO NODE 16. 00 IS CODE = 6 ---------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 21. 50 DOWNSTREAM ELEVATION = . 00 ---STREET LENGTH(FEET) = 430.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 32.00 STREET CROSSFALL(DECIMAL) _ .0200 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1. 10 STREET FLOWDEPTH(FEET) = .20 HALFSTREET FLOODWIDTH(FEET) = . 3.88 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 4. 10 PRODUCT OF DEPTH&VELOCITY = .84 STREETFLOW TRAVELTIME(MIN) = 1. 75 TC(MIN) = 8. 75 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.122 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT. = . 5500 SUBAREA AREA(ACRES) = 1. 28 SUBAREA RUNOFF(CFS) = 2. 20 '-SUMMED AREA(ACRES) = 1. 29 TOTAL RUNOFF(CFS) = 2. 22 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = . 26 HALFSTREET FLOODWIDTH(FEET) = 6.74 --FLOW VELOCITY(FEET/SEC. ) = 3.87 DEPTH*VELOCITY = 1. 01 FLOW PROCESS FROM NODE 16. 00 TO NODE 13.00 IS CODE = 3 ---------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< - -------------------------------------------------------------------------- ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.0 INCHES . IPEFLOW VELOCITY(FEET/SEC. ) = 20. 6 UPSTREAM NODE ELEVATION = 210. 50 nWNSTREAM NODE ELEVATION = 206. 50 _OWLENGTH (FEET) = 5.82 MANNING'S N = . 013 ESTIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 2. 22 ZAVEL TIME(MIN. ) _ . 00 TC(MIN. ) = 8.75 -OW PROCESS. FROM NODE 16.00 TO NODE 13.00 IS CODE = 1 ----------------------------------------------------- ---------------------- >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< : >»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS----2---------------------------------------------- i )NFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: ilME OF CONCENTRATION(MIN. ) = 8.75 RAINFALL INTENSITY(INCH/HR) = 3. 12 •__)TAL STREAM AREA(ACRES) = 1. 29 1:-AK FLOW RATE(CFS) AT CONFLUENCE = 2. 22 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO )NFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** ; rREAM RUNOFF TIME INTENSITY i.JMBER (CFS) (MIN. ) (INCH/HOUR) 1 6.81 7. 24 3.526 2 6.93 7. 56 3.430 3 6. 92 7. 73 3.381 4 6.72 8.75 3. 121 5 6. 45 10. 04 2.856 6 6. 45 10. 24 2.821 7 6. 33 10.73 2.738 )MPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: OAK FLOW RATE(CFS) = 6. 93 Tc(MIN. ) = 7. 56 TOTAL AREA(ACRES) = 4.10 ************************************************************************** FJ_OW PROCESS FROM NODE 13.00 TO NODE 17. 00 IS CODE = 3 ------------------------------------------------------------------------- >>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< --------------------- --------------------- -------------------------- -------------------------- --PTH OF FLOW IN 18. 0 INCH PIPE IS 10.9 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 6. 2 ` STREAM NODE ELEVATION = 206.33 )WNSTREAM NODE ELEVATION = 205. 50 FLOWLENGTH(FEET) = 83.40 MANNING'S N = . 013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 EPEFLOW THRU SUBAREA(CFS) = 6.93 .RAVEL TIME(MIN. ) _ . 22 TC(MIN. ) = 7.79 FLOW PROCESS FROM NODE 13. 00 TO NODE 17. 00 IS CODE = 1 ------------------------------------------------------------------------- >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ---------------------------------------------------------------------------- =OTAL NUMBER OF STREAMS = 3 )NFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7.79 RAINFALL INTENSITY(INCH/HR) = 3. 37 )TAL STREAM AREA(ACRES) = 4. 10 I -AK FLOW RATE(CFS) AT CONFLUENCE = 6. 93 FLOW PROCESS FROM •NODE 18. 00 TO NODE 17.00 IS CODE 2 - .-------------------------------------------------------------------------- : >»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< SDIL CLASSIFICATION IS "D"------------------------------------------------ INGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50. 00 UPSTREAM ELEVATION = 10.00 - DOWNSTREAM ELEVATION = 9.50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 - 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 )BAREA RUNOFF(CFS) = 1. 11 TOTAL AREA(ACRES) _ . 56 TOTAL RUNOFF(CFS) FLOW PROCESS FROM NODE 18. 00 TO NODE 17.00 IS CODE = 1 -- ------------------------------------------------------------------------- : ->>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ---------------------------------------------------------------- ------------------_ TOTAL NUMBER OF STREAMS = 3* )NFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: jlME OF CONCENTRATION(MIN. ) = 7.00 RAINFALL INTENSITY(INCH/HR) = 3. 61 ' )TAL STREAM AREA(ACRES) = . 56 t ---AK FLOW RATE(CFS) AT CONFLUENCE FLOW PROCESS FROM NODE 19. 00 TO NODE 17. 00 IS CODE = 2 - ------------------------------------------------------------------------- : ►»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------- --------------------------------------------------------------------------- SOIL CLASSIFICATION IS "D" :�:NGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 -DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 - )BAREA RUNOFF(CFS) _ . 63 .JTAL AREA(ACRES) _ . 32 TOTAL RUNOFF(CFS) _ . 63 FLOW PROCESS FROM NODE 19. 00 TO NODE 17. 00 IS CODE = 1 __...-------------------------------------------------------------------------- >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ---------------------------------------------------------------------------- - ------------------------------------------------------------------------- )TAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN. ) = 7.00 %INFALL INTENSITY(INCH/HR) = 3. 61 iJTAL STREAM AREA(ACRES) = .32 PEAK FLOW RATE(CFS) AT CONFLUENCE _ . 63 __AINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. k PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 8. 27 7.00 3. 605 - 2 8. 27 7.00 3. 605 3 8.48 7. 47 3.458 4 8. 56 7.79 3.366 5 8. 53 7. 96 3.319 6 8. 21 8. 98 3. 070 7 7.81 10. 27 2.815 8 7.80 10. 47 2.781 9 7. 64 10.95 2.701 )MPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: . :AK FLOW RATE(CFS) = 8. 56 Tc(MIN. ) = 7.79 TOTAL AREA(ACRES) = 4. 98 E_OW PROCESS FROM NODE 17. 00 TO NODE 20. 00 IS CODE = 3 ------------------------------------------------------------------------- >>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< _STIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18. 0 INCH PIPE IS 4. 4 INCHES °-TPEFLOW VELOCITY(FEET/SEC. ) = 25. 4 'STREAM NODE ELEVATION = 204. 20 DOWNSTREAM NODE ELEVATION = 175.10 ELOWLENGTH(FEET) = 72.74 MANNING'S N = .013 3TIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 rIPEFLOW THRU SUBAREA(CFS) = 8. 56 TRAVEL TIME(MIN. ) _ . 05 TC(MIN. ) = 7.84 `_OW PROCESS FROM NODE 17. 00 TO NODE 20.00 IS CODE = 1 ------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< )TAL NUMBER OF STREAMS = 3 LJNFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7.84 AINFALL INTENSITY(INCH/HR) = 3.35 )TAL STREAM AREA(ACRES) = 4. 98 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.56 _LOW PROCESS FROM NODE 21. 00 TO NODE 20. 00 IS CODE = 2 -------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------------------------------------------------------------- ;OIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 SUBAREA RUNOFF(CFS) = 1. 96 TOTAL AREA(ACRES) _ . 99 TOTAL RUNOFF(CFS) = 1. 96 SLOW PROCESS FROM NODE 21. 00 TO NODE 20.00 IS CODE = 1 -------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ---------------------------------------------------------------------------- rOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 7. 00 2AINFALL INTENSITY(INCH/HR) -= 3. 61 TOTAL STREAM AREA(ACRES) = . 99 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.96 *************************************************************************** FLOW PROCESS FROM NODE 22. 00 TO NODE 20.00 IS CODE = 2 -------------------------------------------------------------------------- >»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ---------------------------------------------------------------------------- 50IL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT =. . 5500 INITIAL SUBAREA FLOW-LENGTH (FEET) = 50. 00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9.50 ELEVATION DIFFERENCE = .50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 SUBAREA RUNOFF(CFS) _ . 63 TOTAL AREA(ACRES) _ .32 TOTAL RUNOFF(CFS) _ . 63 FLOW PROCESS FROM NODE 22.00 TO NODE 20.00 IS CODE = 1 -------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< -------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN. ) = 7. 00 RAINFALL INTENSITY(INCH/HR) = 3. 61 TOTAL STREAM AREA(ACRES) = .32 -PEAK FLOW RATE(CFS) AT CONFLUENCE _ . 63 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** BREAM RUNOFF TIME INTENSITY 1 IMBER (CFS) (MIN. ) (INCH/HOUR) 1 10.83 7.00 3. 605 2 10.83 7. 00 3. 605 3 10.86 7.05 3.589 4 10.86 7. 05 3.589 5 10.96 7. 52. 3.443 6 10.97 7.84 3. 352 7 10.91 8. 01 3.306 8 10.41 9. 03 3.060 9 9.83 10. 32 2.806 10 9.80 10.52 2.773 11 9.58 11. 00 2. 693 (-IMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: I 'AK FLOW RATE(CFS) = 10. 97 Tc(MIN. ) = 7.84 TOTAL AREA(ACRES) = 6. 29 ************************************************************************** FLAW PROCESS FROM NODE 20. 00 TO NODE 20. 10 IS CODE = 3 . ,------------------------------------------------------------------------ ==»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< -=-------------------------------------------------------------------------- -- ------------------------------------------------------------------------- TIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9. 4 INCHES P--T.PEFLOW VELOCITY(FEET/SEC. ) = 11.8 [ 'STREAM NODE ELEVATION = 174.60 DOWNSTREAM NODE ELEVATION = 173.07 ELOWLENGTH(FEET) = 38.26 MANNING'S N = .013 ►TIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 I �PEFLOW THRU SUBAREA(CFS) = 10.97 TRAVEL TIME(MIN. ) _ . 05 TC(MIN. ) = 7.89 FL.OW PROCESS FROM NODE 20. 10 TO NODE 20. 20 IS CODE = 3 . .------------------------------------------------------------------------ »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< - ------------------------------------------------------------------------- LJTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18. 0 INCH PIPE IS 9.4 INCHES r.PEFLOW VELOCITY(FEET/SEC. ) = 11.8 [ 'STREAM NODE ELEVATION = 172.91 DOWNSTREAM NODE ELEVATION = 171.02 F-LOWLENGTH(FEET) = 47. 17 MANNING'S N = . 013 +TIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 IIPEFLOW THRU SUBAREA(CFS) = 10.97 TRAVEL TIME(MIN. ) _ .07 TC(MIN. ) = 7.96 I--'.OW PROCESS FROM NODE 20. 10 TO NODE 20. 20 IS CODE = 1 . ------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< )TAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: uME OF CONCENTRATION(MIN. ) = 7.96 I kINFALL INTENSITY(INCH/HR) = 3. 32 .iJTAL STREAM AREA(ACRES) = 6. 29 PEAK FLOW RATE(CFS) AT CONFLUENCE = 10.97 *************************************************************************** FLOW PROCESS FROM NODE 28. 00 TO NODE 29. 00 IS CODE = 2 ., .------------------------------------------------------------------------ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< --------------------------------------------------------------------------- )IL CLASSIFICATION IS "D" ANGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9.50 ELEVATION DIFFERENCE = .50 - URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 SUBAREA RUNOFF(CFS) _ .02 TOTAL AREA(ACRES) _ . 00 TOTAL RUNOFF(CFS) _ . 02 `-OW PROCESS FROM NODE 29.00 TO NODE 29.10 IS CODE = 6 ------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< --------------------------------------------------------------------------- 'STREAM ELEVATION = 23.00 DOWNSTREAM ELEVATION = .00 3fREET LENGTH(FEET) = 460. 00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 32. 00 STREET CROSSFALL(DECIMAL) _ . 0200 'ECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ .82 STREET FLOWDEPTH(FEET) = . 18 HALFSTREET FLOODWIDTH(FEET) = 2. 93 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 4. 03 PRODUCT OF DEPTH&VELOCITY = .75 . TREETFLOW TRAVELTIME(MIN) = 1.90 TC(MIN) = 8.90 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 087 SOIL CLASSIFICATION IS "D" INGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 _ JBAREA AREA(ACRES) _ . 96 SUBAREA RUNOFF(CFS) = 1. 63 SUMMED AREA(ACRES) _ .97 TOTAL RUNOFF(CFS) = 1. 65 ylD OF SUBAREA STREETFLOW HYDRAULICS: _PTH (FEET) = . 24 HALFSTREET FLOODWIDTH(FEET) = 5.79 FLOW VELOCITY(FEET/SEC. ) = 3. 64 DEPTH*VELOCITY = .88 FLOW PROCESS FROM NODE 29. 10 TO NODE 20.20 IS CODE = 3 - "------------------------------------------------------------------------- : ->>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.8 INCHES F -PEFLOW VELOCITY(FEET/SEC. ) = 9.3 . STREAM NODE ELEVATION = 176.53 JOWNSTREAM NODE ELEVATION = 171.44 F-LOWLENGTH(FEET) = 55.33 MANNING'S N = .013 TIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 31PEFLOW THRU SUBAREA(CFS) = 1. 65 T-RAVEL TIME(MIN. ) _ . 10 TC(MIN. ) = 9.00 F'-OW PROCESS FROM NODE 29. 10 TO NODE 20. 20 IS CODE = 1 - ------------------------------------------------------------------------ >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >s>»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< - ------------------------------------------------------------------------ - ------------------------------------------------------------------------ fvTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: I -ME OF CONCENTRATION(MIN. ) = 9.00 2 INFALL INTENSITY(INCH/HR) = 3. 07 TOTAL STREAM AREA(ACRES) = .97 P=AK FLOW RATE(CFS) AT CONFLUENCE = 1. 65 ZAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO C.QNFLUENCE FORMULA USED FOR 2 STREAMS. k- PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY N-MBER (CFS) (MIN. ) (INCH/HOUR) 1 12. 25 7. 12 3. 565 2 12. 25 7. 12 3.565 3 12.28 7. 17 3. 550 4 12. 28 7. 17 3.550 5 12.44 7. 64 3.408 6 12.50 7. 96 3.320 7 12.46 8.13 3.275 8 11.95 9.00 3.065 9 12. 04 9.15 3.033 10 11.33 10.45 2.785 11 11. 28 10. 64 2.752 12 11. 02 11. 13 2. 673 MPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: )cAK FLOW RATE(CFS) = 12. 50 Tc(MIN. ) = 7.96 TQTAL AREA(ACRES) = 7. 26 ************************************************************************** F`-0W PROCESS FROM NODE 20. 20 TO NODE 23.00 IS CODE = 3 - ------------------------------------------------------------------------ -»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >Z>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ----------------- --- TIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10. 2 INCHES P-PEFLOW VELOCITY(FEET/SEC. ) = 12. 2 1 STREAM NODE ELEVATION = 170.86 JOWNSTREAM NODE ELEVATION = 167. 63 F=,OWLENGTH(FEET) = 80.77 MANNING'S N = . 013 E-TIMATED PIPE DIAMETER(INCH) = 18.00 - NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 12. 50 T"AVEL TIME(MIN. ) _ . 11 TC(MIN. ) = 8. 07 OW PROCESS FROM NODE 20. 20 TO NODE 23.00 IS CODE = 10 -------------------------------------------------------------------------- »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< - ------------------------------------------------------------------------ F OW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 2 ------------------------------------------------------------_-------------- >.a>»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< - ------------------------------------------------------------------------ - ------------------------------------------------------------------------ ;uIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 --ELEVATION DIFFERENCE = .50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 SUBAREA RUNOFF(CFS) _ . 02 T TAL AREA(ACRES) _ .00 TOTAL RUNOFF(CFS) _ .02 OW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 6 --------------------------------------------------------------------------- >->>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< - ------------------------------------------------------------------------ - ------------------------------------------------------------------------ JrSTREAM ELEVATION = 18. 00 DOWNSTREAM ELEVATION = . 00 STREET LENGTH(FEET) = 360. 00 CURB HEIGTH(INCHES) = 6. S REET HALFWIDTH(FEET) = 32.00 STREET CROSSFALL(DECIMAL) _ . 0200 S. ECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ . 57 STREET FLOWDEPTH(FEET) = . 16 HALFSTREET FLOODWIDTH(FEET) = 1. 50 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 4. 08 PRODUCT OF DEPTH&VELOCITY = . 64 3 REETFLOW TRAVELTIME(MIN) = 1. 47 TC(MIN) = 8.47 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 188 SWIL CLASSIFICATION IS "D" 3_NGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) _ . 65 SUBAREA RUNOFF(CFS) = 1. 14 "MED AREA(ACRES) _ . 66 TOTAL RUNOFF(CFS) = 1. 16 D OF SUBAREA STREETFLOW HYDRAULICS: APTH(FEET) = . 22 HALFSTREET FLOODWIDTH(FEET) = 4.84 FLOW VELOCITY(FEET/SEC. ) = 3. 29 DEPTH*VELOCITY = .73 r`OW PROCESS FROM NODE 25. 00 TO NODE 26.00 IS CODE = 1 - ------------------------------------------------------------------------ >»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< 1-TAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: 0ME OF CONCENTRATION(MIN. ) = 8.47 F INFALL INTENSITY(INCH/HR) = 3.19 TOTAL STREAM AREA(ACRES) = . 66 REAK FLOW RATE(CFS) AT CONFLUENCE = 1.16 F`OW PROCESS FROM NODE 27.00 TO NODE 26.00 IS CODE = 2 - ------------------------------------------------------------------------ >RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< S IL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 .INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 -URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 SUBAREA RUNOFF(CFS) _ . 54 TOTAL AREA(ACRES) _ . 27 TOTAL RUNOFF(CFS) _ . 54 OW PROCESS FROM NODE 27.00 TO NODE 26.00 IS CODE = 1 - ------------------------------------------------------------------------ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >->>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< - ------------------------------------------------------------------------ - ------------------------------------------------------------------------ fOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: T ME OF CONCENTRATION(MIN. ) = 7.00 IHINFALL INTENSITY(INCH/HR) = 3. 61 TOTAL STREAM AREA(ACRES) = . 27 6% FLOW RATE(CFS) AT CONFLUENCE _ .54 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. k* PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY v MBER (CFS) (MIN. ) (INCH/HOUR) 1 1. 56 7. 00 3. 605 2 1. 63 8. 47 3. 188 ;_MPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1. 63 Tc(MIN. ) = 8.47 TOTAL AREA(ACRES) _ .93 OW PROCESS FROM NODE 26.00 TO NODE 23. 00 IS CODE = 3 - ------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< ->>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< - ------------------------------------------------------------------------ ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18. 0 INCH PIPE IS 1.7 INCHES 1- IPEFLOW VELOCITY(FEET/SEC. ) = 19.8 UPSTREAM NODE ELEVATION = 174. 60 nWNSTREAM NODE ELEVATION = 167. 97 .OWLENGTH(FEET) = 8. 30 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PT.PEFLOW THRU SUBAREA(CFS) = 1. 63 1AVEL TIME(MIN. ) _ . 00 TC(MIN. ) = 8. 48 I -OW PROCESS FROM NODE 26. 00 TO NODE 23.00 IS CODE = - 11 --------------------------------- =` -»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ------------------------------------------------------------------------- PEAK FLOW RATE TABLE ** -REAM RUNOFF TIME INTENSITY `iJMBER (CFS) (MIN. ) (INCH/HOUR) 1 13. 57 7.01 3. 603 2 13.78 7. 23 3. 530 3 13.78 7.23 3.530 4 13.81 7.28 3. 515 5 13.81 7. 28 3.515 6 13.99 7.75 3.377 7 14.08 8.07 3.290 8 14. 06 8.24 3. 246 9 13.86 8.48 3.186 10 13. 51 9. 11 3. 041 11 13. 59 9. 26 3.010 12 12.75 10. 56 2.766 13 12. 68 10.75 2.733 14 12. 38 11. 24 2. 656 )MPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14. 08 Tc(MIN. ) = 8.07 10TAL AREA(ACRES) = 8. 19 -".OW PROCESS FROM NODE 26. 00 TO NODE 23.00 IS CODE = 12 , .------------------------------------------------------------------------ »»>CLEAR MEMORY BANK # 1 ««< --------------------------------------------------------------------------- --------------------------------------------------------------------------- -.-OW PROCESS FROM NODE 26.00 TO NODE 23.00 IS CODE = 10 .------------------------------------------------------------------------ »»>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ..OW PROCESS FROM NODE 30. 20 TO NODE 30. 00 IS CODE = 2 -------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ------------------------------------------------------------------------- . )IL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 - INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10.00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 SUBAREA RUNOFF(CFS) _ . 12 )TAL AREA(ACRES) _ .06 TOTAL RUNOFF(CFS) _ . 12 -OW PROCESS FROM NODE 30.20 TO NODE 30.00 IS CODE = 1 ------------------------------------------------------ ----------------------- �-U►»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< - ------------------------------------------------------------------------- - ------------------------------------------------------------------------- iOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: (ME OF CONCENTRATION (MIN. ) = 7. 00 .,AINFALL INTENSITY(INCH/HR) = 3. 61 TOTAL STREAM AREA(ACRES) = .06 :-AK FLOW RATE(CFS) AT CONFLUENCE _ .12 -OW PROCESS FROM NODE 31. 00 TO NODE 30.00 IS CODE = 2 -------------------------------------------------------------------------- ?»»RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< _JIL CLASSIFICATION IS "D" SINGLE FAMILY .DEVELOPMENT RUNOFF COEFFICIENT = . 5500 ' INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = .50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 $_IJBAREA RUNOFF(CFS) = 2. 28 )TAL AREA(ACRES) = 1. 15 TOTAL RUNOFF(CFS) = 2. 28 ..OW PROCESS FROM NODE 31. 00 TO NODE 30.00 IS CODE = 1 --------------------------------------------------------------------------- >..»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< : ->>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< TOTAL NUMBER OF STREAMS = 2 f�NFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 'ME OF CONCENTRATION(MIN. ) = 7.00 RAINFALL INTENSITY(INCH/HR) = 3. 61 =-ITAL STREAM AREA(ACRES) = 1. 15 1:-AK FLOW RATE(CFS) AT CONFLUENCE = 2.28 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO )NFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** `"REAM RUNOFF TIME INTENSITY i IMBER (CFS) (MIN. ) (INCH/HOUR) 1 2. 40 7. 00 3. 605 2 2.40 7.00 3. 605 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: OAK FLOW RATE(CFS) = 2. 40 Tc (MIN. ) = 7. 00 )TAL AREA(ACRES) = 1. 