Loading...
2001-7052 G \ Ci o NGINEERING SER VICES DEPAR TMENT Encinitas Capital Improvement Projects District Support Services Field Operations Sand Replenishment/Stormwater Compliance Subdivision Engineering Traffic Engineering October 3, 2005 Attn: Branch Manager Washington Mutual Bank 295 S. Rancho Santa Fe Road San Marcos, California 92069 RE: Castillero Design and Construction, Inc. Dove Hollow Road Grading Permit 7052-G A.P.N. 264-451-02 Final release of security Permit 7052-G authorized earthwork, private drainage improvements, and erosion control, all as necessary to build/prepare the described project. The Field Inspector has approved the project. Therefore, a release in the remaining security deposit is merited. Certificate of Deposit Account 0179-0001483199-9, in the original amount of$ 47,109.00 may be released in entirety. It was reduced to $23,554.50 on July 2, 2002. The original is enclosed. Should you have any questions or concerns, please contact Debra A. Geishart at(760) 633-2779 or in writing, attention this Department. Since ely, Debra Geishart J Le ach Engineering Technician Financial Services Manager Field Operations Financial Services Cc Jay Lembach, Financial services Manager Debra Geishart Castillero Design and Construction Inc. File Enc. TEL 760-633-2600 / FAX 760-633-2627 505 S. Vulcan Avenue, Encinitas, California 92024-3633 TDD 760-633-2700 W1 recycled paper °r - GINEER.�NG SERVICES DEPARTMENT cit E y o,f Encinitas Capital Improvement Projects District Support Services Field Operations Sand Replenishment/Stormwater Compliance Subdivision Engineering Traffic Engineering July 2, 2002 Attn: Branch Manager Washington Mutual Bank 295 S. Rancho Santa Fe Road San Marcos, California 92069 RE: Castillero Design and Construction, Inc. Dove Hollow Road Grading Permit 7052-G A.P.N. 264-451-02 Partial release of security Permit 7052-G authorized earthwork, private drainage improvements, and erosion control, all as necessary to build/prepare the described project. The acceptance, and warranty inspections have all been completed to the satisfaction of the Field Operations Division has approved rough grading. Therefore, a reduction in the security deposit is merited. Certificate of Deposit Account 0179-0001483199-9, in the amount of$ 47,109.00, may be reduced by 50% to 23,554.50. A separate certificate of deposit guarantees completion of finish grading. Should you have any questions or concerns, please contact Debra A. Geishart at (760) 633-2779 or in writing, attention this Department. Sincerely, � ' ✓ V 1 . /n" ' (" Masih Maher Leslie Suelter Senior Civil Engineer Financial Services Manager Field Operations Financial Services Cc Leslie Suelter,Financial Services Manager Castillero Design and Construction Inc. File TEL-01)-h3i-2600 FAX-6»-f, 2O2- p: recycled paper { t, V1 L1 1 3 i 0l SERVICE yNGINEERINGSERES F G S I CITYOFENCINITAS I ; CITY OF.Ft INITAS CASTILLERO RESIDENCE REVISED DRAINAGE STUDY July 2, 2001 !cs w 58839 Exp.l,� � 'l CIVI 9lF OF CWX Michael D. Cairns PE#58839 Lj INP,mi Cairns Land Engineering, Inc. 4901 Morena Blvd., Suite 109 San Diego, CA 92117 (858)488-7937 TABLE OF CONTENTS Introduction and Summary .................................................................................................... 1-2 APPENDICES Existing Condition Hydrologic Calculations for the 10- and 100-Year Storm Events ......... A Revised Developed Condition Hydrologic Calculations for the 10- and 100-Year StormEvents.......................................................................................................................... B Onsite Storm Drain Calculations........................................................................................... C RiprapCalculations................................................................................................................ D MAPS Existing Condition Drainage Map Developed Condition Drainage Map INTRODUCTION AND SUMMARY This report is the revised final drainage study for construction of the Castillero single family residence located on Dove Hollow Road in the city of Encinitas, California. Existing Condition The existing site is approximately 2.2 acres in size and is covered by low-lying scrub vegetation. Storm runoff flows across the site in a southerly direction and exits the site at two locations along the southerly property line. There is a natural swale on the easterly property boundary, which directs flow in a southerly direction. An existing 24" CMP conveys flows from this swale beneath a dirt road paralleling the easterly property line. The watershed tributary to the site is broken up into two drainage basins as shown on the existing condition drainage map in the map section of this report. Basin A has a tributary area of approximately 17.8 acres with 10- and 100-year storm event peak discharges of approximately „ 21 and 32 cfs respectively. Basin B has a tributary area of approximately 5.0 acres with 10- and 100-year storm event peak discharges of approximately 6 and 9 cfs respectively. Existing condition rational method hydrologic calculations are presented in Appendix A. Developed Condition The developed condition drainage map is presented in the map section of this report. Runoff from a portion of the tributary watershed north of the site is conveyed from drainage basin B to basin A within a concrete brow ditch in the northerly portion of the site. To compensate for this diversion of flow, a portion of the onsite runoff is conveyed from drainage basin A to basin B. Developed condition drainage basin A has a tributary area of approximately 17.9 acres with 10- and 100-year storm event peak discharges of approximately 21 and 33 cfs respectively. Developed condition drainage basin B has a tributary area of approximately 4.9 acres with 10- and 100-year storm event peak discharges of approximately 6 and 9 cfs respectively. Therefore, there is minor impact to the peak discharge from each drainage basin resulting from this project. Developed condition rational method hydrologic calculations are presented in Appendix B. Onsite drainage is handled by area drains and a PVC storm drain system. The storm drain pipes were sized utilizing Manning's equation based on a minimum slope of I%. The pipes were conservatively sized for 100-year peak discharge values,although junction losses were ignored. A more in depth analysis of the storm drain system is not warranted on a project of this size. In the event that the capacity of this system is exceeded or inlets are blocked by debris, excess runoff will flow overland offsite to the south without inundating the residence. Please refer to the grading plan for on-site storm drain sizes and locations. Riprap at the downstream end of the on-site storm drain system and the outlet of the existing 24" CMP on-site was sized based on the tractive force method. Water Quality Erosion control plans have been prepared to address sedimentation and erosion during 1 construction. Post construction runoff from impervious areas on the site travels across landscaped areas prior to entering the onsite storm drain system, thereby providing filtration prior to discharge from the site. 2 APPENDIX A Existing Condition Hydrologic Calculations for the 10- and 100-Year Storm Events **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (c) Copyright 1982-98 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/98 License ID 1462 ************************** DESCRIPTION OF STUDY ************************** • CASTILLERO RESIDENCE • 10-YEAR EXISTING CONDITION HYDROLOGIC ANALYSIS • FN:CAEX10 J#162-01 5/10/01 FILE NAME: CAEX10.DAT TIME/DATE OF STUDY: 14:43 5/10/2001 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 10.