Loading...
2006-388 G/I/E/CS/PM City %NGINEERING SERVICES DEPARTMENT ro ects y Capital Improvement P J Encinitas District Support Services Field Operations Sand Replenishment/Stormwater Compliance Subdivision Engineering Traffic Engineering March 15, 2010 Attn: Union Bank of Californ ia 1435 Camino Del Mar Del Mar, California 92014 RE: William J Cavanaugh 1435 Lake Drive APN 260-222-16 Grading Permit 388-GI Final release of security - Monumentation Permit 388-GI authorized earthwork, private drainage improvements, and erosion control, all as necessary to build described project. Thethe security depos t's merited. was ients were set and a received to confirm that. Therefore, release of Certificate of Deposit Account has been cancelled by the Financial The following a ment to the depositor. Services Manager and is hereby released for p y Account# 0229067723 in the amount of S 5,013.50. lease The document originals are enclosed. Should you have any questions or concerns,p (760) 633-2779 or in writing, attention the Engineering contact Debra Geishart at Department. r Silicirellyl � . bach ay L m Debra Geish rt Finance Manager Engineering Technician Financial Services Subdivision Engineering CC: Jay Lembach, Finance Manager William J Cavanaugh Debra Geishart File Enc. (� TEL 760-633-2600 / FAX 760-633-2627 505 S. Vulcan Avenue, Encinitas, California 92024-3633 TDD 760-633-2700 " recycled paper UNION BANK OF C IF PAYMENT460ND CERTIFICATE Automatic Renewal,Non-Negotiable Certificate Serial Number: 0229067723 Office of Account: DEL MAR Amount Deposited $5,013.50 Account Number: 0229067723 On December 19,2007, Five Thousand Thirteen And 50/100 Dollars was deposited for 120 Days by CAVANAUGH,WILLIAM J(Depositor) and is payable to CITY OF ENCINITAS on April 17,2008(the Maturity Date),upon presentation of this certificate,properly endorsed.This deposit will earn interest at the rate of 02.000%compounded daily using a 365-day year,for an annual percentage yield of 02.020%. Interest will be paid to the Depositor At Maturity. If this Certificate is not presented for payment on the account's Maturity Date or within 10 days after that date,the deposit will be renewed for a like term at the interest rate in effect on the account's Maturity Date.This Certificate is not transferable. If all or any part of this deposit is withdrawn before the account's Maturity Date,the amount withdrawn may be subject to an early withdrawal or compensating fee. THORI URE FORM 03117-OASIS(F.REV.1/2001) Preliminary Hydrology Report - - G Cavanaugh Residence _ 1435 Lake Drive Encinitas County of San Diego, CA I ?Y OF ["C Prepared By: San Dieguito Engineering, Inc. 4407 Manchester Ave., Suite 105 Encinitas, CA 92024 For: William J. Cavanaugh III 1011 Camino Del Rio S., Suite 320 San Diego, CA 92108-3534 Q�pFESSlON9 S. rn w N6.61156 a EXP.6-30-U CNk qTF OF CPS-�F� �1 November 2, 2006 SDE# 5125 HYDROLOGIC STUDY 100 YEAR STORM-FACILITIES DESIGN PROJECT NAME: Cavanaugh PROJECT NUMBER: 5125 DATE: 10/6/2006 TG 1169-A4 P6(in): 2.60 P6/P24: 0.58 P24(in): 4.50 ADJ. P6: 2.60 Soil Group D Area A 100 44735 1.03 0.46 11.2 4.06 1.9 0.21 Area B 100 15522 0.36 0.46 13.0 3.67 0.6 0.07 Area C 100 18911 0.44 0.35 7.5 5.27 0.8 0.09 Area D 100 19981 0.46 0.70 12.4 3.81 1.2 0.09 Area E 100 8228 0.19 0.50 11.2 4.06 0.4 0.04 Area F 100 42374 0.97 0.48 8.2 5.03 2.3 0.19 NOTES: All calculations are based on the San Diego County Hydrology Manual,dated June 2003. Coefficient based on interpolated%impervious and class"D"soil. See Table 3-1 Runoff Coefficients for Urban Areas(attached) Time of Concentration: For Tc calcs.-see attached worksheet. Use equation on Figure 3-4(attached) See table 3-2(attached)for Ti value Intensity Calculations: I=7.44(adj-P6)Tc(-0-645) See figure 3-1 (attached) HYDROLOGIC STUDY 100 YEAR STORM-PRE/POST DEVELOPMENT PROJECT NAME: Cavanaugh PROJECT NUMBER: 5125 DATE: 10/6/2006 TG 1169-A4 P6(in): 2.60 P6/P24: 0.58 P24(in): 4.50 ADJ. P6: 2.60 Soil Group D Pre Development Area 1 100 149738 3.44 0.43 13.6 3.59 5.31 Post Development Area 1 100 149738 3.44 0.56 18.2 2.98 5.73 NOTES: All calculations are based on the San Diego County Hydrology Manual, dated June 2003. Coefficient based on interpolated%impervious and class"D"soil. See Table 3-1 Runoff Coefficients for Urban Areas(attached) 6-and 24-hr storm rainfall amount are based on San Diego County Isopluvial maps(attached) Time of Concentration: For Tc calcs.-see attached worksheet. Use equation on Figure 3-4(attached) See table 3-2(attached)for Ti value Intensity Calculations: I=7.44(adj-P6)Tc(-0.645) AREAS& "C"VALUE CALCULATIONS Facilities Design AREA-A TOTAL AREAS TOTAL IMPERVIOUS %IMPERVIOUS SF AC ISF JAC Al 38548 0.88 17269 10.17 A2 16187 0.14 11294 10.03 TOTAL 1.03 0.20 19.4% C=0.46 AREA-B TOTAL AREAS TOTAL IMPERVIOUS %IMPERVIOUS SF AC ISF JAC _. 131 9475 0.22869 10.02 62 16047 0.14 2001 10.05 TOTAL 0.36 0.07 19.4% C=0.46 AREA-C=0.35; USE TABLE 3-1,0%IMPERVIOUS,SOIL TYPE"D" AREA-13 TOTAL AREAS TOTAL IMPERVIOUS %IMPERVIOUS SF JAC ISF JAC D 119981 10.46 112677 10.29 TOTAL 0.46 0.29 63.0% C=0.70 AREA-E TOTAL AREAS TOTAL IMPERVIOUS %IMPERVIOUS SF JAC ISF JAC E 18228 10.19 12082 10.05 TOTAL 0.19 0.05 26.3% C=0.50 AREA-F TOTAL AREAS TOTAL IMPERVIOUS %IMPERVIOUS SF JAC ISF JAC F 142374 10.97 110016 10.23 TOTAL 0.97 0.23 23.7% r C=0.48 Pre Construction Total Site TOTAL AREAS TOTAL IMPERVIOUS %IMPERVIOUS SF JAC ISF JAC 149738 13.44 121615 10.50 TOTAL 3.44 0.50 14.5% C=0.43 This is if the existing structure is not going to be demolished. Post Construction Total Site TOTAL AREAS TOTAL IMPERVIOUS %IMPERVIOUS SF JAC ISF JAC 149738 13.44 157823 11.33 TOTAL 3.44 1.33 38.62% C=0.56 Proposed house development is an assumed 3600 SF(0.08ac)area. We are also assuming a 10%area for hardscape to add to the impervious area calculation. Use Table 3-1,Section 3, Page 6,San Diego Hydrology Manual,June 2003 to interpolate for"C"value, shown above. w o � to v'i �O N r O M .-•� C- r- N 00 w w V1 V'1 �O ID (- � [- 00 00 00 DD MN A O O O O 0 0 0 0 0 0 0 0 0 0 0 ^ W O pq O y a ; V Y 4. bq 4°+ O IC N V1 00 It t- O ON 00 00 r+ �t rP [� its %O 10 r- I` 00 w 00 00 O O O Cl O O O O O O O O O O O o U &'cd 4) 6 tQ C v F" p _ M .3 w N oo v v oo [- [- O d 00 00 q O td U O O O O O O O O O O O O O O O 4) N � N O C r, O t- 00 a0 N t/1 t0 t0 t0 O M M 00 y .� M M V �f h h \O t- t- 00 00 00 00 ba O O O O O O O O O C O O O O O b N u w ,O O O to O O to O h O co to O O h U U V1 ,O 00 00 00 O% ON O� W 4+ OOC fn Z 4, ' `n O U 0 o. Y Cd 73 W b J y y y y d O O O O O p O O O O 'H U � d d 8 a Q A Q A A A A A o o U W W Q Q Q � —.a A � � d U 0 o d �3 is t° .Cd 00 N O O a\ M M O 7 M .d ky2 b U ¢" -4 (-i N 4 t� O V) ^ ^ ^ ^ ^ ^ O W YC, iC % iC iC is id iV iC (� O0 .Oi c a a a a c c �° its °" ° io -to° v .0 0 b b b b b b c°�i �••� �y i� >° N �' rn ti to ti ti rn rn rn rA r-' Ifi fy N � � {. P4 z 0 o cd Cd �� O C0 y •j a w S_ . o o N CIS P4 rx U 2 w o c o o v v p p O V m 0 as a�i its aoi aoi aoi a�i id i� b v°, Z o "Tc"and"1" VALUE CALCULATIONS To be used with Calculation Exhibits Tc- ---- L is in miles I = 7.44(P6)(Tc)-� �0�' P6=2.6-See attached Isopluvial Map for 100 year rainfall event-6 Hours See also Figure 3-1 FACLL-171E5 Area A Ti @ 2%, LDR1 = 10mins and 85' max distance Ti = 10mins T1=(ll•9(0-007)3 0.395 Ctl�q(0.02)' o. T2= -� ; �.p1 tlpV¢$ =0 l0•5 Total Minutes= 10 + 0.6 + 0.6 1 = 7.44(2.6)(11.2)-040 I = 19.34(0.21) Area B Ti - Pad @ 2% = 10mins and 85' max distance Ti = 10mins T1- 0.05OOXS - d,3 _ t(�9(a.p�i)3 T2- 1Z 5-- = 0,01- 9DUILS = l 2 Mltils Total Minutes= 10 + 1.8 + 1.2 IUMINXIM I = 7.44(2.6)(13)-6445 1 = 19.34(0.19) Area C Ti - Slope @ 7% (use 10%for conservative number) =6.9mins and 100' max distance Ti = 6.9mins Tj= � 0,395 Total Minutes = 6.9 + 0.6 = 7.44(2.6)(7.5)-V'&,q5 = 19.34(0.27) Area D Ti- Pad @ 2% = 10mins and 85' max distance Ti = 10mins T1= 34 ) = usrS = L.Q K[,-1S C Total Minutes= 10 + 2.4 I = 7.44(2.6)(12.4)'0•(,45 I = 19.34(0.20) mum Area E Ti - Pad @ 2% = 10mins and 85' max distance Ti = 10mins l,q(D.DZ 3 D.sb-,a T1= Z o .OL 4AbVV S = 1 ,2 h��5 Total Minutes = 10 + 1.2 re ti I =7.44(2.6)(11.2)"O'-"5 1 = 19.34(0.21) Area F Ti -Slope at 10% = 6.4mins and 100' max distance Ti = 6.4mins II,�1 C6.G,(013 o,%r7 Total Minutes = 6.4 + 1.9 EMBIRIM = 7.44(2.6)(8.2)-p•(r5 I = 19.34(0.26) Pre Construction Total Site Ti - Pad @ 2% = 10mins and 85' max distance Ti = 10mins 3g, II.'�(0,14) ° 5� Total Minutes = 10 + 3.6 =7.44(2.6)(13.6)-0'l' 1 = 19.34(0.19) N O ll; I,- N O V H Lo O V � N N ENV r M N M N C C C C C N 00 O O - O N (\Q cu cu C C C C C C_ •E- ti O � ti � r r 0 O O V F- C N O N C) O O O O O _ t t6 V 600 O O C F' LO � N T 00 O �- O O 'O T U ]E2 U 0 0 0 O O t 6 0 0 C O C O E O Mti LO co O M O f� � N Cl O LO II N d 0) (.0 .q. r N ` d OO r C r N m LL J r, Q. c O co O O tf) Ln LO LO N N ce) J � � r � 0 � r � M Q O N (0 LO C U � O r N M IT L[) CO I` D d� Wo CL a) O Q H EQUATION AE T _ 1ZE 1-3 0.385 Feet c - 5000 Tc = Time of concentration(hours) L = Watercourse Distance(miles) 4000 AE = Change in elevation along effective slope line(See Figure 3-5)(feet) 3000 Tc Hours Minutes 2000 4- 240 3 180 1000 900 800 2 .." 120 Y00 100 6oQ\ 90 500 \ 80 400 \ -. 