21 MOW PROCESS FROM NODE 30.00 TO NODE 23.00 IS CODE = 3 --------------------------------------------------------------------------- >>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >>>,USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< --------------------------------------------------------------------------- "STIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 PTH OF FLOW IN 18.0 INCH PIPE IS 3. 3 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 10. 6 !- STREAM NODE ELEVATION = 170. 60 )WNSTREAM NODE ELEVATION = 167.97 rLOWLENGTH(FEET) = 27.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 EPEFLOW THRU SUBAREA(CFS) = 2. 40 .IAVEL TIME(MIN. ) _ . 04 TC(MIN. ) = 7. 04 FLOW PROCESS FROM NODE 30. 00 TO NODE 23. 00 IS CODE = 11 ----------------------------------------------------------------- ---------- >>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< k PEAK FLOW RATE TABLE ** TREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 15. 96 7. 01 3. 603 2 15. 95 7. 04 3. 591 3 15. 95 7. 04 3. 591 4 16. 14 7. 23 3. 530 5 16.14 7.23 3.530 6 16. 15 7. 28 3.515 7 16. 15 7.28 3. 515 .8 16. 24 7.75 3.377 9 16.28 8.07 3. 290 10 16. 23 8. 24 3. 246 11 15.99 8.48 3. 186 12 15. 54 9.11 3.041 13 15. 60 9. 26 3.010 14 14. 60 10.56 2.766 15 14. 50 10.75 2.733 16 14. 16 11. 24 2. 656 &IMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 1-'AK FLOW RATE(CFS) = 16. 28 Tc(MIN. ) = 8. 07 TOTAL AREA(ACRES) = 9.40 FLOW PROCESS FROM NODE 30. 00 TO NODE 23.00 IS CODE = 12 .. .------------------------------------------------------------------------ >>CLEAR MEMORY BANK # 1 ««< -_OW PROCESS FROM NODE 23. 00 TO NODE 32.00 IS CODE = 3 ------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< .-,»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< uE.PTH OF FLOW IN 18. 0 INCH PIPE IS 12. 1 INCHES E,IPEFLOW VELOCITY(FEET/SEC. ) = 12.9 'STREAM NODE ELEVATION = 167.47 _JWNSTREAM NODE ELEVATION = 165. 93 FLOWLENGTH(FEET) = 38. 50 MANNING'S N = . 013 °`iTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 [PEFLOW THRU SUBAREA(CFS) = 16. 28 TRAVEL TIME(MIN. ) _ .05 TC(MIN. ) = 8. 12 --------------------------------------------------------------------------- ---------------------------------------------------------------------------- 4D OF STUDY SUMMARY: . ZAK FLOW RATE(CFS) = 16. 28 Tc(MIN. ) = 8. 12 TOTAL AREA(ARCES) = 9.40 +�* PEAK FLOW RATE TABLE *** Q(CFS) Tc(MIN. ) 1 15. 96 7. 06 15. 95 7.09 15.95 7.09 4 16.14 7.28 5 16.14 7. 28 16. 15 7.33 16.15 7.33 8 16. 24 7.80 16. 28 8. 12 16. 23 8. 29 .1 15. 99 8. 53 17 15. 54 9. 16 15. 60 9.31 . 14. 60 10. 61 15 14. 50 10.81 17 14. 16 11. 29 END OF RATIONAL METHOD ANALYSIS B. Basin A 100 Year Hydrology bhA, Inc. RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE REFERENCE: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (C) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) VER. 5. 5A RELEASE DATE: 4/22/90 SERIAL # 5810 ANALYSIS PREPARED BY: BHA, INC. 1615 MURRAY CANYON ROAD, SUITE 910 SAN DIEGO, CALIFORNIA 92108 (619) 298-8861 r ********************** DESCRIPTION OF STUDY ************************** 1,INATAS RANCH .OT 43 4--0675-600 r ********************************************************************** 'I'--E NAME: C: \PROJECTS\0675\DRAINAGE\43_100. DAT E/DATE OF STUDY: 11: 4 7/11/1996 ------------------------------------------------------------------------- Sf.R SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: - ----------------------------------------------------------------------- .985 SAN DIEGO MANUAL CRITERIA i R SPECIFIED STORM EVENT(YEAR) = 100. 00 -HOUR DURATION PRECIPITATION (INCHES) = 2.700 CIFIED MINIMUM PIPE SIZE(INCH) = 18. 00 'LCIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE _ . 95 1 DIEGO HYDROLOGY MANUAL "C"-VALUES USED ) _ E: ALL CONFLUENCE COMBINATIONS CONSIDERED _UW PROCESS FROM NODE 1. 00 TO NODE 2. 00 IS CODE = 2 --.----------------------------------------------------------------------- >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< - ----------------------------------------------------------------------- ------------------------------------------------------------------------- OIL CLASSIFICATION IS "D" ?SLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 VITIAL SUBAREA FLOW-LENGTH (FEET) = 50. 00 UPSTREAM ELEVATION = 10. 00 MWNSTREAM ELEVATION = 9. 50 EVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 120 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.726 '1 AREA RUNOFF(CFS) = 2.83 i .AL AREA(ACRES) _ . 90 TOTAL RUNOFF(CFS) = 2.83 �OW PROCESS FROM NODE 1. 00 TO NODE 2.00 IS CODE = 1 ------------------------------------------------------------------------ >>»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< -------------------------------------------------------------------------- TPAL NUMBER OF STREAMS = 2 C_IFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: IME OF CONCENTRATION(MIN. ) = 7. 00 '.!NFALL INTENSITY(INCH/HR) = 5.73 ( 'AL STREAM AREA(ACRES) = .90 EAK FLOW RATE(CFS) AT CONFLUENCE = 2.83 -LOW PROCESS FROM NODE 3 . 00 TO NODE. 3. 10 IS CODE = 2 -- ----------------------------------------------------------------------- »RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ------------------------------------------------------------------------- -------------------------------------------------------------------------- '3xL CLASSIFICATION IS "D' I GLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 .UPSTREAM ELEVATION = 10.00 OWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 T-0 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.726 L AREA RUNOFF(CFS) _ . 03 DTAL AREA(ACRES) _ . 00 TOTAL RUNOFF(CFS) _ . 03 -nDW PROCESS FROM NODE 3.00 TO NODE 2.00 IS CODE = 6 -- ----------------------------------------------------------------------- > >>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< ------------------------------------------------------------------------- -------------------------------------------------------------------------- JR"TREAM ELEVATION = 19. 00 DOWNSTREAM ELEVATION = . 00 1 EET LENGTH(FEET) = 380. 00 CURB HEIGTH(INCHES) = 6. TREET HALFWIDTH (FEET) = 16. 00 STREET CROSSFALL(DECIMAL) _ . 0200 lRECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ . 56 STREET FLOWDEPTH(FEET) = . 16 HALFSTREET FLOODWIDTH(FEET) = 1. 50 _. AVERAGE FLOW VELOCITY(FEET/SEC. ) = 3.96 PRODUCT OF DEPTH&VELOCITY = . 62 TREETFLOW TRAVELTIME(MIN) = 1. 60 TC(MIN) = 8. 60 1 0 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.014 OIL CLASSIFICATION IS "D" JUGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 U AREA AREA(ACRES) _ . 38 SUBAREA RUNOFF(CFS) = 1. 05 U.MED AREA(ACRES) _ . 39 TOTAL RUNOFF(CFS) = 1. 08 ND OF SUBAREA STREETFLOW HYDRAULICS: F-TH(FEET) = . 22 HALFSTREET FLOODWIDTH(FEET) = 4. 67 L W VELOCITY(FEET/SEC. ) = 3. 21 DEPTH*VELOCITY = . 70 * *********************************************************************** LuW PROCESS FROM NODE 3. 10 TO NODE 3.00 IS CODE = 1 --_ ----------------------------------------------------------------------- >>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ------------------------------------------------------------------------- G-AL NUMBER OF STREAMS = 2 :L.4FLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: j•IME OF CONCENTRATION(MIN. ) = 8. 60 RAINFALL INTENSITY(INCH/HR) = 5. 01 I rAL STREAM AREA(ACRES) = .39 . EAK FLOW RATE(CFS) AT CONFLUENCE = 1.08 -I :NFALL INTENSITY AND TIME OF CONCENTRATION RATIO 6,4FLUENCE FORMULA USED FOR 2 STREAMS. PEAK FLOW RATE TABLE ** tEAM RUNOFF TIME INTENSITY .UMBER (CFS) (MIN. ) (INCH/HOUR) 1 3.78 7. 00 5.726 2 3. 56 8. 60 5. 014 :QMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: ,EIK FLOW RATE(CFS) = 3.78 Tc(MIN. ) = 7. 00 L .AL AREA(ACRES) = 1. 29 LOW PROCESS FROM NODE 3. 10 TO NODE 2.00 IS CODE = 10 _..._.----------------------------------------------------------------------- •»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< ------------------------------------------------------------------------- ------------------------------------------------------------------------- -LOW PROCESS FROM NODE 4. 00 TO NODE 5. 00 IS CODE = 2 _ .... ----------------------------------------------------------------------- >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ------------------------------------------------------------------------- -------------------------------------------------------------------------- 30JL CLASSIFICATION IS "D" '. IGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50. 00 _UPSTREAM ELEVATION = 10. 00 ►OWNSTREAM ELEVATION = 9.50 :LEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 '- O YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.726 l ;AREA RUNOFF(CFS) = 1. 57 .OTAL AREA(ACRES) _ . 50 TOTAL RUNOFF(CFS) = 1. 57 -LOW PROCESS FROM NODE 4. 00 TO NODE 5.00 IS CODE = 1 -• ----------------------------------------------------------------------- •>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ------------------------------------------------------------------------- -------------------------------------------------------------------------- -OSAL NUMBER OF STREAMS = 2 ( !FLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: 1ME OF CONCENTRATION(MIN. ) = 7. 00 :AINFALL INTENSITY(INCH/HR) = 5.73 CAL STREAM AREA(ACRES) = . 50 L„K FLOW RATE(CFS) AT CONFLUENCE = 1. 57 LOW PROCESS FROM NODE 6. 00 TO NODE 7. 00 IS CODE = 2 _u ----------------------------------------------------------------------- >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< --------------------------------------------------------------------------- --------------------------------------------------------------------------- S`IL CLASSIFICATION IS "D" i NGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 --UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 -URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5. 726 i,,BAREA RUNOFF(CFS) _ .03 TOTAL AREA(ACRES) _ . 00 TOTAL RUNOFF(CFS) _ . 03 ************************************************************************* 7!-0W PROCESS FROM NODE 7. 00 TO NODE 5. 00 IS CODE = 6 ------------------------------------------------------------------------ •»>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< -------------------------------------------------------------------------- -------------------------------------------------------------------------- STREAM ELEVATION = 16. 25 DOWNSTREAM ELEVATION = . 00 ; . .BEET LENGTH(FEET) = 325. 00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 16.00 STREET CROSSFALL(DECIMAL) _ . 0200 S"-:CIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ . 43 STREET FLOWDEPTH(FEET) = . 16 HALFSTREET FLOODWIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 3.08 PRODUCT OF DEPTH&VELOCITY = .48 STREETFLOW TRAVELTIME(MIN) = 1.76 TC(MIN) = 8.76 00 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.954 SOIL CLASSIFICATION IS "D" SxNGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 3AREA AREA(ACRES) _ . 29 SUBAREA RUNOFF(CFS) _ .79 ,uMMED AREA(ACRES) _ . 30 TOTAL RUNOFF(CFS) = .82 %D OF SUBAREA STREETFLOW HYDRAULICS: 3TH(FEET) = . 20 HALFSTREET FLOODWIDTH(FEET) = 3. 77 _JW VELOCITY(FEET/SEC. ) = 3.16 DEPTH*VELOCITY = . 64 .-LOW PROCESS FROM NODE 7. 00 TO NODE 5. 00 IS CODE = 1 --- ----------------------------------------------------------------------- >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< >>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< -------------------------------------------------------------------------- -------------------------------------------------------------------------- T�fAL NUMBER OF STREAMS = 2 :_AFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: j'IME OF CONCENTRATION(MIN. ) = 8.76 z."-TNFALL INTENSITY(INCH/HR) = 4.95 I rAL STREAM AREA(ACRES) = . 30 'EAK FLOW RATE(CFS) AT CONFLUENCE _ .82 [NFALL INTENSITY AND TIME OF CONCENTRATION RATIO uAFLUENCE FORMULA USED FOR 2 STREAMS. 4 -- PEAK FLOW RATE TABLE ** ZEAM RUNOFF TIME INTENSITY .UMBER (CFS) (MIN. ) (INCH/HOUR) 1 2. 29 7. 00 5.726 2 2. 18 8.76 4.954 -nPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: EX FLOW RATE(CFS) = 2. 29 Tc(MIN. ) = 7. 00 ,OTAL AREA(ACRES) _ .80 ************************************************************************* 7LOW PROCESS FROM NODE 5. 00 TO NODE 2.00 IS CODE = 3 - ----------------------------------------------------------------------- >>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< -- ----------------------------------------------------------------------- 'IMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 .EPTH OF FLOW IN 18. 0 INCH PIPE IS 5.7 INCHES 'PEFLOW VELOCITY(FEET/SEC. ) = 4.8 F TREAM NODE ELEVATION = 218.49 5WNSTREAM NODE ELEVATION = 218. 04 7UWLENGTH(FEET) = 42. 01 MANNING'S N = 013 "� IMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 I. EFLOW THRU SUBAREA(CFS) = 2. 29 RAVEL TIME(MIN. ) _ . 15 TC(MIN. ) = 7. 15 "LOW PROCESS FROM NODE 5. 00 TO NODE 2.00 IS CODE = 11 - ----------------------------------------------------------------------- >,»CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< -------------------------------------------------------------------------- -------------------------------------------------------------------------- PEAK FLOW RATE TABLE ** ,TREAM RUNOFF TIME INTENSITY I[LuBER (CFS) (MIN. ) (INCH/HOUR) 1 6. 03 7. 00 5.726 2 6. 01 7. 15 5. 650 3 5.70 8. 60 5. 014 4 5. 67 8.91 4.901 .OMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 'E-K FLOW RATE(CFS) = 6.03 Tc(MIN. ) = 7.00 C AL AREA(ACRES) = 2. 09 LuW PROCESS FROM NODE 5. 00 TO NODE 2.00 IS CODE = 12 -------------------------------------------------------------------------- >>CLEAR MEMORY BANK # 1 ««< - ----------------------------------------------------------------------- -------------------------------------------------------------------------- LOW PROCESS FROM NODE 2.00 TO NODE 8.00 IS CODE = 3 -"m----------------------------------------------------------------------- > >>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >>»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< -------------------------------------------------------------------------- -------------------------------------------------------------------------- *S^IMATED PIPE DIAMETER(INCH) INCREASED TO 18. 000 E TH OF FLOW IN 18. 0 INCH PIPE IS 6. 2 INCHES IPEFLOW VELOCITY(FEET/SEC. ) = 11. 1 !P-"-TREAM NODE ELEVATION = 218.00 )„WNSTREAM NODE ELEVATION = 207.35 rLOWLENGTH(FEET) = 204.89 MANNING'S N = . 013 E'TIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 ' PEFLOW THRU SUBAREA(CFS) = 6. 03 .RAVEL TIME(MIN. ) _ . 31 TC(MIN. ) = 7.31 :=LOW PROCESS FROM NODE 2.00 TO NODE 8.00 IS CODE = 10 - ------------------------------------------------------------------------ >»MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 ««< -------------------------------------------------------------------------- :LOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 2 ------------------------------------------------------------------------ >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< -------------------------------------------------------------------------- -------------------------------------------------------------------------- �(-:L CLASSIFICATION IS "D" IGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50. 00 �-IPSTREAM ELEVATION = 10. 00 )OWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.726 LjAREA RUNOFF(CFS) = 1. 67 TOTAL AREA(ACRES) _ . 53 TOTAL RUNOFF(CFS) = 1. 67 -l-AW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 1 . .----------------------------------------------------------------------- >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< -------------------------------------------------------------------------- r(-'AL NUMBER OF STREAMS = 2 L.IFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: IME OF CONCENTRATION(MIN. ) = 7.00 tP-O'NFALL INTENSITY(INCH/HR) = 5.73 ( AL STREAM AREA(ACRES) = . 53 EAK FLOW RATE(CFS) AT CONFLUENCE = 1. 67 LQW PROCESS FROM NODE 11. 00 TO NODE 12. 00 IS CODE = 2 - ----------------------------------------------------------------------- > >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< C-'rL CLASSIFICATION IS "D" I GLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 OWNSTREAM ELEVATION = 9. 50 `LEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 1-0 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.726 J AREA RUNOFF(CFS) _ . 03 JTAL AREA(ACRES) _ . 00 TOTAL RUNOFF(CFS) _ . 03• F`0W PROCESS FROM NODE 12. 00 TO NODE 10. 00 IS CODE = 6 - ------------------------------------------------------------------------ -•»»COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< -------------------------------------------------------------------------- --------------------------------------------------------------------------- '11 ;TREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = . 00 i.IREET LENGTH(FEET) = 200.00 CURB HEIGTH(INCHES) = 6. STREET HALFWIDTH(FEET) = 16. 00 STREET CROSSFALL(DECIMAL) _ . 0200 �71CIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME .COMPUTED USING MEAN FLOW(CFS) _ . 28 STREET FLOWDEPTH(FEET) _ .16 HALFSTREET FLOODWIDTH(FEET) = 1. 50 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 2.00 PRODUCT OF DEPTH&VELOCITY = .31 ;IREETFLOW TRAVELTIME(MIN) = 1. 66 TC(MIN) = 8. 66 !JO YEAR RAINFALL INTENSITY(INCH/HOUR) = 4. 990 SOIL CLASSIFICATION IS "D" 7GLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 [ ;AREA AREA(ACRES) _ . 18 SUBAREA RUNOFF(CFS) _ . 49 iUMMED AREA(ACRES) _ .19 TOTAL RUNOFF(CFS) = . 53 =tq OF SUBAREA STREETFLOW HYDRAULICS: 11TH (FEET) = . 16 HALFSTREET FLOODWIDTH(FEET) = 1. 50 LUW VELOCITY(FEET/SEC. ) = 3.74 DEPTH*VELOCITY = . 58 -LOW PROCESS FROM NODE 12. 00 TO NODE 10.00 IS CODE = 1 ----------------------------------------------------------------------- •>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< -»»AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< CAL NUMBER OF STREAMS = 2 ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: -IME OF CONCENTRATION(MIN. ) = 8. 66 'f-NFALL INTENSITY(INCH/HR) = 4. 99 C .AL STREAM AREA(ACRES) = .19 ,EAK FLOW RATE(CFS) AT CONFLUENCE _ . 53 P NFALL INTENSITY AND TIME OF CONCENTRATION RATIO .DNFLUENCE FORMULA USED FOR 2 STREAMS. i PEAK FLOW RATE TABLE ** i,.EAM RUNOFF TIME INTENSITY !UMBER (CFS) (MIN. ) (INCH/HOUR) 1 2. 13 7.00 5.726 2 1.98 8. 66 4.990 GuPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: E K FLOW RATE(CFS) = 2. 13 Tc(MIN. ) = 7. 00 DIAL AREA(ACRES) _ .72 LOW PROCESS FROM NODE 10.00 TO NODE 8.00 IS CODE = 3 - ----------------------------------------------------------------------- > >>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< >»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ------------------------------------------------------------------------- -------------------------------------------------------------------------- .:STIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18. 0 INCH PIPE IS 2. 6 INCHES ``'IPEFLOW VELOCITY(FEET/SEC. ) = 13. 2 IPSTREAM NODE ELEVATION = 212. 20 DOWNSTREAM NODE -F 4. 00 MANNING'S N = .013 :STIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 2. 13 TRAVEL TIME(MIN. ) _ . 03 TC(MIN. ) = 7.03 `LOW PROCESS FROM NODE 10. 00 TO NODE 8.00 IS CODE = 11 • ------------------------------------------------------------------------- »»>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ---------------------------------------------------------------------------- r* PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY -UMBER (CFS) (MIN. ) (INCH/HOUR) 1 8. 01 7. 03 5.710 2 8.11 7. 31 5.569 3 8.06 7.45 5.498 4 7.59 8. 69 4.979 5 7. 64 8. 91 4.899 6 7. 57 9. 22 4.793 „OMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8. 11 TC(MIN. ) = 7.31 -wOTAL AREA(ACRES) = 2.81 'LOW PROCESS FROM NODE 10.00 TO NODE 8.00 IS CODE = 12 --------------------------------------------------------------------------- »>>>CLEAR MEMORY BANK # 1 ««< LOW PROCESS FROM NODE 8. 00 TO NODE 3.00 IS CODE = 3 --------------------------------------------------------------------------- ..�»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< - ------------------------------------------------------------------------- --------------------------------------------------------------------------- DEPTH OF FLOW IN 18. 0 INCH PIPE IS 11.5 INCHES °-IPEFLOW VELOCITY(FEET/SEC. ) = 6.8 PSTREAM NODE ELEVATION = 207. 24 DOWNSTREAM NODE ELEVATION = 206. 37 -CLOWLENGTH(FEET) = 75.40 MANNING'S N = .013 STIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 rIPEFLOW THRU SUBAREA(CFS) = 8. 11 TRAVEL TIME(MIN. ) _ . 18 TC(MIN. ) = 7. 49 LOW PROCESS FROM NODE 8. 00 TO NODE 13.00 IS CODE = 1 - ------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: --TIME OF CONCENTRATION(MIN. ) = 7. 49 RAINFALL INTENSITY(INCH/HR) = 5.48 TOTAL STREAM AREA(ACRES) = 2.81 _PEAK FLOW RATE(CFS) AT CONFLUENCE = 8. 11 **************************************************************************** -FLOW PROCESS FROM NODE 14. 00 TO NODE 15.00 IS CODE = 2 --------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.726 SUBAREA RUNOFF(CFS) = 03 TOTAL AREA(ACRES) _ .00 TOTAL RUNOFF(CFS) _ . 03 **************************************************************************** -=LOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 6 -------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< UPSTREAM ELEVATION = 21. 50 DOWNSTREAM ELEVATION = STREET LENGTH(FEET) = 430.00 CURB HEIGTH(INCHES) = 6. -STREET HALFWIDTH(FEET) = 32.00 STREET CROSSFALL(DECIMAL) _ . 0200 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1.80 STREET FLOWDEPTH(FEET) = . 24 HALFSTREET FLOODWIDTH(FEET) = 5.79 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 3.97 PRODUCT OF DEPTH&VELOCITY = 96 --STREETFLOW TRAVELTIME(MIN) = 1.81 TC(MIN) = 8.81 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.938 .SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = 5500 SUBAREA AREA(ACRES) = 1. 28 SUBAREA RUNOFF(CFS) = 3. 48 SUMMED AREA(ACRES) = 1. 29 TOTAL RUNOFF(CFS) = 3. 51 WND OF SUBAREA STREETFLOW HYDRAULICS: )EPTH(FEET) = 28 HALFSTREET FLOODWIDTH(FEET) = 7.70 FLOW VELOCITY(FEET/SEC. ) = 4. 94 DEPTH*VELOCITY = 1. 38 *************************************************************************** FLOW PROCESS FROM NODE 16. 00 TO NODE 13.00 IS CODE = 3 -------------------------------------------------------------------------- >»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< STIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2. 5 INCHES -PIPEFLOW VELOCITY(FEET/SEC. ) = 23. 6 JPSTREAM NODE ELEVATION = 210. 50 DOWNSTREAM NODE ELEVATION = 206. 50 '=LOWLENGTH(FEET) = 5.82 MANNING'S N = . 013 :STIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 3.51 GRAVEL TIME(MIN. ) _ . 