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.55 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 360.00 UPSTREAM ELEVATION = 500.50 DOWNSTREAM ELEVATION = 450.00 ELEVATION DIFFERENCE = 50.50 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.918 SUBAREA RUNOFF(CFS) = 3.94 TOTAL AREA(ACRES) = 3 .00 TOTAL RUNOFF(CFS) = 3 .94 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM NODE ELEVATION = 450.00 DOWNSTREAM NODE ELEVATION = 375. 00 CHANNEL LENGTH THRU SUBAREA(FEET) = 850.00 CHANNEL SLOPE = .0882 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 5.00 CHANNEL FLOW THRU SUBAREA(CFS) = 3.94 FLOW VELOCITY(FEET/SEC) = 5.34 FLOW DEPTH(FEET) _ .61 TRAVEL TIME(MIN. ) = 2.65 TC(MIN. ) = 14.20 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.553 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 14.80 SUBAREA RUNOFF(CFS) = 17.00 TOTAL AREA(ACRES) = 17.80 TOTAL RUNOFF(CFS) = 20.94 TC(MIN) = 14.20 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.78 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 330.00 UPSTREAM ELEVATION = 472.00 DOWNSTREAM ELEVATION = 445.00 ELEVATION DIFFERENCE = 27.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.880 SUBAREA RUNOFF(CFS) = 1.17 TOTAL AREA(ACRES) _ .90 TOTAL RUNOFF(CFS) = 1.17 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM NODE ELEVATION = 445.00 DOWNSTREAM NODE ELEVATION = 385.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 550.00 CHANNEL SLOPE _ .1091 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 5.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.17 FLOW VELOCITY(FEET/SEC) = 4.24 FLOW DEPTH(FEET) _ .37 TRAVEL TIME(MIN. ) = 2.16 TC(MIN. ) = 13.94 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.584 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 4.10 SUBAREA RUNOFF(CFS) = 4.77 TOTAL AREA(ACRES) = 5.00 TOTAL RUNOFF(CFS) = 5.93 TC(MIN) = 13.94 END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = 5.93 Tc(MIN. ) = 13.94 TOTAL AREA(ACRES) = 5.00 END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (c) Copyright 1982-98 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/98 License ID 1462 ************************** DESCRIPTION OF STUDY ************************** • CASTILLERO RESIDENCE • 100-YEAR EXISTING CONDITION HYDROLOGIC ANALYSIS • FN:CAEX100 J#162-01 5/10/01 FILE NAME: CAEX100.DAT TIME/DATE OF STUDY: 14:42 5/10/2001 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.55 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 360.00 UPSTREAM ELEVATION = 500.50 DOWNSTREAM ELEVATION = 450.00 ELEVATION DIFFERENCE = 50.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4 .453 SUBAREA RUNOFF(CFS) = 6.01 TOTAL AREA(ACRES) = 3.00 TOTAL RUNOFF(CFS) = 6.01 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM NODE ELEVATION = 450.00 DOWNSTREAM NODE ELEVATION = 375.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 850.00 CHANNEL SLOPE = .0882 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 5.00 CHANNEL FLOW THRU SUBAREA(CFS) = 6. 01 FLOW VELOCITY(FEET/SEC) = 5.89 FLOW DEPTH(FEET) _ .71 TRAVEL TIME(MIN. ) = 2.40 TC(MIN. ) = 13.95 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< -------------- - 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.942 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 14.80 SUBAREA RUNOFF(CFS) = 26.25 TOTAL AREA(ACRES) = 17.80 TOTAL RUNOFF(CFS) = 32.26 TC(MIN) = 13 .95 **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.78 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 330.00 UPSTREAM ELEVATION = 472.00 DOWNSTREAM ELEVATION = 445.00 ELEVATION DIFFERENCE = 27.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.396 SUBAREA RUNOFF(CFS) = 1.78 TOTAL AREA(ACRES) _ .90 TOTAL RUNOFF(CFS) = 1.78 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM NODE ELEVATION = 445.00 DOWNSTREAM NODE ELEVATION = 385.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 550.00 CHANNEL SLOPE = .1091 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 5.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.78 FLOW VELOCITY(FEET/SEC) = 4.65 FLOW DEPTH(FEET) _ .44 TRAVEL TIME(MIN. ) = 1.97 TC(MIN. ) = 13.75 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.978 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 4.10 SUBAREA RUNOFF(CFS) = 7.34 TOTAL AREA(ACRES) = 5.00 TOTAL RUNOFF(CFS) = 9.12 TC(MIN) = 13 .75 END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = 9. 12 Tc(MIN. ) = 13 .75 TOTAL AREA(ACRES) = 5.00 END OF RATIONAL METHOD ANALYSIS APPENDIX B Revised Developed Condition Hydrologic Calculations for the 10- and 100-Year Storm Events **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-98 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/98 License ID 1462 ************************** DESCRIPTION OF STUDY ************************** • CASTILLERO RESIDENCE • REVISED 10-YEAR DEVELOPED CONDITION HYDROLOGIC ANALYSIS • FN:RCADE10 J#162-01 7/2/01 ************************************************************************** FILE NAME: RCADE10.DAT TIME/DATE OF STUDY: 11:25 7/ 2/2001 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 10.00 6-HOUR DURATION PRECIPITATION (INCHES) = 1.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ . 90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.55 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 360.00 UPSTREAM ELEVATION = 500.50 DOWNSTREAM ELEVATION = 450.00 ELEVATION DIFFERENCE = 50.50 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.918 SUBAREA RUNOFF(CFS) = 3.94 TOTAL AREA(ACRES) = 3.00 TOTAL RUNOFF(CFS) = 3.94 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 101.50 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION = 450.00 DOWNSTREAM NODE ELEVATION = 390.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 670.00 CHANNEL SLOPE = .0884 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 5.00 CHANNEL FLOW THRU SUBAREA(CFS) = 3.94 FLOW VELOCITY(FEET/SEC) = 5.34 FLOW DEPTH(FEET) _ .61 TRAVEL TIME(MIN. ) = 2.09 TC(MIN. ) = 13.64 FLOW PROCESS FROM NODE 101.00 TO NODE 101.50 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ------------------------- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.621 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 12.60 SUBAREA RUNOFF(CFS) = 14.86 TOTAL AREA(ACRES) = 15.60 TOTAL RUNOFF(CFS) = 18.80 TC(MIN) = 13 .64 FLOW PROCESS FROM NODE 101.50 TO NODE 101.70 IS CODE = 4 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- DEPTH OF FLOW IN 24.0 INCH PIPE IS 14.7 INCHES PIPEFLOW VELOCITY(FEET/SEC. ) = 9.3 UPSTREAM NODE ELEVATION = 390.80 DOWNSTREAM NODE ELEVATION = 389.10 FLOWLENGTH(FEET) = 31.00 MANNING'S N = .024 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 18.80 TRAVEL TIME(MIN. ) _ .06 TC(MIN. ) = 13 .69 FLOW PROCESS FROM NODE 103 .00 TO NODE 101.70 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.614 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 1.18 TOTAL AREA(ACRES) = 16.60 TOTAL RUNOFF(CFS) = 19.97 TC(MIN) = 13.69 FLOW PROCESS FROM NODE 101.70 TO NODE 102.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM NODE ELEVATION = 389.10 DOWNSTREAM NODE ELEVATION = 375.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 160.00 CHANNEL SLOPE = .0881 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 2.000 MANNING'S• FACTOR = .035 MAXIMUM DEPTH(FEET) = 5.00 CHANNEL FLOW THRU SUBAREA(CFS) = 19.97 FLOW VELOCITY(FEET/SEC) = 7.98 FLOW DEPTH(FEET) = 1.12 TRAVEL TIME(MIN. ) _ .33 TC(MIN. ) = 14.03 **************************************************************************** FLOW PROCESS FROM NODE 101.70 TO NODE 102.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.573 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 1.51 TOTAL AREA(ACRES) = 17.90 TOTAL RUNOFF(CFS) = 21.48 TC(MIN) = 14.03 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.78 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 330.00 UPSTREAM ELEVATION = 472.00 DOWNSTREAM ELEVATION = 445.00 ELEVATION DIFFERENCE = 27.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.880 SUBAREA RUNOFF(CFS) = 1.17 TOTAL AREA(ACRES) _ .90 TOTAL RUNOFF(CFS) = 1.17 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION = 445.00 DOWNSTREAM NODE ELEVATION = 385.