Loading...
1998-5683 G/I/TE/SN J ENGINEERING SERVICES DEPARTMENT city of Capital Improvement Projects + District Support Services Encinitas Field Operations Sand Rep lenishment/Stormwater Compliance Subdivision Engineering Traffic Engineering January 19, 2001 attn: Jennifer L. Bookout, Attorney-in-Fact Global Surety& Insurance Company Omaha,NE 68131 Re: Tract 94-066 "Encinitas Ranch: Unit 2" Grading Permit 5683GI {Kiewitt Pacific Comaanyl A.P.N. 257-500402,03,05-07),29,30) Release of security Permit 5683GI authorized the import and mass grading needed for a future commercial center. A Transportation Permit and Haul Route was issued to Kiewitt Pacific Company to allow the import of up to 200,000 cubic yards of dirt from a job site in the City of Solana Beach. The import has since ceased and the Field Operations Division has verified the condition of the public streets used in the hauling. Release of the security deposit is merited. Performance Bond 3528,enclosed, in the amount of$500,000.00,is hereby fully exonerated. Should you have any questions or concerns, please contact Jeff Garami at (760) 633-2780 or in writing, attention this Department. Sincerely, ¢/ F r�Kields Senior Civil Engineer Field Operations cc Leslie Suelter, Financial Services Manager Kiewitt Pacific Company, Construction Contractor, Borrow Site(point of delivery) enc PGS/jw/jsg/f:case/1994/94-066-2hbond.doc 1 f HL ,60-633-2600 / FAX -60-633-262? 505 S. Vulcan Accnuc. Gncinirati, California 92024-3633 TDD -60-633-1700 �� recycled paper DESIGN CALCULATIONS -- PLAZA AT ENCINITAS RANCH DETENTION BASIN (REVISION) Y _.. PREPARED FOR _m Zelman Development SUBMITTED BY SIMON WONG ENGINEERING STRUCTURAL AND BRIDGE ENGINEERS _. 500-390 October, 2001 Page 1 DESIGN CRITERIA PLAZA AT ENCINITAS RANCH DETENTION BASIN DESIGNED PER 1997 UBC & 1998 CBC Masonry: F,,,=250 psi f' n= 1500 psi n=26 Concrete: F, = 1000 psi f, =2500 psi n= 10 Mortar: Type M or Type S (1800 psi) Grout: 2000 psi Reinforcing: fy=40,000 psi(Grade 40) Fs =20,000 psi Soil: EFP =20 pcf (Active Buoy) EFP=62.4 pcf (Water Pressure) Allowable Bearing=2000 psf Passive Pressure =200 pcf General Notes: 1. Special Inspection is not required. 2. All block shall be grouted solid. 3. Backfill material shall be compacted to 90% density and shall be inspected and approved by the project soils engineer. 4. Footing excavations shall be inspected and approved by the project soils engineer prior to placement of reinforcing steel or concrete. 5. Footing concrete shall be poured neatly against undisturbed existing ground. 6. Provide"Koester NB-1"waterproofing or owner-approved equivalent to back face of retained portion of walls. 7. When one continuous reinforcing bar cannot be used, a lap splice of 40-bar diameters is required. ZVA771n, � STRUCTURAL&BRIDGE ENGINEERS Proj. 9968 Hibert Street,Suite 202 (858)566-3113 San Diego,CA 92131 Revised: FAX(858)566-6844 2 IN - Project: �-'U Page: SIMON WONG ENGINEERING �eTLh+1(]Vl I�ALiI V� STRUCTURAL&BRIDGE ENGINEERS Proj.#: _ 500- 3qD Designed:,�� i A -JjA�a V� Date: ' 9968 Hibert Street,Suite 202 (858)566-3113 ----] Checked: San Diego,CA 92131 FAX(858)566-6844 Revised: u S+c vy\ s; I ,-7 + I.- 2 do, o Ij- _ X14, 3l. Ib ZDD 17c-� ^ g c G S��c GtJ s 1�Lc -+v can 1 n�-i D✓t 5 ... _. �j�an�� �,2ssv�,-c. — 102 . SZ� � ZodO °►`- y SIMON WONG ENGINEERING PAGE # 9968 HIBERT STREET,SUITE 202 JOB NO. 500-390 SAN DIEGO,CALIFORNIA 92131 DATE 9/6/01 PLAZA AT ENCINITAS RANCH TRENCH FOOTING RETAINING WALLS BASED ON 1997 UBC SECTION 1806.8.2.1 WALL IDENTIFICATION: DETENTION BASIN WALL P= 494.36 ULTIMATE LOADS(1.4*WIND OR SEISMIC, 1.7*EARTH)- POUNDS B= 1.00 WIDTH OF TRENCH-FEET H= 0.98 HEIGHT ABOVE TOP OF FOOTING TO LOCATION OF LOAD- FEET PP= 200.00 ULTIMATE LATERAL SOIL PRESSURE- PCF N= 336.00 AXIAL LOAD TO TOP OF FOOTING-POUNDS TRIAL 1 D'= 4.64 TRIAL 2 D'= 4.60 TRIAL 3 D'= 4.63 S1= 309.33 S1= 306.99 S1= 308.96 A= 3.74 A= 3.77 A= 3.74 D= 4.60 D= 4.63 D= 4.61 TRIAL 4 D'= 4.61 TRIAL 5 D'= 4.63 TRIAL 6 D'= 4.61 S1= 307.30 S1= 308.70 S1= 307.52 A= 3.76 A= 3.75 A= 3.76 D= 4.63 D= 4.61 D= 4.63 TRIAL 7 D'= 4.63 TRIAL 8 D'= 4.62 TRIAL 9 D'= 4.63 S1= 308.51 S1= 307.67 S1= 308.38 A= 3.75 A= 3.76 A= 3.75 D= 4.62 D= 4.63 D= 4.62 BOTTOM OF FOOTING BEARING PRESSURE= 1028.52 PSF Q v? tL O x a � O � CL Q. z v N W W o r. N ' d u N h Q Q v c C3 Q a� 3 a (100WAH w 3 Bz Q aC4 � a A ILA 6 A P �' p •p P p p •p 4 p p s p P D. p O p LU \ .V^) C U •, N � � o o h cs n (v X 4J -.