00 TC(MIN. ) = 8.81 'LOW PROCESS FROM NODE 16. 00 TO NODE 13. 00 IS CODE -___________________ _ _ = 1 >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ------------ _»»AND-COMPUTE-VARIOUS CONFLUENCED STREAM M VALUES««< ------------------- ------------------------------------- TOTAL NUMBER ------------------------------------------------- OF STREAMS = 2 ------ -- frONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: "IME OF CONCENTRATION(MIN. ) = 8.81 ,ZAINFALL INTENSITY(INCH/HR) = 4. 94 TOTAL STREAM AREA(ACRES) = 1. 29 �EAK FLOW RATE(CFS) AT CONFLUENCE = 3. 51 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO -c:ONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** -STREAM RUNOFF TIME INTENSITY LUMBER (CFS) (MIN. ) (INCH/HOUR) 1 11. 10 7. 22 5. 615 2 11. 27 7. 49 5. 480 3 11. 26 7. 64 5.412 4 11. 05 8.81 4. 936 5 11. 08 8.88 4. 911 6 11. 08 9. 10 4.834 7 10. 93 9. 41 4. 731 ,COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 'EAK FLOW RATE(CFS) = 11. 27 Tc(MIN. ) = TOTAL AREA(ACRES) = 4. 10 7. 49 FLOW PROCESS FROM NODE 13. 00 TO NODE -_________________ _ 17. 00 IS CODE = 3 --------------- _____ .»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< ------------ __»»USING_COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< -►EPTH OF FLOW I -°-°'°------------- UPSEFLOW VELOCITY(FEET/SECH) PIPE DSO 13.3 INCHES AM NODE = 20205. LOWLENGTH(FEET) = 83.40 MANNING'S N = . 013 ESTIMATED PIPE DIAMETER(INCH) = 21. 00 NUMBER OF PIPES = 1 RIPEFLOW THRU SUBAREA(CFS) = 11. 27 RAVEL TIME(MIN. ) _ . 20 TC(MIN. ) = 7. 69 LOW PROCESS FROM NODE 13. 00 TO NODE -------------- 17. 00 IS CODE - 1 --------------- ---- ____-___ �»»DESIGNATE ---------'- _ INDEPENDENT STREAM FOR CONFLUENCE««< --------- -------------------- -------------------- --------------------------------- ----------------- TOTAL NUMBER STREAMS -------------------------------------- �:ONFLUENCE VALUESUSEDFOR INDEPENDENT STREAM _ IME OF CONCENTRATION(MIN. ) = 7. 69 1 ARE: RAINFALL INTENSITY(INCH/HR) = 5.39 °sOTAL STREAM AREA(ACRES) = 4. 10 'EAK FLOW RATE(CFS) AT CONFLUENCE = 11. 27 FLOW PROCESS FROM NODE 18. 00 TO NODE ------- _ _ 17.00 IS CODE = 2 ---- ------ ------- _ RATIONAL ------------------------- »» METHOD INITIAL SUBAREA -------"--- _ _ _ ANALYSIS««< -------- SOIL CLASSIFICATION IS "D" -TINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50. 00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = URBAN SUBAREA OVERLAND TIME OFSFLOW(MINUTES) = 7. 000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5. 726 "-UBAREA RUNOFF(CFS) = 1. 76 "OTAL AREA(ACRES) _ . 56 TOTAL RUNOFF(CFS) _ 1.76 rlOW PROCESS FROM NODE 18. 00 TO NODE 17. 00 I --------------------------------------- S CODE = 1 �•»»DESIGNATE I ------------------ NDEPENDENT STREAM FOR CONFLUE ----------- TOTAL NUMBER OF STREAMS ------------------ --------------- = 3 ------------------------------- --------------- °!ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: •IME OF CONCENTRATION(MIN. ) = 7.00 RAINFALL INTENSITY(INCH/HR) = 5. 73 DOTAL STREAM AREA(ACRES) _ EAK FLOW RATE(CFS) AT CONFLUENCE 6= 1.76 LOW PROCESS FROM NODE 19.00 TO NODE 17. 00 I --------------- S CODE = 2 ----------------------- �-»»RATIONAL ---'----'--------- METHOD INITIAL SUBAREA ------'---- ANALYSIS««< --------- --------------------- _ --------------------- ------------------------------- 30IL CLASSIFICATION IS "D" ------------ ----'---------------- ----------------------- -SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50. 00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9.50 ELEVATION URBAN SUBAREA F 50 OVERLAND TIME OF - 100 YEAR RAINFALL INTENSITY(INCH/HOURMINUT5. 726 7. 000 -SUBAREA RUNOFF(CFS) = 1. 01 OTAL AREA(ACRES) _ . 32 TOTAL RUNOFF(CFS) _ 1. 01 LOW PROCESS FROM NODE 19. 00 TO NODE ----------------- 17.00 IS CODE = 1 -------------------------------------------- ' '»»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< -------- »»AND-COMPUTE_VARIOUS-CONFLUENCED STREAM VALUES««< -------------------------- NUMBER OF STREAMS 3 -- '------------------------- --------------- :ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN. ) = 7. 00 -?AINFALL INTENSITY(INCH/HR) = 5.73 OTAL rEAK FLOW ERATE RCFS)CATS CONFLUENCE 2= 1. 01 .AINFALL INTENSITY AND TIME OF CONCENTRATION RATIO _'ONFLUENCE FORMULA USED FOR 3 STREAMS. * PEAK FLOW RATE TABLE ** TREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 13.46 7. 00 5. 726 2 13. 46 7. 00 5. 726 3 13.77 7.42 5.517 4 13.88 7. 69 5. 388 5 13.84 7.84 5. 323 6 13. 41 9. 01 4.865 7 13. 42 9. 08 4.841 8 13. 39 9. 30 4. 767 9 13. 19 9. 61 4. 667 .COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: EAK FLOW RATE(CFS) = 13.88 Tc(MIN. ) = 7. 69 .OTAL AREA(ACRES) = 4. 98 FLOW PROCESS FROM NODE 17. 00 TO NODE 20. 00 IS CODE = 3 --------------------------- _ »»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< ----------- __»»USING-COMPUTER_ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ------------------------------ __________ ______ �STIMATED P IPE DIAMETER --'"- ---'--'-"""----------- (INCH) INCREASED TO 18. 000 - _ EPTH OF FLOW IN 18. 0 INCH PIPE IS 5. 7 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 29. 2 "PSTREAM = 20175. 1 rLOWLENGTH(FEET) = 72. 74 MANNING'S N = . 013 -ESTIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 IPEFLOW THRU SUBAREA(CFS) = 13.88 RAVEL TIME(MIN. ) _ . 04 TC(MIN. ) = 7. 73 FLOW PROCESS FROM NODE 17. 00 TO NODE --_____________ ----------- _ 20. 00 IS CODE = 1 --------------- ---------------- DESIGNATE --- '»> INDEPENDENT STREAM FOR --------------------- CONFLUENCE««< ---------------------- --------------------- __ TOTAL NUMBER -----'----__ ------ ________ ONFLUENCE VALUEST USED SFOR INDEPENDENT STREAM 1 IME OF CONCENTRATION(MIN. ) = 7. 73 ARE: RAINFALL INTENSITY(INCH/HR) = 5.37 E "OTAL STREAM AKFLOWRATE AREA(ACRES) B CFS) ATCONFLUENCE = 13.88 FLOW PROCESS FROM NODE 21. 00 TO NODE 20.00 IS CODE = 2 ----------------------------------------- ------------------------ °»»RATIONAL METHOD INITIAL _ _ _ _ _ _ SUBAREA ANALYSIS««< --;OIL CLASSIFICATION IS "D" JNGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH (FEET) = 50. 00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5. 726 ;UBAREA RUNOFF(CFS) = 3.12 TOTAL AREA(ACRES) _ . 99 TOTAL RUNOFF(CFS) _ 3. 12 »._LOW PROCESS FROM NODE 21. 00 TO NODE 20.00 IS CODE = 1 ------------------------ --------------- ________ DESIGNATE INDEPENDENT -- >>>' N EPENDENT STREAM FOR CONFLUE ----- __________________________________ -TOTAL NUMBER OF STREAMS = --------------------------------- :ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: MME OF CONCENTRATION(MIN. ) .= 7. 00 .RAINFALL INTENSITY(INCH/HR) = 5.73 'OTAL STREAM AREA(ACRES) = . 99 .•EAK FLOW RATE(CFS) AT CONFLUENCE = 3.12 FLOW PROCESS FROM NODE 22. 00 TO NODE 20. 00 IS CODE 2 ------------------------------------------------- »»RATIO A L METHOD INITIAL SUBAR EA ANALYSIS <--- _ ------------------------ -------------------- SOIL CLASSIFICATION IS D ------ -----'--'--'---- --------------------------- 7INGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9.50 ELEVATION DIFFERENCE = .50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 -- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5. 726 UBAREA RUNOFF(CFS) = 1. 01 DOTAL AREA(ACRES) _ . 32 TOTAL RUNOFF(CFS) _ _. 1. 01 _ FLOW--------------------------------------------PROCESS FROM NODE 20 22. 00 TO NODE ,. 00 I = IS 1 »»DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< --------------- -»»>AND-COMPUTE VARIOUS CONFLUENCED STREAM �OTAL ________________ =VALUES««<==__------------ ------ -- ------- NUMBER OF STREAMS - 3 ..ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN. ) = 7. 00 �AINFALL INTENSITY(INCH/HR) = 5. 73 OTAL PEAK FLOW ERATER(CFS) ATSCONFLUENCE2= -. . 1. 01 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. k* PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY !NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 17.54 7. 00 5.726 2 17. 54 7. 00 5.726 3 17. 57 7. 04 5.704 4 17. 57 7. 04 5. 704 5 . 17.73 7. 46 5.497 6 17.75 7. 73 5.370 7 17. 66 7.88 5. 305 8 16. 90 9. 05 4.851 9 16. 90 9. 12 4.827 10 16.81 9. 34 4. 753 11 16.55 9. 65 4. 654 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: BEAK FLOW RATE(CFS) = 17. 75 Tc(MIN. ) = 7.73 TOTAL AREA(ACRES) = 6. 29 ,=LOW PROCESS FROM NODE 20. 00 TO NODE 20. 10 IS CODE = 3 ------------------------------ ____ �»»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< ----------------- °»»USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< --DEPTH ------------------------- _______ OF FLOW --------------- ----------------- IN 18. 0 INCH PIPE IS 12.9 INCHES ------ 'IPEFLOW VELOCITY(FEET/SEC. ) = 13. 0 UPSTREAM NODE ELEVATION = 174. 60 .DOWNSTREAM NODE ELEVATION = 173.07 'LOWLENGTH(FEET) = 38. 26 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 17. 75 RAVEL TIME(MIN. ) _ . 05 TC(MIN. ) = 7.78 'LOW PROCESS FROM NODE 20. 10 TO NODE 20. 20 IS CODE _ -------------------- COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< ---------- -- ----------- :»»USING-COMPUTER_ESTIMATED PIPESIZE (NON-PRESSURE RESSURE FLOW)««< DEPTH OF FLOW I --------------------------------- ___ N 18. 0 INCH PIPE IS 12. 9 INCHES `IPEFLOW VELOCITY(FEET/SEC. ) = 13. 1 TSTREAM NODE ELEVATION = 172. 91 DOWNSTREAM NODE ELEVATION = 171.02 -FLOWLENGTH(FEET) = 47. 17 MANNING'S N = . 013 :STIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 17. 75 TRAVEL TIME(MIN. ) _ . 06 TC(MIN. ) = 7.84 SLOW PROCESS FROM NODE 20. 10 TO NODE ___________________ 20.20 IS CODE = 1 ----------- ------INDEPENDENT STREAM FOR -- CONFLUE -------'---- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7.84 ZAINFALL INTENSITY(INCH/HR) = 5.32 TOTAL STREAM AREA(ACRES) = 6. 29 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17. 75 -LOW PROCESS FROM NODE 28. 00 TO NODE 29.00 IS CODE = 2 ------------------ _____ >RATIONAL METHOD INITIAL SUBAREA A __-__--'-"'----- ---------------------------- ;OIL CLASSIFICATION I SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50. 00 DOWNSTREAM ELEVATION = 10 9.50 ELEVATION DIFFERENCE _ URBAN SUBAREA OVERLAND TIME OFSFLOW(MINUTES) _ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.726 7. 000 SUBAREA RUNOFF(CFS) _ . 03 -TOTAL AREA(ACRES) _ . 00 TOTAL RUNOFF(CFS) _ . 03 -FLOW PROCESS FROM NODE 29. 00 TO NODE 29. 10 IS CODE _ ----------------------- ------------_____ COMPUTE -------- »»> STREETFLOW TRAVELTIME THRU ---------- :;--•-------------- SUBAREA««<IPSTREAM =- 23.00 DOWNSTREAM ELEVATION = -_-_ H(FEET) - 460. 00 CURB HEIGTH(INCHES) = 6• . 00 .STREET HALFWIDTH(FEET) = 32. 00 STREET CROSSFALL(DECIMAL) _ . 0200 ,PECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 1. 29 STREET FLOWDEPTH(FEET) = • 22 HALFSTREET FLOODWIDTH(FEET) = 4.84 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 3. 68 PRODUCT `TREETFLOWTRAVELTIME(MIN)LOCIT2•09 TOM IN)(MIN) - 9. 09 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.840 SOIL CLASSIFICATION IS "D" INGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 UBAREA AREA(ACRES) = 96 SUBAREA RUNOFF(CFS) = 2. 56 SUMMED AREA(ACRES) _ . 97 TOTAL RUNOFF(CFS) _ ND OF SUBAREA STREETFLOW HYDRAULICS: 2' 59 EPTH(FEET) = 26 HALFSTREET FLOODWIDTH(FEET) = 6. 74 FLOW VELOCITY(FEET/SEC. ) = 4. 52 DEPTH*VELOCITY = 1.18 FLOW PROCESS FROM NODE 29. 10 TO NODE - _______________ 20.20 IS CODE = 3 -------------------- ------------------------ - »»COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««<»»>USING-COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< GEPTH OF AD PIPE DIAMETER(INCH) INCREASED 0 18.000 FLOW IN 18.0 INCH PIPE IS 3. 5 INCHES aIPEFLOW VELOCITY(FEET/SEC. ) = 10. 6 UPSTREAM NODE ELEVATION = 176. 53 DOWNSTREAM NODE ELEVATION = 171.44 . -FLOWLENGTH(FEET) = 55. 33 MANNING'S N - . 013 ESTIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 2. 59 TRAVEL TIME(MIN. ) _ . 09 TC(MIN. ) = 9.17 **************************************************************************** "FLOW PROCESS FROM NODE 29. 10 TO NODE 20. 20 IS CODE = 1 ---------------------------------- - --- --------- -- >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< -------------_ -»»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ------------------------------- ------------------------------- TOTAL NUMBER F STREAMS 2 --------------------------------------- = ------------------------ __CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 9. 17 RAINFALL INTENSITY(INCH/HR) = 4.81 TOTAL STREAM AREA(ACRES) = . 97 'EAK FLOW RATE(CFS) AT CONFLUENCE = 2.59 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY 4UMBER (CPS) (MIN. ) (INCH/HOUR) 1 19.73 7.11 5. 669 2 19. 73 7.11 5. 669 3 19.78 7.15 5. 647 4 19.78 7.15 5. 647 5 20. 01 7. 57 5. 446 6 20. 08 7.84 5.321 7 20. 03 7. 99 5. 258 8 19. 49 9. 16 4.813 9 19. 48 9. 17 4.810 10 19. 47 9. 23 4. 789 11 19. 35 9.45 4.718 12 19. 03 9.76 4. 620 'OMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20. 08 Tc(MIN. ) = 7.84 TOTAL AREA(ACRES) = 7. 26 'LOW PROCESS FROM NODE 20. 20 TO NODE 23. 00 IS CODE _ --------------------- ---------- »» - >COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< ------------------------ �»»USING-COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ----------------------------- JEPTH OF FL ----------- OW IN --------------------------- 18. 0 INCH PIPE IS 14. 4 INCHES ------_____ PIPEFLOW VELOCITY(FEET/SEC. ) = 13. 2 7PSTREAM NODE ELEVATION = 170.86 IOWNSTREAM NODE ELEVATION = 167. 63 FLOWLENGTH(FEET) = 80.77 MANNING'S N = . 013 `STIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 IPEFLOW THRU SUBAREA(CFS) = 20.08 GRAVEL TIME(MIN. ) _ . 10 TC(MIN. ) = 7. 94 **************************************************************************** 'FLOW PROCESS FROM NODE 20. 20 TO NODE 23. 00 IS CODE = 10 -------------------------- ____ -------------------- »»>MAIN-STREAM MEMORY COPIED --------- ONTO MEMORY BANK ---- **************************************************************************** ~FLOW PROCESS-FROM NODE 24. 00 TO NODE 25.00 IS CODE = 2 -- --------------------- ----------------«« >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <------------------------ - ----------------------------------- _ SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50. 00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9.50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 100 YEAR RAINFALL INTENSITY(I03CH/HOUR) = 5.726 SUBAREA RUNOFF(CFS) _ -TOTAL AREA(ACRES) _ . 00 TOTAL RUNOFF(CFS) _ . 03 =LOW PROCESS- - FROM NODE 25. 00 TO NODE 26.00 IS CODE = 6 ---- ---- ---------------------------------- . »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««<---------------------- JPSTREAM ELEVATION _______________________________________________________ 18. 00 DOWNSTREAM ELEVATION = .00 STREET LENGTH(FEET) = 360.00 CURB HEIGTH(INCHES) = 6. --STREET HALFWIDTH(FEET) = 32. 00 STREET CROSSFALL(DECIMAL) _ . 0200 ;PECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) _ . 93 STREET FLOWDEPTH(FEET) = . 20 HALFSTREET FLOODWIDTH(FEET) = 3.88 AVERAGE FLOW VELOCITY(FEET/SEC. ) = 3. 47 iTREETFLOWDTRAVELTIME(MINjLOCIT1. 73 TC(MIN) _ 8. 73 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.966 SOIL CLASSIFICATION IS "D" TINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 SUBAREA AREA(ACRES) _ . 65 SUBAREA RUNOFF(CFS) = 1.78 SUMMED AREA(ACRES) _ . 66 TOTAL RUNOFF(CFS) _ *ND OF SUBAREA STREETFLOW HYDRAULICS: 1.81 )EPTH(FEET) = 24 HALFSTREET FLOODWIDTH(FEET) = 5. 79 FLOW VELOCITY(FEET/SEC. ) = 3. 99 DEPTH*VELOCITY = . 96 *************************************************************************** ..FLOW PROCESS FROM NODE 25. 00 TO NODE 26. 00 IS CODE = 1 -_»»DESIGNATE INDEPENDENT STREAM FOR ---------------- CONFLUENCE««< ------------------------------- ---------------------------- 'OTAL NUMBER OF STREAMS 2 ---°°°----°--- -------- = :ONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 8. 73 PAINFALL INTENSITY(INCH/HR) = 4. 97 TOTAL STREAM AREA(ACRES) _ . 66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.81 **************************************************************************** FLOW PROCESS-FROM NODE 27. 00 TO NODE 26. 00 IS CODE = 2 -- --------------------- -- -------------""'RATIONAL METHOD INITIAL SUBAREA-A ALY SIS < ----- _----------- _------ ------------- ---------------- SOIL -------------------------------------- CLASSIFICATION IS "D" '-------____ SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50. 00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9.50 ELEVATION DIFFERENCE _ . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.726 SUBAREA RUNOFF(CFS) _ ,85 TOTAL AREA(ACRES) _ . 27 TOTAL RUNOFF(CFS) _ ,85 - -FLOW PROCESS-FROM NODE 27. 00 TO NODE 26. 00 IS CODE = 1 -- ----------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ____________ »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< ---------------------------------------- ------------------------------------------------ TOTAL NUMBER OF STREAMS = 2 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: -TIME OF CONCENTRATION(MIN. ) = 7.00 RAINFALL INTENSITY(INCH/HR) = 5.73 TOTAL STREAM AREA(ACRES) _ ,27 ,_PEAK FLOW RATE(CFS) AT CONFLUENCE _ ,85 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 2.42 7. 00 5.726 2 2. 54 8. 73 4. 966 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 2. 54 Tc(MIN. ) = 8.73 TOTAL AREA(ACRES) _ , 93 --FLOW PROCESS FROM NODE 26. 00 TO NODE 23.00 IS CODE = 3 ----------------------- »» ->COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA«« _______________< ------- >>>USING-COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE F LOW)««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 -----___ DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.1 INCHES -?IPEFLOW VELOCITY(FEET/SEC. ) = 22,6 UPSTREAM NODE ELEVATION = 174. 60 DOWNSTREAM NODE ELEVATION = 167.97 -FLOWLENGTH(FEET) = 8. 30 MANNING'S N = . 013 ESTIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 2. 54 TRAVEL TIME(MIN. ) _ . 00 TC(MIN. ) = 8. 74 _-FLOW-PROCESS FROM NODE 26. 00 TO NODE 23. 00 IS CODE = 11 ------------------- ________________ CONFLUENCE MEMORY BANK # 1 WITH THE --- . MAIN_STREAM_MEMORY««<==________ ** " PEAK FLOW RATE TABLE ** - STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 21.79 7. 01 5. 723 2 22. 10 7. 21 5. 617 3 22.10 7. 21 5. 617 4 22. 14 7. 25 5. 596 5 22. 14 7. 25 5.596 6 22.35 7. 67 5.399 7 22. 48 7. 94 5. 277 8 22. 45 8. 09 5. 215 9 21. 60 8. 74 4. 963 10 21.94 9. 26 4.779 11 21.93 9. 27 4.776 12 21. 91 9.34 4. 756 13 21.75 9. 55 4. 685 14 21. 38 9.87 4. 589 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 22.48 Tc(MIN. ) = 7. 94 TOTAL AREA(ACRES) = 8. 19 FLOW PROCESS-FROM NODE 26. 00 TO NODE 23. 00 IS CODE = 12 -- ------------------- CLEAR MEMORY BANK # I <<<<< ------- - FLOW PROCESS FROM NODE 26. 00 TO NODE 23.00 IS CODE = 10 ---------------------------------------------- »»>MAIN-STREAM MEMORY ------ ----------------- COPIED ONTO MEMORY BANK # 1 ««< FLOW PROCESS FROM NODE 30. 20 TO NODE 30.00 IS CODE = 2 ------------------ ______________ ------------------------ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = URBAN SUBAREA OVERLAND TIME OFSFLOW(MINUTES) = 7. 000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5. 726 SUBAREA RUNOFF(CFS) _ . 19 TOTAL AREA(ACRES) _ . 06 TOTAL RUNOFF(CFS) _ . 19 -- ------------------- FLOW PROCESS FROM NODE 30. 20 TO NODE 30. 00 IS CODE = 1 -------------------------------- ____________ »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7.00 RAINFALL INTENSITY(INCH/HR) = 5.73 TOTAL STREAM AREA(ACRES) = . 06 PEAK FLOW RATE(CFS) AT CONFLUENCE _ . 19 **************************************************************************** FLOW PROCESS FROM NODE 31. 00 TO NODE 30.00 IS CODE = 2 -------------------------------------------------- _____________ »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< - SOIL CLASSIFICATION IS "D" ------------------- SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 50.00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.726 SUBAREA RUNOFF(CFS) = 3. 62 -TOTAL AREA(ACRES) = 1. 15 TOTAL RUNOFF(CFS) = 3. 62 FLOW PROCESS-FROM NODE 31.00 TO NODE 30.00 IS CODE = 1 --- --------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«« ___________________< -- »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< -------------- ----------------------- --------------------- --------------------- --------------------------------------- TAL NUMBER OF STREAMS = 2 ------------ _CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 7. 00 RAINFALL INTENSITY(INCH/HR) = 5.73 TOTAL STREAM AREA(ACRES) = 1. 15 " PEAK FLOW RATE(CFS) AT CONFLUENCE = 3. 62 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** .._STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 3.81 7. 00 5.726 2 3.81 7. 00 5.726 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 3.81 Tc(MIN. ) = 7.00 -TOTAL AREA(ACRES) = 1. 21 --FLOW PROCESS FROM NODE 30. 00 TO NODE 23. 00 IS CODE = 3 ------------------------------- __________ »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< ---- »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18. 000 ----- - DEPTH OF FLOW IN 18.0 INCH PIPE IS 4. 2 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 12. 2 UPSTREAM NODE ELEVATION = 170. 60 DOWNSTREAM NODE ELEVATION = 167. 97 FLOWLENGTH(FEET) = 27.00 MANNING'S N = . 013 ESTIMATED PIPE DIAMETER(INCH) = 18. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 3.81 TRAVEL TIME(MIN. ) _ . 04 TC(MIN. ) = 7. 04 --FLOW-PROCESS FROM NODE 30. 00 TO NODE 23.00 IS CODE = 11 - -------------------- ------------------------------------- _____ _>>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** PEAK FLOW RATE TABLE ** -- STREAM RUNOFF TIME INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 25. 58 7. 01 5.723 2 25.57 7. 04 5. 706 3 25. 57 7. 04 5.706 4 25.86 7. 21 5. 617 - 5 25.86 7. 21 5. 617 6 25.88 7. 25 5. 596 7 25.88 7. 25 5.596 8 25. 96 7. 67 5.399 9 26. 00 7. 94 5.277 10 25. 93 8. 09 5.215 11 24. 92 8.74 4.963 12 25. 13 9. 26 4.779 13 25. 12 9. 27 4. 776 14 25.08 9. 34 4.756 15 24.88 9. 55 4. 685 16 24.45 9.87 4. 589 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: -PEAK FLOW RATE(CFS) = 26. 00 Tc(MIN. ) = 7,94 TOTAL AREA(ACRES) = 9. 40 --FLOW-PROCESS FROM NODE 30.00 TO NODE 23.00 IS CODE = 12 ------------------------------------------ »»>CLEAR MEMORY BANK # 1 ««< -------------------- FLOW PROCESS FROM NODE 23.00 TO NODE 32. 00 IS CODE = 3 ------------------------------ »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ------------------------------ _____ DEPTH OF FLOW IN 21. 0 INCH PIPE IS 14.8 INCHES -- PIPEFLOW VELOCITY(FEET/SEC. ) = 14. 