70 \4�a 60 300 \% \ 50 200 \ 40 \ L \ Miles Feet 30 \ 1 - 100 \ 4000 20 18 3000 16 50 4.5 \\ - 14 40 2000 \\ 12 1800 \ 1600 ♦ —10 30 1400 \ 9 1200 8 20 —1000 7 900 800 6 700 600 5 10 500 4 400 300 3 • 5 200 1-1 E L Tc SOURCE:California Division of Highways(1941)and Kirpich(1940) F I G Li R E Nomograph for Determination of Time of Concentration (Tc)or Travel Time (Tt)for Natural Watersheds 3-4 San Diego County Hydrology Manual Section: 3 Date: June 2003 Page: 12 of 26 Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres. Table 3-2 provides limits of the length (Maximum Length (LM)) of sheet flow to be used in hydrology studies. Initial Ti values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study. Table 3-2 MAXIMUM OVERLAND FLOW LENGTH (LM) & INITIAL TIME OF CONCENTRATION (Ti) Element* DU/ .5% 1% 2% 3% 5% 10% Acre LM Ti LM Ti LM Ti LM Ti LM Ti LM Ti Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9 LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4 LDR 2 50 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8 LDR 2.9 50 10.7 70 10.0 85 8.8 95 1 8.1 1 100 7.0 100 5.6 MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3 MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8 MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5 MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7 N. Corn 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7 G. Com 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P./Com 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 Limited I. 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 General 1. 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 100 1.9 *See Table 3-1 for more detailed description 3-12 r w • • r • • • u • '• rr • • r • • s . wrAwt um"mK �.. wr•wwr�.�w�s�O7.w—•.•s..iw�lws/i►Ilri O�IIIIIII wrw■7rwwsrw�•itiiw.`wrws.Cw/w•ssrswrwr �per,.=....0�I r�...�...�.�.�............_��sssr _ rw ww�r • .s•. aarrasa..wra. .�wi� •�s���'� CC iat��Caa��iwwlrr��rrr•r�r.��wr��i����"'���i�r..��an•lf� Tiii..��.rr_e _ � .r<•r�2 '� rw� � Eir■rsrssi�s r CCl� DjD.C � G�GCC:.. urns rir sr�sslE.•st� (irEt r FAME uIin a,ES a sonoUnsssM s.s. EEEIEEEEiEEEES �ErE►iEwi E�El�Er .E.a.a.srrES<s,s:., ' iiSIDIi���l ��tifi • I w■ ���I�� ri (� r Mm s � ► ► •inosI••lriRiu naonnn US ii min . - :Cif: �C' , C�C..�.. �'.�� C� ���.�. �■ NNW now MWAff • . ��"c�= ... = �;=•=-�rcrr.=....=... P ..�- e.—.._�=:`_..._.: .=5e ====c:Win: ws ww■g s=w ate.r���r��rw••s/ww�r s r w s��w iw arm r�ws(��a����a��i ii i C is'Gis Ga C�i�as s� N-11-- .M—••II C•.•s rMM ice- �— fir=CCgggG MRM IililiRrfatiri=x-wYMisM1m=mg�.iwg.l 4 =!\fi.iiil..ZMoam-mm Cws�._•�•ww�rwsrr`sr�r�sww�wnl/s(���w( ww ( •l��i•iwl.....mmm � -1 mw rls_ssw..��rw� wr r.l Q•�C �.is�wsr.•w..wi.lrrarlr:sw�sis - w..s.e.•rwr•.r...•w.sr.rwraw w•r!,wrr,lrw ..wsr r..••sn.wwr..rwrrwwr•saw••.r..w!•■..••wlrlrrru aam-rr.rr ��� ����� ii�ws r �i�♦�= .narnus■a�Q:nss� rArrl il�ElslrrErrl`��ir��Er�r ��s—lls�l�Ilrr1 EEE E/�r��r�rtllri■rtr■rl■lrllCCXmm w�rrst�r�rrr. �srrr r.. rrs rm�rsr• �■ mErnEar■s■E:�a�ss�l Es��rsr��.w��:sr■i� rr����sE►G�C■�a�waanwa■■■■■r�a�sss .,�.-....--..��.�...�, �►.�.��r�.i�r�����. +-mow, - i�lwrirwsLTww.iVA—w iirr"-w—ww4^i�r�Lr,Cr��s'I•�Tiirr�Cinw'��i'wi's�iiCierswCi'wliair's��i SISSIw_•rrr`t R21F r s lnlreull l�rrrwaas�s� .n.oro...lwravati.wn� r.issrwri(rr r rrrrr( l rwsirr wrrrre r■nwr ll■i�il�nnr.a.allrrls�■■�rlllrr ^ �■:���rr� anr�•�l �,■��.w �l�s #nl■ aaal■ ■rasnass I�IC��t��#niE�EEEr.�.EEiwilMR Zs'tsWEAM.fi�ai' ri"iV2�i��ri �� �E�' �" '�!=�Io"llrrr...Ewsmmommm DES r rurrr�■rls�ES.>.rErr Misr, .I5091 Elrlil�m�� ONFAA rr man 19081flinloolumn i r� �%�■i�� i ° �i� Ir`�iini �ii nip VAN, IN WA mm FA !I/!WA 1lIllglf ' , can �N d O C `zo ct Q In 11 'r i O O s C_ �k? ;W she f,yi o z v� 0 � M on n ooCYEfl 3 -�Cl{rd �... - c� ........ ..__..- .o ...n.: .� _ .......... 07 a �~ M {I7 ........... ................� ------------- ............ ......... S 1 - 0. C r 1 Y - V 3f7 _ qr _ ...._ - 3 51 - 7 - 4 o ter. _.;_r. r `. .._.. b 1 - - - ka qt t on ( { i ,r c{ Q' - y (` ,mot 1 _ m r 3 � o y W Q / W - _ .{ 0 m ° o � Qn` I bI _ at �, > W` MAN V1 mod h O C c Fmk• I. d ga ci--i . ti W > gdvi HI � 0 0 4� 2 E ,.oiS §!t. 2i N � =� � C)F - M L. > = �� "U I M a o 611 1O4r' tltlfl Ii n 7 o Q N N _. r :.A f j f ... J :...... }.. - q - _ __-- __..... .... ... .._« «. «... .. . . - - - - < �. -.. -- _ }1�. - - - b QC r,, ,' 'Ska94t \ _ .0 .. .rr^ .. N ... :. ._.._ _.. - :.. _ . i i' :. _. .. ...... _ ..._K - Sla94k H , -- ;- �--.'.-;�-'--L�, -)l---,�-, ,I.I....-,4 ,- - - !._. c F t_.. - _ ��.,,, - - .._b. --. - K '' - -ln� E ,©£9kk r - ' oea4r I I �u- - - _ . _ ,, - — r _. f b A h - L 1. -.. ....... .... ._..t .a . - — - — - ----- x _ $� j X — + 1. ._.. ... _.... - _ o b X o r , { Sys _ a� t°= , - .... :� `f. E... b. - :. - Q� {� p...; • - j ... {f Q __:SY94k .. r r Sbzki $a 2` h . r _ _ } ._.?..+_.: :.... .ter.:_ l9 :. ... _ 1 } t 9 C p } :. ... ._ _. k7 w: 6 K st {r IF .._i.. .i--_ - .., ._ . .. -- i „ . - . .: - -- 6 4' .. .:, 4 - R �f ..i_ _. _ 1 _ r Gam, 5� .. i 1 .� - . . �s ; e' _ _. L Q1,. _. . ... ._ .. . . - , ._.... _ E . :- - T-7� — ....... 5 t , t _ r_i sr j {u�y`p3s � tl .._ - 1 F-- � E - °- Z, . _ err .. y $11 + n~ 5 �g_ -p a Z 3 y. b Afij € 0 - S{1 - z ha;r 1 ®£44 k .._ 'r'_.r ... - QQ.. .. ... s.. _ _.. _.. ....m o vi 0 F Brow Ditch for Area A - Q100-Capacity Caics Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.013 Channel Slope 0.02200 ft/ft Diameter 2.00 ft Discharge 1.90 ft'/s Normal Depth 0.32 It Flow Area 0.33 ft' Wetted Perimeter 1.65 ft Top Width 1.47 ft Critical Depth 0.48 ft Percent Full 16.2 Critical Slope 0.00450 ft/ft .Velocity 5.77 ft/s Velocity Head 0.52 ft Specific Energy 0.84 ft Froude Number 2.15 Maximum Discharge 36.09 ft'/s Discharge Full 33.55 ft'/s Slope Full 0.00007 ft/ft Flow Type SuperCritical Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00- ft Average End Depth Over Rise 0.00 Normal Depth Over Rise 16.16 Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.001 11/2/2006 7:23:13 AM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 2 Brow Ditch for Area A - Q100 Capacity Calcs Normal Depth 0.32 ft Critical Depth 0.48 ft Channel Slope 0.02200 ft/ft Critical Slope 0.00450 ft/ft Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/2/2006 7:23:13 AM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1.203-755-1666 Page 2 of 2 Cross Section for Brow Ditch for Area A - Q100-Capacity Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.013 Channel Slope 0.02200 ft/ft Normal Depth 0.32 ft Diameter 2.00 ft Discharge 1.90 Wis 2.Q0 ft 0.32 ft V.I R FC- REkJ c.0 SDRSt�, a-75,, TYPE. g SEE A T TNQHEfJ. PRAW{A}G -F Dn C 1ft t� e- n ak .32ftZ- Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/2/2006 7:23:20 AM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Brow Ditch for Area B1 - Q100_Vmax Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.013 Channel Slope 0.08400 ft/ft Diameter 2.00 ft Discharge 0.60 ft'/s Normal Depth 0.14 ft Flow Area 0.09 ft2 Wetted Perimeter 1.05 ft Top Width 1.00 ft Critical Depth 0.27 ft Percent Full 6.8 % P R A 4 Critical Slope 0.00492 fttft Velocity 6.52_ ft/s S r+p Y a d ss a Qt Velocity Head 0.66 ft L S Q '1S D — 0.) TyP Specific Energy 0.80 ft L — 10 ft \AJ = T l T Froude Number 3.80. Maximum Discharge 70.53 ft'/s 3 u c%` /\i V\3 a V\ Discharge Full 65.56 ft'/s -3/G/ F 1 4 12 v` Slope Full 0.00001 ft/ft Flow Type SuperCritical Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 6.77 Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.001 111112006 4:50:04 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 2 Brow Ditch for Area B1 - Q100_Vmax Calcs Normal Depth 0.14 ft Critical Depth 0.27 ft Channel Slope 0.08400 ft/ft Critical Slope 0.00492 ft/ft Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.001 111112006 4:50:04 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 2 of 2 Cross Section for Brow Ditch for Area B1 -.0100 Vmax Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.013 Channel Slope 0.08400 ft/ft Normal Depth 0.14 ft Diameter 2.00 ft Discharge 0.60 ft'/s 2.100 ft 0.14 ft V.1 f�r=FGREh}Cs= SDRSD Q-75, TYPE g It 1 SCE 1\ TTF1kIZ4E b DPfL\W I t.}G 1 p ft old , 14ft 4 ft o K Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.001 11/1/2006 4:50:47 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Bioswale for Area B (B1+B2) - 0100 Capacity Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.030 Channel Slope 0.09300 ft/ft Left Side Slope 3.00 ft/ft(H:V) Right Side Slope 3.00 ft/ft(H:V) Discharge 0.60 ft3/s Normal Depth 0.24 ft Flow Area 0.17 ft2 Wetted Perimeter 1.51 ft Top Width 1.43 ft Critical Depth 0.30 ft Critical Slope 0.02644 ft/ft Velocity 3.53 ft/s Velocity Head 0.19 ft Specific Energy 0.43 ft Froude Number 1.80 Flow Type Supercritical Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.24 ft Critical Depth 0.30 ft Channel Slope 0.09300 ft/ft Critical Slope 0.02644 ft/ft Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/112006 4:33:52 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Cross Section for Bioswale for Area B (BI+B2) - Q100_Capacity Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.030 Channel Slope 0.09300 ft/ft Normal Depth 0.24 ft Left Side Slope 3.00 ft/ft(H:V) Right Side Slope 3.00 li(H:V) Discharge 0.60 ft3/S Pl* 024 ft � h elk a� siQ� Des 119 h 9. Qes i (Y\ Top ,,o t ii To � eSipv. � cp�� > Ooyrha, acil ,', 0K J. V, DeslqV� 2 ) /3 . 