- f� � G G N � � s w W N C �C F+Q+ C O � O r M ZLeighton and Associates AGTGCompany GEOTECHNICAL CONSULTANTS UPDATE GEOTECHNICAL INVESTIGATION, THE PROMENADE ENCINITAS RANCH, ENCINITAS RANCH, TM 94-066, ENCINITAS,CALIFORNIA March 28, 2000 Project No.4940028-027 1 z T ;n. _ J Prepared For: Encinitas Town Center Associates II, LLC 707 Wilshire Boulevard, Suite 3036 Los Angeles, California 90017 3934 Murphy Canyon Road, #B205, San Diego, CA 9213-4425 (619) 292-8030 - FAX (619) 292-0771 - www.leightongeo.com 4940028-027 Wall footings design and setbacks should be performed in accordance with the previous foundation design recommendations and reinforced in accordance with structural considerations.Soil resistance developed against lateral structural movement can be obtained from the passive pressure value provided above. Further, for sliding resistance, a friction coefficient of 0.35 may be used at the concrete and soil interface. These values may be increased by one-third when considering loads of short duration including wind or seismic loads. The total resistance may be taken as the sum of the frictional and passive resistance provided that the passive portion does not exceed two-thirds of the total resistance. 5.11 Retaining Wall Design Retaining walls may be considered at several locations on the subject property. Settlement- sensitive structures should be set back from the top of the wall at a minimum distance equal to the wall height. Appropriate geotechnical design parameters for the reinforced earth type retaining walls are provided below: Friction angle of backfill soils 32 degrees Cohesion 0 psf Weight of backfill soils 120 psf Allowable bearingcapacity 2,OOO psf(18 inch minimum embedment) (l 8 inches minimum width) Expansion index <50(per UBC Test 18-2) Temporary backeut per OSHA Seismic Acceleration Maximum Probable Ground Motion Adequate drainage should be designed behind the wall by the wall design engineer and reviewed by the geotechnical consultant. Typical drainage includes a PVC pipe surrounded by gravel and filter cloth with outlets into positive drainage facilities. Backdrains should be provided behind the reinforced zonewithin-the westerly portion of the site. 5.12 Geochemical Issues 5.12.1 Concrete Laboratory tests performed on native soils indicate a negligible concentration of soluble sulfates in onsite soils (less than 0.005 percent) for tested representative samples - (Appendix A). Accordingly,typical Type 1/11 cement may be used for concrete in contact with onsite native soils. Import soils placed near finish surface should be tested for sulfate content. LO 6 z8 z 04 ;�Wwk � }d H =oeW � J � � �y� Poi 68 z uv"=i W u � :x--j w" a _ a t a r Lo Sum$ &° � k NW ug o u o � N ° "o. G CL NS o � t HS z t. LL )0 h pp� ..... rX,�M C - O p O W tE o� W f N _ N b b o C7 - J 3 . h O k� EL _ 0a ~ N0018 ON11003 N0N3N1 K 9L Xo.9 313tl0N00 d•'- A-.s ° of '" zo °o ui W tZ2 a z z a O o " �jffi O k o LAJ Q zo =� "� 3 0 0 3 CL o� ° z z N o Q a a� a j� Q DESIGN CALCULATIONS PLAZA AT ENCINITAS RANCH DETENTION BASIN (ADDENDUM #1) � a. 4 71 ' z PREPARED FOR Zelman Development SUBMITTED BY SIMON WONG ENGINEERING - STRUCTURAL AND BRIDGE ENGINEERS 500-390 September, 2001 SMR == USD Consulting Structural Engineers --_ 11 October 2001 To: Tamara O'Neal (City of Encinitas) From: Zubaid Karim, S.E. (SMR-ISD) Re: Structural Review Comments Retaining Wall c@ Detention Basin Plaza II c@ Encinitas Ranch Storm Drain Improvements City Finance No. 6850-GI SMR-ISD#2001-014 1. Typical wall section (Sheet#32). Please justify the assumed water height of T-0°for wall design. Basin elevation 80.2',top of wall 88.0',top of spillway 85.67. 2. Show location of control joints and expansion joint on retaining wall plan on sheet#13A. 3. Splash wall detail. Show top and bottom of footing. (Sheet#13A) 4. Show additional reinforcement in wall footing around pipe penetration. (Sheet#13A) 5. Coordinate the rebar location in typical wall section, expansion joint, control joint (Sheet#32) and calculation Sheet#2. 