4 UPSTREAM NODE ELEVATION = 167.47 DOWNSTREAM NODE ELEVATION = 165.93 FLOWLENGTH(FEET) = 38. 50 MANNING'S N = 013 ESTIMATED PIPE DIAMETER(INCH) = 21. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 26. 00 TRAVEL TIME(MIN. ) _ . 04 TC(MIN. ) = 7. 99 - END OF STUDY SUMMARY: ____________________°________________________________ PEAK FLOW RATE(CFS) = 26. 00 Tc(MIN. ) = 7. 99 TOTAL AREA(ARCES) = 9.40 *** PEAK FLOW RATE TABLE *** Q(CFS) Tc(MIN. ) 1 25. 58 7. 05 2 25. 57 7. 08 3 25. 57 7. 08 4 25.86 7. 26 5 25.86 7.. 26 6 25.88 7. 30 7 25.88 7. 30 8 25. 96 7. 71 9 26. 00 7. 99 LO 25. 93 8. 14 11 24. 92 8. 78 12 25. 13 9. 31 --. 13 25. 12 9.32 L4 25. 08 9. 38 15 24.88 9. 60 -16 24.45 9. 91 ---------- ---------------------- ____________ ________ ----------------------- ---------------------- END OF RATIONAL METHOD ANALYSIS ------- -------------------- C. Basin B 10 Year Hydrology bhA, Inc. RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE REFERENCE: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (C) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) VER. 5 . 5A RELEASE DATE: 4/22/90 SERIAL # 5810 ANALYSIS PREPARED BY: BHA, INC. 1615 MURRAY CANYON ROAD, SUITE 910 SAN DIEGO, CALIFORNIA 92108 (619) 298-8861 ************************* DESCRIPTION OF STUDY ************************** E---CINATAS RANCH L T 43 BASIN B 440-0675-600 'STUDY0: DAT 7/11/1996 ------------------------------ _________________ ---------------------- J ER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------------- 1 35 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 10. 00 6 iOUR DURATION PRECIPITATION (INCHES) = 1. 700 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 S".CIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ . 95 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NPTE: ALL CONFLUENCE COMBINATIONS CONSIDERED ************************************************************************** ' f )W PROCESS FROM NODE 1. 00 TO NODE 2.00 IS CODE = 2 ----------------------- ----------------- »» «« --------------------- >RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< --- )'( :L CLASSIFICATION IS "p"________________________________________________ JINGLE -FAMILY DEVELOPMENT RUNOFF COEFFICIENT = . 5500 -INITIAL SUBAREA FLOW-LENGTH (FEET) = 50. 00 IPSTREAM .ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 IRBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 _.0 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 605 'UBAREA RUNOFF(CFS) _ . 46 (SAL AREA(ACRES) _ . 23 TOTAL RUNOFF(CFS) _ 46 .Nu OF STUDY SUMMARY: ______________________________________ =====________ TEAK FLOW RATE(CFS) _ . 46 Tc(MIN. ) = 7. 00 OTAL AREMARCES) _ . 23 END OF RATIONAL METHOD ANALYSIS -------------- D. Basin B 100 Year Hydrology bhA, Inc. RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE REFERENCE: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (C) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) VER. 5. 5A RELEASE DATE: 4/22/90 SERIAL # 5810 ANALYSIS PREPARED BY: BHA, INC. 1615 MURRAY CANYON ROAD, SUITE 910 SAN DIEGO, CALIFORNIA 92108 (619) 298-8861 DESCRIPTION OF STUDY ************************** NCINATAS RANCH LOT 43 BASIN B -&40-0675-600 * FILE NAME: 43 B 100. DAT IME/DATE OF 'STUDY: 11: 51 7/11/1996 ---------------------------------------- ---------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA SER SPECIFIED STORM EVENT(YEAR) = 100.00 o-HOUR DURATION PRECIPITATION (INCHES) = 2.700 PECIFIED MINIMUM PIPE SIZE(INCH) = 18. 00 -PECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE _ . 95 "AN DIEGO HYDROLOGY MANUAL "C"-VALUES USED 3TE: ALL CONFLUENCE COMBINATIONS CONSIDERED rLOW PROCESS FROM NODE 1. 00 TO NODE 2.00 IS CODE = 2 ------------------------------------ __ _> >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< SOIL CLASSIFICATION IS "D" "NGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH (FEET) = 50. 00 UPSTREAM ELEVATION = 10. 00 DOWNSTREAM ELEVATION = 9. 50 ELEVATION DIFFERENCE = . 50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7. 000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 5.726 --JIBAREA RUNOFF(CFS) _ .72 )TAL AREA(ACRES) _ . 23 TOTAL RUNOFF(CFS) _ .72 ------------------------------------------------------------- ------------------------------------------------------- 71D OF STUDY SUMMARY: I :AK FLOW RATE(CFS) = 72 Tc(MIN. ) = 7. 00 iUTAL AREA(ARCES) _ . 23 _ND OF RATIONAL METHOD ANALYSIS E. Lot 1 100 Year bhA, Inc. RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE REFERENCE: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (C) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) VER. 5. 5A RELEASE DATE: 4/22/90 SERIAL # 5810 ANALYSIS PREPARED BY: BHA, INC. 5115 AVENIDA ENCINAS, SUITE L CARLSBAD, CALIFORNIA 92008-4387 (619) 931-8700 FAX: (619) 931-7780 * *********************** DESCRIPTION OF STUDY ************************** :..CINITAS RANCH - MENDOCINO LOT 1 DRAINAGE 9`24/96 FIl-E NAME: 0675 43L.DAT T 4E/DATE OF STUDY: 15: 0 9/24/1996 ----------------------------------- ______ ------------------------------ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA 1: :R SPECIFIED STORM EVENT(YEAR) = 100. 00 j-HOUR DURATION PRECIPITATION (INCHES) = 2. 700 �01 "CIFIED MINIMUM PIPE SIZE(INCH) = 10. 00 ;f -CIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE _ . 95 3TI DIEGO HYDROLOGY MANUAL "C"-VALUES USED 1( *E: ONLY PEAK CONFLUENCE VALUES CONSIDERED 'LuW PROCESS FROM NODE 1. 00 TO NODE 2. 00 IS CODE = 2 ----------------------- > >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< - ------------ -------------------------- ____ ___ __ )OIL CLASSIFICATION IS "D" ----------_- -------- 'U"AL DEVELOPMENT RUNOFF COEFFICIENT = . 4500 NITIAL SUBAREA FLOW-LENGTH(FEET) = 170. 00 UPSTREAM ELEVATION = 188. 20 'DOWNSTREAM ELEVATION = 185. 20 LEVATION . DIFFERENCE = 3. 00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 12. 624 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 914 U`4REA RUNOFF(CFS) = 1. 06 0 IL AREA(ACRES) _ . 60 TOTAL RUNOFF(CFS) = 1. 06 * k�F* k* k**�FIF*yk** kkk*yk* k*�r* k*�F* kkkk** kkkk** kk*** k**** k* k* kkkkkt* k*CIF****** k ' UW PROCESS FROM NODE 2: 00 TO NODE 3. 00 IS CODE = 3 ------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< 7-�»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< tSTIMATED PIPE DIAMETER(INCH) INCREASED TO 10. 000 DEPTH OF FLOW IN 10. 0 INCH PIPE IS 2. 9 INCHES (PEFLOW VELOCITY(FEET/SEC. ) = 8. 2 ?STREAM NODE ELEVATION = 182.80 DOWNSTREAM NODE ELEVATION = 181. 50 -'_OWLENGTH(FEET) = 17. 00 MANNING'S N = . 013 3TIMATED PIPE DIAMETER(INCH) = 10. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 1. 06 TRAVEL TIME(MIN. ) _ . 03 TC(MIN. ) = 12. 66 *************************************************************************** -OW PROCESS FROM NODE 3. 00 TO NODE 4. 00 IS CODE = 3 ------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< . -*->>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< tSTIMATED PIPE DIAMETER(INCH) INCREASED TO 10. 000 UPTH OF FLOW IN 10. 0 INCH PIPE IS 3. 0 INCHES iIPEFLOW VELOCITY(FEET/SEC. ) = 7. 5 ?STREAM NODE ELEVATION = 181. 50 DOWNSTREAM NODE ELEVATION = 172. 66 "_OWLENGTH(FEET) = 145. 00 MANNING'S N = . 013 )TIMATED PIPE DIAMETER(INCH) = 10. 00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 1. 06 TRAVEL TIME(MIN. ) _ .32 TC(MIN. ) = 12. 98 u-ND OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = 1. 06 Tc(MIN. ) = 12. 98 -7TAL AREA(ARCES) _ . 60 END OF RATIONAL METHOD ANALYSIS - F. Northeast Retaining Walls 100 Year bhA, Inc. RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE REFERENCE: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (C) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) VER. 5. 5A RELEASE DATE: 4/22/90 SERIAL # 5810 ANALYSIS PREPARED BY: BHA, INC. 5115 AVENIDA ENCINAS, SUITE L CARLSBAD, CALIFORNIA 92008-4387 (619) 931-8700 FAX: (619) 931-7780 *********************** DESCRIPTION OF STUDY ************************** ENCINITAS RANCH - MENDOCINO NORTHEAST RET. WALL BROW DITCH DRAIN 1 .0-0675-600 ************************************************************************* F LE NAME: 0675 ADD.DAT 1 -ME/DATE OF STUDY: 11: 56 9/25/1996 --------------------------------------------------------------------------- r ER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: - ------------------------------------------------------------------------ 1985 SAN DIEGO MANUAL CRITERIA baER SPECIFIED STORM EVENT(YEAR) = 100. 00 6-HOUR DURATION PRECIPITATION (INCHES) = 2. 700 . '. 'ECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ . 95 ! ,N DIEGO HYDROLOGY MANUAL "C"-VALUES USED NUTE: ALL CONFLUENCE COMBINATIONS CONSIDERED FLOW PROCESS FROM NODE 100. 00 TO NODE 200.00 IS CODE = 2 -- ------------------------------------------------------------------------ >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< ------------------------------------ S�OIL CLASSIFICATION IS "D" F 'RAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 INITIAL SUBAREA FLOW-LENGTH(FEET) = 380. 00 .-UPSTREAM ELEVATION = 188. 60 DOWNSTREAM ELEVATION = 164.40 ELEVATION DIFFERENCE = 24. 20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 12. 305 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3. 979 SUBAREA RUNOFF(CFS) = . 25 1 TAL AREA(ACRES) _ . 14 TOTAL RUNOFF(CFS) _ . 25 FLOW PROCESS FROM NODE 200. 00 TO NODE 300.00 IS CODE = 3 -• ------------------------------------------------------------------------- = .»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< --------------------------------------------------------------------------- --------------------------------------------------------------------------- [~:PTH OF FLOW IN 6. 0 INCH PIPE IS 2. 9 INCHES f _PEFLOW VELOCITY(FEET/SEC. ) = 2. 7 UPSTREAM NODE ELEVATION = 163. 46 rlWNSTREAM NODE ELEVATION = 163. 33 f .OWLENGTH(FEET) = 13. 00 MANNING'S N = . 013 ESTIMATED PIPE DIAMETER(INCH) = 6. 00 NUMBER OF PIPES = 1 P-IPEFLOW THRU SUBAREA(CFS) _ . 25 - 1 :AVEL TIME(MIN. ) _ .08 TC(MIN. ) = 12. 38 f .OW PROCESS FROM NODE 300. 00 TO NODE 400. 00 IS CODE = 3 --------------------------------------------------------------------------- =—»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< = .»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< -------------------------------------------------------------------------- -------------------------------------------------------------------------- f1EPTH OF FLOW IN 3. 0 INCH PIPE IS 1.7 INCHES f :PEFLOW VELOCITY(FEET/SEC. ) = 8.8 L.'STREAM NODE ELEVATION = 163. 33 DOWNSTREAM NODE ELEVATION = 157.00 f".OWLENGTH(FEET) = 28.00 MANNING'S N = .013 f JIMATED PIPE DIAMETER(INCH) = 3.00- NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) _ . 25 T-GAVEL TIME(MIN. ) _ .05 TC(MIN. ) = 12. 44 - ------------------------------------------------------------------------- - ------------------------------------------------------------------------- LND OF STUDY SUMMARY: PEAK FLOW RATE(CFS) _ . 25 Tc(MINJ = 12.44 " -)TAL AREA(ARCES) _ . 14 - ------------------------------------------------------------------------- END OF RATIONAL METHOD ANALYSIS G. Hydraulic Analysis for Main Storm Drain bhA, Inc. ---------------------------------------------------------------------------- PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (REFERENCE: LACFCD, LACRD, AND OCEMA HYDRAULICS CRITERION) (C) COPYRIGHT 1982-90 ADVANCED ENGINEERING SOFTWARE (AES) VER. 4. 3A RELEASE DATE: 5/17/90 SERIAL # 5610 ANALYSIS PREPARED BY: BHA, INC. 5115 AVENIDA ENCINAS, SUITE L CARLSBAD, CALIFORNIA 92008-4387 (619) 931-8700 FAX: (619) 931-7780 DESCRIPTION OF STUDY ************************** 11CINITAS RANCH - MENDOCINO MAIN STORM DRAIN PIPE 440-0675-600 REVISED 11/21/96 *********************************************************************** -• •------------------------------------------------------------------------- .E NAME: 0675.DAT l'IME/DATE OF STUDY: 9: 5 11/21/1996 .. .------------------------------------------------------------------------- GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (NOTE: "*" INDICATES NODAL POINT DATA USED. ) UPSTREAM RUN DOWNSTREAM RUN '10DE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ 1 1MBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 32.00- 1. 79 Dc 597. 47 1. 24* 708. 65 ) FRICTION '.3. 10- 1.79 Dc 597.47 1. 67* 601.81 ) JUNCTION 23. 20- 2. 68 578. 55 . 90* 599. 58 ) FRICTION '0. 21- 1. 61 Dc 412. 16 . 98* 547. 92 ) JUNCTION -10. 22- 1.98 385. 98 .79* 554.87 ) FRICTION 20. 12- 1. 52 Dc 347. 38 . 73* 612.88 ) MANHOLE 10. 11- 1. 52 Dc 347. 38 .72* 617. 56 ) FRICTION 20. 20- 1. 52 Dc 347. 38 ) JUNCTION . 61* 764. 23 10.10- 1. 38 Dc 289. 16 .47* 804. 99 ) FRICTION .7. 20- 1. 38 Dc 289. 16 1. 06* 318. 69 ) JUNCTION 17. 10- 1. 28*Dc 212. 57 1. 28*Dc 212. 57 ) FRICTION .3. 20- 1. 37* 214. 06 1. 28 Dc 212. 57 ) JUNCTION 13. 10- 2. 00* 210. 09 . 94 139. 03 ) FRICTION 8. 20- 1. 58* 163. 71 . 93 139. 93 1 JUNCTION 8. 10- 1. 60* 133. 77 . 53 132. 45 1 FRICTION } HYDRAULIC JUMP 2. 20- . 95*Dc 90. 15 . 95*Dc 90. 15 } JUNCTION 2. 10- 1. 55* 94. 22 . 48 26.87 } FRICTION 1 11* 50. 41 . 57 Dc 25. 63 . ,------------------ - -------------------------------------- ------------ IHXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------ -------------- '( 'E: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST LASERVATIVE FORMULAE FROM THE CURRENT LACRD, LACFCD, AND OCEMA jESIGN MANUALS. ( INSTREAM PIPE FLOW CONTROL DATA: .ODE NUMBER = 32.00 FLOWLINE ELEVATION = 165. 93 3T-PE FLOW = 26.00 CFS PIPE DIAMETER = 24. 00 INCHES .' ;UMED DOWNSTREAM CONTROL HGL = 166. 000 INA: ASSUMED DOWNSTREAM CONTROL DEPTH( .07 FT. ) IS LESS THAN CRITICAL DEPTH( 1.79 FT. ) -> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------- ------------------------- *qE 32.00 : HGL = < 167. 171>; EGL= < 169. 675>; FLOWLINE= < 165. 930> *************************************************************************** =LOW PROCESS FROM NODE 32. 00 TO NODE 23.10 IS CODE = 1 ' ,I ;TREAM NODE 23. 10 ELEVATION = 167.47 (FLOW IS SUPERCRITICAL) --------------------------------------------------------------------- ZALCULATE FRICTION LOSSES(LACFCD) : '"'E FLOW = 26. 00 CFS PIPE DIAMETER = 24. 00 INCHES ' E LENGTH = 38. 50 FEET MANNING'S N = . 01300 ------------------------------------------ ------------------ 1. 09 1.79 ------- gORMAL DEPTH(FT) = CRITICAL DEPTH(FT) _ ------------------ --------------------------- --------------- I�STREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1. 67 ----------------------- ------------------------------- --------------------------------------------------- iI�IDUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ----------------------------------------------- JISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ F")NTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) . 000 1. 668 9. 286 3. 008 601.81 .406 1. 645 9. 404 3. 019 603. 71 . 902 1. 621 9. 528 3. 032 605. 98 1. 495 1. 598 9. 658 3. 047 608. 62 2. 196 1. 575 9. 795 3. 066 611. 65 3. 013 1. 552 9. 939 3. 086 615. 08 3.961 1. 528 10.089 3. 110 618. 92 5. 052 1. 505 10. 248 3. 137 623. 18 6. 306 1.482 10.413 3. 167 627. 90 7. 742 1.459 10.587 3. 200 633. 07 9. 385 1. 436 10.770 3. 238 638. 73 11. 265 1.412 10. 961 3. 279 644.89 _. 13.420 1. 389 11. 161 3. 325 651. 58 15.896 1.366 11. 371 3. 375 658.82 18. 750 1.343 11. 591 3. 430 666. 64 22. 060 1. 319 11.822 3.491 675. 07 25. 924 1. 296 12. 065 3. 558 684. 14 30. 477 1. 273 12. 319 3. 631 693.88 35. 909 1. 250 12. 587 3. 711 704. 33 38. 500 1. 241 12. 696 3. 745 708. 65 --------------------------------------------------------------- NODE 23. 10 : HGL = < 169. 138>; EGL= < 170.478>; FLOWLINE= < 167. 470> SLOW PROCESS FROM NODE 23. 10 TO NODE 23. 20 IS CODE = 5 Jf"'PTREAM NODE 23. 20 ELEVATION = 167. 63 (FLOW IS SUPERCRITICAL) --------------------------------------------------------------- -'ALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 20. 08 24.00 .00 167. 63 1. 61 14. 567 DOWNSTREAM 26. 00 24. 00 - 167.47 1. 79 9. 289 �.ATERAL #1 5. 65 18. 00 90. 00 167. 72 . 92 4. 008 .ATERAL #2 . 27 18.00 90.00 167. 72 . 19 . 192 Q5 . 00===Q5 EQUALS BASIN INPUT=== ) :FCD AND OCEMA FLOW JUNCTION FORMULAE USED: Y=(Q2*V2-01*V1*COS(DELTAI) -Q3*V3*COS(DELTA3) - _.. (14*V4*COS(DELTA4) ) / ( (A1+A2) *16. 1) " I ;TREAM: MANNING'S N = . 01300; FRICTION SLOPE = .04476 L.INSTREAM: MANNING'S N = 01300; FRICTION SLOPE = . 01282 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02879 -11 'ICTION LENGTH = 4.00 FEET 'i :CTION LOSSES = 115 FEET ENTRANCE LOSSES = 000 FEET UNCTION LOSSES = (DY+HV1-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1. 236)+( . 115)+( . 000) = 1. 351 ------------------------------------------------- ---------------- IG0E 23. 20 : HGL = < 168. 534>; EGL= < 171.829>;FLOWLINE= < 167. 630> PROCESS FROM NODE 23. 20 TO NODE 20. 21 IS CODE = 1 JPSTREAM NODE 20. 21 ELEVATION = 171.47 (FLOW IS SUPERCRITICAL) ----------------------------------------------------------------- :J .CULATE FRICTION LOSSES(LACFCD) : .APE FLOW = 20. 08 CFS' PIPE DIAMETER = 24. 00 INCHES ?T-PE LENGTH = 80. 77 FEET MANNING'S N = . 01300 --------------- ---------------------------- - ----------------------- IG,:MAL DEPTH(FT) = CRITICAL DEPTH(FT) = 1. 61 Ii-.'TREAM CONTROL ASSUMED FLOWDEPTH(FT) _ JRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------- ---------------------------- ,! ,TANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+(FT)CUNTROL(FT) ) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) . 000 .984 13. 048 3. 629 547. 92 1. 616 . 980 13. 113 3. 652 550. 09 3. 314 . 976 13. 179 3. 675 552. 28 5. 103 . 972 13. 245 3. 698 554. 51 6. 991 . 969 13.312 3.722 556.75 8. 987 . 965 13.380 3. 746 559. 03 11. 104 . 961 13.448 3.771 561.34 13. 353 . 957 13. 517 3.796 563. 67 15.750 .953 13. 587 3.822 566. 03 18.314 . 949 13. 658 3.848 568.43 21. 065 .946 13.729 3.874 570.85 24. 030 .942 13.801 3.901 573. 30 27. 241 . 938 13.873 3. 929 575. 78 30.738 . 934 13. 947 3. 956 578. 30 34. 569 . 930 14. 021 3. 985 580.84 38.800 . 927 14. 096 4. 014 583. 42 43. 515 . 923 14. 172 4. 043 586. 03 48.827 . 919 14. 248 4. 073 588. 67 54.899 .915 14. 326 4. 104 591. 35 61. 963 . 911 14.404 4. 135 594. 06 70. 386 . 907 14. 483 4. 166 596.80 80.770 .904 14. 563 4. 199 599. 58 ----,----------------------------------------------------------------------- IQ:OE 20. 21 : HGL = < 172. 454>; EGL= < 175.099>; FLOWLINE= < 171. 470> :LOW PROCESS FROM NODE 20. 21 TO NODE 20. 22 IS CODE = 5 lr,TREAM NODE 20.22 ELEVATION = 171. 67 (FLOW IS SUPERCRITICAL) : 12. 196 . 746 16. 601 5. 028 591. 93 14. 931 .750 16.476 4.968 587. 93 17.789 . 755 16. 354 4. 910 583. 99 20. 785 .759 16. 233 4.853 580. 12 23.935 . 763 16. 114 4.797 576. 30 27. 261 .767 15.996 4.743 572. 54 30. 785 . 771 15.880 4. 689 568.83 34. 537 . 775 15. 765 4. 637 565. 18 38. 556 . 780 15. 652 4. 586 561. 59 42.886 .784 15. 541 4. 536 558. 05 47. 170 .788 15.441 4.492 554.87 ---------------------------------------------------- '( ,E 20. 12 : HGL = < 174. 635>; EGL= < 179. 258>; FLOWLINE= < 173. 910> 47W PROCESS FROM NODE 20.12 TO NODE 20. 11 IS CODE = 2 F -TREAM NODE 20.11 ELEVATION = 174. 07 (FLOW IS SUPERCRITICAL) ---------------------------------------------------------------------------- '.AL.CULATE MANHOLE LOSSES(LACFCD) : If FLOW = 17.75 CFS PIPE DIAMETER = 24. 00 INCHES .VERAGED VELOCITY HEAD = 4. 662 FEET NN = .05*(AVERAGED VELOCITY HEAD) _ .05*( 4. 662) _ . 233 - ------------------------------------------------------------------------- C.jE 20. 11 : HGL = < 174.791>; EGL= < 179.492>; FLOWLINE= < 174. 070> 1.._.************************************************************************* l iW PROCESS FROM NODE 20. 11 TO NODE 20. 20 IS CODE = 1 ;PSTREAM NODE 20. 20 ELEVATION = 175. 60 (FLOW IS SUPERCRITICAL) -.I'------------------------------------------------------------------------- 'E .CULATE FRICTION LOSSES(LACFCD) : '1r,E FLOW = 17.75 CFS PIPE DIAMETER = 24.00 INCHES ' PE LENGTH = 38. 26 FEET MANNING'S N = . 01300 -.1--------------------------------------------------------------------------- I( :MAL DEPTH(FT) _ .87 CRITICAL DEPTH(FT) = 1. 52 ---------------------------------- 1P'c-TREAM CONTROL ASSUMED FLOWDEPTH(FT) _ ---------- -------- ------ iRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ---------------------------------------------------------------- 1:�;TANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ LJNTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) . 000 . 611 21.839 8. 021 764. 23 3. 115 . 621 21. 336 7. 694 747. 45 6. 302 . 632 20.853 7.388 731.38 9. 570 . 642 20. 390 7. 102 716.00 12. 926 . 652 19.945 6.833 701. 25 16.379 . 663 19. 517 6. 581 687. 12 19. 941 . 673 19. 106 6.345 673. 56 23. 623 . 683 18. 710 6. 123 660. 55 27. 441 . 694 18. 329 5. 914 648. 05 31.412 . 704 17.962 5.717 636. 05 35. 556 .715 17. 608 5. 532 624. 52 38. 260 . 721 17. 394 5. 422 617. 56 ---------------------------------------------------------------- JODE 20. 20 : HGL = < 176. 211>; EGL= < 183. 621>; FLOWLINE= < 175. 600> •LJW PROCESS FROM NODE 20. 20 TO NODE 20. 10 IS CODE = 5 )PSTREAM NODE 20. 10 ELEVATION = 176. 10 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------- -ALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 13.88 18. 00 . 00 176. 10 1. 38 29. 719 DOWNSTREAM 17. 75 24. 00 - 175. 60 1. 52 21.846 .ATERAL #1 1. 94 12. 00 90. 00 176. 00 . 59 6.887 -ATERAL #2 1.93 12.00 90.00 176.00 . 59 6.851 Q5 . 00===Q5 EQUALS BASIN INPUT=== / ,FCD AND OCEMA FLOW JUNCTION FORMULAE USED: .Y=(Q2*V2-Q1*V1*COS(DELTAI) -03*V3*COS(DELTA3) - Q4*V4*COS(DELTA4) ) / ( (A1+A2)*16. 1) F TREAM: MANNING'S N = . 01300; FRICTION SLOPE = .40011 GwNSTREAM: MANNING'S N = 01300; FRICTION SLOPE = . 14985 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS . 27498 'L-CTION LENGTH = 4. 00 FEET F__CTION LOSSES = 1. 100 FEET ENTRANCE LOSSES = 000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) JLI'CTION LOSSES = ( 5. 559)+( 1. 100)+( .000) = 6. 659 -------------------------------------------------------------------- .OuE 20. 10 : HGL = < 176. 565>;.EGL= < 190. 280>; FLOWLINE= < 176. 100> L„W PROCESS FROM NODE 20. 10 TO NODE 17. 20 IS CODE = 1 IPSTREAM NODE 17. 20 ELEVATION = 205. 20 (FLOW IS SUPERCRITICAL) A CULATE FRICTION LOSSES(LACFCD) . IPE FLOW = 13.88 CFS PIPE DIAMETER = 18. 00 INCHES 'IRE LENGTH = 72.74 FEET MANNING'S N = . 01300 -----------. 