33 ft use 1 Ft dept x eft j-Qe--W-i �� Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/112006 4:34:01 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Bioswale for Area B (B1+B2) - Qwq Cales Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.240 Channel Slope 0.09300 ft/ft Left Side Slope 3.00 ft/ft(H:V) Right Side Slope 3.00 ft/ft(H:V) Discharge 0.07 ft3/s Normal Depth 0.23 ft Flow Area 0.16 ft2 Wetted Perimeter 1.47 ft Top Width 1.39 ft Critical Depth 0.13 ft Critical Slope 2.25339 .ft/ft Velocity 0.43 ft/s Velocity Head 0.00 ft Specific Energy 0.23 ft Froude Number 0.22 Flow Type Subcritical Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity fUs Upstream Velocity Infinity ft/s Normal Depth 0.23 ft Critical Depth 0.13 ft Channel Slope 0.09300 fUft Critical Slope 2.25339 ft/ft Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/1/2006 4:34:26 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Cross Section for Bioswale for Area B (BI+B2) - Qwq Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.240 Channel Slope 0.09300 ft/ft Normal Depth 0.23 ft Left Side Slope 3.00 ft/ft(H:V) Right Side Slope 3.00 ft/ft(H:V) Discharge 0.07 ft3/s 1110 1 023 ft Q� e uir� � he� �en �� ' Cg cu141�� 0.V\ a_ a ( (VW'C-k � T�ect��cti� w��r) � Whe.r- C REq i s l e cY� av<�e l �er �� lT 1� v'C 00\ rt �® c�c�tLvc � `vht+nkN, vkw\ +Y"t o v n •n')C i w.e of 5 w� v�u, e s Per S a iJ'�fr9 o C o L Ai y Vwc ►� � �ne G�4� he1 Wa�e ✓ Ve� o.ctl (��5� �aSed ov` 1 fl Et 1 w q, . — �T�� —(5 1 (C® Seciw� cv�� �. 43 fps) = 129 ft TT = � 43fPs� 6msJ — x . 78 w.; v, M .E . P. Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/1/2006 4:34:38 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Brow Ditch for Area C - Q100 Capacity Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.013 Channel Slope 0.02200 fUft Diameter 2.00 ft Discharge 0.80 ft3/s ONE Normal Depth 0.21 ft Flow Area 0.18 fi Wetted Perimeter 1.33 ft Top Width 1.23 ft Critical Depth 0.31 ft Percent Full 10.7 Critical Slope 0.00478 ft/ft Velocity 4.46 ft/s Velocity Head 0.31 ft Specific Energy 0.52 ft Froude Number 2.06 Maximum Discharge 36.09 ft3/s Discharge Full 33.55 ft3/s Slope Full . 0.00001 ft/ft Flow Type SuperCritical Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Normal Depth Over Rise 10.66 Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/1/2006 4:49:54 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 2 Brow Ditch for Area C - Q100 Capacity Cafes Normal Depth 0.21 ft Critical Depth 0.31 ft Channel Slope 0.02200 ft/ft Critical Slope 0.00478 ft/ft Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/1/2006 4:49:54 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 2 of 2 Cross Section for.Brow Ditch for Area C - 0100 Capacity Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.013 Channel Slope 0.02200 ft/ft Normal Depth 0.21 ft Diameter 2.00 ft Discharge 0.80 ft'/s 2.00 ft 0.2'1 ft RcFc ZE -E SDRst:� p-75, TYPE g � SCE A i T-NQ4E b RP AW I QG !f pry 1ft t� old Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster 108.01.058.00] 11/1/2006 4:51:04 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Bioswale for Area A,B,C,D - Q100 Capacity Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.030 Channel Slope 0.05556 ft/ft Left Side Slope 3.00 ft/ft(H:V) Right Side Slope 3.00 ft/ft(H:V) Discharge 4.50 ft3/s Normal Depth 0.56 ft Flow Area 0.93 ftz Wetted Perimeter 3.53 ft Top Width 3.35 ft Critical Depth 0.67 ft Critical Slope 0.02021 ft/ft Velocity 4.81 ft/s Velocity Head 0.36 ft Specific Energy 0.92 ft Froude Number 1.61 Flow Type Supercritical Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.56 ft Critical Depth 0.67 ft Channel Slope 0.05556 ft/ft Critical Slope 0.02021 ft/ft Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/1/2006 4:35:45 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Cross Section for Bioswale for Area A,B,C,D - Q100 Capacity Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.030 Channel Slope 0.05556 ft/ft Normal Depth 0.56 ft Left Side Slope 3.00 ft/ft(H:V) Right Side Slope 3.00 ft/ft(H:V) Discharge 4.50 ft'/s 056 ft A S O'V\ �Tw,�t ,/ ( :� 5 ► d� Sf oPe� ° -� es i ooh To W t To >�1 use D �S p t� of 1 ft Taw ; fly _ � f Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 1111/2006 4:35:52 PM 27 Slemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Bioswale for Area A,B,C,D - Qwq Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.240 Channel Slope 0.05555 ft/ft Left Side Slope 3.00 ft/ft(H:V) Right Side Slope 3.00 ft/ft(H:V) Discharge 0.46 ft'/s Normal Depth 0.52 ft Flow Area 0.80 ft2 Wetted Perimeter 3.27 ft Top Width 3.11 ft Critical Depth 0.27 ft Critical Slope 1.75276 ft/ft Velocity 0.57 ft/s Velocity Head 0.01 ft Specific Energy 0.52 ft Froude Number 0.20 Flow Type Subcritical Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ff/s Upstream Velocity Infinity fUs Normal Depth 0.52 ft Critical Depth 0.27 ft Channel Slope 0.05555 ft/ft Critical Slope 1.75276 ft/ft Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster 108.01.058.001 11/1/2006 4:36:10 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Cross Section for Bioswale for Area A,B,C,D - Qwq Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.240 Channel Slope 0.05555 ft/ft Normal Depth 0.52 ft Left Side Slope 3.00 ft/ft(H:V) Right Side Slope 3.00 ft/ft(H:v) Discharge 0.46 W/s 0.52 ft 1� a u1fC.� V"V% 1��?rt 1� . �tli Cu�a�� o✓� f Eq S ��e J av%v`e.t ` V A (�i) J`C civ��red �® "-"-vC. �� Vr.�+nt w. %,k w\ v�G"n� �l G O{ �J INS 4 v\V CS Per J Q v. �%t-5 c O'4 NA y S�Q h[4 A✓O S. Vw � v� e C�gv%.V\A V1)Jt V Velk"(+V (rfs) �ckscl OV\ Q kt 1 U-7 q, . L ca, - (TT) V w q A (5 M I n) (6 q) S ECA-i^+� ( , 5 7 P S� = 171 Pt Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/1/2006 4:36:16 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Brow Ditch for Area E - Q100 Vmax Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.013 Channel Slope 0.08100 ft/ft Diameter 2.00 ft Discharge 0.40 ft3/s Normal Depth 0.11 ft Flow Area 0.07 ft2 Wetted Perimeter 0.96 ft Top Width 0.92 ft Critical Depth 0.22 ft Percent Full 5.6 % Critical Slope 0.00515 ft/ft Velocity 5.71- ft/s L G �s ri p rqp ri A re%u,re Velocity Head 0.51 ft g y des P fi Specific Energy 0.62 ft Froude Number 3.65 Maximum Discharge 69.25 ft3/s Discharge Full 64.38 ft3/s Slope Full 0.00000 ft/ft Flow Type SuperCritical Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 5.63 Downstream Velocity Infinity ft/s Upstream Velocity Infinity fUS Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/112006 4:49:36 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 2 Brow Ditch for Area E - Q100 Vmax Calcs MEMMMENNOMONNEENEWMENNEWMEMMM Normal Depth 0.11 It Critical Depth 0.22 ft Channel Slope 0.08100 ft/ft Critical Slope 0.00515 ft/ft' Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.001 1111/2006 4:49:36 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 2 of 2 Cross Section for Brow Ditch for Area E - Q100 Vmax Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.013 Channel Slope 0.08100 ft/ft Normal Depth 0.11 ft Diameter 2.00 ft Discharge 0.40 ft'/s 2.001[ 0.11 1t V.1 R�F >r�c+UCE SDRSb Q-75, TYPE 6 Ft1 SCE AT FNCHE Q ()p ,p,W, tG If D 1ft t� ev, oK Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 111112006 4:51:17 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Bioswale for Area E - Q100 Capacity Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.030 Channel Slope 0.05400 ft/ft Left Side Slope 3.00 ft/ft(H:V) Right Side Slope 3.00 ft/ft(H:V) Discharge 0.40 ft3/s Normal Depth 0.23 ft Flow-Area 015 ft2 Wetted Perimeter 1.43 ft Top Width 1.36 ft Critical Depth 0.26 ft Critical Slope 0.02790 ft/ft Velocity 2.60 ft/s Velocity Head 0.11 ft Specific Energy 0.33 ft Froude Number 1.36 Flow Type Supercritical Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity fUs Normal Depth 0.23 ft Critical Depth 0.26 ft Channel Slope 0.05400 ft/ft Critical Slope 0.02790 ft/ft Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/112006 4:34:57 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Cross Section for Bioswale for Area E - Q100 Capacity Calcs Friction Method Manning Formula Solve For Normal Depth NEMINNIONINNORINEMENNEWMwMasumn Roughness Coefficient 0.030 Channel Slope 0.05400 ft/ft Normal Depth 0.23 ft Left Side Slope 3.00 ft/ft(H:V) Right Side Slope 3.00 ft/ft(H:V) Discharge 0.40 ft3/s 023 ft aav� V\ eA aesiaV\ Slope) l-� 0esiosh Top WtJtt > Toe Y\61ma \ ae'vt� OK v:t UU s e p es i g n p e e-'r1- _ i ft- To e w i �- Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/112006 4:35:02 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1.203-755-1666 Page 1 of 1 Bioswale for Area E - Qwq Cales Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.240 Channel Slope 0.05400 ft/ft Left Side Slope 3.00 ft/ft(H:V) Right Side Slope 3.00 ft/ft(H:V) Discharge 0.04 ft3/s Normal Depth 0.21 ft Flow Area 0.13 ft2 Wetted Perimeter 1.32 ft Top Width 1.25 ft Critical Depth 0.10 ft Critical Slope 2.42742 ft/ft Velocity 0.31 ft/s Velocity Head 0.00 ft Specific Energy 0.21 ft Froude Number 0.17 Flow Type Subcritical Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.21 ft Critical Depth 0.10 ft Channel Slope 0.05400 ft/ft Critical Slope 2.42742 ft/ft Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 11/1/2006 4:35:20 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1-203-755-1666 Page 1 of 1 Cross Section for Bioswale for Area E - Qwq Calcs Friction Method Manning Formula Solve For Normal Depth Roughness Coefficient 0.240 Channel Slope 0.05400 ft/ft Normal Depth 0.21 ft Left Side Slope 3.00 ft/ft(H:V) Right Side Slope 3.00 ft/ft(H:V Discharge 0.04 ft3/s 0.21 !t Re ulr't✓� c� Atnhe� Lin 1� Cq� u�Ol�lO✓\ REQ (TT1re-jVVkqt1k w\,4h) (V\.Jct) Whe.r e iZ E q 1 S t�E 31 a N rt e l 8 rN k 11� C �J C C'%A o r e- 1® g C�t C.v C P, yin i v�i w. v1 vt,\ TYGG MnC n� �l G O'f�J IM6v� u e5 Per �qw �tf 90 �.0LtO y SLAV\. o''QS V � � � �1e GKgN1l�C1 Wa1Cv V ac, t� �fPS� �ASed 11:1 Q W� Et1 L R EQ, =(TT) uw q =(5 m 1 V�) CG O Sec/ I N) 7z 93 ft L ACT ',A A, I_ = f rs� ( l , M, E, Bentley Systems,Inc. Haestad Methods Solution Center FlowMaster [08.01.058.00] 1111/2006 4:35:26 PM 27 Siemons Company Drive Suite 200 W Watertown,CT 06795 USA +1.203-755-1666 Page 1 of 1 This drawing is NOT in conformance with latest UBC and should be used with care and judgment. 