6. For additional comments see red lines on Sheet#13A and 32, and calculations. Please include the redlined set of plans when you resubmit. If you have any questions, please contact our office. 3569 Fifth Avenue,Suite 100 - San Diego,Ca 92103 - Tel:(619)294-6600 Fax(619)294-6800 Project: L�Ca;,, '�✓�„ Page: 2 -� SIMON WONG ENGINEERING I �n �,�;I / STRUCTURAL&BRIDGE ENGINEERS Proj. #: c, - 0 Designed: Date: l /D Checked: 9968 Hibert Street,Suite 202 (858)566-3113 - San Diego,CA 92131 FAX(858)566-6844 Revised: ✓lY VV1 �:'P��I�i In _ YI FA� g _ 127 �' rl U } mar rr vy. _ (2 YO,f� (b)( 3 = Z`d0, -- o zo ( I.0)z P- ,' 1 Ll 4'r S "k 5 z S n= z 1, v 0, 0 q1,3 (L= J, z-I9 45 7", � 7,1).24I z IZ x S,2 Je _ 'ID 5 �sl L 2So ?�1r►� N T t nit D fl L E Project: U Page: SIMON WONG ENGINEERING STRUCTURAL&BRIDGE ENGINEERS PCO�. #: 500- 3q� Designed: Date: Checked: 9968 Hibert Street, Suite 202 (858)566-3113 - San Diego,CA 92131 FAX(858)566-6844 Revised: P= i ,-7 1, 1 ( 2oo, 14, 3l. 02 TA ZDO ke-& 4 -+rte r C n 1 ctn 1 A SIMON WONG ENGINEERING GE # 9968 HIBERT STREET, SUITE 202 PAGE 500-390 SAN DIEGO,CALIFORNIA 92131 JOB DATE 9/6/01 PLAZA AT ENCINITAS RANCH TRENCH FOOTING RETAINING WALLS BASED ON 1997 UBC SECTION 1806.8.2.1 WALL IDENTIFICATION: DETENTION BASIN WALL P= 494.36 ULTIMATE LOADS(1.4*WIND OR SEISMIC, 1.7*EARTH)- POUNDS B= 1.00 WIDTH OF TRENCH- FEET H= 0.98 HEIGHT ABOVE TOP OF FOOTING TO LOCATION OF LOAD-FEET PP= 200.00 ULTIMATE LATERAL SOIL PRESSURE- PCF N= 336.00 AXIAL LOAD TO TOP OF FOOTING- POUNDS TRIAL 1 D'= 4.64 TRIAL 2 D'= 4.60 TRIAL 3 D'= S1= 309.33 4.63 S1= 306.99 S1= 308.96 A= 3.74 A= 3.77 A= 3.74 D= 4.60 D= 4.63 D= 4.61 TRIAL 4 D'= 4.61 TRIAL 5 D'= 4.63 TRIAL 6 D'= S1= 307.30 4.61 S1= 308.70 S1= 307.52 A= 3.76 A= 3.75 A= D= 4.63 3.76 D= 4.61 D= 4.63 TRIAL 7 D'= 4.63 TRIAL 8 D'= 4.62 TRIAL 9 D'= S1= 308.51 4.63 S1= 307.67 S1= 308.38 A= 3.75 A= 3.76 A= 3.75 D= 4.62 D= 4.63 D= 4.62 BOTTOM OF FOOTING BEARING PRESSURE= 1028.52 PSF tad/14/1001 09:4b d5dLy10 7l1 LEIGHTON SAN ll1tGU rAat e[/n1 F S � h v a O = LL Of c D tV <o W W O N D CD Q Q f Z p N u N d Q1 O u ` Q (WA H 7 3 � (1801)MH w 3 x i �+ A . � � v e •P p � e n •P 6 � e n eA 't,p d LU loll A C •F W eo•� Of N t fJ V FO h _ J aru V W G N a s W "' d E y aor �Qp IL ` G O r 1 — =-`._= Leighton and Associates 4 AGTGCompany GEOTECHNICAL CONSULTANTS UPDATE GEOTECHNICAL INVESTIGATION, THE PROMENADE ENCINITAS RANCH, ENCINITAS RANCH,TM 94-066, ENCINITAS,CALIFORNIA March 28, 2000 Project No.4940028-027 1 a l Prepared For: Encinitas Town Center Associates II, LLC 707 Wilshire Boulevard, Suite 3036 Los Angeles,California 90017 3934 Murphy Canyon Road, #13205, San Diego, CA 9213-4425 (619) 292-8030 • FAX (619) 292-0771 • www.lelghtongeo.com 4940028-027 Wall footings design and setbacks should be performed in accordance with the previous foundation design recommendations and reinforced in accordance with structural considerations.Soil resistance developed against lateral structural movement can be obtained from the passive pressure value provided above. Further, for sliding resistance, a Friction coefficient of 0.35 may be used at the concrete and soil interface. These values may be increased by one-third when considering loads of short duration including wind or seismic loads. The total resistance may be taken as the sum of the frictional and passive resistance provided that the passive portion does not exceed two-thirds of the total resistance. 