47------------------------------------------------ GmMAL DEPTH(FT) = CRITICAL DEPTH(FT) = 1.38 --------------- --------------------------------------- ------------------------------------------------------------- 'F-TREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.06 - ------- ----------------------------------------- ------------------------------------------------------------------ iRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ---------------------------------------------------------------- 1 TANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CUNTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 1.060 10.392 2. 738 318. 69 . 164 1. 036 10. 653 2.800 323.76 .351 1.013 10. 932 2.869 329.36 .563 . 989 11. 229 2.948 335. 50 .803 .965 11. 547 3. 037 342. 25 1. 075 .941 11.887 3. 137 349. 63 1. 383 . 917 12. 251 3. 249 357.71 1.734 .894 12. 641 3. 376 366.54 2. 133 .870 13.059 3.519 376. 18 2. 588 .846 13. 508 3. 681 386. 71 3.108 .822 13. 991 3.864 398. 21 3.705 .798 14.511 4.070 410.77 4.394 . 775 15.073 4. 305 424. 50 5. 193 . 751 15. 681 4. 571 439. 51 6. 124 .727 16. 340 4.876 455. 96 7. 219 .703 17.056 5. 223 473. 99 8. 518 . 679 17.836 5. 622 493.80 10. 076 . 656 18. 688 6. 082 515. 60 11. 973 . 632 19. 622 6. 614 539. 65 14. 323 . 608 20. 649 7.233 566. 24 17. 310 . 584 21.781 7. 956 595. 74 21. 236 . 561 23. 035 8.805 628. 56 26. 678 . 537 24. 429 9.809 665. 20 34. 929 . 513 25. 987 11. 006 706. 29 50. 143 .489 27.736 12. 442 752. 58 72.740 . 465 29.710 14. 180 804. 99 ---------------------------------------------------------------------------- 'l,_)E 17. 20 : HGL = < 206. 260>; EGL= < 207. 938>; FLOWLINE= < 205. 200> **************************************************************************** P`JW PROCESS FROM NODE 17. 20 TO NODE 17. 10 IS CODE = 5 1 STREAM NODE 17. 10 ELEVATION = 206. 50 (FLOW IS SUPERCRITICAL) ---------------------------------------------------------------------------- CAI-CULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 11. 27 18.00 . 00 206. 50 1. 28 7.004 )OWNSTREAM 13.88 18.00 - 205. 20 1.38 10.395 -ATERAL #1 1.40 10.00 90.00 206.00 . 53 2. 567 LATERAL #2 1. 21 10. 00 90. 00 206.00 .49 2.218 Q5 . 00===Q5 EQUALS BASIN INPUT=== -ACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-01*V1*COS(DELTAI) -03*V3*COS(DELTA3) - (14*V4*COS(DELTA4) ) / ( (A1+A2) *16. 1) I. STREAM: MANNING'S N = '. 01300; FRICTION SLOPE = .01075 DOWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .02429 4-=RAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01752 I VCTION LENGTH = 4.00 FEET FRICTION LOSSES = .070 FEET ENTRANCE LOSSES = . 000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) I VCTION LOSSES = ( . 536)+( .070)+( .000) = . 606 ---------------------------------------------------------------------------- NODE 17. 10 : HGL = < 207.783>; EGL= < 208. 544>; FLOWLINE= < 206. 500> FLOW PROCESS FROM NODE 17.10 TO NODE 13. 20 IS CODE = 1 UPSTREAM NODE 13. 20 ELEVATION = 207.29 (FLOW IS SUBCRITICAL) - -------------------------------------------------------------------------- �ALCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 11. 27 CFS PIPE DIAMETER = 18. 00 INCHES PE LENGTH = 79.40 FEET MANNING'S N = . 01300 --=> NORMAL PIPEFLOW IS PRESSURE FLOW --_-------------------------------------------------------------------------- I' RMAL DEPTH(FT) = 1.50 CRITICAL DEPTH(FT) = 1. 28 ------------------------- - -------------------------------------------------------------------------- DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1. 28 -------------------------------------------------------- a 4DUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ---------------------------------------------------------------------------- DTSTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ )NTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 1. 283 7.002 2.044 212. 57 . 200 1. 291 6.963 2.045 212. 59 .875 1.300 6.924 2.045 212. 63 2. 170 1.309 6.887 2. 046 212.70 4. 289 1. 317 6.851 2. 047 212.81 7. 530 1.326 6.816 2.048 212.94 12. 341 1. 335 6.782 2. 049 213. 10 19.429 1. 343 6.749 2.051 213. 28 29. 974 1.352 6.718 2.053 213. 50 46. 086 1. 361 6. 687 2.056 213.74 71. 942 1. 370 6. 658 2. 058 214.01 79. 400 1. 371 6. 653 2. 059 214. 06 • -------------------------------------------------------------------------- (,JE 13. 20 : HGL = < 208. 661>; EGL= < 209. 349>; FLOWLINE= < 207. 290> )W PROCESS FROM NODE 13. 20 TO NODE 13. 10 IS CODE = 5 JPSTREAM NODE 13. 10 ELEVATION = 207. 37 (FLOW UNSEALS IN REACH) - -------------------------------------------------------------------------- CULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 8. 11 18.00 . 00 207. 37 1. 10 4. 589 DOWNSTREAM 11. 27 18.00 - 207. 29 1. 28 6. 655 LATERAL #1 .00 .00 .00 .00 . 00 . 000 --ATERAL #2 3. 16 18. 00 90. 00 207.37 . 68 1.788 05 .00===05 EQUALS BASIN INPUT=== LAr.FCD AND OCEMA FLOW JUNCTION FORMULAE USED: =(Q2*V2-Q1*V1*COS(DELTAI) -03*V3*COS(DELTA3) - 04*V4*COS(DELTA4) ) / ( (A1+A2) *16. 1) UPSTREAM: MANNING'S N = . 01300; FRICTION SLOPE = .00596 11-4NSTREAM: MANNING'S N = 01300; FRICTION SLOPE = . 01003 1' =RAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00799 JUNCTION LENGTH = 4. 00 FEET �°iCTION LOSSES = 032 FEET ENTRANCE LOSSES = . 000 FEET 1� VCTION LOSSES = (DY+HV1-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( .317)+( .032)+( .000) = .349 -m-------------------------------------------------------------------------- )E 13. 10 : HGL = < 209. 371>; EGL= < 209. 698>; FLOWLINE= < 207. 370> **************************************************************************** r")W PROCESS FROM NODE 13. 10 TO NODE 8. 20 IS CODE = 1 1 STREAM NODE 8. 20 ELEVATION = 208. 24 (FLOW IS UNDER PRESSURE) ---------------------------------------------------------------------------- CA!-CULATE FRICTION LOSSES(LACFCD) : :)E FLOW = 8. 11 CFS PIPE DIAMETER = 18. 00 INCHES .'1PE LENGTH = 75.40 FEET MANNING'S N = . 01300 SE=(Q/K)**2 = ( ( 8. 11) / ( 105. 043) )**2 = .00596 1 =L*SF = ( 75. 40)*( .00596) = .449 - -------------------------------------------------------------------------- NODE 8. 20 : HGL = < 209.821>; EGL= < 210. 148>; FLOWLINE= < 208. 240> rLOW PROCESS FROM NODE 8. 20 TO NODE 8. 10 IS CODE = 5 JR-STREAM NODE 8.10 ELEVATION = 208. 53 (FLOW IS UNDER PRESSURE) --------------------------------------------------------------- �tiLCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 6. 03 18. 00 .00 208. 53 . 95 3. 412 DOWNSTREAM 8. 11 18.00 - 208.24 1. 10 4. 589 -'-ATERAL #1 2. 08 18. 00 90.00 207.40 . 54 1.177 -ATERAL #2 . 00 00 00 . 00 .00 . 000 as .00===Q5 EQUALS BASIN INPUT=== -, 'FCD AND OCEMA FLOW JUNCTION FORMULAE USED: ),=(02*V2-Q1*V1*COS(DELTAI) -Q3*V3*COS(DELTA3) - 04*V4*COS(DELTA4) ) / ( (A1+A2) *16. 1) 1w3TREAM: MANNING'S N = . 01300; FRICTION SLOPE _ . 00330 JOWNSTREAM: MANNING'S N = . 01300; FRICTION SLOPE _ . 00596 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00463 NCTION LENGTH = 4. 00 FEET =KICTION LOSSES = .019 FEET ENTRANCE LOSSES = . 000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(FRICTION . LOSS)+(ENTRANCE LOSSES) J NCTION LOSSES = ( . 146)+( .019)+( .000) _ . 165 - -------------------------------------------------------------------------- NODE 8. 10 : HGL = < 210. 132>; EGL= < 210.312>; FLOWLINE= < 208. 530> FLOW PROCESS FROM NODE 8. 10 TO NODE 2. 20 IS CODE = 1 UPSTREAM NODE 2. 20 ELEVATION = 218. 60 (HYDRAULIC JUMP OCCURS) - -------------------------------------------------------------------------- r%LCULATE FRICTION LOSSES(LACFCD) : PIPE FLOW = 6. 03 CFS PIPE DIAMETER = 18. 00 INCHES G"-PE LENGTH = 204.90 FEET MANNING'S N = . 01300 - -------------------------------------------------------------------------- HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS .- -------------------------------------------------------------------------- k RMAL DEPTH(FT) _ . 52 CRITICAL DEPTH(FT) _ .95 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) _ .95 �...ADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ----------------------------------------------------------------------------- C"STANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ ONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) . 000 .948 5. 119 1.356 90. 15 .014 .931 5. 229 1.356 90.20 . 059 . 914 5.344 1.358 90. 33 . 139 .897 5.466 1. 361 90.56 . 256 .880 5.594 1. 366 90.90 . 416 .863 5.729 1.373 91. 33 . 624 .846 5.870 1.381 91.88 .887 .829 6. 020 1.392 92. 54 1. 211 .812 6. 177 1.405 93. 33 1. 606 .794 6. 344 1.420 94. 25 2. 083 .777 6. 520 1.438 95. 30 2. 654 .760 6.706 1.459 96. 50 3.335 .743 6. 903 1. 483 97.86 4. 147 .726 7. 112 1. 512 99.39 5. 114 .709 7.334 1. 545 101. 09 6. 270 . 692 7. 569 1. 582 102. 98 7. 657 . 675 7.820 1. 625 105.08 9.336 . 658 8. 088 1. 674 107.39 11. 388 . 640 8. 373 1.730 109.95 13.936 . 623 8. 679 1.794 112.77 17. 168 . 606 9.006 1.867 115.86 21. 402 . 589 9. 358 1. 950 119. 27 27. 234 . 572 9.735 2. 045 123. 01 36. 002 . 555 10. 142 2. 153 127. 12 52. 004 . 538 10. 582 2. 278 131. 64 204. 900 . 535 10. 660 2. 301 132.45 . .-------------------------------------------------------------------------- HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS [ IWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1. 60 ---------------------------------------------------------------------------- PRESSURE FLOW PROFILE COMPUTED INFORMATION: . ,-------------------------------------------------------------------------- JISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ -ONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) . 000 1. 602 3. 412 1.782 133.77 2. 215 1. 500 3. 412 1. 681 122. 58 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- A--SUMED DOWNSTREAM PRESSURE HEAD(FT) = 1. 50 - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -_,-------------------------------------------------------------------------- STANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ LONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 2. 215 1. 500 3.411 1. 681 122. 58 2. 671 1.478 3.422 1. 660 120. 27 3. 105 1.456 3.440 1. 640 118.07 3. 525 1.434 3.465 1. 620 115. 95 3.933 1.412 3. 494 1. 601 113.91 4.330 1. 390 3. 528 1. 583 111.94 4.717 1. 368 3. 566 1. 565 110. 04 5.094 1. 346 3. 607 1.548 108. 21 5.461 1.323 3. 652 1. 531 106.45 5.817 1.301 3. 702 1. 514 104.77 6. 163 1. 279 3.754 1. 498 103.16 6.497 1. 257 3.811 1.483 101. 63 6.820 1. 235 3.872 1.468 100. 18 7. 130 1. 213 3. 937 1.454 98.81 7.426 1. 191 4.006 1. 440 97. 53 7.707 1. 169 4. 079 1. 428 96. 34 7.973 1. 147 4. 157 1. 416 95. 23 8. 221 1. 125 4. 240 1.404 94. 23 8.450 1.103 4.329 1.394 93.32 8. 658 1. 081 4.422 1.385 92. 52 8.844 1.059 4. 521 1. 376 91.82 9. 003 1. 037 4. 627 1. 369 91. 24 9. 134 1. 015 4.739 1. 364 90.77 9. 232 . 993 4.858 1. 359 90. 43 9. 295 .970 4.984 1. 356 90. 22 9.317 . 948 5. 119 1.356 90. 15 204.900 .948 5. 119 1.356 90. 15 ----------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ BALANCE OCCURS AT . 26 FEET UPSTREAM OF NODE 8.10 1 DOWNSTREAM DEPTH = 1. 590 FEET, UPSTREAM CONJUGATE DEPTH = . 535 FEET ---------------------------------------------------------------------------- IrDE 2. 20 : HGL = < 219. 548>; EGL= < 219.956>; FLOWLINE= < 218. 600> FLOW PROCESS FROM NODE 2. 20 TO NODE 2. 10 IS CODE = 5 J STREAM NODE 2. 10 ELEVATION = 218.70 (FLOW IS AT CRITICAL DEPTH) ---------------------------------------------------------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT. ) (FT/SEC) UPSTREAM 2. 29 18.00 . 00 218.70 . 57 1. 296 -DOWNSTREAM 6. 03 18.00 - 218. 60 . 95 5. 120 LATERAL #1 .00 .00 . 00 . 00 . 00 . 000 LATERAL #2 .00 00 00 . 00 . 00 .000 as 3.74===Q5 EQUALS BASIN INPUT=== _r%CFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTAI) -Q3*V3*COS(DELTA3) - Q4*V4*COS(DELTA4) ) / ( (A1+A2)*16. 1) JPSTREAM: MANNING'S N = .01300; FRICTION SLOPE _ . 00048 DOWNSTREAM: MANNING'S N = 01300; FRICTION SLOPE _ . 00624 Y :RAGED FRICTION SLOPE IN JUNCTION ASSUMED AS . 00336 16.iCTION LENGTH = 4. 00 FEET -RICTION LOSSES = .013 FEET ENTRANCE LOSSES = 081 FEET If-(CTION LOSSES = (DY+HV1-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) I_ ICTION LOSSES = ( . 228)+( . 013)+( . 081) _ . 323 ------------------------------------------- ------------------------- IP9E 2. 10 : HGL = < 220, 252>; EGL= < 220. 278>; FLOWLINE= < 218. 700> 7LI)W PROCESS FROM NODE 2.10 TO NODE - 5. 00 IS CODE = 1 'F ;TREAM NODE 5.00 ELEVATION = 219. 15 (FLOW SEALS IN REACH) --------------------------------------------------------------- XCULATE FRICTION LOSSES(LACFCD) : ------ ''"'E FLOW = 2. 29 CFS PIPE DIAMETER = 18. 00 INCHES ] 'E LENGTH = 45.42 FEET MANNING'S N = . 01300 -------------- -----------------------------------01 ----------------------------------------- ----------------- )PWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.55 ----------------------------------------------------------- kCSSURE FLOW PROFILE COMPUTED INFORMATION: ----------------------------------- _ ______ I'lANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ C !NTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) .000 1. 552 1. 296 1. 578 94. 22 5. 548 1. 500 1. 296 1. 526 88. 45 ------------------------------------------- .ORMAL DEPTH(FT) = CRITICAL DEPTH(FT) _ UMED DOWNSTREAM PRESSURE HEAD(FT) = 1. 50 ------------- ----------------------------- _____________________ iRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------ ____ TANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 5. 548 1. 500 1.295 1. 526 88. 45 9.434 1.463 1.304 1.489 84. 41 13. 277 1. 426 1. 320 1.453 80. 44 17. 096 1.389 1.340 1. 417 76. 54 20.895 1.352 1. 365 1. 380 72. 73 24. 677 ' 1.314 1. 395 1.345 69. 02 6 28. 443 1. 277 1. 428 1. 309 5.40 32.193 1. 240 1.465 1. 274 61. 90 35. 926 1. 203 1. 507 1. 238 58. 52 39. 642 1. 166 1.553 1.203 55. 26 43.338 1. 129 1. 605 1. 169 52.13 45. 420 1. 108 1. 636 1. 149 50. 41 --------------------------------- ____ -------------------------------- ODE 5.00 HGL = < 220. 258>; EGL= < 220. 299>; FLOWLINE= < 219. 150> * ************************************************************************* PSTREAM PIPE FLOW CONTROL DATA: PE NUMBER = 5. 00 FLOWLINE ELEVATION = 219. 15 5 JMED UPSTREAM CONTROL HGL = 219.72 FOR DOWNSTREAM RUN ANALYSIS --------------------------------------- ----------------------------------- V OF GRADUALLY VARIED FLOW ANALYSIS _. H. Curb Inlet Sizing bhA, Inc. **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-89 Advanced Engineering Software (aes) Ver. 2.8A Release Date: 8/19/89 Serial # 3856 Analysis prepared by: BHA, Inc. 5115 Avenida Encinas, Suite L Carlsbad, California 92008-4387 (619) 931-8700 ----------------------------------------------------------- TIME/DATE OF STUDY: 12:14 7/12/1996 ************************** DESCRIPTION OF STUDY ************************** * * * Node 2 * * ************************************************************************** **************************************************************************** »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« -------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = .63 _ GUTTER FLOWDEPTH(FEET) = .17 BASIN LOCAL DEPRESSION(FEET) = .30 FLOWBY BASIN WIDTH(FEET) = 4.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION= 4.2 »»CALCULATED ESTIMATED INTERCEPTION(CFS) _ .6 ************************** DESCRIPTION OF STUDY ************************** * * * Node 5 »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« --------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) _ .48 GUTTER FLOWDEPTH(FEET) _ .16 BASIN LOCAL DEPRESSION(FEET) _ .30 FLOWBY BASIN WIDTH(FEET) = 3.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION= 3.4 »»CALCULATED ESTIMATED INTERCEPTION(CFS) _ .4 ************************** DESCRIPTION OF STUDY ************************** * * * Node 10 * * ************************************************************************** »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« ---------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) _ .31 GUTTER FLOWDEPTH(FEET) _ .16 BASIN LOCAL DEPRESSION(FEET) _ .30 FLOWBY BASIN WIDTH(FEET) = 2.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION= 2.2 »»CALCULATED ESTIMATED INTERCEPTION(CFS) _ .3 ************************** DESCRIPTION OF STUDY ************************** * * * Node 16 * * ************************************************************************** **************************************************************************** »»SUMP TYPE BASIN INPUT INFORMATION«« ---------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. BASIN INFLOW(CFS) = 3.51 BASIN OPENING(FEET) = .50 DEPTH OF WATER(FEET) = .70 »»CALCULATED ESTIMATED SUMP BASIN WIDTH(FEET) = 2.21 ************************** DESCRIPTION OF STUDY ************************** * * Node 26 ************************************************************************** **************************************************************************** »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« -------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 1.16 GUTTER FLOWDEPTH(FEET) _ .22 BASIN LOCAL DEPRESSION(FEET) _ .30 FLOWBY BASIN WIDTH(FEET) = 2.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 6.0 »»CALCULATED ESTIMATED INTERCEPTION(CFS) _ .5 ************************** DESCRIPTION OF STUDY ************************** * * * Node 29.1 * * ************************************************************************** **************************************************************************** »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« --------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = 1.65 GUTTER FLOWDEPTH(FEET) _ .24 BASIN LOCAL DEPRESSION(FEET) _ .30 FLOWBY BASIN WIDTH(FEET) = 2.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION= 7.7 »»CALCULATED ESTIMATED INTERCEPTION(CFS) _ .6 ************************** DESCRIPTION OF STUDY ************************** * * * Node 30 * * »»FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« ---------------------------------------------------------------------------- Curb Inlet Capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) _ .12 GUTTER FLOWDEPTH(FEET) _ .12 BASIN LOCAL DEPRESSION(FEET) _ .30 FLOWBY BASIN WIDTH(FEET) = 1.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION »»CALCULATED ESTIMATED INTERCEPTION(CFS) = 1 IV. EXHIBIT bI�A, inc. A. Developed Condition Hydrology Node and Area Map �,- bhA, Inc. Gewbratind'g0 y noun Leighton and Associates 1961 2001 GEOTECHNICAL CONSULTANTS February 6,2001 Project No. 940028-031 To: Carltas Company l 5600 Avenida Encinas, Suite 100 2001 Carlsbad, California 92009 '- Attention: Mr. John White Subject: Addendum to Geotechnical Update Report, Encinitas Town Center, Northern Corner of Lot 43, Encinitas,California Reference: Leighton and Associates, 2000, Geotechnical Update Report, Encinitas Town Center, Northern Corner of Lot 43, Encinitas, California, Project No. 4940028-031, dated November 6, 2000. Pacific Soils Engineering, Inc., 1997a, Project Grading Report for Mendocino Project, Lots 1 thru 71, incl., Lot 43 of the Encinitas Ranch, Located in the City of Encinitas, California,Work Order 400567,dated September 5, 1997. , 1997b, Interim Project Grading Report for the Mendocino Project, Detention Basin Area, Southwest Corner of Via Cantebria and Garden View Road, Lot 43 of the Encinitas Ranch, in the City of Encinitas, CA, Work Order 400567, dated October 8, 1997. In accordance with your request, we herein provide an addendum to our Geotechnical Update Report for the northern corner of Lot 43 of the Encinitas Town Center development (Leighton, 2000). In our referenced report, we identified artificial fill soils on the subject site that had been placed subsequent to the mass grading operations on the site observed by our firm. Although we suspected that the fill soils were placed under the observation and testing of the geotechnical consultant of record for the adjacent housing development, we were not provided with documentation of this. Accordingly, we had to assume the soils were undocumented fill soils until documentation stating otherwise was provided to and reviewed by our office. We have reviewed the reports provided by you and referenced above regarding the most recent grading operations on the subject site. Based on our review of the referenced documents(Pacific Soils, 1997a and b), the soils referred to as undocumented fill soils in our referenced report for the site (Leighton, 2000) were reportedly placed and compacted in general accordance with the project recommendations and the 3934 Murphy Canyon Road, #13205, San Diego, CA 92123-4425 (858) 292-8030 • FAX (858) 292-0771 • www.leightongeo.com requirements of the City of Encinitas. These soils were reportedly placed under the observation and testing services of Pacific Soils Engineering, Inc. (Pacific Soils, 1997a and b). This addendum letter has been provided so that we may amend our referenced report as follow: The fill materials assumed to be documented in our referenced report, but lacking proper documentation, may now be considered properly as documented artificial fill soils and may be treated as such. With this amendment in mind, the recommendations provided in our referenced report (Leighton, 2000) should be utilized during the grading and construction of the two homes proposed on the site. If you have any questions regarding our report, please do not hesitate to contact this office. We appreciate this opportunity to be of service. y0 do�bs LEIGHTON AND ASSOCIATES,INC. .a . Z 6LLL'ON X vn�-- �' y Kevin B.Colson,RG 7119 '�Ji�`�p� •����G)� Senior Staff Geologist/Project Manager I oQQ`pFESS�aN ZNY LA S �.�'� ��� ichael R. Stewart CEG 1349 Timothy Lawson, RCE 53388 No.