0 152mm 305mm (12") 0, 610mm (24"min) (6") r o '0 c a 0 1i E Ln c 305mm o E o — (12"J 762mm (30") min �E a CD cV ,n E E O N E Tit; t Cut Sloe M Cut Slope M N P 3"279kg/M3—C-14—Mpa (470—C-2000) Bottom may be concrete or 76mm (3") 17 Mpa (2500psi), rounded at the option air placed concrete with of the contractor. 38mm (1-1/2") x 38mm (1-112") TYPE A 17 gage stucco netting. TYPE B BROW DITCH _ c v 7 C O O N y 0 610mm 152mm °CL 610mm 152mm (2')min 1,42m (5')) min (6") (2')min 914mm (3') min (6") c min E a�i a) E� .n cv cp 1$y�r `nv y..• E Y.:. E ? y. c c� E r.rrFa _: ?' c a' c° E — f r:ci Y E.E v'„ N t!')N M.^ '. . II.��. O Cut or Fill Slope Cut or Fill Slope M Bottom may be rounded at 3" 470—C-2000 concrete or the option of the contractor. 3" 2500 psi, air placed concrete with 38mm (1 1/2")x38mm (1-112") 17 gage stucco netting. TYPE C TYPE D TERRACE DITCH NOTES 1. Longitudinal slope of lined ditch shall be 2% minimum. 2. Over slope down ditches shall employ 152mm (6") thickened LEGEND ON PLANS edge section at both sides of ditch. Revision By Approved Date RECOMMENDED BY THE SAN DIEGO ORIGINAL I Kercheval 12/75 SAN DIEGO REGIONAL STANDARD DRAWING REGIONAL STANDARDS COMMITTEE Add Metric IT. Stanton 03/03 3/Ol/2G103 DRAINAGE DITCHES Cftl6irperson R.C.E. 19246 Date DRAWING D-75 NUMBER - .., ' i e4 PRELIMINARY GEOTECHNICAL INVESTIGATION Two Proposed Single Family Residences 1435 Lake Drive (Two Parcels) Encinitas, California HETHERINGTON ENGINEERING, INC. HETHERINGTON ENGINEERING, INC. SOIL & FOUNDATION ENGINEERING • ENGINEERING GEOLOGY • HYDROGEOLOGY September 28, 2006 Project No. 5341.1 Log No. 10387 Mr. William J. Cavanaugh III and Mr. Peter Deering 1011 Camino Del Rio South, Suite 320 San Diego, CA 92108-3534 Subject: PRELIMINARY GEOTECHNICAL INVESTIGATION Two Proposed Single Family Residences 1435 Lake Drive (Two Parcels) _ Encinitas, California References: Attached Gentlemen: _ In accordance with your request, we have performed a geotechnical investigation at the subject site. Our work was performed in August and September 2006. The purpose of our investigation was to evaluate geologic and soil conditions within the subject site and to provide grading and foundation recommendations for the two proposed single-family residences. The "City of Encinitas Tentative Parcel Map No. 5-265 TPM/CDP" prepared by San Dieguito Engineering, dated June 13, 2006 was provided for our review. Our scope of work included the following: • Research and review of available plans, geologic literature and aerial photographs — pertinent to the site (see References). • Subsurface exploration consisting of eight backhoe test pits for soilibedrock sampling and geologic observation. • Laboratory testing of samples obtained from the subsurface exploration. • Engineering and geologic analysis. • Preparation of this report providing the results of our field and laboratory work, analyses, and our conclusions and recommendations. _ SITE DESCRIPTION _ The subject property is located at 1435 Lake Drive, Encinitas, California (see Location Map, Figure 1). The property, which consists of two parcels (see Plot Plan, Figure 2), is 5205 Avenida Encinas, Suite A • Carlsbad, CA 92008-4369 • (760) 931-1917 • Fax (760) 931-0545 32242 Paseo Adelanto, Suite C • San Juan Capistrano, CA 92675-3610 • (949) 487-9060 • Fax (949) 487-9116 www.hetheringtonengineering.com WEr 90 $' MELBA s enAs i i EJ 4 i i O{ <=1 w < YIt10Y+ y ss s3 'SpM ! DIEWITO r C L yWCtSOS� 1° Hs TER „ . '�� � HEx NA OR � K�'RY DE � '�STAE6An CH: P1 TEIN MA AITH AV KIN :SIAMIT ._.,b l"p L� i2i y PtifV- •r- S .0..� P 1 Rs CT � EVAR SM Is' l \ GAT41Y Ul B , y 4 I 9" 6IlE5TND tGRANBE c�J N +i4o IPEItlI _.._.� KIM OR 900 t pjt im 1C, i N1N woo" 9R SITE AN EK CT A `i "ta +p�DGt�E 4�Im z \4 2 15 _ TENNIS,,__..;� IFF, NDBE _ .J DB a OR CP�Y p�Y 4 ! i A 1-31 El 'jo tl t000 c4` {' 2ooaKfMt :. } SPATE MDR W BEACH `$rt OR �NIT a O� DR . � �O BRI�SAS VY VISTA r<, cc �' ♦ t } { �,tii � �� NI COSTA t V_nJ yew t% SAN CARUXFF ELIJO STATE LASON BEACH to Loa } ADAPTED FROM: The Thomas Guide,San Diego County,2006 Edition, Page 1167 N -- SCALE: V-2000' (1 Grid=0.5 x 0.5 miles) LOCATION MAP 1435 Lake Drive HETHERINGTON ENGINEERING, INC. Encinitas, California GEOTECHNICAL CONSULTANTS PROJECT NO. 5341.1 1 FIGURE NO. 1 GEOTECHNICAL INVESTIGATION Project No. 5341.1 Log No. 10387 September 28, 2006 Page 2 bounded by Lake Drive on the west and similar residential lots on the north, east and — south. The rectangular shaped lot presently supports a one-story, single-family residence in the northwest corner of the western parcel, a concrete slab in the central portion of the eastern parcel and an asphalt concrete driveway along the southern property line which — leads to the concrete slab. Topographically, the property slopes gently to the west at slope ratios of approximately 12:1 (horizontal to vertical) or flatter. It is our understanding that the existing residence will remain and that the proposed site improvements will be constructed in the vacant portions of the site. PROPOSED DEVELOPMENT We understand that proposed site improvements consist of the construction of two single- family residences, one on each parcel. We anticipate that the proposed structures will be -` of wood-frame construction and building loads are expected to be typical for this type of relatively light construction. Site grading will be relatively minor with proposed cut and fill slopes less than 8-feet in height with maximum slope ratios of 4:1 (horizontal to vertical). The proposed grading will create two new building pads with a cut/fill transition within each building pad. A common driveway will be located along the southern property line. SUBSURFACE EXPLORATION — Subsurface conditions were explored by excavating eight test pits utilizing a backhoe to depths of approximately 3 to 6-feet below existing site grades. The approximate locations _ of the test pits are shown on the attached Plot Plan, Figure 2. The subsurface exploration was supervised by a geologist from this office, who visually classified the soil and formational materials, and obtained bulk samples for laboratory testing. The soils were visually classified according to the Unified Soil Classification System. Classifications are shown on the attached Test Pit Logs, Figures 3 through 6. _ LABORATORY TESTING Laboratory testing was performed on samples obtained during the subsurface exploration. Tests performed consisted of the following: ■ Sulfate Content(EPA 9038) ■ Expansion Index (ASTM: D 4829) — ■ Maximum Dry Density/Optimum Moisture Content(ASTM: D 1557) HETHERINGTON ENGINEERING, INC. GEOTECHNICAL INVESTIGATION — Project No. 5341.1 Log No. 10387 September 28, 2006 — Page 3 • Direct Shear(ASTM: D 3080) • Atterberg Limits (ASTM: D 4318) The laboratory test results are presented on the attached Laboratory Test Results, Figures 7 and 8. _ SOIL AND GEOLOGIC CONDITIONS 1. Geologic Setting The subject site lies within the marine terrace commonly known as the Clairemont Terrace that is contained within the coastal plain region of northern San Diego County, California. The coastal plain region is characterized by numerous regressive marine terraces of Pleistocene age that have been established above wave-cut platforms of underlying Eocene bedrock and were formed during glacio-eustatic changes in sea-level. The terraces extend from areas of higher elevations east of the site and descend generally west-southwest in a"stairstep" fashion down to the present day coastline. These marine terraces increase in age eastward. The site area is contained within the southern portion of the USGS Encinitas 7-1/2 minute quadrangle. The Clairemont Terrace, a Pleistocene marine terrace, underlies the entire site. The Torrey Sandstone is exposed to the west, south and east of the site within the nearby slopes and roadcuts. It is anticipated that this formation underlies the terrace deposits — at depth. Structurally, bedding within the terrace deposits is considered to be massive. No — known or reported active or potentially active faults exist within the site vicinity, and the site is not located within the presently defined limits of an Alquist-Priolo Earthquake Fault Zone. No known or reported deep-seated landsliding is known to — exist on the site. 2. Observed Geologic Units a. Fill - Fill was observed in Test Pit No. 5 adjacent to the concrete slab within the eastern parcel and as backfill over several possible leach lines observed in Test Pit Nos. 6 and 7. The fill consisted of brown silty fine to medium sand that is dry and very loose. In addition, abundant trash, broken pipe and roots were mixed through the fill. It is anticipated that other minor relatively shallow fills exist throughout HETHERINGTON ENGINEERING, INC. GEOTECHNICAL INVESTIGATION Project No. 5341.1 Log No. 10387 September 28, 2006 Page 4 the entire site. The fill is not considered suitable for support of additional fill or _ structures. b. Topsoil - In general 1 to 1 1/2-feet of topsoil blankets the entire site. The observed — topsoil is generally comprised of brown silty fine to medium sand that is dry and loose to very loose. The topsoil is not considered suitable for support of additional fill or structures. c. Terrace Deposits - The entire site is underlain by Terrace Deposits. The upper 1- foot of the terrace deposits is moderately weathered and consists of yellow red orange silty fine to medium sand. Below this weathered zone the terrace deposits become weakly to strongly cemented, becoming strongly cemented at depths from 3 to 5-feet below existing site grades. It should be noted that excavations in the strongly cemented terrace deposits will likely require larger or specialized grading and trenching equipment. 