5.11 Retaining Wall Design Retaining walls may be considered at several locations on the subject property.Settlement- sensitive structures should be set back from the top of the wall at a minimum distance equal to the wall height. Appropriate geotechnical design parameters for the reinforced earth type retainingwalls are provided below: Friction angle of backfill soils 32 degrees Cohesion 0 psf Weight of backfill soils 120 psf Allowable bearing capacity 2,000 psf(18 inch minimum embedment) (18 inches minimum width) Expansion index <50(per UBC Test 18-2) Temporary backcut per OSHA Seismic Acceleration Maximum Probable Ground Motion Adequate drainage should be designed behind the wall by the wall design engineer and reviewed by the geotechnical consultant. Typical drainage includes a PVC pipe surrounded by gravel and filter cloth with outlets into positive drainage facilities. Backdrains should be provided behind the reinforced zone-withinthe westerly portion of the site. 5.12 GeochemicalIssues 5.12.1 Concrete Laboratory tests performed on native soils indicate a negligible concentration of soluble sulfates in onsite soils (less than 0.005 percent) for tested representative samples (Appendix A). Accordingly,typical Type 1/11 cement may be used for concrete in contact with onsite native soils. Import soils placed near finish surface should be tested for sulfate content. -22- Jan 29 01 02: 14p Martin Miller 19491 599-0880 940028-026 6.2.3 Settlement The recommended allowable-bearing capacity is based on maximum total and differential settlements of 3/4 inch and 1/2 inch, respectively. Since settlements are a function of footing size and contact bearing pressures, some differential settlement can be expected between adjacent columns or walls where a large differential loading condition exists. With increased footing depth to width ratios, differential settlement should be less. 6.4 Mat Foundations A soil modulus of 200 pounds per cubic inch is recommended for design of mat foundations. The - mat foundation should be designed by the project structural engineer utilizing parameters outlined for above and an allowable bearing pressure of 1,500 psf. 6.5 Lateral Earth Pressures For design purposes, the following lateral earth pressure values for level or sloping backfill are recommended for walls backfilled with very low(EI <20) expansion potential. Select materials should be used within the zone defined by a 1:1 plane extending up from the base of the wall. Table 2 Static Equivalent Fluid Weight(pcf) Conditions Level 2:1 Slope Active 35 55 At-Rest 55 85 Passive 350# 150 (Maximum of 3 ksf) (sloping down) Unrestrained (yielding) cantilever walls up to 25 feet in height may be designed for an active equivalent pressure value provided above. In the design of walls restrained from movement at the top (nonyielding), the at-rest pressures should be used. Due to the increased compaction associated with construction of the undererossing, design for at-rest conditions is recommended for walls influenced by pipe zone backfill. If conditions other than those covered herein are anticipated, the equivalent fluid pressure values should be provided on an individual case basis by the geotechnical engineer.- A surcharge load for a restrained or unrestrained wall resulting from automobile and truck traffic may be assumed to be equivalent to a uniform pressure of 75 psf and 200 psf, respectively, which is in addition to the equivalent fluid pressure given above. For other uniform surcharge loads, a uniform pressure equal to 0.35q should be applied - to the wall (where q is the surcharge pressure in psf). Surcharge from heavy moving trucks can & --_ .tan G�j ul ue: 14p Martin Miller (949] 599-O8t30 P_�g C� 940028-026 be analyzed by this office once design traffic loads are determined. The wall pressures assume walls are backfilled with free draining materials and water is not allowed to accommodate behind walls. A typical drainage design is contained in Appendix D. Wall footings should be designed in accordance with the foundation design recommendations and reinforced in accordance with structural considerations. For all retaining walls, we recommend a minimum horizontal distance from the outside base of the footing to daylight of 10 feet. ` Lateral soil resistance developed against lateral structural movement can be obtained from the passive pressure value provided above. Further, for sliding resistance, the friction coefficient of 0.33 may be used at the concrete and soil interface. These values may be increased by one-third when considering loads of short duration including wind or seismic loads. The total resistance - may be taken as the sum of the frictional and passive resistance provided that the passive portion does not exceed two-thirds of the total resistance. 