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 550.00 CHANNEL SLOPE _ .1091 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 5.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.17 FLOW VELOCITY(FEET/SEC) = 4.24 FLOW DEPTH(FEET) _ .37 TRAVEL TIME(MIN. ) = 2.16 TC(MIN. ) = 13.94 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ------------------------------------- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.584 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 2.90 SUBAREA RUNOFF(CFS) = 3 .37 TOTAL AREA(ACRES) = 3.80 TOTAL RUNOFF(CFS) = 4.54 TC(MIN) = 13.94 **************************************************************************** FLOW PROCESS FROM NODE 203 .00 TO NODE 202.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ----------------- - -- 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.584 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 1.28 TOTAL AREA(ACRES) = 4.90 TOTAL RUNOFF(CFS) = 5.82 TC(MIN) = 13.94 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = 5.82 Tc(MIN. ) = 13 .94 TOTAL AREA(ACRES) 4.90 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- END OF RATIONAL METHOD ANALYSIS **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-98 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/98 License ID 1462 ************************** DESCRIPTION OF STUDY ************************** • CASTILLERO RESIDENCE • REVISED 100-YEAR DEVELOPED CONDITION HYDROLOGIC ANALYSIS • FN:RCADE100 J##162-01 7/2/01 FILE NAME: RCADE100.DAT TIME/DATE OF STUDY: 11:26 7/ 2/2001 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE _ .90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.55 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 360.00 UPSTREAM ELEVATION = 500.50 DOWNSTREAM ELEVATION = 450.00 ELEVATION DIFFERENCE = 50.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.453 SUBAREA RUNOFF(CFS) = 6.01 TOTAL AREA(ACRES) = 3.00 TOTAL RUNOFF(CFS) = 6.01 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 101.50 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM NODE ELEVATION = 450.00 DOWNSTREAM NODE ELEVATION = 390.80 CHANNEL LENGTH THRU SUBAREA(FEET) = 670.00 CHANNEL SLOPE = .0884 CHANNEL BASE(FEET) _ .00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 5.00 CHANNEL FLOW THRU SUBAREA(CFS) = 6.01 FLOW VELOCITY(FEET/SEC) = 5.89 FLOW DEPTH(FEET) _ .71 TRAVEL TIME(MIN. ) = 1.90 TC(MIN. ) = 13.44 FLOW PROCESS FROM NODE 101.00 TO NODE 101.50 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.037 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 12 .60 SUBAREA RUNOFF(CFS) = 22.89 TOTAL AREA(ACRES) = 15.60 TOTAL RUNOFF(CFS) = 28.90 TC(MIN) = 13.44 **************************************************************************** FLOW PROCESS FROM NODE 101.50 TO NODE 101.70 IS CODE = 4 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- PIPEFLOW VELOCITY(FEET/SEC. ) = 9.2 UPSTREAM NODE ELEVATION = 390.80 DOWNSTREAM NODE ELEVATION = 389.10 FLOWLENGTH(FEET) = 31.00 MANNING'S N = .024 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 28.90 TRAVEL TIME(MIN. ) _ .06 TC(MIN. ) = 13.50 **************************************************************************** FLOW PROCESS FROM NODE 103 .00 TO NODE 101.70 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.027 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 1.00 SUBAREA RUNOFF(CFS) = 1.81 TOTAL AREA(ACRES) = 16.60 TOTAL RUNOFF(CFS) = 30.72 TC(MIN) = 13.50 FLOW PROCESS FROM NODE 101.70 TO NODE 102.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< UPSTREAM NODE ELEVATION = 389.10 DOWNSTREAM NODE ELEVATION = 375.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 160.00 CHANNEL SLOPE _ .0881 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2.000 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 5.00 CHANNEL FLOW THRU SUBAREA(CFS) = 30.72 FLOW VELOCITY(FEET/SEC) = 8.85 FLOW DEPTH(FEET) = 1.32 TRAVEL TIME(MIN. ) _ .30 TC(MIN. ) = 13.80 FLOW PROCESS FROM NODE 101.70 TO NODE 102.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3 .970 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 2.32 TOTAL AREA(ACRES) = 17.90 TOTAL RUNOFF(CFS) = 33.04 TC(MIN) = 13 .80 FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.78 (MINUTES) INITIAL SUBAREA FLOW-LENGTH = 330.00 UPSTREAM ELEVATION = 472.00 DOWNSTREAM ELEVATION = 445.00 ELEVATION DIFFERENCE = 27.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.396 SUBAREA RUNOFF(CFS) = 1.78 TOTAL AREA(ACRES) _ .90 TOTAL RUNOFF(CFS) = 1.78 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- UPSTREAM NODE ELEVATION = 445.00 DOWNSTREAM NODE ELEVATION = 385.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 550.00 CHANNEL SLOPE = .1091 CHANNEL BASE(FEET) = .00 "Z" FACTOR = 2 .000 MANNING'S FACTOR = .035 MAXIMUM DEPTH(FEET) = 5.00 CHANNEL FLOW THRU SUBAREA(CFS) = 1.78 FLOW VELOCITY(FEET/SEC) = 4.65 FLOW DEPTH(FEET) _ .44 TRAVEL TIME(MIN. ) = 1.97 TC(MIN.) = 13.75 FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< --------------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.978 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 2.90 SUBAREA RUNOFF(CFS) = 5.19 TOTAL AREA(ACRES) = 3.80 TOTAL RUNOFF(CFS) = 6.97 TC(MIN) = 13 .75 **************************************************************************** FLOW PROCESS FROM NODE 203 .00 TO NODE 202.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< --------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.978 SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 1.10 SUBAREA RUNOFF(CFS) = 1.97 TOTAL AREA(ACRES) = 4.90 TOTAL RUNOFF(CFS) = 8.94 TC(MIN) = 13 .75 END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = 8.94 Tc(MIN. ) = 13 .75 TOTAL AREA(ACRES) = 4.90 END OF RATIONAL METHOD ANALYSIS APPENDIX C Onsite Storm Drain Calculations F D - o, Gasp D = 6 t-rmN N N N W W W W W W xxx #A#A N '00 g pF CJt 'AC i N - .e�°SStr ,�Lo wi G FUL L -N a a a �-1NGN i�✓C '' �iL� �� AC4A � NCIM l O, 73 CAS Q = cs .4 c =©, 4s 14Ax PVC ( 8 pvc QUICK - 2 NORMAL DEPTH Circular Channel INPUT VARIABLES OUTPUT VARIABLES / \ Depth (ft) 0 .27 / n = 0 . 010 \ Discharge (cfs) 2 . 0 Diameter = ( 8 . 0 (in) ) Velocity (ft/s) 14 . 76 \ / Top Width (ft) 0 . 7 v \ / Froude No. 5 . 73 Slope = 0 . 1250 Flow Type : SUPERCRITICAL Max Discharge (cfs) 6 . 0 24" c�rP QUICK - 2 NORMAL DEPTH Circular Channel INPUT VARIABLES OUTPUT VARIABLES / \ Depth (ft) 1 . 65 / n = 0 . 024 \ Discharge (cfs) 28 . 9 Diameter = ( 24 . 0 (in) ) Velocity (ft/s) 10 .41 1 \ / Top width (ft) 1 . 5 _v_ \ / Froude No. 1 . 35 Slope = 0 . 0550 Flow Type: SUPERCRITICAL Max Discharge (cfs) 30 . 9 QUICK - 2 NORMAL DEPTH Circular Channel INPUT VARIABLES OUTPUT VARIABLES / \ Depth (ft) 0 . 25 / n = 0 . 014 \ Discharge (cfs) 1 . 8 Diameter = ( 24 . 0 (in) ) Velocity (ft/s) 7 . 72 1 \ / Top Width (ft) 1 . 3 _v_ \ / Froude No. 3 .25 Slope = 0 . 0600 Flow Type: SUPERCRITICAL Max Discharge (cfs) 55 . 3 APPENDIX D Riprap Calculations f i " l2 S2 W W W W W W xxx N N1 to coo Ln rr rimer Cl cat Q ` - - �`�'�F'"f`l.-l��7 '" � !,1 dd R..✓ .d '� ✓�AC�` �W�l ��JZ'�/�,rr. /� ( C./:a'°. r ti. -, ��, \. S �' 5 r d s. N3 1 r s t' ,V., *rr / / .✓", ,�. .,; t t \ Y 1 /' in o ::: F,z f �. j1. 3 "i N F -^��P `\ Y.-1::�. ,,,...` ...�.y(:.,,;,!!... ;< 7 \ 'x^v. s7.•.- Y 1 /,; ,f y;;vt;- . � , , ' �,L�� � ,l.C'J _ 4 ..{ r. r. .s';(i 7 t f -� 1. !."'* , , - "QW4 -�j _� P. -, .0. ,fl'i�i A , _,� " . I . , � � -- ,� , , - e\,uln.", U3 1 ,_;�r 1"� ",", I I ., , ,.rh I/,%',./� ,,I 11 "j ,�, . .:, ;, w,-: ­_ , -f" [", ......lt4.13�,ii` F tr p 4 �f y"', IMM A ��__1, 1�,�.,,� \. ;y i t' 11 (�1�11 ) , 6 { fr } _ 7,:��-_, "... , ". , d ,- : ter' -_ r,�, (([. _ • ., , r a Al' / jf tF F'"�r:" <s^e" {.:fir^' S � . < 4 �ry t r :r rr J. /L •fi '!:: [ -irr' •,SV. fi s - 2 s b r E }( f• j.�� (y. 11 U• - �. 1 i:� ., :( ,fY I"':.-; { K�.�f V J ;'t k .} 4a d I' :s ., 'h6�^ % (L.: r' :F 1. jj \\.}} 9 5 r1 _ i' L ;:T r.a ,-...'1' .d.