3. Groundwater Groundwater was not encountered in the test pit excavations at the time of our work. — It should be noted, however, that fluctuations in the amount and level of groundwater might occur due to variations in rainfall, irrigation and other factors that may not have been evident at the time of our field investigation. SEISMICITY The site is within the seismically active southern California region. There are, however, no known active or potentially active faults presently mapped that pass through the site. Active fault zones currently mapped within the general site region include the offshore extension of the Rose Canyon/Newport-Inglewood, offshore Coronado Bank/Palos Verdes Hills and the Elsinore (Julian Segment), which are located approximately 3.1- miles (5-kilometers) southwest, 18.0-miles (29-kilometers) southwest and 15.5-miles (25- kilometers) northeast from the site, respectively. Strong ground motion could also be expected from earthquakes occurring along the offshore San Diego Trough, San Jacinto _ and San Andreas fault zones, which lie approximately 30-miles southwest, 48-miles northeast and 60 to 70-miles northeast of the site, respectively. The San Clemente fault, which lies approximately 50-miles southwest of the site, as well as numerous other offshore faults, could also cause strong ground motion. The following table lists the known active faults that would have the most significant impact on the site: HETHERINGTON ENGINEERING, INC. GEOTECHNICAL INVESTIGATION Project No. 5341.1 Log No. 10387 September 28, 2006 Page 5 -- Maximum Probable Fault Earthquake Slip Rate Fault (Moment Magnitude) (mm/year) Type Rose Canyon/Newport-Inglewood (3.1-miles/5-kilometers SW) 7.2 1.5 B Elsinore (Julian Segment) (15.5-miles/25-kilometers NE) 7.1 5 A Coronado Bank/Palos Verdes Hills (18.0-miles/29-kilometers SW) 7.6 3 B SEISMIC EFFECTS 1. Ground Motions The most significant probable earthquake to affect the property would be a 7.2 magnitude earthquake on the Rose Canyon/Newport-Inglewood fault. Depiction of probabilistic seismic hazard analysis utilizing a consensus of historical seismic data and the respective regional geologic conditions that are shown on "The Revised 2002 California Probabilistic Seismic-Hazard Maps" (Reference 4) indicates that peak ground accelerations of about 0.28 to 0.33g are possible with a 10% probability of being exceeded in 50-years. 2. Landslidina Review of the referenced geologic literature indicates that the subject property has no previously mapped ancient landslide deposits. The risk of seismically induced landsliding affecting the site is considered low due to the gently sloping topography. 3. Ground Cracks The risk of fault surface rupture due to active faulting is considered low due to the absence of an active fault on site. Ground cracks due to shaking from seismic events in the region are possible, as with all of southern California. HETHERINGTON ENGINEERING, INC. GEOTECHNICAL INVESTIGATION Project No. 5341.1 Log No. 10387 September 28, 2006 — Page 6 4. Liquefaction The risk of seismically induced liquefaction within the site is considered low due to the lack of shallow groundwater and the relatively dense nature of the underlying terrace deposits. 5. Tsunamis The risk for seismically generated ocean waves to affect the site is considered low due to the elevation of the site above sea level. CONCLUSIONS AND RECOMMENDATIONS — 1. General The two proposed single-family residences and associated appurtenances within the — subject site are considered feasible from a geotechnical standpoint. Grading and foundation plans should take into account the appropriate geotechnical features of the site. Assuming that the recommendations presented in this report and good construction practices are utilized during the design and construction, the proposed construction is not anticipated to adversely impact the adjacent properties from a geotechnical standpoint. 2. Seismic Parameters for Structural Desien Seismic considerations that should be used for structural design at the site include the following: a. Ground Motion— The proposed structures should be designed and constructed to resist the effects of seismic ground motions as provided in Chapter 16, Division IV of the 2001 California Building Code. The basis for the design is dependent on and considers seismic zoning, site characteristics, occupancy, configuration, structural system and building height. b. Soil Profile Type — In accordance with Section 1629.3.1, Table 16-J, and the underlying geologic conditions, a site Soil Profile of Type SD is considered appropriate for the subject property. c. Seismic Zone — In accordance with Section 1629.1 and Figure 16-2, the subject — site is situated within Seismic Zone 4. HETHERINGTON ENGINEERING, INC. I GEOTECHNICAL INVESTIGATION _ Project No. 5341.1 Log No. 10387 September 28, 2006 Page 7 d. Seismic Zone Factor (z) — A Seismic Zone Factor of 0.40 is assigned based on Table 16-1. Since the site is within Seismic Zone 4, Section 1629.4.2 requires a Seismic Source Type and Near Source Factor. e. Near-Source Factor (Na and Nv) —Based on the known active faults in the region and distance of the faults from the site, a Seismic Source Type of B per Table 16- U, and Near Source Factors of Na = 1.0 per Table 16-S and Nv = 1.2 per Table 16-T are provided. — f. Seismic Coefficients (Ca and Cv)—Using the Soil Profile Type and Seismic Zone Factor along with Tables 16-Q and 16-R, the Seismic Coefficients Ca= 0.44 (Na) and Cv= 0.64 (Nv) are provided, or Ca= 0.44 and Cv= 0.77. 3. Slope Stability The relatively minor cut and fill slopes proposed for this site will have maximum inclinations of 4:1 (horizontal to vertical) and a maximum proposed height of 8-feet. Based on the results of our investigation, the proposed cut and fill slopes are considered grossly and surficially stable. 4. Site Grading Prior to grading, the portions of the site where improvements are proposed should be cleared of existing surface obstructions, vegetation and debris. Materials generated _ during clearing should be disposed of at an approved location off-site. The backfill of the trench excavations for this investigation will need to be removed and compacted to at least 90 percent relative compaction prior to placement of fill and/or settlement sensitive site improvements. Holes resulting from the removal of buried obstructions which extend below finished site grades should also be backfilled with compacted fill. Old septic systems, if encountered, should be removed and backfilled in accordance with local regulations. Within the limits of the proposed structures and settlement sensitive site improvements, the existing fill soils, topsoil and upper 1-foot of the weathered terrace deposits should be removed down to approved terrace deposits and replaced with compacted fill in order to achieve final design finish grades. Removal depths are anticipated to extend approximately 2 to 4-feet below the existing site grades. Actual removal depths should be determined in the field by the Geotechnical Consultant based on conditions exposed during grading. Following removals the exposed terrace HETHERINGTON ENGINEERING, INC. GEOTECHNICAL INVESTIGATION Project No. 5341.1 Log No. 10387 September 28, 2006 Page 8 deposits should be scarified to a depth of 6 to 8-inches, moisture conditioned to about optimum moisture content and compacted to at least 90-percent relative compaction based upon ASTM: D1557-02. The recommended removals and compaction should extend to at least 5-feet outside the limits of proposed site improvements where practical. The proposed grading will create a cut/fill transition through each building pad. It is therefore recommended that the cut portion of the building pads be undercut at least 3-feet below finish grade and replaced with properly compacted fill. The undercut portion should extend at least 5-feet beyond the proposed building perimeter footings. Fill should be compacted by mechanical means in uniform horizontal lifts of 6 to fl- inches in thickness. All fill should be compacted to a minimum relative compaction of 90-percent based upon ASTM: D1557-02. The on-site materials are suitable for use as compacted fill provided all vegetation and debris are removed. Rock fragments over 6-inches in maximum dimension and other perishable or unsuitable materials should be excluded from the fill. All grading and compaction should be observed and tested as necessary by the Geotechnical Consultant. 