6.6 Geochemical Considerations Geochemical screening of the onsite soils was performed. The screening is meant to serve as an indicator for the design professionals in determining the level of input necessary from a qualified corrosion engineer. Review of geochemical test results by a corrosion engineer is recommended. Concrete in direct contact with soil or water that contains a high concentration of soluble sulfates can be subject to chemical deterioration commonly known as "sulfate attack." Soluble sulfate results (Appendix C) indicated a soluble sulfate content of 0.04 percent. Uniform Building Code Table 19-A-4 provides minimum concrete design requirements based on sulfate exposure conditions. Although test results indicate negligible exposure according to Table 19-A-4, we recommend moderate exposure conditions be assumed. Additional testing of the finish grade - soils should be performed. Our geochemical testing included pH, chloride content, and resistivity testing on samples of subgrade soils(Appendix C). Based on our results,the site soils are believed to present a mild to moderately corrosive environment to buried metal piping and conduits. We recommend the undererossing supplier review geochemical test results and provide necessary corrosion Protection- A corrosive engineer should be consulted to provide additional recommendations to mitigate corrosion. 63 Undercrossin If backfill is to be placed at the inside base of the undercrossing, the backf(ll soils should consist of granular soils with a very low to low expansion potential (a less than 30 per UBC 18-2)_ In order to avoid an accumulation of water, we recommend a subdrain be installed at the low point of the structure. The subdrain should consist of a minimum of 1-cubic foot of clean 3/4-inch gravel wrapped in Mirafi 140N geofabric or equivalent and outlet into a stormdrain or some Other collective drainage system. As an alternative, a linear slotted drain may be used at both entrances to the tunnel to intercept surface water provided all tunnel joints are waterproofed. -16- 1 a. Ri°m yb ga Z o ' �Q 4iQa l` IS W PEP- $x O 8 z LAJ LLJ z - N c� mW �W NWg W �! ago N a= ag Lit z e 7 �gg o° xw NQ° ��° ww_^° m 00 - < r_` W Ul p a I i (t 2 W u� �6 W z Z � h Q k F d N o N b �I J b Z U f S 6i CL U e LLJ Of LLJ A-.` 7L7U7N0� pt CL €fie �n & z 3 ItOb j V b Q , - K N Q � W - 3 c x r 5 f` ROLOGY & HYDRAULIC Matz ANALYSIS e r ITAS RANCH r initas Y Prepared By: e m � ERS &ASSOCIATES Civil Engineering, Inc. r PLANNING•ENGINEERING•SURVEYING 19 Spectrum Pointe Drive,Suite 609 Lake Forest,CA 92630 (949)599-0870 office(949)599-0880 fax }, s http://www.mayerseivil.com HYD RO LOGY f7- HYDRAULIC AN Y. �� FOR PLAZA at ENCINITAS RANCH CITY OF ENCITAS Q�oFESSi PREPARED UND5R:THE SUPERVISION OF: o4, M A y J F Q G) co Z No. 38474 m w Exp.3/31/01 ;v Dru J. Mayers, R C:E. 38474 Exp:?-'41 Pate: civic 9TFOF cA1.�FOQ- TABLE OF CONTENTS INTRODUCTION...................................................................................................2 A. Purpose...........................................................................................................2 B. Methodology...................................................................................................2 I1. STUDY AREA........................................................................................................3 A. Description......................................................................................................3 B. Existing Drainage Facilities..........................................................................3 III. HYDROLOGIC ANALYSIS.................................................................................4 A. General............................................................................................................4 B. Rational Method Hydrology Analysis..........................................................5 IV. PROPOSED DRAINAGE FACILITY.................................................................6 V. WATER QUALITY BASIN...................................................................................7 