<., ... .;::.. / '7. s^ t ' `jj to /' /, ° t i it''- it . i... L ., r,,.. ,s` E, 5f,,,�.. Y ..5 r,.< l.... �„ , J. ,.:: (�. i<.. 1 - :. ,,. :r'/5� .f' .r',.ors^ r .i" -(.';x s f x'4°<s p.: n 'r.\. , �, L•t }';1 ,^'_. o r.,;.c s�P';2°m rt!#, �.. 1�✓L...ss dbjr .�i �t_ i t i, )<::a: .f, .. :!-, PS ,.,.ter . b „�,'�`"s " ,,r 4L \- 1 t;. .! [ ( 1H' r� lw" 4. x'5 " 7.e �.s, ;�: �:y'.5 *:a p. i' 'L ! r.f /"-:f, '=<'. '. f.. x:i4 .Y•` '' 3 f r wf 'y, 5 / ^f-./ jj\j` �. z :1 ¢-!":J` Mr' �'`N,Y. / ,5�r,:x ,I,f^ ,,.' ,•r, �; � l: 'F ... f/ {j� t �,C -_S. t I F ..,kl (ff{ 0;.�" x ::J .v<v �':'f t'°� ,D :N''?' f „Y " f�;' /`._ Y 4 .. 1, I'Q. \ `'i:. 2 F "f•: ,r�•.,l! t'°:,.. /d -i : h <f. t"- e ""';f:- l I 14�.:. Qtr. ` r ; ", •r+ iy..,� ,y'_•y 'f s} < ,._ `r: :,/ r;:(tj </ '' '. i t f( "11.rp `n.5 t _ ,< .:•r/.^a !:�f' /`t; / ( .,,- L,`^ ,y,:C: 4 u ` -s/ ,}`._._ .l u / .,,„f"r '(, +"' k f i. i.�.N�!/ Rr>: '.^.�,`/ d 4 L <<° K� ✓ .'F : b 11 s r /^..� �/ rx;'� t,. -.;f.% f Ir:. / F v ::a ; dy y;,<, <.,,.ra s r. 'v�•`T. //// I .<:l i/' r '/' ,f! y ;:.r� i �=-- f [ f• /. -y„., +,< i.Yst -y` v..- X`..r. i,... .r".';,-'„ _ r` t.-,F r r,': :: '<'` .•!`:, .f�• - \ ss i';', cr''#¢ e':c ia'} i-�` t z 1 t 3rd /< s rt �; ' `� rY &� < rf• ' vhf W t , �/ / ✓ ` u ^ y✓ z y, r y of 7� Y { ,t 5 I [ S <'. , £ �;'F r ( "C {�-���" Ms s 3 y,+-s � .� ." i r(r!/,/ /�/ ,p, ¢. /.r•'a'.E.f s_ ,y- ".,. d t!`'y.,:. .' '"?.:d'z \ ,\ s''.� csa _ t,� �% j3 x �:.; 7 f.0 ry�i ,:.� ." 5 Vic \ y: (/[.: - f. .`.... ? "1 � .. Y> '�: .{ r (:: ;._/ !:. / r, r'`/( ,r•r.rf,,,�,`- zu ''4s, , :,, Iv, s - f � <S-`::s.,-• 5'- �slfyM::: '•s;°4 f � ,•"M _,r: y:I.•kF �tiM /::.!` '.•, yy,�,r, '1... j� a. �vE k• c _, k '; _'\ \s ?. ., _ " ,i•, %< r c: r 'f r e3'� ` rte, /y!:e r�'.! ,`: �y.'-'S cf t.'t'.,., .; ? •'c:" - ti`n.,. i ,' \,11.+r tit. / .°< ti «?s z \r t :' y fir. "1 rC2 r rsr »fr 4t'1.I',-�,�'•• d s:f „�,„,s,.•=:.y�.s.� t�'S*:s iG� -..<� °"`^w s fif.; .\,:.h� r.yt } � \' \�..,. '� ;s,�.s. `�''.. ,srf"1,..�. /, /q n-""S!.-.i >3{ _, 6 C, a r , ' 1 - ' ;o :? "c'_ 3"•_wy Y r'°" i r ,+r',,.r... i ;:."^'a•„ n3 �, .f_ 1 "} ,,ss\ � ,. •}i'k.(.. `.s k: a• .'�. ,. ,.°�,':zs ✓ ! yr ? ,i•. /, 1�g k .a ;.ti{\ ' >,i'''°P `".e'' > t s^ �;:�,e, .,;5 ^C,, 'r...L / a.,-^ fyw ,,(�...,. �'�¢ ' £ A',:. �� \ x .•.;ibFo 3 v > �!,�a I {/:f..`,C •'�'::.a4 .t. 1} ,rt-... ...,.}. .:� x F-, d ` ^' ;:k"� <..: 1 s,,,„t :4 i-' a 'r r� s� .,C YET" Tyr,,11././. t ,.., ,.t_ s,,.,u'4 ;r... S, .eb,r"` 1 r/' :.:.s s-y 'S�a �j,n S a' t �.' t r s .'t?' «.. �/f' oY ; 3, n'\"n,. r�' f. 5 i' si ,,<� f x `k ,,:/. T�� r # ,;ti f .,,>S'• a`"'^'.1:. 'sr'_ '�> L ..�{ .fis5:;.: J ^,°.. F g '< > Y (5;. 3` ; wi „<} '-'.kl ittt £�f �5r ri,e.. 9,• y�. R4f (j-/t.;t /:-`'43`r <:'f`; A �J •�^'.°.' z.; ,3 1 =� .:�',t •+,s: r y w:�'rk•er'£ y x`tc,`s .^ '` 4. f�`.e ��� ir..: \ "!-'0s.!:a',A" Yr ;s / < ; t l? w 4 f�3T l k } ASV a r f �� +e /�� 0 1 �' fir„ya'i'(.�.`:.t�^ ^`•'-wA::: •1 k! :✓S ,r]'r,t. .��1 b.;' \Y} 'L y bq.> �y' `a• `t_ Y3,�` *\ s .'�_}/"\!. _ '�.�'-^'r a f•r ! }� k„`/r.s, �;;,`�-'-,...h, Y s ..d T_:,Y.}...fi`' '*, :"5'�r` 'Q / 'Y, c:' ,{d 1..J. ,k V^ ~\ eI` y ,`_'` `. F,,^ f" r t 3 t 4,_, x i / � c x �I i ( $rI t f /r t j. � tj : Oi [ < < � L ..t.+�L•�..t• �/ `I } �_1u.�w�•rex (J S3- '�xrh�T) 'F /'�� �' '(< .tt� Z F ._f �i lffiu+i..Yi,e+` a•fl "`..' d t r4 S.V� Lf !. d ��^ 5 ii _'; / f 111-.11 9 [ ." ;-h- -F*^T" .,,e^'c�-^_^"ry'r ,y`' h s !5' s�,F ( £sq`� .r'y+,- r ::n y'"P° sus, 3 re 5 1. O W t / [ f F,.; 1 .! t f S ( Y FY x fr Y t-b / -. z"' ;}*'. ,G r y 11 O c...- b 1 Y i; / rrj/ (.. f ,f'r••.a,--A 1_ _. /f .3^ // j i ,f.•e.• s ^ .,., N 1 t l r '/ "�F ,C ". f --' `s'�• i+YA d f T t 'x.M ¢i' :.., �5"" q _.' 4J- .s -,\`t 1.? :r., ,-/' �' / `�'>'"m'<'.--"tiz �..;' Cw F.,. W sd 'Y r "I'll "`^^C•+'�"^ `''<`.!, / ..? S`-; s"'`y:t j.•. / ` <: // �' s 'Ff''1r z' y ; jf"9 f :/ �b'2>„ - f :., L'/ sL.ys i� f •� / -:;/`�( : t'.i -..:, ( a s;ry-� ..�5c 2' 3<> xc. ps S. -, 'S" ".r"f > - it t ,.Y ,(� �.x r x s v z i v ie n K S( * < `s.ej'st `'� - ''S'` )• ps•? .3`f t f :i't" F ''r.. :'� r �! s�> '�•:,;, «_a C'.,;;,.: Ord. .,� e �,& 'Ke: : '� >k �t ,. : [ % ,t__, �,,.. /< T'.;rJ ;:;d� / f s t:"ks�x z ^g,• ,,K�. _fw t ,s :gf �p.,s• rms; �.a �•. v .- ,C , r: / , Y y,,. gyt, x i;,l i°, M.v p �YW 'La f s n "+,�i ✓ 2�w n\./r "`,dT3 -s.y r „� ,�i.�y d ,s✓ `}, f•,-a-'""z �a x �.: : F+2'c'; / - y f sN A >+ay..«• z `C 1"K r _ Yr •w., �✓ ?X" }::' I i"' 15 .'; ! S,-r�;^�� 'C t �i�.•lv,C^ri�f._ ;f a K�+(.. fg..,y 4 L• f.. F,q,3;f,"5 v< j'11 -r J,i ". •° „ / J1 >' isry L`5„4 ` 'r�F�,y•w '+"�:.« ') .,f t ry-" \ `z ';, s : i,: �� .f i .'+e 5 r f �' /! i i :r 8!. ; "'e.,•;•;r Fe „5... 4. 3 b's' r ;i "�'. 4':• as*r a.:l� ° `4; I i ', i.: r :, i / �, ✓f t �., :i h.., 7""i ;'S,s„?F r G ... f „� tr• (..r: 4 .. 4 .F /' tR ./' x 6 f: f e yrs"w + ,2 X •.a -,y ^f Y s•5' a' sy - 4'y`r •\ 9- I... -t t /r fit/ .iX .r,.,,c-' ' , ?.'�„•, „ky....�ft'f(.re d�,�+l is ^-a.,, - `'t,s - ,1 1­ .1 "#-l�e�?s< \t t d O >rY :,`� e " «/• �x f .'� '/s ,.,°{""` 5 Y4 �, �t ,w.:.a ,Y°i .r 55 NS° ,SBu ft3< r :sj.-v�T1 R y'fi.. 1 .t': ! ilfl n.. .;� a.✓.,fm h, `}� +s �j,+., . 'N' ��r,4✓5�y s r!t x° 3 P's'"r, ,,fr ,1. .r'.� ;Lt-'4 .,rs.:.: I, .4 a;;•F 0 . E, .:! W' t ;%.e r, r'f s`i ;,• .N' j u 6 \'•'`;xtQ::•Y' a"si'.'r+v.,^ _.}".,Y `L. .s'fs.:.'r-.- ..6 .i:. w :,> L:.,:. �,.�..�: tsX i>kt n rya 4'r. d"ti ,�-+, z ( ..^' it d ri ,• i.L<-,§. ' _ rs F �•.a. -;^i=: .a< :,,, .yl ,�. - qr n r .>r i'.r. �' t �; ti/: .lF z: .,•--s. (;; ';,^x"' �• r '� , } { rs. � N \ °. `'..._ wf"`< •fr p .;a yF'.,., � «rn'fM y �n.' t}�# ,�1 r Y qtr '. : _r 7.. i i ' ,� :'mss±.X,a�.,, ,''*H .»� rY.: �;x FJ :rJ,s t•.. -•-*s 4 'rt�,'_"_F` . Y�-,, \.. i f s e ;..• .-5 1 :< C. �.�. .X if;iv4#. S �; �;.;`Y,a,t' T t:Y�,h:� \ `1,!., r! �y e t [< ..y �, �� 'F [��� vt x•" � .�� it f �. '/' r -'.r 1 �, s "•� � I � / �F /x/ ". fi }1;+.1� ,_. ` �-,'� ���y,`e�,,::t-_„„_. r��••j� .�1'• �:- i, ! ..�, F� �.y.. � 9�.:"i fir: `� -�� I /r \ •\'• :t �� ! f f ass :f� ' hI .� t PL- LRf�` :!' Y 1�•.: <,G.!f;' •f 5, f F f7j)5 ](s c_ -•�•--* u ..'..-�� '-:�� X :5. .:::. ....... '� _.a,:i f p .;",�.: .• .r..,t .A s."+. /v r• /-' r.� y—': F ham'� .. � .1: t ,. t , ,.,. s:.- :: .:c ,;.. ;. :,,,.- ,_. � s(�• .F.. �z/.. .z w I �r`. 'll"a Jf�' _ ::�' �; :r ':7 /. S •. ti..'�.H � � .C: Xv �` � .c f C iy.N,;: �<tk�- 11� _ _ \. ':� { r k;yt t� � .n. JF� � � "•''z'F y.Y fi w' 4 a<. � d: � — �'° ,[,', _ .s :`�� q j �f j,..T. �,. .,�e£r �/ ��:;i' �i '..'�'.s :n:°'• ° -F� '1, � � rJ-�•f f .!'....� .tn 14Yf;<t s� .�'. � Y,�%'. ,c .{. :fi ls f�+. ,�✓ •�4 ,'>r •b.:,x, .,,1..,-, c 's i l;z f .:'F � 3�.'�� � � .-. � �. ,�«' yt fi`: ,,,,..•^ ,x.`"``. -�._� �-: �+s r' ru>,. �•..,+;.,�4^� t F { i''� l�,x j /'�i" /,l;" r .+:�,-� ,'j" c§ s r- cb S,�>r�`�`r'`•'•rK¢''rx.: °'�� J i } j. f �j'•f e y �` / .!�/a �! .-fir r ;a ��t, !`/ �;^ -:� �� ( r .i< 1 ! y: � /l�:s .,:� l,,ti^E:.>" < `y" a,c•€�d � i1a [ `` F�.� yr 4 �,Sx•,�' 4 '/. -' x .: ,,i ��::i:'-"i " f�-fM1 !�..t",,.�'����ff`F 'ems'';>;. *' s :•Y � f •;s.. <,..;: r s ,' ��is-•FVAra�xn .s;•'. i_ I ��>�'.: .ts �s2+-a" .:/ t"'' r ..,1K^.".< =q t d sx, i §� .z"v�,j•,-.•.»-'s i j s ! ...r, .c �!:,« ::/ I ��.� :.p,': .F,` � t .:s � ,.� S Y s.P+.•, s;'. II i .F i�/'. / /'`•` fa, f�' H� '' +1.,.: � � 1 3 .::1. �,;h5 > ! :-�•' ''� .v;'a:.i •c.,r,x s a r K ��/ r �;_:�; r/'° f :�< ''lf �� f ,.� .:.-��-�- � �S. �''\ � _t W i ,t � f � 'w'k. ,� 4X•� 3' t ..?-;}•:t.,�. , i { '�F ,:'.- ..- ors:�.r � �� � ;-/ ° :,;�i sY '` } >\C$' \,sc a,,,L"`•'�' .r?. ' '--.j-.:i � :t-.t I :F .�.. - _� � t'`.t �{.. ��._� ,/i J .,v'Cr /*' -.x s'' s t � < 3+'� y,•�=�^ s-: E y \.;q: kr, .� i., ,.: �,;.._. ,: -f y_fr; f ;:,.<r :yj :: k4.i �5�. ,yYri:.1 iK, a-. \< ,,4` s x *,•;<: w.. `�,"-,: F ��/�/'' ';' / ,: 7 �'� fip,�+`�n �.t; y. c 1>,:s, r� !y�:, s4 � 't..�i +C '-�;"1 �'�w'�� .<•�c I �.r-.1,:.,•.',i:-C ,n -� t ,.�,�:•.-x^•°•,1.;�;�2, �,�r'f r F( k,:.`:r �', ^1 ' < � � t,. €", '"?s,.