5. Foundation and Slab Recommendations The proposed structures may be supported on conventional continuous/spread footings founded at least 12-inches into compacted fill or terrace deposits for one- story structures and at least 18-inches into compacted fill or terrace deposits for two- story structures. Footings should be at least 12-inches wide for one-story structures and 15-inches wide for two-story structures, and reinforced with a minimum of two #4 bars, one top and one bottom. Foundations located adjacent to utility trenches _ should extend to below a 1:1 plane projected upward from the bottom of the trench. Foundations bearing as recommended may be designed for a dead plus live load _ bearing value of 2000-pounds-per-square-foot. This value may be increased by one- third for loads including wind and seismic forces. A lateral bearing value of 250- pounds-per-square-foot per foot of depth and a coefficient of friction between foundation soil and concrete of 0.35 may be assumed. These values assume that footings will be poured neat against the foundation soils. Footing excavations should be observed by the Geotechnical Consultant prior to the placement of reinforcing steel in order to verify that they are founded in suitable bearing materials. Slab-on-grade floors should have a minimum thickness of 4-inches (actual) and ._ should be reinforced with at least#3 bars spaced at 18-inches, center-to-center, in two HETHERINGTON ENGINEERING, INC. i I GEOTECHNICAL INVESTIGATION _ Project No. 5341.1 Log No. 10387 September 28, 2006 Page 9 directions, supported on chairs so that the reinforcement is at mid-height in the slab. — Floor slabs should be underlain by a 4-inch thick layer of sand with a 10-mil visqueen vapor barrier placed in the middle of the sand layer. Prior to placing concrete, the slab subgrade soils should be thoroughly moistened. 6. Sulfate Content Representative samples of the on-site soils were submitted for sulfate analyses. The results of the soluble sulfate tests per EPA 9038 method are presented on the attached Laboratory Tests Results, Figure 7. The sulfate content of the on-site soils is consistent with a negligible sulfate exposure classification per Table 19-A-4 of the 2001 California Building Code. Consequently, special provisions for sulfate resistant concrete are not considered necessary. 7. Retaining Walls Retaining walls free to rotate (cantilevered walls) should be designed for an active pressure of 35-pounds-per-cubic-foot (equivalent fluid pressure) assuming level backfill consisting of onsite granular soils. Walls restrained from movement at the top should be designed for an additional uniform soils pressure of 8xH pounds per square foot where H is the height of the wall in feet. Any additional surcharge pressures behind retaining walls should be added to these values. Retaining wall foundations should be designed in accordance with the foundation recommendations provided previously in this report for one-story structures. Retaining walls should be provided with adequate drainage to prevent buildup of hydrostatic pressure and should be adequately waterproofed. The subdrain system behind retaining walls should consist at a minimum of 4-inch diameter Schedule 40 (or equivalent) perforated (perforations "down") PVC pipe embedded in at least 1- cubic-foot of 3/4 inch crushed and washed rock per lineal foot of pipe all wrapped in approved filter fabric. The Project Architect and/or Structural Engineer should provide recommendations for wall waterproofing. _ 8. Retaining Wall and Utility Trench Backfill All retaining wall and utility trench backfill should be compacted to at least 90- _ percent relative compaction (ASTM: D 1557-02). Backfill should be tested and observed by the Geotechnical Consultant. HETHERINGTON ENGINEERING, INC. I i GEOTECHNICAL INVESTIGATION Project No. 5341.1 Log No. 10387 September 28, 2006 Page 10 9. Driveway Pavement The driveway pavement section should be determined following grading and should be based on R-value testing of the pavement subgrade soils. 10. Site Drainage -- The following recommendations are intended to minimize the potential adverse effects of water on the structures and appurtenances. a. Consideration should be given to providing the structures with roof gutters and downspouts that discharge to an area drain system and/or to suitable locations away from the structures. b. All site drainage should be directed away from the structures. On-site soils are generally sandy in nature and considered erodible if exposed to concentrated drainage. c. No landscaping should be allowed against the structures. Moisture accumulation or watering adjacent to foundations can result in deterioration of wood/stucco and may affect foundation performance. d. Irrigated areas should not be over-watered. Irrigation should be limited to that required to maintain the vegetation. Additionally, automatic systems must be seasonally adjusted to minimize over-saturation potential particularly in the winter(rainy) season. e. All yard and roof drains should be periodically checked to verify they are not blocked and flow properly. This may be accomplished either visually or, in the case of subsurface drains, placing a hose at the inlet and checking the outlet for flow. 11. Recommended Observation and Testing During Construction The following tests and/or observations by the Geotechnical Consultant are recommended: a. Observation and testing of grading. a. Foundation excavations prior to placement of forms and reinforcement. b. Utility trench backfill. HETHERINGTON ENGINEERING, INC. GEOTECHNICAL INVESTIGATION Project No. 5341.1 Log No. 10387 September 28, 2006 — Page 11 c. Retaining wall backdrains and backfill. d. Pavement subgrade. 12. Grading and Foundation Plan Review Final grading and foundation plans should be reviewed by the Geotechnical Consultant to confirm conformance with the recommendations presented herein or to modify the recommendations as necessary. LIMITATIONS The analyses, conclusions and recommendations contained in this report are based on site conditions as they existed at the time of our investigation and further assume the excavations to be representative of the subsurface conditions throughout the site. If different subsurface conditions from those encountered during our exploration are observed or appear to be present in excavations, the Geotechnical Consultant should be promptly notified for review and reconsideration of recommendations. Our investigation was performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable Geotechnical Consultants practicing in this or similar localities. No other warranty, express or implied, is made as to the conclusions and professional advice included in this report. This opportunity to be of service is sincerely appreciated. If you have any questions, please call this office. Sincerely, Hetherington Engineering, Inc. 4 0 GF� _ �5 � _ ESSIpNq p 0y lFy Na IM COMFMO W No.2346 °C Exp.Date,_ '9 Danny Cohen le Hamelehle Registered Civil Engine q ofessional GeologiA-555 OFCpa'� Geotechnical Engineer 23 TFOF CAI�F� Certified Engineering Geologist 1760 (expires 03/31/08) (expires 12/31/07) DH/DC/dkw HETHERINGTON ENGINEERING, INC. GEOTECHNICAL INVESTIGATION Project No. 5341.1 Log No. 10387 September 28, 2006 Page 12 Attachments: Location Map Figure 1 _ Plot Plan Figure 2 Test Pit Logs Figures 3 through 6 Laboratory Test Results Figures 7 and 8 Distribution: Addressee— 1 San Dieguito Engineering - 3 HETHERINGTON ENGINEERING, INC. REFERENCES 1. Abbott, P., L., edited, "On the Manner of Deposition of the Eocene Strata in Northern San Diego County," San Diego Association of Geologists, Guidebook dated April 13, 1985. 2. Aerial Photographs, Flight GS-VBTA, Photos 1-174 and 1-175, dated May 8, 1967. 3. California Division of Mines and Geology, "Landslide Hazards in the Encinitas Quadrangle, San Diego County, California," Landslide Hazard Identification Map #4, Open File Report 86-8, dated 1986. 4. Cao, Tianqing, et al, "The Revised 2002 California Probabilistic Seismic Hazard Maps," dated June 2003. 5. ICBO, "California Building Code,"2001 Edition. 6. ICBO, "Maps of Known Active Fault Near-Source Zones in California and Adjacent Portions of Nevada," dated February 1998. 7. Jennings, Charles W., "Fault Activity Map of California and Adjacent Areas, California Division of Mines and Geology, Map No. 6," 1994. 8. Kern, Philip and Rockwell, Thomas, K., "Chronology and Deformation of Quaternary Marine Shorelines, San Diego County, California," South Coast Geological Society, Inc., Annual Field Trip Guide Book No. 20, 1992. 9. Peterson, M., Beeby, W., Bryant, W., et al., "Seismic Shaking Hazard Maps of California, California Division of Mines and Geology, Map Sheet 48," 1999. 10. "Probabilistic Seismic Hazard Assessment for the State of California", DMG Open-File Report 96-08 and US GS Open-File Report 96-706, 1996. 11. San Dieguito Engineering, "City of Encinitas Tentative Map for 1435 Lake Drive,"dated October 12, 2005. 12. San Dieguito Engineering, "City of Encinitas Tentative Parcel Map No. 5-265 TPMVCDP," dated June 13, 2006. 13. Tan, Siang S. and Giffen, Desmond G., "Landslide Hazards in the Northwestern Part of the San Diego Metropolitan Area, San Diego County, California," California Division of Mines and Geology, Open File Report 96-02, 1996. Project No.5429.1 HETHERINGTON ENGINEERING, INC. Log No. 10387 REFERENCES 14. Treiman, Jerome A., "The Rose Canyon Fault Zone, Southern California," California Division of Mines and Geology, Open-File Report 93-02, 1993. 