� ti 453386 � Principal Consulting Engineer w M m ice President/Principal Geologist d � Distribution: (2) Addressee *cPj, CINL Q �* D. GFO� OF CAU NO.1349 • CERTIFIED —' ENGINEERING GEOLOGIST OF CALIFO��`P Leighton and Associates A AGTGCompany GEOTECHNICAL CONSULTANTS :., DEC o 6 2000 , r I F 6- C°- TY OF ENCINi Tv' GEOTECHNICAL UPDATE REPORT, ENCINITAS TOWN CENTER, NORTHERN CORNER OF LOT 43, ENCINITAS,CALIFORNIA Project No.4940028-031 November 6,2000 Prepared For CARLTAS COMPANY 5600 Avenida Encinas, Suite 100 Carlsbad, California 92009 3934 Murphy Canyon Road, #13205, San Diego, CA 92123-4425 (858) 292-8030 • FAX (858) 292-0771 • www.leightongeo.com Leighton and Associates mum AGTGCompany GEOTECHNICAL CONSULTANTS November 7,2000 Project No.4940028-031 To: Carltas Company 5600 Avenida Encinas,Suite 100 Carlsbad,California 92009 Attention: Mr. John White Subject: Geotechnical Update Report, Encinitas Town Center, Northern Corner of Lot 43, Encinitas,California Introduction In accordance with your request and authorization,this report has been prepared to provide an updated summary of the geotechnical conditions relative to the undeveloped northern corner of Lot 43 at the existing Encinitas Town Center site located in Encinitas,California(Figure 1). In preparation of this update letter, we have reviewed the available geotechnical reports relative to the Encinitas Ranch Project(Appendix A) and made a site visit to observe the current site conditions. Site Developingnt Lot 43 of the Encinitas Ranch Project is located south of the intersection of Via Cantebria and Garden View Road in the southern portion of the Encinitas Town Center development(Figure 1). We understand that the proposed development will include the fine grading for a park site and for building pads for two residential structures. We understand the proposed residential structures will be two-stories in height with slab-on- grade,wood framing,and stucco construction similar to those in the adjacent existing development. Conclusions Based on the results of our site visit and review of the project geotechnical reports(Appendix A), it appears that the geotechnical conditions of the site have changed since the date of our as-graded report for the site (Leighton, 1995b).The subject site was originally graded as part of the Encinitas Town Center development under the observation and testing of Leighton and Associates(Leighton, 1995b).Grading operations for the subject portion of Lot 43 included placement of up to approximately 40 feet of compacted artificial fill above Torrey Sandstone bedrock. However,based on our site visit the site grades have been raised by up to an estimated 18 feet subsequent to the grading observed by this office.The fill soils were most likely placed during the grading and construction operations for the existing housing development surrounding the subject site. However the observation and testing services for the housing development were not performed by this 3934 Murphy Canyon Road, #6205, San Diego, CA 92123-4425 (858) 292-8030 • FAX (858) 292-0771 • www.leightongeo.com 4940028-031 office. It is likely that these fill soils were placed under the observation and testing of the geotechnical consultant of record for the housing development. Documentation of the compaction operations for the additional fill soils on the subject site should be provided to this office for our review. Until such documentation is provided we will have to assume these are undocumented fill soils which would require further investigation to determine the quality of the fills placed.The aerial extent of the geologic units on the site is depicted the Geotechnical Map(Figure 2).A desilting basin is present in the eastern corner of the site. Groundwater was not encountered nor anticipated during the previous rough grading operations or during our recent site reconnaissance. ANN _ O a Lp, J U) J 6 09A GQ 115upo 1 T, EL g S gO CA 0 A G Q BONA __. NORTH U N I cALLE V —� WIL VEN 3 W n ORCHARD WOOD > GH RD GLEN z PROJECT SITE SUMME ILL Fsr� 14 K w p l ' w _ r j VANE A 3 O O U = v O O VALLE A HILL P LA RAN ELO n p O N w O } N J COY N _ < Z w z P C ij ZONA � w K P RIwINKLE GA SHADOW 0 5NA DRAGON V o N J w 0 2 MAN EW VW TE SA U w 19 0 O O w a w G O O Q w 0 a 0 Q�J� u v 0 i s m wAINU VIEW a a i V c OO u, WOO a o °d ° wl p �� _ � Q O z ISLAND VIEW U O PEARTREE a TEI IERD m GU DALAJARA O WI AEU5 o = PEG O W ST � g I U a LV G I z a C. a = 4Try 3 s 5AN A 0 U ORANG 5 APLELEAF �p z IVY tir ATHY PEA OD JUNI ERHILL T Y COL NY woo S AMO VIEW \ , CA RYAN WOOD CA IFF TEN 15 LUg y n� BASE MAP: Thomas Bros.GeoFinder for Windows,San Diego County, 1995,Page 1147 0 1000 2000 4000 1"=2,000' 0 � �__��SC.,e in Feet SITE Project No. Northern Corner Encinitas Town Center 940028-031 LOCATION Lot 43 Date lin Encinitas, California MAP November 2000 Figure No. 1 4940028-031 As of the date of this report, we have not received or reviewed actual grading or foundation plans. In addition, we have not been able to verify the additional fill soils on the site were placed in accordance with the project geotechnical reports (Appendix A). However, based on the current site conditions, our review of the referenced geotechnical reports and our experience during development of the Encinitas Town Center project, it is our professional opinion that the proposed development is feasible from an engineering standpoint provided the appropriate recommendations of this report are incorporated into the "a- grading and construction phases of the project and provided documentation is provided to this office verifying that the additional fill soils were placed in accordance with the project geotechnical reports. Recommendations The following provisional recommendations are provided with the assumption that documentation verifying that the additional fill soils placed on the subject site were placed in accordance with the project geotechnical reports(Appendix A). 1. Earthwork We anticipate that future earthwork on the site will consist of site preparation and minor regrading to create the building pads for the two proposed residential structures and park site grades,and associated improvements. We recommend that earthwork on the site be performed in accordance with the following recommendations,the City of Encinitas grading requirements,and the General Earthwork and _._ Grading Specifications of Rough-Grading included in Appendix B. In case of conflict,the following recommendations shall supersede those in Appendix B. • Site Preparation Based on our site reconnaissance,and due to the length of time since the completion of the latest phase of grading,the near-surface soils have become desiccated,we recommend that the areas of proposed development be removed to a depth of 12 to 24 inches, moisture-conditioned to near- optimum moisture content and compacted to a minimum 90 percent relative compaction(based on ASTM Test Method D 1557).If improvements are planned in the area of the existing desilting basin in the eastern corner of the site removals are expected to be approximately 5 to 7 feet in depth. If additional grading,such as fill placement,is planned on the site,the areas to receive structural fill or engineered structures should be cleared of subsurface obstructions, potentially compressible material (such as silt accumulation, and desiccated fill soils) and stripped of vegetation prior to grading.Vegetation and debris should be removed and properly disposed of offsite. Holes resulting form removal of buried obstructions which extend below finish site grades should be replaced with suitable compacted fill material. Areas to receive fill and/or other surface improvements should be scarified to a minimum depth of 12 inches, brought to near-optimum moisture condition, and recompactedto at least 90 percent relative compaction(based on ASTM Test Method D1557). • Excavations Excavations of the on-site materials may generally be accomplished with conventional heavy-duty earthwork equipment. It is not anticipated that blasting will be required,or that significant quantities of oversized rock (i.e., rock with maximum dimensions greater than 6 inches) will be generated during future grading. However, if oversized rock is encountered, it should be hauled offsite, placed -4- � 4940028-031 in non-structural or landscape areas, or it may be placed as fill in accordance with the details presented in Appendix B. Excavation of utility trenches should be performed in accordance with the project plans, specifications and all applicable OSHA requirements. The contractor should be responsible for providing the "competent person" required by OSHA standards.Contractors should be advised that - sandy soils and/or adversely-oriented bedrock structures can make excavations particularly unsafe if all safety precautions are not taken. In addition, excavations at or near the toe of slopes and/or parallel to slopes may be highly unstable due to the increased driving force and load on the trench wall. Spoil piles due to the excavation and construction equipment should be kept away from and on the down slope side of the trench. All temporary excavations,(such as utility trenches) should be excavated or shored or laid back in accordance with current OSHA requirements. • Fill Placement and Compaction The on-site soils are generally suitable for use as compacted fill provided they are free of organic material, debris, and rock fragments larger than 6 inches in maximum dimension. All fill soils should be brought to near-optimum moisture conditions and compacted in uniform lifts to at least 90 percent relative compaction based on the laboratory maximum dry density (ASTM Test Method D1557).The optimum lift thickness required to produce a uniformly compacted fill will depend on the type and size of compaction equipment used. In general, fill should be placed in lifts not exceeding 4 to 8 inches in compacted thickness. Placement and compaction of fill should be performed in general accordance with the current City of Encinitas grading ordinances, sound construction practices, and the General Earthwork and Grading Specifications of Rough-Grading presented in Appendix B 2. Faulting and Seismicity Our discussion of faults on the site is prefaced with a discussion of California legislation and state policies concerning the classification and land-use criteria associated with faults. By definition of the California Mining and Geology Board, an active fault is a fault which has had surface displacement within Holocene time(about the last 11,000 years).The State Geologist has defined a potentially active fault as any fault considered active during Quaternary time(last 1,600,000 years)but that has not been proven to be active or inactive. This definition is used in delineating Fault-Rupture Hazard Zones as mandated by the Alquist-Priolo Earthquake Fault Zoning Act of 1972 and as most recently revised in 1997.The intent of this act is to assure that unwise urban development does not occur across the traces of active faults. Based on our review of the Fault-Rupture Hazard Zones,the site is not located within any Fault-Rupture Hazard Zone as created by the Alquist-Priolo Act(Hart, 1997). San Diego, like the rest of southern California, is seismically active as a result of being located near the active margin between the North American and Pacific tectonic plates. The principal source of seismic activity is movement along the northwest-trending regional fault zones such as the San Andreas, San Jacinto and Elsinore Faults Zones, as well as along less active faults such as the Rose Canyon and Newport Inglewood Fault Zones. Our review of available geologic literature indicates that there are no known major active faults on or in the immediate vicinity of the site. The nearest __ -5- �`� 4940028-031 known active regional fault is the Rose Canyon Fault Zone located approximately 4.4 miles west of the site. The site can be considered to lie within a seismically active region, as can all of Southern California. Table 1 identifies potential seismic events that could be produced by a maximum credible earthquake on the closest regional active faults. A maximum credible earthquake is the maximum expectable earthquake given the known tectonic framework. Site-specific seismic parameters included in Table 1 are the distances to the causative faults,earthquake magnitudes,and expected ground accelerations. Table 1 Seismic Parameters for Active Faults Maximum Credible Peak Horizontal Potential Causative Distance from Fault to Earthquake Ground Acceleration Fault Zone Site (Moment Magnitude) (g) Rose Canyon 4.4 miles(7.1 km) 6.9 0.62 Newport-Inglewood 11.5 miles(18.5 km) 6.9 0.34 Coronado Bank 19.3 miles(31.1 km) 7.4 0.31 As indicated in Table 1, the Rose Canyon Fault Zone is the `active' fault considered having the most significant effect at the site from a design standpoint. A maximum credible earthquake of moment magnitude 6.9 on the fault could produce an estimated peak horizontal ground acceleration of 0.62g at the site. The effect of seismic shaking may be mitigated by adhering to the Uniform Building Code and state-of-the-art seismic design parameters of the Structural Engineers Association of California. • 1997 UBC Seismic Criteria The site is located within Seismic Zone 4 (per 1997 UBC, Figure 16-2). The Rose Canyon and Newport-Inglewood Fault Zones are considered Type B seismic sources according to Table 16-U of the 1997 Uniform Building Code. The Coronado Bank fault is considered a Type A seismic source according to Table 16-U. Based on our engineering geologic assessment, the site is considered to have a type SD soil profile(per 1997 UBC Table 16-J). The near source factors(Na equal to 1.0 and N,, equal to 1.0) are considered appropriate based on the seismic setting applicable to the site(per 1997 UBC, Tables 16-S and 16-T). - Secondary effects that can be associated with severe ground shaking following a relatively large earthquake include shallow ground rupture, soil liquefaction and dynamic settlement,seiches and tsunamis. These secondary effects of seismic shaking are discussed in the following sections. • Shallow Ground Rupture Ground rupture because of active faulting is not believed to present a significant hazard to the site. Cracking due to shaking from distant seismic events is not considered a significant hazard either, although it is a possibility at any site in Southern California. h R=- -6- �`_ 4940028-031 • Liquefaction and Dynamic Settlement Liquefaction and dynamic settlement of soils can be caused by strong vibratory motion due to earthquakes. Both research and historical data indicate that loose, saturated, granular soils are susceptible to liquefaction and dynamic settlement while the stability of stiff silty clays and clays and dense sands are not adversely affected by vibratory motion.Liquefaction is typified by a total loss of shear strength in the affected soil layer, thereby causing the soil to flow as a liquid. This effect may be manifested by excessive settlements and sand boils at the ground surface. The site is underlain by artificial fill soils and bedrock materials of the Torrey Sandstone Formation which underlie the site at depth below, neither are not generally considered liquefiable - due to physical characteristics and unsaturated condition. • Tsunamis and Seiches Based on the distance between the site and large, open bodies of water, and the elevation of the site with respect to sea level,the possibility of seiches and/or tsunamis is considered very low. 3. Foundation Design Considerations The proposed foundations and slabs of the anticipated residential structures should be designed in accordance with structural considerations provided by the structural engineer.All foundations should be designed for low expansive soils unless expansion index testing performed on the individual lot indicates the soils within the upper 4 feet of finish grade indicates otherwise. If import material is utilized as fill on the lots, the import material should consist of very low or low-expansive sandy material(with an expansion index less than 50 per UBC 18-1-B). • Foundation Design We anticipate that the proposed single-family detached residential structures will be one- or two- story, wood-frame construction and utilize conventional continuous footings and isolated-spread footings.The following recommendations are based on the assumption that soils of very low to low expansion potential(50 or less per UBC 18-1-B)will be in the upper 4 feet of pad grade.This should be confirmed during grading and alternate recommendations provided, if necessary. Footings bearing entirely in competent natural soil materials or entirely in properly compacted fill should extend a minimum of 12 or 18 inches below the lowest adjacent grade for one- and two-story structures, respectively. At this depth, footings may be designed using an allowable soil-bearing value of 2,000 pounds per square foot.The allowable soil-bearing pressure may be increased by one- third for loads of short duration including wind or seismic forces. Footings should have a minimum width of 12 or 15 inches, for one- or two-story structures, respectively. Continuous perimeter footings should be reinforced by placing at least one No. 4 rebar near the top and one No. 4 rebar near the bottom of the footing, and in accordance with the structural engineer's requirement. We recommend a minimum width of 24 inches for isolated-spread footings. A grade beam reinforced with No. 4 rebars top and bottom should be placed at the garage door opening.Garage slabs should be isolated from stemwall footings by 3/8-inch felt and quarter sawn. 4940028-031 • Floor Slab Design All slabs should have a minimum thickness of 4 inches and be reinforced at slab midheight with No. 3 rebars at 18 inches on center(each way)or No.4 rebars at 24 inches center(each way).Additional reinforcement and/or concrete thickness to accommodate specific loading conditions or anticipated settlement should be evaluated by the structural engineer based on a modulus of subgrade reaction of 100 kips per cubic foot and the anticipated settlements outlined in below. We emphasize that is the responsibility of the contractor to ensure that the slab reinforcement is placed at midheight of the -- slab. Slabs should be underlain by a 2-inch layer of clean sand (S.E. greater than 30) to aid in concrete - curing,which is underlain by a 6-mil(or heavier)moisture barrier,which is, in turn, underlain by a 2-inch layer of clean sand to act as a capillary break.All penetrations and laps in the moisture barrier should be appropriately sealed. Crack-control joints should be designed by the structural engineer. Sawcuts should be made within 24 hours of concrete placement. Our experience indicates that use of reinforcement in slabs and foundations will generally reduce the potential for drying and shrinkage cracking. However, some cracking should be expected as the concrete cures.Minor cracking is considered normal;however,it is often aggravated by a high water content, high concrete temperature at the time of placement, small nominal aggregate size and rapid moisture loose due to hot, dry, and/or windy weather conditions during placement and curing.Cracking due to temperature and moisture fluctuations can also be expected. The use of low water content concrete can reduce the potential for shrinkage cracking. Moisture barriers can retard,but not eliminate moisture vapor movement from the underlying soils up through the slab. We recommend that the floor coverings installer test the moisture vapor flux rate prior to attempting application of the flooring. 'Breathable" floor coverings should be considered if the vapor flux rates are high. • Footing Setback We recommend a minimum horizontal setback distance from the face of slopes for all structural footings and settlement-sensitive structures.This distance is measured from the outside edge of the footing,horizontally to the slope face(or to the face of a retaining wall)and should be a minimum of 10 feet.We should note that the soils within the structural setback area possess poor lateral stability, and improvements (such as retaining walls, sidewalks, fences, pools, pavement, underground utilities, etc.) constructed within this setback area may be subject to lateral movement and/or differential settlement. • Anticipated Settlement Design Considerations Settlement of properly compacted fill soils can occur upon application of structural loads (elastic settlement),and upon saturation due to water infiltration(hydroconsolidation settlement)which may occur over a period of many years. The recommended allowable-bearing capacity is generally based on maximum total and differential (elastic)settlement of 3/4 inch and 1/2 inch,respectively,upon application of structural loads(except �_ __ 4940028-031 as noted below). Actual settlement can be estimated on the basis that settlement is roughly proportional to the net contact bearing pressure. It should be recognized that compacted fills typically increase in moisture and settle (due to hydroconsolidation)during their lifetime. This occurs over a period of years even when subsurface and surface drains are provided.Experience has shown that this settlement may approach 0.2 percent for granular fill soils such as the onsite soils and is dependent on the relative compaction of the fill soils. Uniform and/or linearly increasing settlement, where the fill is underlain by gentle natural ground slopes, often have no adverse effect on structures and may not even be noticeable. This condition should not be a significant problem under buildings where the fill depths are relatively uniform, or within sidewalks or streets. However, if structures are partially sensitive to differential settlements or structures are located such that fill depths vary nonuniformly under the building,or buildings are situated across cut-fill lines, or transitioning material densities, distress to structures may occur. Potential long term differential settlements can be roughly estimated by comparing differential fill thickness below structures. Differential settlement estimates will be provided after additional grading plans have been reviewed. 