•_ r":.� .,,t -x'rz,G rya,< `s.:' .t: :ii /�1 i-..'h>TV -'? 1< 's r� .�"''<'!: r'M„' .�< � ;5� '%t � •:'S �"'z �. s �E k t „a'Z.;.� .•<�. .:s•�1 �;�. ,��•; �i ,"`,:. ''^iz...s,t �t �1 mss' •'----,••. �f v � ,;;�� :} .�, ,r �±" ;<. :,� s .;^^�; w 1�. t/�F'". .':`y �` sr.� r� :.a 1 '�!^,,.:s;� ,ray 'Z �c %""r•. � .S'�''.L' r'r �� "4-.. I ://, :-.r..: .A �/- v?;:. ) '•. �s. t �," � r"'*,. •::tl;^y. �`z h"'.'w �sl%.,"b' i .iti '�- � .s,r,� x.y. .r's•-,..-. .,� .,:F ,( fr/b r '"°,�.sF ..r'r-c ;t°�'-'.�, ,yu 7s hyltj -.ya•-^' c ^.•>.` .:;�`"'' ^` } 3 -=7-•n ,,4�-: � -:sA;�; 4s I /'I r �:r"''' w .y.r^ .,,.:�•,� �>ix, r, <� +,.... ; S1 �"; a 1 '<� {;. ,�;' �Fy:� � '?-� „� ,,: «�s ,c I �`"'sS"c�. I ,�. ys .v' 5.�� �">;/' '' 3� � .4° *,;� � �� � L r - X 1 �,.'?.�r z�„ 5N?..;,..., ,'§:rvr,y,> # •,�.ry, /'�r,. / :�s,'s' ^^�;o,;;P--"••,,.,,t•6 f _ 'yy. :.;` :., ;r` Y.y -`�`,�5,, ,S cs.-� eat �.:i'f;•ti.Y'f't: -;•'�i "+n< `.s1 �'r Il',.._y i •.:3 r�3't" ..£".- �, -.�'*� ��y` x r.',1L �_�:.��. ���-� -g:3c s �x�• r,G s'�;r:k a ' ~����r '�.�.- j I ����_:_• < �,�� !+. .3^"va r �y' �Ly��y- �Kt X � s 6 G Itt �' \�, '` :;\ - \ 1\"•::4 ... rF� :y4 )L�6. �i-3/% ?:.,-•\,>`,+z"`.•,..:.t^� �i/� z' / '_ �t� � { ,� i'§ �, _, , { \ ,��, '/,. :�> ¢�.-: S - f K` II __ y Sir.•Gy �y f p � 3�G Y i /_. .� �Y ✓ / :L s' t e s �...__7f" ��� s t� r,d,"'�" S ".yy""+- '/ /.'s w� p k y. � „".,e. '--'s•>,a} : Y �' �p -.y*sst. sr7�� - C$:'( �F>w� Fr•'..n r,p # F 't / tf•,� .{z Y r n.':•'.u'tr„"..\""° 1'^y,gR'— -.' e w @,+ t � )� ..� r !_y `t•s � :-._b ,�'� yv s ! s._r �- � � r�'x�'� > sr. .,,$-.°'^"�^'f.z <.` #"'�, <^' f i r t.��� . ! f „+ •. f �., n+u�"._ ^k <� r � -. R' S.c.. s s- .•,y / ,. ..".:. r r ) r - � �{ i. w,tx \; - �Y.L L '.<'" _.,� w` a• S/i°"-'' a >c:- r ..w H,:y,i. Or { ! s:._/ �; � -' ( �'• '( :.! �". P ::,� r 'ritx„/3' 3�,...,." � z s C ,° s.�.".-b�� /6 - ..r� o � �{,� f � �s�� �, j�':;�r`^rz""'>%'" � {,'t'^�.".car-£ s , ;x(s �x :'Wiz,.3 ;.s s w.z '^' ._y{�^. z:�• 'a,y •;� s �l�' ""'r`/ :, �, 'x«.<pf'�a -'•+ � 'y.ryr� f s f`� " �ft , j( / f �v..�sr-r^i/'"'kL -� / f 'f %tt .`7.-nx •�>q4?"°' >�, s F� '�k,�`_. � f 6 :.rs"" i.� f �i : '� N' � .d `•\ � y' br •_�"4^"� --_ >y{ #,•�v 'tH _Vf / ���� - �� ! .� r,('�` '=x^ -'.°E �s 7> �•'; � •r^w}�y'y yc/ �.� Fsy �•^'� y {{ `x r :;�/ 't� ��d,/ /� f;'"„ ,> �,M �} '"">^"o}�"�•-�.� © 1/� 4t rY� ,,."<. r € ;:`/fir�,t;:. 'N ��$"� >.sy.�• „Y. !� f ! / �..yr. /"� //+ J / ,r,r �� ` ..•z§� a �:w !"� ..� x��s" >' � a '�Yk„'r=/p�„*� �t�.n, � -��' / /,r f` r�x '/ - s� sb'K.y ,•s.a E{y 2 �;iky'J s 4 ssr'�X°�,c�..as 6 ��� `pis. „!�°zY:.' g$��.�.��•-b`,; } 1 -§ / f.• f ///� ,r /Fs.,< �� � t ��y, "GN w, <, t�� ,r>Yi a9Y�f a r, ry' .,2�t•�+�Y•� ,�,<�3 d { <i\, r'�`uxi','.�x�l:n,,s*: � - r G � Y !•G �. Y,t� •(.:,µ�S' �f� : 5'K% Nf�,,�/ t -� S �fl,� [ ��: �. � / .� fA' �ya• f!< � h 4.3'.x.5„{ �i' S-"+'s � 3 \ 5 i� � r ':� / •rs l'Y'`,.'f 6 - ,y,Sy<., f s. afi^'"'° 'F� ,*F'"t s f r'%�s 7; '[ '.� t �- \ Y.1 \ � � 1 ,T...� � 5 r >'i:�YI'�y°•{' S. S 6�' $ i.. .�.• �:l ?, 'a>.+,`., Y ." `. � �, #Y "i3<tQ; ! �„ay.; r>fi ri3 /!✓s � �� t <r t �.S� r"'"'�o.zi... '� tie ,.'\ w^•'^>: } f� ,°�••-,ad�.s& .�!s'"?4i -4s � .I g :rf 1 iz �' �eou� �%Y: ,eF ->v4 s ''• '��' is .�.SX "•-�:� ;.� z ; y rr_ � :,t9 y �x �; !"',..,"..F. '�y.�/>�zG{s�;`/"y"'.n� "`y- y �` s w � s c yoy �:..:''. '�� .. `' ..� S i..'x ,.#.,'' � r .;\ ''y' .tr t S '�witim3 5. '�,. :yr✓+� I.. �y?w."'"v ,� ti1 �s:;x a �t -k'.�. �Jt'w,<. ". S •.r L:., � S { App 5 }.� _ `n vt �,k..:i£.�'k'... � a..<: �� lr� z5. �`•'� ••X x �*�,�ji a. Y 3.'xu r:,�It � .f. � j ~ � :,t ,� >�.t-&•,.c yq,,,,.. .{ � .s�� ,_0.p y, ,A€ '��:� "Svm`.sw. �• -, �t .. �y ^l - 4 y �� } ;g Y,..?", i" ,6�_ : y+,k•)yr� '�"k. r�t ,j• �'e�u g'r t %*,` - ^;'t :�::(t.� `-..•"°� �} �\ �f i [ � \.."Tt,. 6 ,r-. �'� A'-.vpXP arr; �Y� L•A) Y r,� t 9 ,'�! 3',ik�- 111 -\ a ��, � .:r•� R' � di s ,�t, S:: � '!tA� 3 :�.`- 4° /5�. / wa�t,� < , ' 1 3 "\... - r-•�",.:y P < .:i •e-E `Fq� ri:;;4..�'``ry s� f± �± 3 y �G. r,s f`' x'ciZ'§ t'6 "_u t fi ` �" 1`-+__.•_•_��� � t f � .�.�tL \'•� ,i� �� a D x. Y i r `rz s+F��. �\ \ ! •/ (�F � �" 4•. � .',< r 'r.!'^��� <si'•<y Z s'C`ry'6�". b `� s �`� ✓>' ✓ �fz ... �<z f.`` 4\' _ `�' .'s+�' ,�t �1 r Y�:• � � t�� .�-'fK,�eKr�.S }.H"Yy�j,�i��I� "fr S Jt a::YGY� � .F'_,". {t �.` ^_ .Yc� l r.� ._� ✓ � Y f '+f °HGi <'�y�.i � �AI'j'• ,{ }%0°'!` . . �•`°a '� � � � �� ,/ � .., � X45>� \. �z 1,7`sl 'k � N,ry, n� 111 , �.., >_ e+y\ 'X V� l � *,.' �'��.•4� d'.Na fe i � `' r � s\°" � •_� ���� / J4f:• P'_,��ly 1[ ,.� '� < ;`r1! i '( ,:�: /�ci,< ���l -s` +.,�..i, ., � r-",a. F _��„ \ ..`'�, � °-ir` „<'s�'t'S � � �'G � � � t �`;'fic�� � , ' - •� /';� '>p ..�, tis",. .��<_t, 5! r`''.: 'c:� � -\- Fat <--•�`� 1 � / ':� Z -t�.. 't n� �-� ��,s s«a:i.§ rsgw �-� :'l /• -;r ; `.•.� i�.. / § r- � i,�� � � S��: <` .: 's „p, }y 4 we k��.sr<`h.«.•rr 3� -� /� r '� is ;{ � � �• i �s..� ,1: -.{'s� u Y r;>Y � 5, 3 x xdg: .,•;,, O �'`��•• •� /—. `\ f \✓� /� f „^"''..� i m[�! �%:' y �c •'� � \ � �\ _ :er = ci„> xa w4L•7� G y -�, ��- y 1. � : '•,� �:, � �� •cs�'3� �: a s�4a ,3 z�. '�<d/y' '}'.�f. �: S.Y �•�>� tit s„y(c xX '§L�, c� �. �y s 1` '^-'...::...••„<' ��/'` Q r y �s'1� 'bs ,'f 'Z<. .i r\ �i 1 xYx,.�c-'-,a�f sss s� F tid�' � r •t \� ` � ��....-_..,• / y n -•Fr` G � L �'', t �`'x. �k � � _ <,,,,. r .,,� � �f..✓` .. -+^_ -� �x's� L.."1 z<� •�-t .: '„7`7�i: `n !t`. : - d - x -.`t \'. .`�` �. (�.� s.,`rr i �a;: -4 : �4 ax'. "'w xd;�.s•`v.�a"s.^"ya:,'*4 `cam` �' --s \c., �. �•:�:� � '•�•�.. ��'"�'<f5;_:� ��,J, : j.:P;.,s. .�.^�ra,.Ei'r j '.g�� N � - j :N _:t �,._,�•,• .. t _ `:J In.<'{i.;�/� ax s� • Y f;i.�` � r��' .d �+tv:.-� D�� „�✓ .�•.><'F�,}<�s<x ~ �4^,.-_._....-eL�4';� t'4� <'a^s`4- xS�R ":E is#a✓Yx3�. � ` ! ,' 1 yY,; � S `r_:-J •y;.�• � y ..f x„{43^,n x 4.>,t' t A,,tz I sa;,: .;� r / � �,< � Yt�.�s3'^i'�•y K, .<,-..e. '?� 5 -�''f � r. ; +,"s-: ��'� � .+�' Yt•r, / .le. .:���' �. t � L:; C ) �• ,,::.'�'r, �^�, •�a^c-s!..,r�'a-✓""t��"K`u. '�, .yF��s7d� as3� �'-� �1^ '<7`� •s i<,,� . i4�'• .,F. t� s o / � ~� :� I.,ry � 1 I \,f /�✓t'?r.1Y'`' '� ,-� .tx'��'.c�..'r;3f°'>Y�„?�rNr yy�,, Y',s �X�`' �: � �.�'ka t �:✓1 ,j �-r r..+5 4, j ., �, '�Yt 1,\ rrx" ��t-.--"/� :y� l.= �„ i, •r- .�S' y._Ny' <�i {{{ ..7+ _. ""'/'”. I �j.. ! a t �.s�\f 5;� �;' rd ,4'•Yc,.,a,.,.!.yrs-,..��`S-.TT ���.f'�`w"�ti st.`` �3"r 6 Y+,'+'�'Y-<Fxf� :� �/� ./ P _ •§ 4 s� � L t ;,'+:��,.,,,;,�• �!s .e .,§ �'..;.-�wx��s< s j,�ysr.� .w '�'r"�� "�,, r .; r ::iz .\i`� '1,c`/ `/�f ! t � 5,>�y rr � ,E a f;'��-,:,%_--'" ,., s'.v,�..' "" .Y;:.r"h€ '" + � .:s �s''v�%'•ye I X' .. �• //i � f - '� r ..':-�'s .Y<,✓t"' ,d r�.Ffi ....1 �J#. �rC"'VS7��'`•-. -;:3�•y� � x�;ja<,,P. C.. �s4:.�a��.. <y � g.. 'f 5`,r ````ry -\ /��'f *� 'd ,,t N G r��s i�.% ° t .I j(jy{{ �w_' ''�,'.!� z'x"' sa> �'"<Y' dcf'1� '•�•�,`?j" �i* wi,''�j]. � �Y r :,:,,• l.."`.S a•' ..,. _.:-rt/ � r T x�,°>'°3°arxn'3�-''' ',§_� �f! � .._ ��``p,:,r., ::x ,<k e� r y 7r�,. <J"t•b-� r.F'•w°''�`r'ti" �•�.' yr_..., � ''-� / ,�.+�!' 'y, Fi`.� .(':,, i.:'<f'' .'.�•. �f;:' �"� y,',v k ,�.-��'x.Zl���Y.r�t`y' -�" n`sa. �".x� .s t�"'� '3' �,.• .. :L ,.,;5`. ?.� ;�r''� .' -_; r t .. :-. r r rs"- `/� l.> �,� _�4 .,�, r�s ..� �ss,% �+�•x.•� ,<_.p ti< �s���_s`y.' ss3•z ..�� >�t^ r rj / .f t.5, Y�.r:. £����,. ��'�uj =�--'t ���`i ..•� �5.' ., "^-r'°z .,/ { � E�>� i` a [ti'/4r,;.X:• \?;_ '•`.. X�y� t ya-. :r� °sS -•t ,..r .''' �'.. :i, g ?y /s// � \. rs \,`y '�:a• t H �Y !. �.ciz h.,� �. X'�t i ;...�•`4 £'�: ` z 1?'.se's•a"- � � �4-'�' �.<;, f ,f c � �;>� 'Cy� \ `� � ,g sg rw ?" r�' 3� ..�Y 2�•r'N +�r� of r,,;�•":-•4 .,n / _..•-t-.,; e'S � :y/° i'.,a < ,\�,'4tiC > ��. .v.t. �,,... :.�,s —n,^'-•e.F��:xri�t t- 'F�: /` •.( .+.,%?-0-'""� f�,F� } 1�'S�°Y,��C G��t�y,'3�'� y?'��Y��� `�,�Y,Ss`�-.. ..� .F :`!:`,�4�� •.,r�}q�.i ,�� _� $1;• 's / 1= :l....... \ "�`�S +t1c �,� �' v GP4-.:.' t �`.e°t..'�y ar4P�w r< 4'%?s,.s "d"s �3 ,�'A•?. ,/ I ;.�.. ., ��""� �•.