A. General............................................................................................................7 B. Reference........................................................................................................7 VI. 100-YEAR HYDROLOGY CALCULATIONS...................................................8 A. Hydrology Area A...........................................................................................9 B. Hydrology Area B.........................................................................................10 C. Hydrology Area C ........................................................................................11 VII. CATCH BASIN, RIP-RAP & HYDRAULIC CALCULATIONS....................12 VIII. HYDROLOGY MAPS.........................................................................................13 I INTRODUCTION A. Purpose The purpose of this report is to provide a hydrology analysis for the Plaza @ Encinitas Ranch located within the City of Encinitas in San Diego County. This study will calculate the 100-year storm discharges to support the processing of the precise grading and improvement plans for the development site. B. Methodology The methodology used to determine the peak discharges is based upon the criteria contained in the San Diego County Hydrology Manual dated April 1993. A hydrology analysis was prepared for both the existing and developed conditions of the project site. The following work plan and analyses were undertaken in the preparation of this drainage study. All available information and improvement plans were collected. A field review of the project site was performed. The drainage areas within and tributary to the project site were defined. A hydrologic computer model was prepared based on the existing and proposed drainage patterns. The results of the study and the calculations for the hydrological analysis are presented in this report. It. STUDY AREA A. Description The proposed Plaza at Encinitas Ranch is located west of El Camino Real and north of Leucadia Boulevard in the City of Encinitas, County of San Diego, California. The site is bounded on the west by undeveloped natural land, to the east by a natural drainage course and El Camino Real, to the north by the construction site for a mixed-use development and to the south by Leucadia Boulevard and the Encinitas Town Center retail complex. The proposed development will include construction of three (3) commercial structures, retaining walls, the extension of Garden View Road and renaming of that portion to Calle Barcelona. A wildlife corridor and undercrossing, parking lots, and associated site improvements are also included in this project development. The site consists of approximately 15 acres B. Existing Drainage Facilities The project site presently drains in a northeasterly direction. A temporary desilting basin, located in the northeast comer of the construction site, accepts drainage from the development. This runoff is outlet into a permanent water quality basin constructed at the bottom of the slope. The majority of the site outlets into this basin, which discharges into Encinitas Creek. III. HYDROLOGIC ANALYSIS A. General The hydrologic studies prepared in this report utilized the rational method in accordance with the San Diego County Hydrology Manual, dated 1993. Hydrology calculations were prepared using the "Rational Method Hydrology Computer Program Package" by Advanced Engineering Software based on the 1993 hydrology manual criterion. The rational method computes the peak runoff as a function of area, rainfall intensity, and a coefficient of runoff. The basic formula in the rational method is as follows: Q = CIA Where: Q = Peak runoff in cubic feet per second (cfs) C = Coefficient of runoff I = Average rainfall in inches per hour corresponding to the time of concentration A = Drainage area in acres This formula computes the peak flow rate at all points of concentration. The hydrology analysis is provided in this report. Land use in the study area is a significant factor in the development of the hydrology study in that the coefficient of runoff used in the rational method are partially dependent upon the type of surface development is