4. Lateral Earth Pressures and Resistance Embedded structural walls should be designed for lateral earth pressures exerted on them. The magnitude of these pressures depends on the amount of deformation that the wall can yield under load.If the wall can yield enough to mobilize the full shear strength of the soil, it can be designed for "active"pressure.If the wall cannot yield under the applied load,the shear strength of the soil cannot be mobilized and the earth pressure will be higher. Such wall should be designed for "at rest" conditions.If a structure moves toward the soils, the resulting resistance development by the soil is the"passive"resistance. For design purposes, the recommended equivalent fluid pressure for each case for walls founded above the static ground water table and backfilled with very low to low expansion potential soils is provided on Table 2.Determination of which condition,active or at-rest,is appropriate for design will depend on the flexibility of the wall.The effect of any surcharge(dead or live load)should be added to the proceeding lateral earth pressures. Based on our investigation,the sandier onsite soils may provide low to very low expansive potential backfill material. All backfill soils should have an expansion potential of less than 40 (per UBC 18-1-13). The passive pressures provided on Table 2 assume that the setback recommendations provided above are adhered to. Table 2 Lateral Earth Pressures Equivalent Fluid Weight(pcf) Condition Level 2:1 Slope Active 35 55 At-Rest 55 85 Passive 350(Maximum of 3 ksf) 350(maximum of 3 ksf) 4940028-031 The above values assume a very low to low expansion (less than 50 per UBC 18-I-13) potential backfill and free-draining conditions.If conditions other than these covered herein are anticipated,the equivalent fluid pressure values should be provided on an individual-case basis by the geotechnical engineer.A surcharge load for a restrained or unrestrained wall resulting from automobile traffic may be assumed to be equivalent to a uniform pressure of 75 psf which is in addition to the equivalent fluid pressures given above. All retaining wall structures should be provided with appropriate drainage and waterproofing.Typical drainage design is illustrated in Appendix B. As an alternative, an approved drainage board system installed in accordance with the manufacturers'recommendations may be used. Wall backfill should be compacted by mechanical methods to at least 90 percent relative compaction -- (based on ASTM Test Method D1557). Should structures or driveway areas be located adjacent to retaining walls,the backfill should be compacted to at least 95 percent relative compaction(based on ASTM Test Method D1557) and this office should provide additional surcharge recommendations. Surcharges from adjacent structures,traffic,forklifts or other loads adjacent to retaining walls should be considered in the design. Wall footings design and setbacks should be performed in accordance with the previous foundation design recommendations and reinforced in accordance with structural considerations.Soil resistance developed against lateral structural movement can be obtained from the passive pressure value provided above. Further, for sliding resistance, a friction coefficient of 0.35 may be used at the concrete and soil interface. These values may be increased by one-third when considering loads of short duration including wind or seismic loads. The total resistance may be taken as the sum of the frictional and passive resistance provided that the passive portion does not exceed two-thirds of the - total resistance. - 5. Segmental Retaining Wall Design Should segmental or reinforced earth type retaining walls be considered on the subject property, settlement-sensitive structures should be set back from the top of the wall at a minimum distance equal to the wall height. Appropriate geotechnical design parameters for these retaining walls are provided on Table 3: -10_ 4940028-031 Table 3 Retaining Wall Design Parameters Friction angle of backfill and soils at toe of 32 degrees wall Cohesion neglect in reinforced zone Passive resistance neglect Unit weight of backfill soils 125 pcf Allowable bearing capacity 2,000 psf(12 inch minimum embedment) 2,500 psf(18 inch minimum embedment) Expansion index Less than 50(per UBC 18-I-B) Adequate drainage should be designed behind the wall by the wall contractor and reviewed by the geotechnical consultant. Typical drainage includes a PVC pipe surrounded by gravel and filter cloth with outlets into non-erosive drainage facilities. 6. Geochemical Considerations Concrete in direct contact with soil or water that contains a high concentration of soluble sulfates can be subject to chemical deterioration commonly known as"sulfate attack."Testing of the finish grade soils should be performed at the completion of site grading. Additional recommendations can be provided at that time if needed. 7. Concrete Flatwork In order to reduce the potential for differential movement or cracking of driveways, sidewalks, patios, other concrete flatwork, wire mesh reinforcement is suggested along with keeping pad grade - soils at an elevated moisture content. The recommended type of wire mesh reinforcement(based on the expansion potential of the adjacent lots) is presented on Table 4. Table 4 Recommended Wire-Mesh Reinforcement of Concrete Flatwork Expansion Potential/Index Recommended Flatwork Reinforcement Very Low to Low 6x6-6/6 welded-wire mesh Additional control can be obtained by providing thickened edges and 4 or 6 inches of granular base or clean sand, respectively, below the flatwork. Reinforcement should be placed midheight in concrete. Even though the slabs are reinforced, some expansive soil-related movement (i.e., both horizontal to vertical differential movement, etc.) should be anticipated due to the nature of the 4940028-031 expansive soils. A uniform moisture content on the lot should be maintained throughout the year to reduce differential heave of flatwork such as sidewalks,pool decking,etc. 8. Control of Surface Water and Drainage Control Positive drainage of surface water away from structures is very important. No water should be allowed to pond adjacent to buildings. Positive drainage may be accomplished by providing drainage away from buildings at a gradient of at least 2 percent for a distance of at least 5 feet,and further maintained by a swale or drainage path at a gradient of at least 1 percent. Eave gutters,with properly connected downspouts to appropriate outlets, are recommended to reduce water infiltration into the subgrade soils. Planters with open bottoms adjacent to buildings should be avoided,if possible.Planters should not be design adjacent to buildings unless provisions for drainage, such as catch basins and pipe drains, are made.Overwatering of lots should be avoided. -12- " 4940028-031 9. Graded Slopes It is recommended that all graded slopes on the lot be planted with drought-tolerant, ground-cover vegetation as soon as practical to protect against erosion by reducing runoff velocity. Deep-rooted vegetation should also be established to protect against surficial slumping.Oversteepening of existing slopes should be avoided during fine-grading and construction unless supported by appropriately designed retaining structures.Retaining structures should be designed with structural considerations. 10. Construction Observation and Testing and Plan Review Construction observation and testing should be performed by the geotechnical consultant during future grading, excavations and foundation or retaining wall construction at the site. Lot-specific recommendations should be provided by a qualified geotechnical consultant and should be based on actual site conditions. Grading and foundation design plans should also be reviewed by the geotechnical consultant prior to construction and a final report of geotechnical services should be prepared to document geotechnical services upon completion of site development. 11. Limitations The conclusions and recommendations in this report are based in part upon data that were obtained by us and others from a limited number of observations and site visits. Such information is by necessity incomplete. The nature of many sites is such that differing geotechnical or geological conditions can occur within small distances and under varying climatic conditions. Changes in subsurface conditions can and do occur over time. Therefore, the findings, conclusions, and recommendations presented in this report can be relied upon only if Leighton has the opportunity to observe the subsurface conditions during grading and construction of the project, in order to confirm that our preliminary findings are representative for the site. -13- � 4940028-031 If you have any questions regarding our letter, please contact this office. We appreciate this opportunity to be of service. Respectfully submitted, LEIGHTON AND ASSOCIATES,INC. a— Kevin B.Colson Senior Staff Geologist/ProjectManager Timothy Lawson,RCE 53388 Michael R. Stewart,CEG 1349 Principal Consulting Engineer Vice President/Principal Geologist Distribution: (6) Addressee Attachments: Figure 1 - Site Location Map-Page 2 Figure 2-Geotechnical Map-Rear of text Appendix A-References Appendix B-General Earthwork and Grading Specifications for Rough Grading Appendix C- Summary of Seismic Design Parameters -�4- Z:zh A/ 1,r�s�.rw'��.�Cti'w�►s.IJlrl•rwtJriiMi►�1AM.`�'¢CI'w��� I II II �����t,'!�~'•ri�►r•+r+1►�1,i�i�✓9����i�i�i::.r�.G�+tar[•. lr. i r i�f"Jf!''�",Syr �• • • ♦ • Wf PC e I IM PW • � � � t 3Ei4b►�� Y,�'��•�, �� Wit,. 1�•rr�#11 1 1rr4� a. � ry [' r�+� .;}� � i �.dill�+�:"'�� � k!i'�• �•� • 1, !:� - /;�r ram }� 'i ,.• T%r" a•t*1.'r X01! we M ro FAI RR t e Project GEOTECHNICAL MAP • 940028-031 , Northern • . Encinitas • 1 November 111 Lot 43 California • • and Associates, • 4940028-031 APPENDIX A References Blake, 1996, EQFAULT,Version 2.2. , 1998, FRISKSP, Version 3.01. Hart, 1997, Fault Rupture Hazard Zones in California, Alquist-Priolo Special Studies Zones Act of 1972 with Index to Special Study Zone Maps, Department of Conservation, Division of Mines and Geology, Special Publication 42. International Conference of Building Officials, 1997, Uniform Building Code. Leighton and Associates, Inc, 1994, Geotechnical Investigation, Green Valley Phase 1, Encinitas Town Center, Encinitas,California,Project No. 4940028-01,dated April 20, 1994. 1995a, Geotechnical Update and Geotechnical Investigation,Green Valley, Encinitas Ranch, Encinitas,California,Project No. 4940028-003,dated June 7, 1995. , 1995b, As-Graded Report of Rough Grading, Lots 40 and 43 Encinitas Ranch Phase I, Encinitas,California,Project No. 4940028-006,dated December 22, 1995. O'Day Consultants, 1996, Grading Plans for Encinitas Ranch Green Valley Units I and III, 33 Sheets dated August 22, 1996,revised November 1 and November 19, 1995. A-1 Leighton and Associates,Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Pagel of 6 LEIGHTON AND ASSOCIATES,INC. GENERAL EARTHWORK AND GRADING SPECIFICATIONS FOR ROUGH GRADING 1.0 General 1.1 Intent: These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s). 1.2 The Geotechnical Consultant of Record. Prior to commencement of work,the owner shall employ the Geotechnical Consultant of Record (Geotechnical Consultant). The Geotechnical Consultants shall be responsible for reviewing the approved geotechnical report(s)and accepting the adequacy of the preliminary geotechnical findings,conclusions, and recommendations prior to the commencementof the grading. Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan"prepared by the Earthwork Contractor(Contractor)and schedule sufficient personnel to perform the appropriate level of observation,mapping,and compaction testing. During the grading and earthwork operations,the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase,the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required. Subsurface areas to be geotechnicallyobserved,mapped,elevations recorded,and/or tested include natural ground after it has been cleared for receiving fill but before fill is placed,bottoms of all "remedial _ removal"areas,all key bottoms,and benches made on sloping ground to receive fill. The Geotechnical Consultant shall observe the moisture-conditioningand processing of the subgrade and fill materials and perform relative compaction testing of fill to determine the attained level of compaction. The Geotechnical Consultant shall provide the test results to the owner and the Contractor on a routine and frequent basis. 3030 1094 Leighton and Associates,Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 2 of 6 1.3 The Earthwork Contractor. The Earthwork Contractor (Contractor) shall be qualified, -experienced, and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moisture-conditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Specifications prior to commencement of grading. The Contractor shall be solely responsible for performing the grading in accordance with the plans and specifications. a The Contractor shall prepare and submit to the owner and the Geotechnical Consultant a work plan that indicates the sequence of earthwork grading, the number of"spreads" of work and the estimated quantities of daily earthwork contemplated for the site prior to commencement of grading. The Contractor shall inform the owner and the Geotechnical Consultant of changes in work schedules and updates to the work plan at least 24 hours in advance of such changes so that appropriate observations and tests can be planned and accomplished. The Contractor shall not assume that the Geotechnical Consultant is aware of all grading operations. The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish the earthwork in accordance with the applicable grading codes and agency ordinances, these Specifications, and the recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of the Geotechnical Consultant,unsatisfactoryconditions,such as unsuitable soil,improper moisture condition, inadequate compaction,insufficient buttress key size,adverse weather,etc.,are resulting in a quality of work less than required in these specifications,the Geotechnical Consultant ¢Y` shall reject the work and may recommend to the owner that construction be stopped until the conditions are rectified. 2.0 Preparation of Areas to be Filled - 2.1 Clearing and Grubbing. Vegetation, such as brush, grass, roots, and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner,governing agencies,and the Geotechnical Consultant. The Geotechnical Consultant shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 1 percent of organic materials(by volume). No fill lift shall contain more than 5 percent of organic matter. Nesting of the organic materials shall not be allowed. If potentially hazardous materials are encountered,the Contractor shall stop work in the affected area,and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area. As presently defined by the State of California,most refined petroleum products(gasoline, diesel fuel, motor oil, grease,coolant,etc.)have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor,punishable by fines and/or imprisonment, and shall not be allowed. 1010 1094 Leighton and Associates,Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 3 of 6 2.2 Processint~ Existing ground that has been declared satisfactory for support of fill by the -Geotechnical Consultant shall be scarified to a minimum depth of 6 inches. Existing ground that is not satisfactory shall be overexcavated as specified in the following section. Scarification shall continue until soils are broken down and free of large clay lumps or clods and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction. 2.3 Overexcavation: In addition to removals and overexcavations recommended in the approved geotechnical report(s)and the grading plan, soft, loose, dry, saturated, spongy, organic-rich, highly fractured or otherwise unsuitable ground shall be overexcavated to competent ground as evaluated by the Geotechnical Consultant during grading. _._ 2.4 BenchinlV Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units),the ground shall be stepped or benched. Please see the Standard Details for a graphic illustration. The lowest bench or key shall be a minimum of 15 feet wide and at least 2 feet deep, into competent material as evaluated by the Geotechnical Consultant. Other benches shall be excavated a minimum height of 4 feet into competent material or as otherwise recommended by the Geotechnical Consultant. Fill placed on ground sloping flatter than 5:1 shall also be benched or otherwise overexcavated to provide a flat subgrade for the fill. 2.5 Evaluation/Acceptance of Fill Areas: All areas to receive fill, including removal and processed areas,key bottoms,and benches,shall be observed,mapped,elevations recorded, and/or tested prior to being accepted by the Geotechnical Consultant as suitable to receive fill. The Contractor shall obtain a written acceptance from the Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas,keys,and benches. 3.0 Fill Material -- 3.1 General Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by the Geotechnical Consultant prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential,or low strength shall be placed in areas acceptable to the Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material. 3.2 Oversize: Oversize material defined as rock,or other irreducible material with a maximum dimension greater than 8 inches, shall not be buried or placed in fill unless location, materials,and placement methods are specifically accepted by the Geotechnical Consultant. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 vertical feet of finish grade or within 2 feet of future utilities or underground construction. 3.3 Import If importingof fill material is required for grading, proposed import material shall meet the requirements of Section 3.1. The potential import source shall be given to the 3030 1094 Leighton and Associates,Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 4 of 6 Geotechnical Consultant at least 48 hours_(2 working days)before importing begins so that its suitability can be determined and appropriate tests performed. 4.0 Fill Placementand Compaction - 4.1 Fill Layers: Approved fill material shall be placed in areas prepared to receive fill (per Section 3.0) in near-horizontal layers not exceeding 8 inches in loose thickness. The Geotechnical Consultant may accept thicker layers if testing indicates the grading procedures can adequately compact the thicker layers. Each layer shall be spread evenly and mixed thoroughlyto attain relative uniformity of material and moisture throughout. 4.2 Fill Moisture Conditionin>~ Fill soils shall be watered,dried back,blended,and/or mixed, as necessary to attain a relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM Test Method D1557-91). 4.3 Compaction of Fill: After each layer has been moisture-conditioned,mixed, and evenly spread,it shall be uniformly compacted to not less than 90 percent of maximum dry density (ASTM Test Method D 1557-91). Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity. 4.4 Compaction of Fill Slopes: In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at-increments of 3 to 4 feet in fill elevation, or by other methods producing satisfactory results acceptable to the Geotechnical Consultant. Upon completion of grading,relative compaction of the fill,out to the slope face,shall be at least 90 percent of maximum density per ASTM Test Method D 1557-91. 4.5 Compaction Testin Field tests for moisture content and relative compaction of the fill soils shall be performed by the Geotechnical Consultant. Location and frequency of tests shall be at the Consultant's discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction(such as close to slope faces and at the fillfbedrock benches). 4.6 Frequency of Compaction Testing Tests shall be taken at intervals not exceeding 2 feet in vertical rise and/or 1,000 cubic yards of compacted fill soils embankment. In addition,as a _..., guideline,at least one test shall be taken on slope faces for each 5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The Contractor shall assure that fill construction is such that the testing schedule can be accomplished by the Geotechnical Consultant. The Contractor shall stop or slow down the earthwork construction if these minimum standards are not met. 3030 1094 Leighton and Associates,I nc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS ~- Page 5 of 6 4.7 Compaction Test Locations: The Geotechnical Consultant shall document the approximate elevation and horizontal coordinates of each test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that the Geotechnical Consultant can determine the test locations with sufficient accuracy. At a minimum,two grade stakes within a horizontal distance of 100 feet and vertically less than 5 feet apart from potential test locations shall be provided. 5.0 Subdrain Installation Subdrain systems shall be installed in accordance with the approved geotechnical report(s), the grading plan, and the Standard Details. The Geotechnical Consultant may recommend additional subdrains and/or changes in subdrain extent, location,grade, or material depending on conditions encountered during grading. All subdrains shall be surveyed by a land surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the Contractor for these surveys. 6.0 Excavation Excavations, as well as over-excavation for remedial purposes, shall be evaluated by the Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by the Geotechnical Consultant based on the field evaluation of exposed conditions during krading. Where fill-over-cut slopes are to be graded,the cut portion of the slope shall be made,evaluated,and accepted by the Geotechnical Consultant prior to placement of materials for construction of the fill portion of the slope,unless otherwise recommended by the Geotechnical Consultant. _ 7.0 Trench Backfills 7.1 The Contractor shall follow all OHSA and CaVOSHA requirements for safety of trench excavations. 7.2 All bedding and backfill of utility trenches shall be done in accordance with the applicable provisions of Standard Specifications of Public Works Construction. Bedding material shall have a Sand Equivalent greater than 30 (SE>30). The bedding shall be placed to 1 foot over the top of the conduit and densified by jetting. Backfill shall be placed and densified to a minimum of 90 percent of maximum from I foot above the top of the conduit to the surface. 7.3 The jetting of the bedding around the conduits shall be observed by the Geotechnical Consultant. 7.4 The Geotechnical Consultant shall test the trench backf ill for relative compaction. At least " one test should be made for every 300 feet of trench and 2 feet of fill. 3030 1094 Leighton and Associates,Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 6 of 6 7.5 Lift thickness of trench backfill shall _not exceed those allowed in the. Standard Specifications of Public Works Construction unless the Contractor can demonstrate to the Geotechnical Consultant that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method. 3030 1094 15' MIN. OUTLET PIPES 4.40 NON-PERFORATED PIPE, —————— -- 100' MAX. O.C. HORIZONTALLY, — —————— BACKCUT1:1 30' MAX. O.C. VERTICALLY —— ————— ————— OR FLATTER ------------ BENCHING ———————— ———————— — ---- — — — ----——— --————— KEY — — — ————— ——— ——— DEPTH -- _—__~2%==____— = \ T - —————————————————— 2% MIN.