�' { t. G3 r � �'f` '>•- '4 :' '`�'' ��.t. ay;,a4yr"'. X�� /'�_,'� �,t ��� _ '�;{ ��:� � 1. F �`§ � •�t 'Z"�`y<� '' ",�" `� �>�- 1 ,���" :< � .r;<`r��xr sd,'°�z I ''7 '� >� '�tS 1 .� •f:�&it�j/r /',er:�..��� � _ �� � �'"" \. U'+l l Ui cUUl U 7.JO .GU-I 1 14:1 C, l•:.11 1fVl_ Ff-ia� KIN fill mid. 1, Inc. CIVIL df07,40MCAL,A QUALM ENOwEa l'U F0UINDAr"D9bGN-LAND ftQV01N0-MWL 7ESTING CON5TRXT10N A11 NAWF+E"A VgpftT1CW CLIENT: HURLEY PROJECT: HUR 300 DATE: 1 MAY 2000 MIL PETER HURLEY l 514 Via De La' 'Valle,Suite 300 1�? Solana Beach, CA- 92075 6o Attention: Mr_ Bart Stotler Subject: Preliminary Geotechnical Soils Engineering Investigation for the proposed residential construction located on Dove Hollow Road, Encinitas, CA. (APN: 264-451-02)(Parcel 2 of PM 3278) Dear Mr, Hurley: Pursuant to your request, a Prelinuinary Soils Engineering Investigation was . . Performed at the subject site. The purpose of the Investigation was to determine the general engineering characteristics of the soils on and underlying the site and to provide specific recommendations for the design parameters for.foundations and retaining structures, slab-on-grade floors and site earthwork. The proposed development consists of the construction of a level pad for the support of a single/two story,wood framed., stucco type residential structure, SITE CONDITIONS The subject site is located approximately 2.2 miles east of Ranch Rd. (S-10) on Dove Hollow-Road in Encinitas. The roe is bounded on the west by an existing single fey residence, on the north by Dove Hollow Road, and on the south and east b land y vacant , The site topography consists of a gently Sloping lot falling from the north and the south at approximately 6% for the northwesterly 2/3 portion of the lot.. The southerly portion of the lot falls off to the south at 10% to IS% with a 20 foot vertical cut into the native rock on the south west corner of the lot. The easterly.portion of the lot slopes to the east at approy-imately 10%to 15%0. At the time of this investigation, the lot was covered with Iow lying shrubs and native vegetation. 1691-A SO-MELROSE DHIVE#285, VISTA, CA 92083-54,97 . MAY 1 � 2001 u 760-945-,3150 • =, GIN�ilNa VIC 5 i CtlYOFENr5NiTA5 ___. Ci4/.1 tJ/.::UCJl U7._G V L14 r1 4':r. thus Inc, OYVfL 0E0MWW 44L�e WAt1TY�M9fHEEfiMrG FOUNDATION DFS/GN.LAND"VMma.00II rn)7NO COMMUCTION MANADEAfCNr a/NSPFCrol,, FIELD AND LA130RA.TORY TESTING On March 1 d, 2000, a Field Investigation was performed at the subject site. This investigation consisted of the excavation of three test pits dug with a bat,Lhoe. Locations of these test holes are shown on the l )Plot Flan, Enclosure 'l' and they detailed Logs of these Test Pits are presented on Enclosures (2) and (3). As the test pits were advanced, the soils were visually classified by the Field Engineer. Undisturbed and bulk simples, as well as in-place density tests, were obtained at various depths representative of the different sons horizons. All samples were returned to our laboratory for detailed testing, Results of the in-place compaction tests, the Maximum Ivry Density Test values for the carious soils sampled and the Expansion Potential Test results are presented on Enclosure (4). These materials were also tested for Shearing Strength, Enclosure (5). Shear tests were made with a direct shear machine of the strain control type in which the rate,of strain is o.os inches perminute. The machine is so designed that tests xnay be performed ensuring a minimum of disturbance from the,field conditions. Saturated, remolded specimeias.were subjected to shear under various normal.loads. Expansion tests were performed on typical specimens of natural soils, These tests were performed in accordance with the procedures outlined in U,B,C. Standard 29-2. SOIL CONDITIONS As indicated by our Vest Pit Logs, Enclosure (2), the lot is underlain with approximately 1 to 2 feet of loose topsoil material consisting of dzy to damp, loose, porous brown silty sand with some roots. Underlying the topsoil materials are the Terrace Deposit/Fonnational materials consisting of damp to moist, hard to very hard sandstanes1siltst6nes. GEOLOGIC HAZAKDS According to published information, there are no known active or potentially active faults on or in the immediate vicinity of the subject site. Therefore, the I� 161I A 80. MEMSE DRIVE#1285, VISTA CA 9083-5497 • 760-945-3750 w FAX, ,760-945-4221 YJ411t7��.V�U. Ct!.30 fCJ�!(1 f4pb 1140 a 000.WO MWICAL;f WALl ry SkGlNEf/iNa f DUNDATi[)H.�31QN•tAND SURVfY/Nd+Sp/�}�gTrNG �:ti• WTRW77ON MANAGEHEAT A 1N8PFOP10N potential for ground rupture at this site is considered lore. There are, however, several faults located within a close proximity to this site that the movement associated with them could cause significant ground motion, The following table presents the distance of maior faults from the site, the assumed maximum credible earthquake magnitudes and estimated peak accelerations anticipated at the site. The probability of such an earthquake occurring during the lifetime of this praa;ect is considered low, The severity of ground motion is not anticipated to be any greater at this site than.in ether areas of San Diego County, SEISMICITY OF MAJOR FAULTS ESTIMATED MAXIMUM MAGNITUDE CREDIBLE FAULT DISTAI TCE (RICHTER) ACCELERATION. Rose Caryon 7 rni. (g) Elsinore 7.0 0.25 27 mi. 7.5 0.35 San Jacinto 50 mi. 7.8 0.17 San Andreas 76 m.i. 8.3 0.12 The following information is presented relative to the subject site said Seismic Zone 4 per the U.B.C.; (z) Seismic zone factor 0.4 Table 16 A-I (Na) Near-source factor= 1.2 Table 16 A-S (4) Seismic source type=A Table 16 A-U (Sd) Soil.pr6file type `Sd Table 16 A-J (Ca) Seismic coefficient—0.40 Na Table 16 .A-Q (Cv) Seismic coefficient= 0.64 NY Table 16 A-R (Nv) Near source factor= 1.2 Table 16 A-T 1611-A SO. MELROSE DRIVE#285, V187A, CA 512083-5497 • 76th-945-8'i5t1 FAX: 761-945-42e"1 U 4/.I u I L LI OI C1'7:�7 1 C X14 11 e 4 n t, �.,.A 1 N1" F'tiat b b CIVR.GEOMCWW/CAL,A OIJALITYEVr—, r-Mma 7`tKMl�l7YONOCBION•!AMq SURY"N31 S02 TE877W ,,. ''`• &WSYPU0170M MA,1VA6EMWrA WSM770M LIQUEFACTION POTENTIAL Liquefaction analysis of the soils underlying the site was based on the consideration of various factors which include the water level, sail type,gradation, relative density, intensity of ground shaking and duration of shaking. Liquefaction potential has been found to be the greatest where the ground water level is shallow and loose fine sands occur within a depth of 5.0 feet or less. These conditions are not present within the site area and, therefore, the potential for generalized' liquefaction in the event of a stron to g . moderate earthquake on nearby faults is considered to be low. STABILITY The relatively dense nature of the slopes within thin the site and the nature of the material underlying the site generally preclude the occurrence of major landslide conditions. The area surrounding the site is not known to be within an area of ground subsidence. The potential for deep seated slope failure at the subject site is considered low. alr The site surface materials consist of porous silty sands. These materials are susceptible to erosion. Drainage control is essential to maintain the stability of any planned slopes or slope areas. CONCLUSIONS AND RECOMMENDATIONS Based on field data and our laboratory tests results, the.following Conclusions and Recommendations are presented and are to be utilized in conjunction with the Grading and Building Plans: All grading shall be performed in accordance with the applicable recommended grading specifications contained in this report and the City of Encinitas Grading Ordinance. On the basis of our investigation, development of the site as proposed is considered feasible from a soils engineering standpoint provided that the 4 1611-A SO. MELROsE DRIVE#285, V78TA, CA 92083-5497 760-945-315G FAX 760-945-4221 G4/1Ul LUCJj UJ; SC Ih-0`:IL 1gDb L,>I_: 1Nt: ti:al7t. _ I c�� X11llbi.'I•IX� �_. . QM GGOrMNICAI,A QUAUTT ENQINEEWNG FOUNDATION DE& •LANR SUAVEYINO.80I17ESTYN0 CON87PLrCI70N MANAOE>•WA P4MTNW recommendations stated herein are incorporated in the design of foundation systems and are implemented in the field. Site preparation should begin with the removal of any trash, debris, and other deleterious matter. 