15. Weber, Harold F., Jr., "Recent Slope Failures, Ancient Landslides and Related Geology of the North-Central Coastal Area, San Diego County, California," California Divisions of Mines and Geology, Open-File Report 82-12L, 1982. Project No.5341.1 Log No. 10387 HETHERINGTON ENGINEERING, INC. m Lill m - ci t J - z d i h.. LAKE �►�� Cl - .. V o 1 — � I �� ry D Cs C tI z , ID f1 "rfl ! fT! P tF o m ,� to " z w C5 Z r ='` <. _.. --�"x.53 > X _ _ O m �C x 21j- A r � L QD z r7- ! ( � imo , iv rn T7 r� X ti Z t I y 'C� - CA - - f 1 �l rn N >E w o W Lo 0 l Z Z Z a Q. V E -- : w = cn 00 Z ---- }� t Q M w <t f , Z U �^t r - OLz c�. Z LU o_ `zn �n . �w F. �. _ T — 0 F1 Q La H � z 1 3 LiJ �— — W CD 4 C3 00 B k tl► Cj C3 ctit C� w .. Ca in �o r N a 1 a_ Y . � W ,.a BACKHOE COMPANY: Hillside Escavating BUCKET SIZE: 24-inch DATE: 09/13/06 w FCC cn H w w H H a z SOIL DESCRIPTION a H H a w H w Q w w w a w a o o O�D u) o a TEST PIT NO.TP-1 ELEVATION: 349 W Q H D C] — U U) — 0.0 TOPSOIL: Brown silty fine to medium sand, dry, loose to very loose TERRACE DEPOSITS: (Moderately weathered) Red orange silty fine to medium sand, damp, medium dense to dense, some pin holes @ 2.5'-4' Yellow orange silty fine to medium sand, damp to moist, moderately to strongly cemented, few pin holes 5.0 Total depth 4-feet _ No groundwater No caving o.o TEST PIT NO.TP-2 ELEVATION: 350 TOPSOIL: Brown silty fine to medium sand, dry, loose to very loose, abundant 1/2" black plastic drip irrigation lines TERRACE DEPOSITS: (Moderately weathered) Red orange silty fine to medium sand, damp, medium dense to dense, some pin holes -- ------------------------------------- @ 3'-4': yellow orange silty fine to medium sand, damp to moist, moderately to strongly cemented, few pin holes 5.0 Total depth 4-feet No groundwater No caving LOG OF TEST PITS HETHERINGTON ENGINEERING, INC. Encinitas, Calliifornia GEOTECHNICAL CONSULTANTS PROJECT NO. 5341.1 I FIGURE NO. 3 BACKHOE COMPANY: Hillside Excavating BUCKET SIZE: 24-inch DATE: 09113/06 w r.0 vi w H H �D z v v SOIL DESCRIPTION El -- �l H H H W mil ' z Cn >q Z U H z H Cn ❑ _ a co w w x w a o o o - TEST PIT NO.TP-3 ELEVATION: 354 + 0.1 vl ❑ H ❑ ❑ -- 0 U d- 0 -- 0.0 - TOPSOIL: Brown silty fine to medium sand, dry, loose to very loose @ 1': Red clay pipe surrounded by 3/4"aggregate, possible leach line 1'-4": 2"steel water line which runs north-south TERRACE DEPOSITS: (Moderately weathered) Red orange silty fine to medium sand, damp, medium dense to dense, moderate pin holes_ _ ____ __ @ 3-3.5': Mottled orange gray silty to clayey fine to medium sand, __wea_kly cem_ented1 somepin holesLmoist medium dense to dense @ 35-5': Yellow orange silty fine to medium sand, some silt, damp to moist, strongly cemented, few pin holes, medium dense to dense 5.0 Total depth 5-feet No groundwater No caving 0.0 TEST PIT NO.TP-4 ELEVATION: 361 :@in OIL: Brown silty fine to medium sand, dry, loose 5'-1': gr avel on north side of trench, possibly the edge of a leach ': 2' steel water line running north-south TERRACE DEPOSITS: (Moderately weathered)Yellow orange silty fine to medium sand, damp to moist, medium dense to dense, some pin holes, medium dense to dense @ T-3.5' (Moderately weathered) Red orange, silty to clayey fine _ to medium sand, m_oi_st. some pin holes, medium dense to dense_ Yellow orange silty fine to medium sand, damp, moderately to strongly cemented, few pin holes, medium dense to dense 5.0 -T7 Total depth 5-feet No groundwater No caving LOG OF TEST PITS HETHERINGTON ENGINEERING, INC. Enc n t sa Califo nia GEOTECHNICAL CONSULTANTS PROJECT NO. 5341.1 I FIGURE NO. 4 BACKHOE COMPANY: Hillside Excavating BUCKET SIZE: 24-inch DATE: 09/13/06 U � m w vi w H H � z SOIL DESCRIPTION ww xacoP mw EnFq am ❑w a� w w a w a o o dP o �D TEST PIT NO.TP-5 ELEVATION: 366 + 97 v] ❑ Ey ❑ ❑ - U co - FILL: Brown silty fine to medium sand, dry, loose to very loose, abundant pieces of trash, broken pipe and roots TOPSOIL: Brown silty fine to medium sand, dry, loose @ 15: 3/4"steel waterline TERRACE DEPOSITS: (Moderately weathered)Yellow orange silty fine to medium sand, damp to moist, medium dense to dense @ 3.5'-5' Red orange, silty fine to medium sand, some silt, damp, - strongly cemented, medium dense to dense @ 4': 1/2"thick laterally discontinous lense of mottled gray orange 5.0 clayey sand, moist, some pin holes Total depth 5-feet No groundwater No caving o.o TEST PIT NO.TP-6 ELEVATION: 372 TOPSOIL: Brown silty fine to medium sand, dry, loose TERRACE DEPOSITS: (Moderately weathered)Yellow orange silty fine to medium sand, damp, medium dense to dense, some pin holes @ 3': Within the sidewall of the test pit encountered a 4"diameter Ir I black plastic perfrorated pipe surrounded by 3/4"aggregate __ I (possible leach line), backfill over pipe is brown silty fine to medium I;_ sand,dyLloose --------------------------� @ 3'-4': Red orange silty fine to medium sand, damp to moist, i 5.0 I _ weakly cemented1 medium dense to dense @ 4'-6': Red orange with pockets and lenses of gray fine to medium sand, some silt, damp, moderately to strongly cemented, some pin holes medium dense to dense Total depth 6-feet No groundwater No caving LOG OF TEST PITS 1435 Lake Drive HETHERINGTON ENGINEERING, INC. Encinitas, California GEOTECHNICAL CONSULTANTS PROJECT NO. 5341.1 I FIGURE NO. 5 BACKHOE COMPANY: Hillside Excavating BUCKET SIZE: 24-inch DATE: 09113/06 m w ui C4 SOIL DESCRIPTION ww xamH c�i� w ccoP am W w a� w w a w o, o o w� o H W a TEST PIT NO.TP-7 ELEVATION: 371 W v] C] 0 - 10.0 TOPSOIL: Brown silty fine to medium sand, dry, loose - TERRACE DEPOSITS: (Moderately weathered) Light yellow orange, silty fine to medium sand, damp, moderate pin holes, medium dense to dense @ 3':Within the sidewall of the test pit encountered a 4"diameter Ir I black perforated plastic pipe surrounded by 3/4"aggregate i (possible leach line), backfill over pipe is brown silty fine to medium,1 sand,d . loose —_—1 69-5': Red orange silty fine to medium sand, damp, weakly 5.0 __ _ cemented some pin holes,medium dense to dense ----- -- --------------------- - @ 5'-6': Red orange silty fine to medium sand, damp, strongly cemented, medium dense to dense Total depth 6-feet No groundwater No caving o.o TEST PIT NO.TP-8 ELEVATION: 338 19 M TOPSOIL: Brown silty fine to medium sand, dry, loose TERRACE DEPOSITS: (Moderately weathered) Orange brown silty fine to medium sand, dry, weakly cemented, medium dense to _ dense ______ ______________ @ 2.5'-3': Red silty fine to medium sand, dry, strongly cemented, medium dense to dense Total depth 3-feet No groundwater No caving 5.0 LOG OF TEST PITS 1435 Lake Drive HETHERINGTON ENGINEERING, INC. Encinitas, California GEOTECHNICAL CONSULTANTS PROJECT NO. 5341.1 I FIGURE NO. 6 LABORATORY TEST RESULTS SULFATE TEST RESULTS (EPA 9038) Sample Location Soluble Sulfate in Soil TP-1 @ 1.5' 0.0229 TP-6 4' 0.0194 EXPANSION INDEX (ASTM: D 4829) Sample Initial Compacted Final Expansion Expansion Location Moisture Dry Moisture Index Potential (%) Density (%) c Tp-1@ 1.5'-2.5' 7.9 123.8 10.9 0 Very low TP-3 @ 0-1' 10.0 113.5 13.6 0 Very low MAXIMUM DRY DENSITY/OPTIMUM MOISTURE CONTENT (ASTM: D 1557-02A) -- Sample Description Maximum Dry Optimum Moisture Location Density c Content TP-1@ 1.5'-2.5' Orange brown silty 132.0 8.0 sand TP-3 @ 0-1' Light brown silty sand 1 120.0 9.5 Figure 7 Project No.534 1.1 Log No 10387. LABORATORY TEST RESULTS DIRECT SHEAR (ASTM: D 3080) Sample Angle of Internal Cohesion (psf) Remarks Location Friction ° TP-3@ 0-1' 29 100 Remolded to 90%@ optimum, soaked,consolidated,drained ATTERBERG LIMITS (ASTM: D 4318) Sample Location Liquid Limit Plastic Limit Plasticity Index U.S.C.S. Class TP-1 1.5'-2.5' - - - Nonplastic TP-3 0-1' - - - Non plastic FIGURE 8 Project No.5341.1 Log No. 10387 - I - . I � � � I � I I I . � I - . I 9- ....�P - i � . I '-, I . 4 x I . ",-i,- -.- ... I . I I I , , , -, I , , . (A ,.- -, . �;l` I I ' ��\Z\ i� � 1H, / '3 � 1� I I ""N W 0 11 � ') \'-"-� I i - I . I .. .'.'. .. I . 'I,0,�',�.,.�'`."� -..IcIL-10r' - I lj)� , .. .. .1 .. 11�%-.I- t -- Q--), \ , ; " ,I ' � � � * , " �'' .`-�.� "--..�-. �' A � 1 � y i . .- . I I .... ... I -J I I k I I , - " . i - i;;-�Z . , � I It -L-.1.' � " � '� Z4�' ' \-, .�-' � ! I �1 " �- .AT I � I 1 1 i ! '�' , I I eTl� ..:-'' ...' � -,,- - � i . ..A ' - I I /F-,-,,, 1 1 . "I -�- " � � � t , \ . � I" � i ��' i � I .�-I:';�-v I I \ i , � .... . 1 �4 i i.f--% It I. .11, 1.I.,'..1.- �1.1..�I :: 1111�� 0 i - I I � j � I T"-,' 'I., 4,/ I '�' -* � . f I I I '�� I I . / I I � if f / j , .. � � I I i �,�K-'Lxj 1 i'�"'! -'�� 'Y i"...'..- -1 "*"--,, -�`�' '�� : % '/ , I j V i( ... �I. .. - : , - ::�'� - AD m t I / .. - I ,i k L. �:t' . , I I.: i", � _.:_4 . I I "I "�'^ . ..11.. I�I��� ,..I...I ........ . -. ; I A.P. 2 '222- � .( �� \ � T , I __-::�� ."" - : 4 ,.. ..�-..:. :.d�--......' � �, ..-'�r-' I I I I ', I " , l, O'l \ \ i i '� t,�' � � I J�, " C H j'A-'-'385,5 itr.. ..- . . I . 1. .I....�� .m..:1:-I"� g, I� ". .� , f I <>C ' 1 �' I I , T" k Al x.3 4&4- 1 - "� '. [ f ", � ' i \ - \ ,.(-i I I '�-,,� EXI�TIN ,,, ..-:...:.':I :'.'�: . : .'. � W.. '� � I , I �. - I . i i j . I i ��." . I . � . - "" I . . ­ -,R- t.. -i I I (( ll�-j�c" . I I- . - - ; I .. . I . h \ - , .?-<, I :,:,:.:.:. '. c- 1. .... .'�'�`. .-xl� � I ,. . ........ ': - , - � .;.,,, . , I I I � :'.:,%;' , � '. I 1. =4 1 - - - - .