- 15' MIN. 2' MIN. P �lrM�IKOVERLAP FROM THE TOP KEY WIDTH POSITIVE SEAL HOG RING TIED EVERY 6 FEET SHOULD BE PROVIDED AT FILTER FABRIC THE JO (MIRAFI 140 OR o APPROVED OUTLET PIPE Ali EQUIVALENT) (NON-PERFORATED)_..ice // J T-CONNECTION FOR CALTRANS CLASS 11 COLLECTOR PIPE TO OUTLET PIPE PERMEABLE OR #2 ROCK (31FTNIFT.) WRAPPED IN FILTER FABRIC • SUBDRAJN INSTALLATION - Subdrain collector pipe shall be Installed with perforations down or, A% unless otherwise designated by the geotechnical consultant Outlet pipes shall be non-perforated pipe. The subdrain pipe shall have at least 8 perforations uniformly spaced per foot. Perforation shall be %0 to 'A,I drilled holes are used. All subdrain pipes shall have a gradient at least 2%towards the Outlet. • SUBDRAJN PIPE - Subdrain pipe shall be ASTM D2751, SDR 23.5 or ASTM D1527, Schedule 40, or ASTM D3034, SDR 23.5, Schedule 40 Polyvinyl Chloride Plastic (PVC) pipe. • All outlet pipe shall be placed in a trench no wider than twice the subdrain pipe. Pipe shall be in soil of SE>30 jetted or flooded in place except for the outside 5 feet which shall be native soil backfill. BUTTRESS OR GENERAL EARTHWORK AND GRADING REPLACEMENT FILL SPECIFICATIONS SUBDRAINS STANDARD DETAILS D 4195 ----------- PACTED= FILL 7- --:- PROJECTED PLANE I TO I MAXIMUM FROM TOE FILL SLOPE OF SLOPE To APPROVED GROUND REMOVE rf PICAL UNSUITABLE NATURAL MATERIAL GROUND BENCH T BENCH HEIGHT M IN. 2'MIN. LOWEST BENCH KEY LOWEST FILL-OVER-CUT FM SLOPE NATURAL w rfPICAL GROUND BENCH HEIGHT REMOVE UNSUITABLE MATERIAL STLJ r MIN. ii KEY DEPTH CUT FACE OWL BE CONSTRUCIM PRIOR To FILL PLACEMENT TO ASSURE CUT FACE ADEQUATE GEOLOGIC CONDITIONS TO BE CONSTRUCTED PRIOR TO FILL PLACEMENT NATURAL CUT-OVER-FILL GROUND SLOPE OVERBUILT AND TRIM BACK For Subdrains See Standard Detail C DESIGN SLOPE --- REMOVE PROJECTED PLANE NSUITABLE MATERIAL i To I MAXIMUM FROM TOE OF SLOPE TO APPROVED GROUND V TYPICAL _OMPACTED BENCH BENCH HEIGHT BENCHING SHALL BE DONE WHEN SLOPES RN. ANGLE IS EQUAL To OR GREATER THAN 5:1 �.--15'MI MINIMUM BENCH HEIGHT SHALL BE 4 FEET 2' MIN. LOWEST BENCH k*N*"FILL WK)TH SHALL BE 9 FEET KEY DEPTH GENERAL EARTHWORK AND GRADING KEYING AND BENCHING SPECIFICATIONS STANDARD DETAILS A REV.4111/ 8 _ _ _ _ _ _ _ _ -' _ _ _ _ _ _ _ _ _ _ FINISH GRADE In largest dimension. • Excavate a trench in the compacted fill deep erxxigh to bury all the rock. • Backfill with granular soil jetted or flooded In place to fill all the voids. • Do riot bury rock within 10 feet of finish grade. • Windrow d bLwW rock shall be Wallel to the finished slope fill. ELEVATION A-At PROFILE ALONG WINDROW JETTED OR FLOODED GRANULAR MATERIAL OVERSIZE GENERAL EARTHWORK AND GRADING ROCK DISPOSAL SPECIFICATIONS STANDARD DETAILS B _ _ _ _ _ _ _ _ -- _ _ _ _ _ _ _ _ _ NATURAL GROUND 26 MIN. OVERLAP FROM THE TOP HOG RING TIED EVERY 6 FEET CALTRANS CLASS 11 a PERMEABLE OR #2 ROCK (9FT.3/FT.) WRAPPED IN FILTER FABRIC FILTER FABRIC RAIRAFJ 140 OR COLLECTOR-PIPE SHALL APPROVED BE MINIMUM Go DIAMETER EQUIVALENT) SCHEDULE 40 PVC PERFORATED CANYON SUBDRAIN OUTLET DETAIL PIPE. SEE STANDARD DETAIL D PERFORATED PIPE FOR PIPE SPECIFICATION DESIGN FINISHED 10' MIN. BACKFILL GRADE FILTER FABRIC I (MIRAFI 140 OR 2% APPROVED —NON-PERFORATED 5' MIN. #2 ROCK WRAPPED IN FILTER 6-* MIN. FABRIC OR CALTRANS CLASS 11 GENERAL EARTHWORK AND GRADING CANYON SUBDRAINS SPECIFICATIONS STANDARD DETAILS C _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -- RETAINING WALL DRAINAGE DETAIL $OIL BACKFILL, COMPACTED TO 90 PERCENT j RELATIVE COMPACTION* FILTER FABRIC_E VELOPE- WALL WATEftPROOFING AMIRAFI 140N OR APPROVED WITH. PERFORATIONS IN Ii— WALL FOOTING�. �7 So MIN. NOT TO SCALE COMP&ENT BEDROCK OR MATERIAL AS EVALUATED BY THE GEOTECHNICAL CONSULTANT SPECIFICATIONS FOR CALTRANS CLASS 2 PERMEABLE MATERIAL U.S. Standard *BASED ON ASTM D1657 Sieve Size % Passin 111 100 **IF CALTRANS CLASS 2 PERMEABLE MATERIAL 3/411 90-100 (SEE GRADATION TO LEFT) IS USED IN PLACE OF 3/4'-1-1/2' GRAVEL, FILTER FABRIC MAY BE 3/811 40-100 DELETED. CALTRANS CLASS 2 PERMEABLE No. 4 25-40 MATERIAL SHOULD BE COMPACTED TO 90, No. 8 18-33 PERCEN'fRELATIVE COMPACTION* No. 30 5-15 NOTE:COMPOSITE DRAINAGE PRODUCTS SUCH AS miRADRAIN No. 50 0-7 OR J—DRAIN MAY BE USED AS AN ALTERNATIVE TO GRAVEL OR No. 200 0-3 CLASS 2-INSTALLATION SHOULD BE PERFORMED IN ACCORDANCE Sand Equivalent>75 WITH MANUFACTURER'S SPECIFICAT'IONS. ������ STABILITY FILL / BUTTRESS DETAIL - OUTLET PIPES 4' 0 NONPERFORATED PIPE. 100' MAX. O.C. HORIZONTALLY. _ 30' MAX. O.C. VERTICALLY __ * * E Q F A U L T * - * Version 3.00 * *********************** DETERMINISTIC ESTIMATION OF PEAK ACCELERATION FROM DIGITIZED FAULTS JOB NUMBER: 940028-031 DATE: 11-06-2000 JOB NAME: Encinitas Towne Center Lot 43 CALCULATION NAME: Test Run Analysis FAULT-DATA-FILE NAME: CDMGFLTE.DAT SITE COORDINATES: SITE LATITUDE: 33.0598 SITE LONGITUDE: 117.2668 SEARCH RADIUS: 100 mi ATTENUATION RELATION: 5) Boore et al. (1997) Horiz. - SOIL (310) UNCERTAINTY (M=Median, S=Sigma) : S Number of Sigmas: 1. 0 DISTANCE MEASURE: cd_2drp SCOND: 0 Basement Depth: .10 km Campbell SSR: Campbell SHR: COMPUTE PEAK HORIZONTAL ACCELERATION FAULT-DATA FILE USED: CDMGFLTE.DAT MINIMUM DEPTH VALUE (km) : 0.0 _ _ _______________ EQFAULz SUMMARY --------------- _ ----------------------------- DETERMINISTIC SITE PARAMETERS ----------------------------- _ Pagel ___________________________________________________________------------ -------- |�S�Z�a��D MAX' EARTHQUAKE EVENT | APPROXIMATE | ------------------------------- ABBREVIATED | DISTANCE \ MAXIMUM | PEAK JEST. SITE ����� 0A�� | mi (km) |EaBTBUUAuE| SITE | ZNTC0SZzY '- | | MaG. (Mw) | ACCoL. g |n0o'MERC. BD3E CANYON \ 4 .4 ( 7.1) 1 6. 9 | 0. 624 | x - NEWPORT-INGLEWOOD (offshore) | 11.5 ( 18.5) 1 6. 9 | 0.345 | Ix COBONAo0 BANK | 19.3 ( 3I'I) 1 7'4 \ 0.306 | Ix ELSZ0ORE-JULIAN | 26'] ( 42.4) 1 7. 1 | 0.207 | nZIZ ELSI00RE-7EMECULA | 26'4 ( 42.5) 1 6.8 | 0'I76 | VZZZ -- EARTHQUAKE VALLEY | 40'0 ( 65.3) 1 6.5 | 0'I08 | VII ELSI0OBE-GLEN IVY | 40. 6 ( 65.]) 1 6.8 | 0.127 \ VIII PAL0S VEnDES | 41.8 ( 67'3) 1 7.1 | 0.145 | VZZZ SAN JACZ0T0-AN3A | 49.2 ( 79. I) 1 7.2 \ 0.135 | vZZz - SAN J8CZ0T0-SAN JACI0TO VALLEY | 51.2 ( 82'4) 1 6' 9 \ 0.111 | VII SAN JACzNT0-COYOTE CREEK | 51'8 ( 83.4) 1 6. 8 | 0.105 | vZZ ELSZN0uE-COYOTE MOUNTAIN | 52'8 ( 85.0) 1 6.8 | 0.I03 | VII - NEWPORT-I0GLEWO0D (L'A'Baaiu) | 55'6( 86.3) 1 6. 9 | 0'I08 | VII CHINO-CE0TB.AL AVE. (Elsinore) | 54 .7 ( 88.0) 1 6.7 | 0.1I6 | VII �ZZ| 58 9< 94 8) | 6.8 | 0.095 \ �uZr�I�R ' ' SAN J�CZ0�0 - �0�R��3 | 62. 9( I0l.2) | 6. 6 | 0.081 | vZZ - 8 | �.IO9 | VII | 63 3 < l0I 8) | � C0y���0 �BDOS� . ' ' ' ' 082 | VII | 0 SAN JACZ0TO-SAN 8ERNARDZ00 | 66'1 ( 106.4) 1 6 ELYSZA0 PARK THRUST | 66.2 ( 106.5) | 6.7 | 0. 100 | VII -- SAN A0DREaS - Sao Bernardino | 69'2 ( III.4) 1 7 .3 | 0.109 | VII SAN ANDuEAS - Southern | 69.2 ( 1II.4) 1 7 .4 l 0.1I5 i vZZ 3A0 ANoBEA3 - Coachella | 75.4 ( I2I'3) 1 7.1 | 0.092 | VII 3A0 JOSE | 75.7 ( I2I.9) 1 6.5 | 0.081 | VII - PINTO e0D0TAZ0 | 75.8 ( 122.0) 1 7 .0 | 0.087 | VII SneEnSzZTZ0x MT0 (San Jacinto) | 78'0 ( I25.5) 1 6. 6 | 0'069 i »I ' nZz| 78 2 < I25 9} | 7 .0 | 0. 103 | C�C��00�� ' ' 7.0 \ 0.lO� | VII Sz��n� MAD8E | 78. 4 ( I26.2) 1-- MT N.-��N | O0.0 ( l28 .R> | NORTH ' . '0�I | vI | RI.5 ( I3I.2) | 7 .0 | 0.100 | VII ^~~~�a� �an�� �O0� <�es�> 6 4 \ O 6 | O.066 \ vZ| BI 8 ( l]l 7) | 6 ���On� ���C8 . . . - EUREKA PEAK | 82.7 ( I]3. I) 1 6. 4 | 0.059 1 VI SUPERSTITION HILLS (Sao Jacinto) | 82.8 ( I]3. 3) 1 6. 6 | 0.066 | vI LAGUNA SALAuA \ 83.4 < 134 .3> 1 7 .0 | 0.080 | VzI CLECeORm | 83. 9 ( I35. I) 1 6. 5 \ 0. 062 | VT - m0nT8 FRONTAL FAULT ZONE (East) | 84 . 6 ( 1]6.2) 1 6.7 | 0.083 | vII RAYMOND | 87 . 6 ( 14I . 0) 1 5. 5 | 0.072 | VIT uom umoRsAo - 1857 Rupture | 87 .7 ( 141.2) 1 7 . 8 | 0. I18 | VII -- Sam amonEAS - Mojave | 87 .7 ( 141 .2) 1 7 . 1 | 0.082 | vzT CLAMSHELL-SAwpIT | 87 . 9 ( I11 . 4) � 6. 5 | 0 . 072 VII vxRoUGO | 90. 1 ( 145.0) 1 6.7 | 0.079 | vIl _ _ p ----------------------------- DETERMINISTIC SITE PARAMETERS ----------------------------- Page 2 ___ -------------------------------- -------------- (ESTIMATED MAX. EARTHQUAKE EVENT APPROXIMATE I --------- PEAK ZEST. SITE ABBREVIATED I DISTANCE I MAXIMUM I FAULT NAME I mi (km) IEARTHQUAKEI SITE ( INTENSITY MAG. (Mw) I ACCEL. g IMOD.MERC. --------------- I 90.7 ( 146.0) 1 7 .3 I 0.088 I VII LANDERS HOLLYWOOD I 92.0 ( 148.1) 1 6.4 I 0.066 I BRAWLEY SEISMIC ZONE I 92.5 ( 148.8) 1 6.4 I 0.054 I VI HELENDALE - S. LOCKHARDT I 93.5 ( 150.4) 1 7 .1 I 0.078 I VII LENWOOD-LOCKHART-OLD WOMAN SPRGSI 96. 6( 155.5) 1 7.3 1 0.084 1 VII -° SANTA MONICA I 96.7 ( 155.6) 1 6. 6 I 0.071 I VI EMERSON So. - COPPER MTN. 1 98.3 ( 158.2) 1 6.9 1 0.067 1 VI 1 98. 9 ( 159.2) 1 7 .0 I 0.070 I VI IMPERIAL 1 99.0 ( 159.4) 1 6.7 1 0.060 1 V JOHNSON VALLEY (Northern) -- I 99.4 ( 159.9) 1 6.7 I 0.073 I VII MALIBU COAST -END OF SEARCH- 50 FAULTS FOUND WITHIN THE SPECIFIED SEARCH RADIUS. THE ROSE CANYON FAULT IS CLOSEST TO THE SITE. IT IS ABOUT 4 .4 MILES (7 .1 km) AWAY. LARGEST MAXIMUM-EARTHQUAKE SITE ACCELERATION: 0. 6238 g /V PROPERTY A I i ­�, I S HE E T 3, t-I I k W UNE rl AD 2 1-3 SEE SHEET 5 219.5 -21".7 WALL 7U to -MIA III AI_ tip (A I SEE PROF", 111PS"v, + 2 217-60 'WALL 7L �04 TWO '21" 80 PA 211) -Z PROPOSED It (Tt) F 216,9 IL �Sm 61 pAj) 2 19. 9 L! 2l&48 2 2 r I 110., 5 -4 6 L X�h _a 1" ;1" 1 �,I ,� e �!� I 5z X257 + 21 CA C gel 4 TG to Or 2 19.4 FE, .4 C) tv L IC':J)Wy LEW-, 1") 11--__j u FG -X V! .4 219,4 2 _19,55 I A4819k W, 4 JWAI 71-7 8 q��11 11, .,,1 X �- Y4 t 1; 2 12 B I I 1'.III x 1p Ll ----------- 13+fk4 50 FT 190t Kr jko rt) 1 40'�4 )i I , 21 5 -------- c IN vf :?o2 TIAD �,2IC2 ),50 leg W, __ 0 In- A 4 5 Mir) 20.9 + + PA 1) 0"I GF 211.9 IF FF IV -- -0 1 >-4 2 1:717 WAIJ, 9 tip L� - SEF PROVIIE S VT 10 wv I I -y w, n lot r� om 100.40 Fl, 0 Fc, My_ 44 + BW 211-7 �2zo - 1 144 34".5 1 A22 i � 'ta 2P& 2 Dw F 14 tA L If" _X 21.62 i i _ �t J�� 6 t9 BW 22 1. 7 1 1 "10 1 �11 ('�5, It I i I 1:m! I uz,Q 1 ,vi SHEET 8 FOR BOUNDARY, 141, PACIFIC SIDELS ENGINEERING, INC. X126 lei fj ,%."! I-, " I � : i, Tt vie I lt Pw V pw %-,,n�i� Z`� 10) V '4r) I l; �; 1 It 1- ­1 ­-In JII," , "Ff x FAD 194,1 ko 1: )2 4- iIII3 C) 22f,O 2 4L_ /'i _- -w-, en 11 5J3 *iw 17� I ftl.l) j to FG I P,).1" L Ig P`W 179A I/Y TV + A ZO G 72 iNl 51 sw) Tw Azl; J X*o X F :3w (41) pit �qj 64C�Tt n pit I (1, 13+401,34 - ------- to '7 "If + cF1 X N + "W .3 PiD_ 161 2" 9 TG x 2.2.T<Q,/ _4 �,JK --- lop"o r4, qF 10-7.3 (T­.1 I T, NP -95,, 13+64 3Q Tw I fi� VAI FF It �j L L ta v �12 !,,,I I I I "I :I k4l x 4, Tw I an, P Z TP ---- - - , ,, , V 1P D' 1 1 G I R4," X/ e", um", A.7 4 'A '66 Dc 1.7 28 CTR R 0 DWY RW �a w CL 19 vQi -20A' 0 BC 10 Fc I ILI )0. 191.76 TIC Z 215.57 y s - v Q %V F F t-LIX 2 (af /Ttj 4 4-11 x Od TIC 2J5 66 PC - 9T� III �32,40 EC x Y44 g v lfj8,14 TG X TIT tl 0 0 OT A A116 23t -q- I 4kz olli/ x 0 1-k M IX� Tt ),ei ev.* x 104, rj, X25 X26A ilwf� 1. 1 X,f;v 7j'a xj2 A-- 0,;::, _A: 99.3 A I �31= PAD R'43.0 4s 4� TW IR 73 A 2'21 FF PI.Z 41 CIZI, .75 G F FF 2,11 -B- 1.4 if G1, )v Wow*,, u 7. fp. w J- ,C 90. Ai I VIP' T 2 ^4 V\ 11F t T`W Pi I Imp& t I _2 X14 bf . -4� ,�'I I�"' A �T IiT I' 644 -t.9.4.m N TW T,' `438,� -A 2�! 'tzir KFT _1 x 2q I I-,' V 15' LANDSCAPE BUFFER A STATEMENT OF ENGINEFIR OF WORK TRE 11NIRPSGNED FNCINFYR ACRTFS TIIAT TIP, WORK PEFTOP101) IIY Tffn EN(',INF1FJ1 S!IALL WITH TITE GFNERAUY "S TRADE OR PROFESSION� TITE. ENGINEF �V'CEPTED STANDARDS AND PRAC17CFS OF 11RE FN(;TN12ER R FTRTUER A(;REF8 TMAT THE RC NALD 1 7K PFPr1R)if!,n HEREIN S�IAIJ, RE IN ACCORDANCE WIT" T14E AND RECUIATIONS REQUIRED nY THE CITY OF ENCINITAS. HI;LLOW � ,MFD BY THE CITY OF EYCfNITAS IN ITS CAPACITY AS A PUBLIC NO. 29271 'r!T FNCTNf:FR A(�PEFS THAT ANY PTAN (,'fjr('X OR REVIEW, PERFOP D A yt,irvry rop, ­11w PIANS PHrPARED BY THE ENCINVER Iq NOT A DETERMINATION BY T14E CITY OF FN(1NrTAS OF THE TECHWNICAL �y, k EXP 3-31-99 Itt OR ADEQUACY OF T"E PIANS OP PFSI(-�N ANT) T"YRFORF DOES NOT RFUPV'F THE ENGINFER OF RESPON'SIBI F R -7,,7 ["TANS OR TY'SIGN Of T1APROVrVPNT Dk`��D TIIFPVf.)NI TITE FNGINFFIR AGRFFS TO INDEMNIFY AND 11011) 4kRMLFSS Trm�l CZ t PI5 C rrvv 11 OF "417INITAS, ITS OFFTCFRS, AGEN"IS AND EMPIOYEFS FROM PROPERTY DAMAGE OR BODILY INJURY ARW1Nf SOTIELY FROM OZ., TITF Nr�GLIGVNT ACTS, FIRRORS OR FUMISSIONS OF THE FNCINEER, ITS ACENTS OR ITS EMPLOYEES, ACTING wrrflIN THE COURSE AND 0 F cilvAl OF SUCH AfXNCY ANT) FMPLOYMENT, AND ARISTNG OY7 OF THE WORK PERFORMED BY THE ENGINEER. DFNCHMARK S C ALE prwrte", APPROV" PA". n-% DFII�CIIM�N: TOP OF DISK IN WFI1 FIFT", , IUMMONAL AS SHOWN im,mom: Izm vi+�sj Tftt RFCORPFP FRnWS.D. M VrRT. CONTROL, PGAV IFTWMAII AS SPOWN Fly"VAIVON: 110.81 , - DATTJV:_M,$,L � - - � I - I _ - - 20j J, F Tw 21() .5 206. i 3'C 22, 6 8. 0 TP BOUNDARY Tfs 209 o CONIC, STFPS WALL 8 FG 207,? Fl, 200.00 SDP- D M-26 SFE STIFET e FOR STORM SEE PROYHY SHEET _f6_ \1w _4�90'5 P DRAIN DATA, SITEET 7 rfnv VADn niptimy nAqA f^r i s:nvun SHEET 3 2 10 0 20 30 40 SCALE: I" - 2,01' 14"N T D.P.Am T-NG NO. SPECIAL DISTRICT RAWN BY Al"PROVALS CITY OF ENCINITA'"- ENGINTEEIRING DEPAliTME SEE I RZ PIANS PRIPPARED U�DER THE SUPERVISION OF RE C 0 1 ME NTJ r� 1) APP��OVED GRADING PLANS FOR TMA 96-007 BY: BY: ij"JA� I MENDOCINO AT D ATE; jPj CI I 4 77 6., 6. G R.C.E. NO. 2"71 DATE: /1- 21- 9�e DATE: FNCINIV-3 RANCTI ENGINEER EXP. 3-31-99 T 19 WORK PROJECT NO. IISTIZET 4 (2 - - ------------ - ------ 0 3\GP\GP 'WO 440--'I(i7f5-P'In D4`!P�: 1� SHEET 8 FOR BOUNDARY, PACIFIC SIDELS ENGINEERING, INC. CIJR13 AND C.L. DATA 7715 CONVOY COURT SAN DIEGO. CA 92111 (619) 560-1713 wo; Ag%d% 921V II 14"N T D.P.Am T-NG NO. SPECIAL DISTRICT RAWN BY Al"PROVALS CITY OF ENCINITA'"- ENGINTEEIRING DEPAliTME SEE I RZ PIANS PRIPPARED U�DER THE SUPERVISION OF RE C 0 1 ME NTJ r� 1) APP��OVED GRADING PLANS FOR TMA 96-007 BY: BY: ij"JA� I MENDOCINO AT D ATE; jPj CI I 4 77 6., 6. G R.C.E. NO. 2"71 DATE: /1- 21- 9�e DATE: FNCINIV-3 RANCTI ENGINEER EXP. 3-31-99 T 19 WORK PROJECT NO. IISTIZET 4 (2 - - ------------ - ------ 0 3\GP\GP 'WO 440--'I(i7f5-P'In D4`!P�: 1� __ ---- --- - -`- -- -MATCH EXIST. CUR}3,_6UTSER` 10+00,00 MONTE RIKY-ELAC& 84 °° A,'v'D SH) AI I(� 85 +50,00 GAItI. FN VIEW ROAD ?3 - - - - - - -i- - a ,.,•. _ - - t E}Fi'iTING STREET IMPROVEMENTS PER r r / L- 1200.0" i = OF ENCINITAS DWG. NO? 43;14 -I STING CURA, GUTTER At SID , AI K TO BE REMOVED y T EXISTING 24" I f J `A �? °GIs of RCP & CMP a+ 177.5,1 7'C _. � e,-.�. `���� ;� RISER TO BE '•, -����_ .,_ .__ _ _ __ 44 vi _f) 40 REMOVED A / ^, L� FI�R tvcp (TC 180.37 17 i.3� TC 174.88 TC Ell m I r• SCALE: i" - 7' { TC I88.85 TC 182.87 ItL �` - D 4 _ 4 u ` w _ �.�, -1737 TC 7 LEGEND _- LI.' =_ -- - r - IO' PRIVATE, DRAINAGE F, NT. 182.81 IF. 'P _ __ -- N a f o� artificial f� (gaeamem observed by �) V \ - r - -- ���a\ a v. artificial fill ov4rlying Torrey Sandstone .. {°�,,.__ _ _ _...... .._.. '/ ai 87 +23.38 BC ^� ^ END SC'IiFAC`E IA9PIi0VFIIETeTS ST STREET LIC -- 3 fCH EXIST•_ rum x 87 1 I R 6� SIDEALFi ° -"' EXISTING IE 157.3 I 30" RCP D 3D (IF t57.4� -2 °X. t't?AfC;. SAt.F .n . ,n tt11Arl a . /?,It- _ al '6 10 to cDica r c0 ., 1' iis» ai Rio ., r to as 11 a.fm ro as m r-'0 0 S� °•IE 159.30 n" PVC L =4I IF r0 t0 tFUTURE (S ",' 9IIVFT 7) >� / 1 CURD __ i.._ F _ _� _ .._._ .. saw N _(o'iq (Leighton & Assoc., 1995a) .... "^s..,%.`� -.,.: a,.••..,....�. =. __ .._,::.. -: . )3T �r I _. J; _..,t ._�.,,�b (- ry,. ,'.-",• . __.� .� n,.,m, - ' VAS sloe wash P -," _cI - -_ 18`X,0 tI ..�: :- -�= :: a ( + �, �t • , ._.. ,...._.,�.,�. -. 344 �2• f t, ✓ G r O G {ih X ,, X � . y ,• TG 188 (brsckoiWwhorabwkM) -T"F.'a°_ 2'y ___..._.,.;.._ ,' ::n �f. _._..y .�_ -.• ..•••••••.•�•.. • %- _ ,� + } r sa3.11cl p \ a '� , / �. -= ..._. +11+...,,.•..... • • r -i; ", ' " � • I'I"' N 1 D SYSTEM Qt terrace deposit 4 tb 4o tAICO / • A'tyRv .• 3i Aa • (.;a?, EEC' Fr$o,I2Ali Y. >`$*sAt 1 Nt X1y;, sr� Xllz g- - _ R I �, I L mo�,�t' X10 l� b\ ._ '�� YROVfSE 40' v %6 %tii IbS. -� �9IiJX' � �j • Tt Torrey Sandstone t TflI2T+I \ X 1 4 - \ 7 ITTi%i'f�` - - 170.80 , v�4 i lam~ 4 n � i .: D _ " A _, \ 9 C'IC _ , - DRAIN DATAXI A EET 7 r- ` Iw I ,h - _ X itlO D 181 2.;? IE -, (� _ e9 P Xj •• -- h \, %,04A i 1 1 � units of comppcted fill (this report), FOR R YARD DRAIN DAT b FF 18`1.8 _ X101 - � \ r c; S FFT 8 F'K7R3 A �' - - - -- - ie9,o i7i.- N 1 t; *' �' �+ ✓� G �\ , X.r, X33 1� 1' - [ j I ! � - F .189 HP J � � i i - ! ' �O � /c� , �� ` I • .�; 1511,1• '_' , t, .,a� \ CURB AND C. �A X! � �~ G I11 � � !� �4' °a \� 4p� Q �' tt � .1! , � � I'�t)FII sxFi;T I7 cap lot 09 x ` r o�Na• 4 , , I X rz ; • (r�'% �4s' 187.00 TG'' aaax� /G l'' 1fl6,4- - t _ 8M 1 t °; i - _ Gy •• 1• rrprn 10" 1$5.50 Fi o °+ g ° Y -i« asT ] F 7y�1 I ! •...•• .�.... tied ¢oologlc_tontact 4 ,. ,� ._ .... Cmc - - -r r'` .- w y "R.!i •1• \ i r FT SIi GRADE X �.• , rat`�i _.2%..• . �i9v. _.....,.... .'_ .. � � � �:�, � / .r' cs � \ ` _ +--_ � - ],_X -�� ., i X 113 1 .. I S SE OF .I: SHUT 17 unI X 123 Pproximate loc ti m •mp.etibrt teat ( )PF VARIES) � . 35 - .m _ ___ TO• i N •i+ - Y a c+ + y r+J p r TG 184.8 _.._..._.._. _._._.._ __. -,_._. i� -_.. b . - „� � "., . , -i« A" -,. ,_ �- @t • . b5� , � 1 �' � i .+. .�. � �a Qt's `L � r ,,,' _ _ .:•�' ",a SF }`C° t38.0 kl %�° _, _.(} 7. im w ° «,� ! m I �; 4 3 4 86+1.' 16 - F..� 1 I1y! 087.5' 3',/�� ?+•_._.. :_. -. ., _... , pCC--� r -..PAii Imo. k vxtl! Qi i... 3y 1. '` •" A \ \',�,s. J_1� ..• �r; f : :...... _ dashed rk�d i i • - \ t_._ -�v s CL1Itit "n FF _188.4 w � C d� „ ? r c_ T t, 'Y 4 .4 1, ! , : trlko all vortke !. i8" CMPI PER SDRSD (.181} 16 r ._GF 191.7` w « + +.� ! l i N� . / J _.- STD DWG D -18 CG " - �} (� I' ✓ d I8 1%a 11Lyi {TYPE B) £ 1$ ?) �, r 1e7 o _ _ .. _ ! � ° 4 i !' a �c�/ t� - .rte •I rveyed olawamon ro*val bottatlm_ `" w ` "' rn + zq 0 18C1.17 j .. � �-.� '�+9�ai� ,� 1 I - ----._ (183) `{ � W O A cr � f + t JP•� �o� cod, , : -� y - I, a. N 280.28 'has d, � � � - R 2 { 1841 . rr ; cp n _: - = -- -4 �4. - -" aa+ .- _ `"�•'- f 4,`� ��.°"• , .. 7H' ° 182.8 '� �J « `e T t �TYPICAL SECTION a � ; NC)T' TO SCAI:: tFLR :.cVG T, RI6A?I(Lglf emr E AS TV 195.4 - t BW 18c1..4 DDt^ �C - x _- 15'4 v i WALL 1 I I , , • • •� a5er.�1t vat✓ g I SEE PROFILE SHEET 1f4 - LJ PAD 1S4.S •� _ _ . 1 TFiIG W 1i9S1• ! FF 1 55.8 ' • �3 f c�t� %Cg'i .° ti GF 1114. 1i1 � ' • �% l +5 4 I6 1 S .4 1 TC. 193.7 1T • • �.' �4 t9x� FG 194.9 F wi I3W iCt4 ♦� f�� t� o - ` \ mf �a •• 'l �'4 eA � p r' I Nil i �. # � � ('I'C._ ..08.51)_ TN 1 � .z G• t � 1 4 a k fill IRAN.?, • ��. - 0.8 \ lri , oil � �+ p r��Us• ) Io � "^r 0 • w 18_� �1, ] X WAIF, 2 � r % . 1 � } �t, SEE PROFILE' :SHEET 18 T _ -u- 1 i a f Tt � t � T!9 5 � FT. 196.7 IIW 195.2 • � �.M d y _� • 1, t 's 1 j - - -- . S �.. i C. SjOY�� ' 8 16 ` ► i� • 1 1 3 " r tt; �+ i �, � ACT � �• ---_- °�. RONALD N0. 29271 t C 214.3 r '6 _ -° A OF 4 "ACNE STATEMENT OF ENGINEER OF WORK T=IE UNDERSIGNED ENGINEER AGREES THAT T117 WORK PtRFt ?RMED BY THE ENGINEER SHALL, COMPLY WITH THE GENERALLY .ACCEPTED STANDARDS ANT) PRACTICES OF TIIE ENGINEER'S TRADE OR PROFESSION. THE ENGINEER FURTHER AGREES THAT THE FORK rERFORMED HEREIN P41AU BE IN ACCORDANCE WITH THE RULES" AND REGULATIONS REQUIRED BY THE CITY OF ENCINITAS. I IF ENGINEER AGREES THAT ANY PLAN C:IIECK OR REVIEW PERFORMED PY TTIE CITY OF ENCINITAS IN TF;i CAPACITY A.fi A F'UBIJC' � 2 , TiAS OF IiE� TECHNICAL 2 fi°' CITY OF ENCINITAS > DETERMINATION 11Y THE: IF FIt IS NOT A DET THE F,NCINF, F a I"I""i FOR TH.. PUNS PRE'PA . - SUFT'iMENC:Y OR ADEQUACY OF THE PLANS OR DESIGN AND TBERFORE: DOES NOT RFLIEVE THE ENGINEER OF RESPONSIBILITY FOR TIIE' PLANS C`R DESIGN OF IMPROVEMENT BASED TIIF'REON. THE ENGINEER AGRF S TO INDEMNIFY AND HOLD HARMLESS THE CITY OF YNC'INITAS. ITS OFFICERS, AGENTS AND EMPLOYk,Es FROM PROPERTY DAMAGE OR BODILY INJURY ARISING SOLELY FROM \ €`HF NEGLIGENT ACTS, ERRORS OR t?AiMIS1 IONS OF TIIE ENGINEER" ITS AGENTS OR ITS EMPLOYERS, ACTING WITHIN THY COT?I`,,SE AYD s;vwnpg OF SUCIr. AGENCY AND FMPLOYMFNT, ANI) ARISING OUT OF THE WORN PERFORMED BY THE RNGINF:FP, 1 p .., A >ta1. -n M-T FIw .;. Ik 9'R ICCH .Si."ALE _" r;xn r Ir _ -_ ._ 1419i"9tIF r10N; T? .. t)P. I3ltli_.Ii1ri4. iN, 6 , (a!- !F' :TS_t �, Mara ;�.. • ; ��„ -�_ ,'t- -____ _ .- _•_ -__ -_ _ -- �.,,. l..' \. ` ...._ r5 t_�.. w+ ORLi+O� fl _ � ktirNi.(NY ii ail. A+Y 9H{)t,'N _ 1 1gF_ _ ._ . _..__ ____ . _._ ixscnTStrN :eA 43 +1f1 G 1.. K.G,.1 GOJtITIdi1_RAI PWCN�rD PROM 9,D, C0 _ ,_ C0N`IP01 PG.1 ' _ .__ __.. _.____. _ KLEVATlON: 1 &�.4U _ __ PATt9 . _ i __ ., cAa AS_ pW19_.. v 1� 180.3 FL a +fl . „, st.E - •, r, r _1'` tl4.a PL o+' ,r� I� +ns.44C J '�'° .� d� 14, r S --- r�aaa.aa r -- <--.0+ __.� -_\ �'�� � ,., 'a;' �.jt .,. �/ / "� '� .•r� � TIT--i.. +�.•: ii _ - Ls L• � V ' 11 ± Mi1 E5 � 0 +00 R)? a 'vy Q "r ` T} ` X I dL .88 - FC - .4y 4 1 i3•(F 9 17'1 '7�Q. . 9 b� � " e fp CL 1895 E C 5.57 gx S ' f' ° \±tL Cw _ : •'•, ��'w `ter ` 08.44 BCN 3 04 pk'tR. 1 / .! *Q ,f 4 "r' g I _. � }i'A?'iq _ �U;, R?'` -. � , f Rt- � _ O../ �: v t v 1. f 2.B dip °t N y .b G,t•, \ t IT_ w i tC , t >s S '`� CY, d N .. � efi .-L p7' � Q j' �� 9J ..a ,•-.._ !` <17J ,I ? . a*. � > 1 • -. \� � v4 N t9 r 7. TG .-,� I• "-� vy �, /�' ct� _, ,tn i f9Gr 5 41� ! 3�s" ' CPp If � 1 •• 0.7 rr TA • 3 X ` ` l a �" PAD 4 0.7 { +� X. g,9 `; \`'' 1 R9Q \ %Y / f , 2,� FF 108.1 _ AID 89.5 1 GF 18' ?.4 'ni r f 87.4 f,d _ , 'ca q} �/ 1 L 2 , • « ,S. 1I' GP 16tiJ ` " 43' n= O ors > \ \ ^ , qrF 1"10 l 07 o 7' 18 x } a.= `l FG 18 4 ;, { TG =� -I0�0 fi(> t '� 0. `' s.a �a� �, ,, ' __ "_ � '•'� ��r e',C � i'. �";t l _ E Sl� - ez •� '4 r - �,, `'+�1' ova -• -"" - -__ : :`i . ,,,A.:... d. y� z .d+,\ :\ S� Y £7�J �` ,. `•, °.' �� • �. tt8'p,�' $9 9 .- t .Ad' _ .... W^-.- ,,. �' tVV/.�i ..°..._J� -t._. .. " M^c `w,... 4 VTp� V 'O's ^:l J •`, .\ _eel �l jar, T� `. ,�, r ,� cv /ti �• \ �f L \. ' •• l Gar � { y jry �' _.. _I��t V'l' BR��. �T_, �' ,�y - -'��� {£ � .,�� �'``•,, � / v �[ /.w 'V �,.`,,i t1:q f� S. f. : �L.B) \ j`` � ' ...� � � 1 .•••..� : s FI;1- 0.0, p �• iT ._ 1 9 - � f 1 c.7 Ck > Et4 r o s Z - \ t w A \ F ss \' � b 4 1 S 9 0 F ti :y o t� l_..::._,.. A GAS ,.. t `.14� /•.�``', n rn °< IF 1 r > . _ �. � _ (i I i A ` 2 / '4P� / efz! \ �f �. i \ Orn � 0 in ,f Z, r� ' ZG.`! lj. '. f ' \3•' / J I� \ \ 4 - < W, x nFV„d k, i 0• .' C• B 1 ` l tea R5 j Is- 2.,, Y/ 10-E Is • \ � � � '�j Lam: / ILI �) It a,�FNltA E ray 1�s�, =,__ / T- 4 , 1 1 SUITE "L° t:l ESE I.TI�,:• E't c:Arii_' PAD, Ct1 9<t'l`}s3 -4�ifi% a -` 1E S 4 A �) SEE IMPROVEMENT Tt N 766 ---1 (6;9} f3 -�7 }n � � /t X( T�y.Frgskay� gygTpT(�re g� �, g Tat) 0 a BRAWN By CHF('KFD BY A'tlX3.i°+ 9J' :` t k t 1 "e SPECIAL DT'STRICT MSIG D rax F'ka ®i7AI _ � I �'� (��' _ FLANS PREPARED i'NDFR THE SUPERVISION OF CO }IKI) APP VE>t2 ^,, r '• "' IiI�ADI2IG PLANS LET$ � 11(' DA"T:_,-of7-t ?(o BY: . B - -` 7x - - - -- MENDOCINO 4- 6 , / {'L "�'' �/_N I✓ __ ___ �k`.� NG-[NE! E K -- a . .- N . ®''. im 71 Rc. . Na. 252 DATE: DATE: EXP. 3 -si_ -rye I�aRx YRt �rCT NO. S ; ;E OF 3 _omo.® °°' �° C :\ST)`JKI'RCII\OC 5 \DWU'�LOi- 49\GP \S.P -3.OW WO 4?0- 0675 -600 DATE,. 10-17-99 NoText NoText NoText NoText NoText NoText NoText