within the area. The land use used in this study was based upon the development proposed for the Plaza @ Encinitas Ranch. The major factor affecting infiltration is the nature of the soil. Hydrologic soil types within the study area were determined from the Hydrologic Classification of Soils map contained in the San Diego County Hydrology Manual. The soil classification is based on the Soil Conservation Service criteria as follows: Soil Group A Low runoff potential, consisting mainly of deep, well- defined sands or gravel. Soil Group B Soils having moderate infiltration rates, consisting of moderately well drained sandy-loam soils with fine to moderate coarse textures. Soil Group C Soils having slow infiltration rates, consisting of silty- loam soils with moderate fine textures. Soil Group D High runoff potential with slow infiltration rates, consisting mainly of clay soils with a permanent high water table or shallow soils over impervious material. Rainfall intensity is expressed in inches of rainfall per hour and is developed by statistical methods from historical rainfall records. The rainfall intensity data used in this study was obtained from the curves for mean precipitation intensities included in the San Diego County Hydrology Manual. B. Rational Method Hydrology Analysis Approximately 15 acres, of the total tributary area, are being developed for commercial use. The site, after development, will contain three (3) buildings and parking area. Upon completion of the project site, the natural drainage patterns will be altered. Drainage Area "A", after development, will contain approximately 1.29 acres and produce approximately 4.30 cfs in the 100-year storm, respectively. Drainage Area "B" will contain approximately 11.16 acres and produce approximately 48.93 cfs in the 100-year storm, respectively. Drainage Area "C" will contain approximately 0.30 acres and produce approximately 1.53 cfs in the 100-year storm, respectively. The hydrology map for the developed condition analysis contains all pertinent information and is presented in this report. IV. PROPOSED DRAINAGE FACILITY The project site presently drains in a northeasterly direction. A temporary water quality basin, located in the northeast corner of the construction site, presently accepts drainage for the development. Upon completion of the project, a permanent "first flush" water quality basin will be constructed in the northeast area to accept "first flush" drainage only. The majority of the storm water run-off for the site will discharge into Encinitas Creek. The northerly portion of the project site will discharge into an existing earthen channel, flowing easterly and eventually discharging into Encinitas Creek. Drainage Area "A", located in the northwesterly portion of the project site will accept surface run-off and discharge into an existing earthen channel located north of the proposed development. The earthen channel flows in an easterly direction and eventually discharges into Encinitas Creek. The majority of the project site will be affected by Drainage Area "B". This storm drain system drains in a northeasterly direction, accepting surface run-off from the parking lots and eventually discharging into the permanent Water Quality Basin. Anything above its capacity of acceptance will empty directly into Encinitas Creek located east of the proposed project sit. The proposed storm drain system located in the far northeasterly portion of the project site is referred to as Drainage Area "C". This proposed drainage facility will include a permanent "first flush" water quality basin to accept "first flush" drainage only. (Please refer to the Hydrology Map located in Section VIII for details.) The remainder of the runoff will be intercepted by catch basins located throughout the project site. V. WATER QUALITY BASIN A. General A permanent water quality basin will be constructed B. Reference The hydrology study entitled "Drainage Study for Encinitas Ranch Phase II" dated August 20, 1998 and revised September 25, 1998, that was prepared by O'Day Consultants, Inc. is made a part hereto. Uu, - 5 1993r:� DRAINAGE STUDY FOR ENCINITAS RANCH PHASE II August 20, 1998 Rev. Sept. 25, 1998 J.N.: 981003 OQ�pFESS/p,+,� yp.CARR F ` - h P- ►�!r,. 