'these materials,as well as vegetative matter,.are not suitable for use in,structural fills and should be exported from the site. Also, any subsurface structures such as cesspools, wells,or abandoned pipelines, which are uncovered during the grading operation, shall be removed or backfilled in accordance with the requirements of the City of Encinitas. All on-site earth materials are considered suitable for the support of the proposed structures, However, prior to placing fill,the loose topsoil materials occurring in'the area of the proposed house pad shall be removed to a depth where firm, dense native soils are encountered. The depth of removal is anticipated to be approximately 3 to 4 feet below the existing surface. This can be accomplished during the rough grading operation and/or by over-excavating the upper 36 inches of the surface soils at finish grade, ripping the exposed bottom surface to'a minimum depth of 12.inches, and recompacting the soil to the design grade. The underlying rock is fractured and considered to be rippable with'conventional heavy grading equipment. In general,the surface and subsurface materials were found to have a low expansion potential according to our Expansion Index Test results. Therefore, no additional foundation or slab requirements are considered necessary in regard to soil expansion,. It is anticipated that the building footings may experience less than 1 inch settlement with.less than 1/2 inch differential settlements between adjacent footings of similar sizes and loads. Foundation designs shall be verified and/or evaluated for the finish grade soils.exposed following Trough grading. Foundations shall be sized and constructed in accordance with the Structural Engineer's.design,based on the earth pressures and the allowable bearing values listed on page d of this report, along with the expected live and dead loads, and the projected wind and seismic loads, All structural fill shall be compacted to at least 90% of the maximum dry density at near optimum,moisture content as determined in accordance with A.STM Test Procedure D 1557-91 or equivalent. S 161 Y-A SO, MELROSE DRII/;E*2&5, visrA, CA 92083-8497 • 760-945-3150 • FAX? 760-945-4221 F7'+/1NJI LVJ✓J 1. :'7L.!b /bJ4!1+4�t� l_ 1l, it"d'•: �-i�_ I_I CKML OEOTEORWAL.AWAUTYENGINF i r; FQyNDAri1 XPE8JGN.LAhO."VEYING#SOIL -SnNNO CONSTRVOMN MOAAGEMEA7 A 1NBPECTIUN Site drainage should be dispersed by non-erodible devices in a manner to preclude concentrated rwioff over graded and natural areas in accordance with.the City of Encinitas requirements. All grading and/or foundation plans skull be reviewed by the Soil.Engineer. FOUNDATION DESIGN The proposed structures for this project can be supported by conventi anal, isolated, and/or continuous spread footings using the following soil parameters, For foundation design purposes, the following earth pressures were �! calculated based can our Shear Test results(Enclosure 5) for the native sails and based on a foundation depth and width of 12 inches: TEST PIT INN. l AT 2 FEET DEEP; (Brown Silty SAND) Shear Test: Cohesion=290 psf; Angle of Friction = 29°. Allowable Bearing Value= 1650 psf (Safety factor=3) Equivalent Fluid.Pressure=44 psf Passive Lateral Resistance 360 psf Active Pressure=44 psf Coefficient of Friction. 4.35 These values are for dead plus live loads and may-be increased by one-third (1/3) for seismic and wind loads where allowed by code. These design bearing values are in accordance with the Uniform Building Code and were calculated based on Terzaghis' Formula. LATERAL LOAD PARAMETERS The lateral load parameters to be used in the design of the foun.datiuns, retaining and restraining walls(using level baekfills) are derived from the friction angle, obtained from the direct shear test from Test Pit 41 at a depth of 2 feet i 6 ik I 160480. ME4`_POSE PRI VE*285, VISTA, CA 92083-5497 760-945-3150 - FAX. 76C.945-4221 1 G4(1FJ/LGG1 G'_1:.3b r7rJU,l/4-,n Ell t. COM OEOTO WICAL a dUAUTr ENaMUFMNjj FQ(MA TIM PEARiv-LAW$MVZA%d#saL TESTIN( . C-ONSTRUC77ON AfANAOFARNT a bvsPEOf10M using the following formulas: A..Active Pressure Coefficient, Ka = 1-sin = 0.35 1+sin.� ` B..Passive Pressure Coefficient K 1/Ka p 2.88 C. At Rest Pressure Coefficient, Ko = I-sin 0.52 The equivalent fluid pressures are obtained by the formulas: Active Pressure: z Ka y 0.35 x 125 — 44 P of Passive Pressure: z Kp y =2.88.x 125 = 360 pcf Pressure at Rest:z Ko y =0.52 x. 125 = 65 pcf Applicable where = wet density (125.0 pe. 0, =29°, and z'- 1:0'. A coefficient of friction of 0.35 may be used for design of concrete on the native soils. RETAINING WALLS An.equivalent fluid pressure of thirty(30)pounds per cubic foot may be used for design of retaining walls. These figures are based on a drained condition and use of level granular backfill. If native soils are used as backfill, the equivalent fluid pressure will be forty four(44)pounds per cubic foot. For 2:1 (horizontal to vertical) sloping backfill, an active ressure equivalent clwvalent to that exerted by a fluid weighing 60 pcf should be assumed. FOUNDATIONS Based on' the recommended select grading procedure' it is recommended that the continuous perimeter foundations and concrete slabs fora light-weight, wood framed structure shall be reinforced in accordance with the following minimum designs: a. For slab-on- grade fl oors: it is recommended that the continuous perimeter foundations for a single,story structure shall extend a minimum depth of 18 inches 1671-A SO. MELROSE DRIVE#285, VISTA, CA 92083-5497 • 760-945-3150 FAX 760-945-4221 04r 1Kl/1Ut!1 Q--1 , 221 Pk: Pa NDA CIVU.47EOf NNIG t-6 0UALt7Y&WGINEERWO FOdlNCON aC 112M•LAW dUNWWAid•sac rasrNG CtlYY91IitApy 10N ALWAQEAIENT A MBPEOnoN and a minimum width of 15"inches into tlae compacted fill material as measured. from the lowest adjacent grade., A Minitnum of 24 inches deep by 15 inches wide shall be used for a two story structure. b, All foundations shall be reinforced with at least four No.4 steel bars,two bars shall be.placed 3 inches from the top Of the foundation and the other bars s •ll be placed 3 inches from the bottom., As an alternative to the 4.steel bars, the contractor may substitute two No. S steel bars,one top and one bottom. c, All interior concrete slabs shall be a minimum of five inches in thiclaiess and reinforced with a minimum of No. 3 re ---�-----. - - bar at 18 inches on center both ways placed in the center of the slab. The bars shall be bent downward into the perimeter footings and wire tied to the foundation steel at 18 inches on center. In order to minimize vapor.transmission, an imperm04le membrane (ie: visqueen) shall be placed over 2 inches of clean,poorly fed, coarse said, decomposed granite, or crushed rock. The membrane shall be covered with 2 inches of sand to protect it during construction and the sand should be lightly moistened just prior to placing concrete. All concrete used on this project shall have a minimum compressive strength of 2500 psi unless otherwise stated . i an the Building flans. If irnperted soil materials are used d ' aring grading to bring the building pad to the design elevations, or if variations of soils or building locations are encountered, foundation and slab designs shall be revaluated by our firm upon the completion of the rough grading,operation. Footings located on or adjacent to g the top of slopes shall be extended to a i sufficient depth to provide a minimum horizontal distance of 7 feet betv�een the bottom edge of,the footing and the face of t � he slope. LIMITATIONS A 'D -NIFORATY OF CONDITIONS The analysis and recommendations submitted in this Report are based in part upon the data obtained from the test pit ey-eavations performed on the site and our experience and judgement. The nature and extent of variations between the test pits may not become evident until construction.. If variations then appear'evident it will be necessary to re-evaluate the recommendations loti of this Report,. f r a 161 1-A ate. MELROSE DR1VEk285, V15rA, CA 92063-5497 • 760-945-3150 * FAX 760-945-4221 ✓_4/1vJ?Gl7 J1 �-.;CSC 1bC�ilr47 1,+:yn lP•�_ PA 1.;E Inc. CUVX.aEOTM"CA[.A OUALr7YFWJf*MNO \ FOUNDAWK DESIOM•LAND SUHVEYHuo.SOIL TES71MG ,.,,.. 