- I � , I- I " I :.I'.I ...: --- t&' ...' ,-A .. I .. �. I.''. : ".� .��,'..' I I" - '� :� � ".'.7 ��'�' . I , : I .. I it 11 0 '-."�-'.. : �-- ; � �--,.4 i , -'.'�*..' ' , �' '. . �''�.7. -".,. 1 4:'! '.-.� I I i. 7* �=-':Z�f � " f '� � T, I � ' '� 'I It I 'Y---] I 11 *1 ), it, 11 Ji A'I��- '8 . � � - I ��- T, I I , ; I � , . �,SPH :� I J I , " r, >< N" 2 6P 0 i I -11�-1,\ \ " (---- L '8 6 r-`Q- 4-1 ` L- ,.,...-f�i 11 i x , Ii , I 1 -222-1,27 1 tic) -1 I - -j." m :� : r 3 ' -A \ '-� A-) 0,14-1- e !I I I 1, IT 7 !I, ,j ' � I � i ', j, I I - , t I , ,,," I 1 i k 'PR91---l"I'll��' 0� 'i I i , I I 'i, , : 1 3:'.C- I,I - - , t .. � 'I 'I (Y, 1 1\ 'Y� ---�-�- 4 - yc"4 1 . . I. , OR, ._' , "" ,,,, --- I ' 7 ' - �, I ."t % i I Ir I I! �"4 \'� k( , 1 " 1,L � --,i fl -il ': .�:.,���;��� -., ,' � �4 " I� �\ � Z I I li'-� I , ��,[*,I 0 'f t " -1,11 " I � ). �"" i I , i I -- �' 1 1 1 ��,,� +! 1 , '7 1 11'� � I , �:.�� ��. -'.��--"��::�-"�---:-.-: -- , * �' ...* I _ I , (m . I !I 1 / � r 1 il . t;��'�"'! I \ '/ 1� / x 'I I ..:: I I � - , I' VT ! I I \I".� � � "� \ �'! , 11 � li!I iA. y - ��:�-�� :,I �11 ..... f /I - 50 2#\'\< , - I � 1 li.�'4' \ x � ,ke5 I I t�. .Id .. m I 1� .\ , I � I j, , -'r �' � '_';�' �' .. , � �i '. _� I I /'� C - � I N ��:'q -4 , I It . I _ i M . � r : N "Ll i \ 11 1/' �e I � ;o J., - - �V\ '\/ i 1. ", )-)'4,1 ' ' " J- - - �j "! '-""� -03-'-�'- T"� 4 . . I 1, \ t - 1 7 , - . . , , .. , 0 1.sp�-ify � I .) . - -1 -1 1--T ii / I �- . ''.' 11 I I 11 I \\ " � 1, ''I : I '-V' ��;�" I -� . "..' � "' " � - ' ' ---, =-1-'-�11 -1 � - I � - � 7.%'�� .X -ir' - �11 " '- I I 11).� Ir'r' i ', 1. "� i -� I Z) I N � , -��-51717 12-.:.i::.:.:..:. -- - .. I I i I .1 �T �:::::::::::::: 'j:::;:jj::j:�j:jjj.1' -;`1 -'* 1. '� . I "' \ "-,- " It, - I .......i ;' I 1, "!I �\ "'�;1 m � ,I,. 1;: I , � - i - - I ', I ' , , � '4"T�'.'- 1 , r',r - -'"�;!"r =' --7� , ! , i \'� I 1 1 �lr� i, f, � r k - - --,!-- - i I I !..-- � � , , r';ee�--,"�'" - ,- L I -��� , t, f'� ! I i " � I , \ k I - . :J'11'."-:�';� �� 1,3�' ; -1--.7 A ""�4 .""K\ I --.11 , 1 1 1 1 I , I q rr--�,,,, \ \' '� . , j'z � � i ly ), , . . , -;7'�, - - - ' ' 11 !'. -�-.'��f I'! .1-1 > I I , I � It I MR`�"W�.*N.`��m im-1� "I. � --- i, - -.- -1 -I -�A.1� I .. I i I I . .1 , 'o=� �- � I.,," I ,, " ­7 ; -1 '� , " i I - ,.�� -, 11 --,/ % � I I I "I . , , � , ",'�-�"�-- 7 � ."�"-.-'�2 'i- � -.1 % '� � T� i, ` i �- I A� .� I � � " 1� I I Il'i 1 ��( 1 1 I I � I- - 5 I-7' I 1/- ! ' - 0. , % � 1, � I ij A I 11 -71-.- 1-11-1-2�� x........-'4 Tod I 11 T .� I - � ',� U.:i ........ " I p . .. � T -------7--7-71c- � � --186- , I I ........'. 1-11�v 11� .,-��-�.",;�.'��.--,�,,',�.,r",."���,1" . I I I i r-...I " n ' L -..-.�� - 'i"11.1, " - . - -�' ---'�-'-�---k'�'-'��Lk-'-'+" i�' I � I ���' 1, i 1, 1, I ; I , -...... " I.' - ! , . \ 1 �'i' .;.:M.-.:,.: : q 11 I 1-1, % (X ' " ��, �':. LIJ , ----;--, , ,.,-. x- I�...I - \ \ .1.1.1 I !.!, -� - I , " " I - 1, -la-- Ir � -- -1--, IT �� i . I I ;�,:::��.:::It*�: - Ili . .... r -.... 11 - � 04-A,- -1&--�-'!" - � i j, "1--t-1 i � '_1 '�' N �' 11 ' i i:' .?---.ip':: " 1� .;!-�-t'�' I I , �. � � , - ' - I r --�' i , - :.: """..�. R.... "� rl';�'� - " I I � . : , I �. I ��.'-'..�4 H".11 1. ,�, -.- I....' '' -1 � �.11'11 ..'... - .'. ��i � '."5"--�' . .. r��-'-- 00 oia,0 W '� � -1 I I )--,,� , 1 1 f ...X....! � IvO '�-�% . �.� f 1 ;....Ki.'.. I. ,,- .. .I 1- ,k -::::::'.lt: " - I 111. , - I . r . - I I ,1� ',I 11 ��I�'. lLwl I I.. All, 4 .�' - s � � I - - L,)�,"Sr:);.'l k - �. ,, �:::::�_b'�' '..."", .�. ,. � . i t - , .1 lr."...-:�." -- . . , I , , +11- +"+. "� ' ' - . ......-"��'-,­ - - . , + � - I -) " ,:. , 4 4?14'Lj '�.:� - �L-�:'.��.'�'.:�.-.:' ' '- � I ++,*.............. ...- MN...,++," , �.+''..:1,X;", �. - e - I . 1. -'- . . , :.:'.��. : .�'K'.::::.;' .... I ' : '�V -.1.1...." �.... + ,-. - - , ., ,- .. - ' + . - -�-Ij;t'-.! , . > 11 4 . . i+'.."'..-.���", ,.-.-...-1.---...Q". -' -.....4.'-'1�::"':-��..::.:�':. :--.-,�,11 I ,..,�.�I I , -.'.A...� � -i ill'.1. -- ", � � !%�'-�. " ..�......," . I I .... .� .." ..' , , :;-1,+-...'....... ..... 11 �.I�:,-,.,.'if",''� + ,.------. .1 -"�7---;.' , X , -. . � �'. '.'� ']. . , -".� . �:' .� . ..' III:�l'ii�!�!i��ii!�:+i:,;+,",+ � 11 ;�: -: -] � 3.01 � ""'' - .�ii!i!$ill: �� '..--- -: a .. , �i "I . .. I � ..� , , . � .�'. J I--"-----,"-4�' '3 1�11 , � + �::�.� 'r . I-- �. I., , i..:. 11�: "'.., .. ',11. - I . I � . ...t '........."." , .. ,. . , :;.t� .� , r': .� .. � 11-1:1 "., ,� '. " I - � i . I I ,... 11 .:::� , ,. , .:.:..,., :- TZ,11: -"'�� .....'I ........�. O.",i .-�:.:: ...: .. ...I �Iii"iill ":.. .... 11 .�..: -1 i I I , �:.::�71�:' �'..'� . . i �. II 11-11-1 � I � � . 1. 11 .k�.... ...::.,.:: '..""::�' .I I.- , :'. . 1 i.:::.:...��.,..I- . 1 1. ,.:. :N.,;.;:�t:�-:+.".+!!!!.'�..!!!!!�,+!.I..++. ..-.+ii..".��.ti- ��� � . ��'; "`�'.'-�'::-r i' 11 I .. '��-....- ' .�. t') - � �, " t .......:::::::�.:,I���:+ . : ',,, c I.", -n� v :�.::.�"�.1: - -.1 - - k - I '�- � :: 1�.,� �.� � 1. --� - ; ' .1 .1- ".4 , .�i:��:. pt:�� .� I , , A, I - I 1, ,,:',' �i: -. ,:: :�'��O:::::-��'�:�. 1-� . ---. "." ., . 11 .� - . -, 1, �::..:.. �:7.:Y IY�:'.':: , 11 ":::':1.,�11 . ...' :�: , -' : ,, - .- � - �:.'i .. � ........ ',�, . t' ... - , �� .... .. gqg - ... .- ...... I - . .... , ... : . . �xnq - ---=:Z' I --...- -- I.", .. I I . .�. .�� , .�- ,. -, 1: "' . - .". � � 1AR - 0:415 � . i-� - 0., . 1. � .... , ,-',� :.. II - ' ' � 1. .. ... .....' ,, - - - � I .... + _ % �'k��' 12 � 11 , � 6 " I I 11 'l:�+.:l � !�L 111. �]��..��,�-?�iiii � '�- � I I :. y - , - I x 1.� ....' ��� I ++!+,li!� -i"'to -, -i - ,:. ':' '. ..�.. I . ". --i'' �, . . !..Ilii���.�,��.-..�.!..�.ii��+,,i�;:.",+����.�ii -.- .. -."- .- " -V .''.......14, . 1 ,, . . ".. iiiiiiiiiiiii., - n , . , . , . .... j.:� ".. �....", .. I '. :...... ,1... 1. :. ...... . ,� .. �%, www'.1'.i.l..'�1 �-'; 'A .�:t,......il� I . Rli!. , .� -1 p 3��..- 1 :\ �.. ,.�" , ..'. - , .:.1" DkAl NAGE' AREA' �:��::::':.":j x `". I ' - ..". - "', " � 1 \ - �.- ".."', ,..'' , - � - '. !, +iii!iiiili: ii" ...I. �. I ,-----�+-+'.+� - `7 ,,, I � ,. ..' ..' - - ,,-.1 ".. - A .'� - ,� ...... I il'�'.!--'..�." .� M '. ,1+�:-"�'.��'�-":�,':-:1 "'7.; � , el-'.. I I '' � - ::1:': t��' , - .. � &,, - .. . . 11- I ,. .1 P, - '��, Ti.-.-�' r�7'.�"�.T , . I , , 11 l�l .:: . ..,.. " . .. 1. I . .1. .' .11.11-1.1 . - . I ...' 11 :....: Ng '� I .11 ' . IL� , ,'d-�: :71:', " ,� ��-� . , ; :i7,77 .....'.. I I . , 4 I .�: kiiliii! " . I. ........-:.t.. . it t; I , �� ) ;_�.--.-4L-� , �--'�,j ��;. . I - . ,. - I I 1� . .� .. .:::: .1,i--.+.11'1`i�:�ii: � , . � -.111 -...- I i, t' i - ,1-1 A�, 'dd, I 'I -�.--!':. I I ..."', .".'."'.... 11 �...'..'.'. .. � "." . � ++ ,.. :'.:�:. , 1: � " � ', ...1. - + ll 1 '.. .. , ��. �:i � , � . ,:. 1, � - , �' 11," I.....,.. I . -", I : Ti..,, �- " , . I I '..i�i'� i . . . � - - ,....- . . I " , ..' , - il !�i.zi: -!Ilf!� ::;i;i�iiilil � ... . . - ,:.. f ."."(.... .::i , 6� .:"I ..- �... " ':'i., - � �� '' ': ��.. I' i . 01 .. M - 7, ... I 11 .. .' I�I , . , . .. km : . .. i - �`.- .11� � . "� ----'--.--.�s.-�.-��',--'-;-, k -i; 1� T5 2 5 1Z 4 /' � I i.. i �:F , gw=-..m'6"M-.,--'l.- z 1 1� 1 �', I 11 I I i ( , ' '.�� '..' ... .1.I �� ..'.....' , ''.-, ... ... , : .", , gg ..", , - , ,. .- � , , ,, .. ;-- , ip" '-�' � .. I .. ... :w 1. x I ' ", - , , I 1411':'"........"./'�: ..."'. , . ...... N I - I i,. .11 ,� �:�:' ...'11 dl. � �., --" i.. - . ...''.1 '' I t'..........-, -'. ."'.I.- ....... - m . ,.� . '. �:. :.' ., :''.1 .t. - . ��-- 11 � .. �:; ........ -:.�,.... , , . -- :! � + . - liiii .... - A .. '" .. - - 11 ,- , 0-.;:'; - .i : '�.. :. : , . 1 "k-110 , �11 I ,, I : ,I, 3"z ,:,:� :ib. , ' '� I �'.:�' .�� :'� :� ,�:. �� �' - 11 . . . ....'� �� '� - I" . - � � -I 1 , I , , ..... I., : , , ., I m'� 1, , ....' , - - � �. 11.1 -1.i...... --.- �L ---J ! jr f 9.1 v . ,. " . . I., , , '..' i . " Ell I I I q , : i :.:'I:'. . .11 I li� ,� - I �Iiil�. . .:: ". , ! i [ ".!ig��.: �'-..`--" I � .:� . '�' � i I ,� '.4 �:,:..:��'::.�..� "1""' '., 'T1:1. ' ' . . ...� til"....' � ., �x :��'�i:��i�� . . 11 ."'I , I + yl , ." - ��'�.%' : : ::�::: :�. '% .) ,. ....' �. " �. -1.1 '.I" �.. I x :, ! I !i!.---1.�-` ' * ;��i]��i]�� .�� '' .-� � �A I I�i � 0! �' I "I 11�' .. v . .-..:' . � I- - I , : , , I -1 :�.--.�il, .. I . :.�� .'::x ' -1 : :. .'�-�.vi: ' m .I.,. .I I ", 11 �� , ' : . . : �li."+..'.*�'.1�l;*..�.�ll"!�.�'-'- . - � ". �.' - I . .�� 11 I .. �� � : .. : 1'j � �.::.%, ,� ". - A I ' , I I . . , i )" � �� ". i , . �. I I -. 1 : I .1 -1..... .I- " ...' - I I , : '"" 'i��;�i:�I%�i� � I �i;;� . �Vr - , ! ", " .1 '.'.' - : � -.. '-�' " Z � "�� I T, I - , . I I � �, .. . 1. I .... -- ..- - ` !41 I.. I.. ....... 'l,.*v..'ii!!!!il1.++i ,� � ! A; ...."'... . - '4�1 "-- � I / , ....... � .. - .. , '�.)- I t: . it I . , ,� � 1 \ � 11 � � ..... '++'+* . ��:�:i��...�iji z I I I I 1 � ...I � e.:� . - .. I - � e . �, .1 I I k .� - I 1 � I .- ' . _ .- '.i�.' ,I - k7 � 1 > I . 11 , ..: � , + , ii 1. . I.- .. .I .1.; 11" " ji .1-, .." �.: 1. . ,* I N I , I I I .... ,\:�� - I . I � I ". I I .I k ,. 11 . '!�'' I I� I �� I .--- .�: m " "I'l.....'. I - , .- � .11- -w�---- i I .1 .�" I ��,"'' V.. I - . I � I I I � I .. ,� :: + .� "".- o', I... : :: . �' I � � , I ' , + .. 1. �, I � - -.. . +,.++! � t-.-., '.1 .1. '� I �.-Z' ,+ '.,..� 11 'i I I � L - -j \ �-- ;x.,i.."',� ��: '%t�-"5� - I '' " I - I I 11 , ,��".:-.- - � , .I" . I