6C*MU0710NMANA6eM1NYA fNSPEcTION . Findings of the Report are valid as of this date; however, changes in conditions of a property can occur with passage of time whether they be due to natural process or works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards occur whether they result from legislation or broadening of knowledge. Accordingly, findings of this Report may be invalidated wholly or partially by changes outside our control. Therefore,this Report is subject to review and should not be relied upon after a period of one year. This Report is issued with the understanding anding that it is the responsibility of the . owner, or of his representative, to ensure that the information and recommendations contained herein are called to the attention of the Architect and Engineer for the project and incorporated into.the plans and that the.necessary steps are taktn to see that the contractor and subcontractors carry out such recotnmendatiol7s in the field. The Soil. Engineer has prepared this Report for the exclusive use of the client and authorized agents. This Report has been prepared in accordance with generally accepted soil and foundation engineering practices. No other warranties either expressed or implied are made as to the professional advice provided under the terms of this agreement, and included in the Report. It is recommended that the Soil Engineer , g eer be provided the opportunity- for a general review.of the.final design and specifications in order that earthwork and foundation recommendations may he properly interpreted and implemented in the design and specifications. (If the Soil Engineer is not accorded the pris-ilege of making this recommended review, he can assume no responsibility for rnisin.terpreta:ion of his recommendations). B &B Engineering, Inc. appreciate this opportunity to be of service, Should you have.an),questions regarding this project,please do not hesitate to contact our office. apE��sSr ik Sincerely, - ROE 127 'o Ex p. i Q�p 2r31101 * Cur C. Beard RC Q RGE Chief Engineer C�CAl.1FQ4 y 1611-A$G. MELROSE DRIVE#2$5, VIM CA 92083-5487 760-945-3150 FAX 750-945-422,' U4IIU.'2UJI U':j:ib ib64/li4'-It gilt: 1Nl r'G6at i� N,QB'17�148' ( TP i w ay s Z.05 Acre i2ocK rP z I ' WO .70A&0 A 7* MA P-177 Abrea �'+l�y� , ' ,w(,�I ga �1• G4 .�Y�' EK 7lilly �aG � ' .may ,r=/'�/ „a•„ • ,0!• w + I, / 13, 9 pw jwwxrwt Al.67 451'E2'C.. J ia�a's�bar r-W# a APPROXIMATE LOCATION OF FIELD EXPLORATORY TEST PIT PLOT PLAN OWNER: MR , P ia2 un.GvK • _1144ilgillecritly,/! lite, LOCATION. GV1L,6EOTECMNlCAL,i OUA4fTY ENGINEERS tj C)/J tTA 5 G A •rWjCTURA�ENG/NiERING•LANDSURYEYWO �,;,,`, •WCOLATION S SM TESTING 45"1 •CON9TgUCTION UANAGEMINT INSPECYION PROJECT: 14004 3Q'j DATE: V Zoos ENCLOSURE (1) U411lu/2UL11 b'1:•;+:5 Ib_4I.L 4nb t;L'l_ LNU 7 if /f 15,1111tcci ilig sric, avlLGE6recNNICAL,&GUAL?rYLq@IH lRS ,+ 68T RLM AL EMMMEMM•LAND WRVEMO U 0.L .WRWLA V CW 3 S&L TU77NO •cowrmw"oNYANAaEMENTAINSPFDT7ON HUk 30�j NSA 4 Goa L 0 G OF TEST PITS E%CAYATED . � jG /oo Backhog ; _ J D 410--:9 PIT DIMENSIONS IN FEET W L D Tp_ SURFACE ELEVATION . IN FE T DATUM Mean.50A L.evOl GEOLOGICAL s j ENGINEERING TEST DATA CLASSIFICATION �. `s CLASSIFICATION AND _ D _ 3.DESCRIPTION w= °� `" DESCRIPTION IRC1 4 __. is P,2d klA1 3!L 7 cf EW6 TO TYPO t� 2 N?EO1ym r� ostrs� s TAAtj -ASST FrlAclur&w rzocr-, To 1=c��tart►o�+�ac. �o _ 50T7-oM o-9 TtF5 J PIT (B SEN1�� R�FV5pt, PIT DIMENSIONS IN FEET W L D SURFACE `:E I.E:VATJON IN FEET T P- 2 DA/LK 59Z OJ J S lL7Y A< TF_r2afrz- Poa_bt r Oam o h L0059 r'v 0" 1 ro s fTS d - us 7- d l0 SEr�r �' I?E�uSAI. 13 vl4!171 LGC11. X7 : 3 tf +pClu/1 74^ih '�;Lll. ih{I,,, E 14 Cdvll,oEojWHN1aU,a WAUN EN61MAR Bi AUFTURALENOWERAtNO•LANOSURVEYING •CON6TRUCTIQHtMANARRWt4 rTAgVdPECTlON I-It Ij z Bra L 0 G .OF TEST PATS EX0AVATEC}; fll� od ®eckhae. .410 6- PIT DIMENSIONS .IN FEET W L D TP- SURFACE . ELEVATION . IN FEET DATUM Mean Sea Level $ � TEST DATA 0 EC LOG ICAL -9 � s� I EN4INBERINti CLASSIFICATION '� � Lw : . CLASSIFICATION AND D 0 0E SCR IPT10N L, ° y DESCRIPTION tRCI 400 7_5 C?p�Q t L ' ►' iII�.1��t2.O W�+1 5 I LTMI 51atJ p�rvti TAnlYL(J5T _CLF+`f:_,� = __..DAMP rati -1^�J5 R2/ T 2" �'IOCtK PaH N'b u) To vc-tij i4Aao fa r5o'rTbM ar -re-5 r Pl.-C- ' SErh 1 - 121" >=U!, L PIT DIME SIGNS IN FEE.T W L D SURFACE `1LEVATION IN FEET i4 /0 l5 ,ENC/riSUr�C~ (�,1 CJ4(1 Cl/Lrl YJ1 C77:3i3 f tD 04 Y 1/4'7b I�;LI, LhJ�,; Nr 1. 15 �f�k1�/:11 /f11CCl'�Ilr� f11C. OM QEOTECKNICAL,Z CLALM E'NOIHE&I •S RUCfUAALEWINEERMIO•LANDSURKVIN0 r.+• .AERCOLA110NASIX rWTINO •CONSTPLO"ON MANAGEMENT d INSPECTION I CLIENT: Hu►21. PiaD,]E u U 2 3e.0 M A-! 0 Test Tait Test Test Soil Dry Density, cf No tore, is Relative Retest No. Date Lac4tion fl/Depth 'Type Field Mex ma. Field Opt. Compaction No. . his 7'p- ! 11 A �rx�,a ti��� . 9,9 14 69 77 A4 9D �d 7P• 12'' A 3 815 Af, $$ COMPACTION CURVE DATA OPTIMUM - MAXIMUM DRY SOIL TYPE AND DESCRIPTION MOISTURE % DENSITY (paf A, D U -5I4 N "'O AiJ w I10 11,4 1� •3 EXPANSION POTENTIAL PA ,5MA) W Q 3 (Low � 1 20 Very Low. 21 - 50 Law TP,51 rzaom "fly-) C-_-> 2 51 90 = Moderate 91 -130 High .131 -above-critical igXPANSION AND COMPACTION TEST DATA ENCLOSURE (4-) V 41 ltli.:U erD 04 I 2000 0. 1600, r a w rr 1200 r . z Q' 800 w T N � ' 400 2�n n rt� U 400 800 . 120.0 . i600 2000 NORMAL LOAD (PSF) . SOIL TYPE a B.ORIN'G NO. DEPTH MOISTURE COHESION ANGLF OF C. c , (B.N) (!tj (!ly ' (PSIS. FRICTION ( 6 ) T P- ,G+ 11,�1 o9 _ - ----�. it lgi Ic CJ V?4 OGMEOWCAL,a OUP WY ENaNWS •BtAUCTUML ENB/NEE ING 0 LAND SU"EWNO rw. d POCOLATION6 8M M"NO •COIYbTRUGT�ON MANIQEMENt B INBpdGrlON - Huiz SKE RANG STRENGTH +EST l*NCL-4StJ2C CALIFORNIA ALL-PURPOSE ACKNOWLEDGMENT State of California County of San Diego OnSE before me, Deborah Cervone, Notary Public personally appeared Personally known to me —OR- , proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the ... instrument the person(s) or the entity OFFICIAL SEAT upon behalf of which the person(s) acted, • DEBORAH CERVONE- NOTARY COMM.NO. 1C 67FORNIA� executed the instrument. SAN DIEGO COUNTY MY COMM.EXP SEPT 28,.)(f) .�,. WITNESS my hand and official seal. Signature of Notary Public ----------------------------------------OPTIONAL-------------------------------------------- Description of Attached Document Title or Type of Document: S T, -e Document Date: Number of Pages C o-- CAIRNS i.AND ENGINEERING, INC. bnao u I Civil Engineering,Water Resources,Surveying and Land Planning 4901 Morena Blvd,Suite 109,San Diego,CA 92117 copra ■ Phone(858)488-7937 Fax(858)273-5466 February 26, 2002 IVIAR c 4 Dan Castillero Castillero Design and Construction 1318 Vista Colina Drive San Marcos, CA 92069 SUBJECT: CASTILLERO RESIDENCE,APN 264-451-02 CITY OF ENCINITAS DRAWING NO. 7052-GR Dear Dan, Based upon survey data obtained January 29th, 2002 and a follow up survey on February 23, 2002, we have determined that the actual pad elevation for the residential structure proposed for the above referenced property substantially conforms with the design elevation of 421.5 ft. M.S.L., as shown on the above reference drawing. Please call me at(858) 488-7937 if we may be of further assistance. Thank you, CAIRNS LAND ENGINEERING, INC. L--- Cairns President ` D AV/d '.C,y Nn,58839 Exp� C1 V I F F \F