55381 q�ECF rA��Fn� Timothy O. C oil RCE No. 55381 Exp. 12/31/00 Prepared by: O'Day Consultants, Inc. 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (760) 931-7700 r + TABLE OF CONTENTS • Vicinity Map • Narrative • Rational Method Description • Program Process • Isopluvial Maps • Intensity Duration Chart • Curve Number Table • "As Graded" Rational Study • "Future Developed" Rational Study • Offsite Drainage • Brow Ditches • Pollution Control Design • Direct Runoff Chart • Desilt Basin Design • Desilt Basin Capacity Table • Standpipe Chart • Spillway Design • Dewatering Calc' s . • Hydrology Maps 1 This report contains hydrologic and other related calculations necessary to properly design the Supporting g various drainage facilities, both interim and future, for Encinitas Ranch Phase I mass gradin I 9• This report includes sections covering the future and interim runoff, the permanent pollution control basin, and the temporary desilt basin. The project site is located along Leucadia Blvd. in the northern portion of the City of Encinitas at the southerly boundary of the City of Carlsbad just west of El Camino Real . This site is due north of the recently completed Encinitas Town Center shopping g D sc•-�a ;�r The site area is approximately 15 acres and over 95°k of the site is previously graded. The site was used as a borrow Pit and is now being brought to grade for a future shopping center. area of native vegetation flows onto the site, being intercepted by brow ditches . P ed Runoff for this project was studied to size both the interim drainage requirements for the mass graded condition, and for any future drainage needs after the site is improved. It was assumed the site would be developed approved master Per the plan and which calls for the land usage to be commercial . �. This site will also be used to perform permanent pollution control for this site and a portion of the existing Encinitas Town Center drainage basin, as shown in the Drainage Study for Encinitas Ranch Units 1 and 3 . This study looks into the requirements for a pollution control basin designed to accept the first flush which is taken to be a half inch half inch rainfall will carry he rainfall . This Y pollutants from the streets and parking lots to the proposed pollution control basin to allow them to settle out before the drainage is released into environment , the Systems 300 and 700 of the Drainage Study for Units 1 and 3 shows 65 acres contributing to this basin. Out of these 65 offsite acres, 26 of the acres are native and don' t require any form of pollution control . It can also be argued that the dense vegetation and soil condition of this native land would retain all of the precipitation from the first flush, therefor not affecting the design of this basin. i 1 fi SITE Mau � r GAL QL r II � C �+n v ��■_ �De s4 PACIFIC 8Lz �iRu OCEAN OLD qA s d CGS CARMF �� . SAP N 0 SCALE f Rational Method Descri tion The rational method as described in the 1985 San Diego County manual, is used to generate surface runoff flows, which are then us dl 10 size both He alogy and temporary drainage and desiltation facilities. P nen[ The basic equation: Q = CIA C = runoff coefficient (varies with surface) 1 = intensity (varies with time of concentration) A = Area in acres The design storm for this project is the 100 year event, the comes g is 2.6 inches. A computer program developed b Civit, ponding 6-hour rainfall amount (c) 1993 Version 3.2, was used to determine p Y ADD�Civildesign Engineering intensities and flows for the various hydroogical processes performed times of concentration and corresponding Program also determines the street flow and i eflow c P i'f°rmed in this model. This P P characteristics for each segment modeled. Pro°ram Process The rational method program is a computer aided design program node link model of the watershed. P P team where the user develops a The node link model is created by developing watershed and linking these sub-models together depondent nod models of each interior points. The program has the capability of performing hydraulic processes. P rmmg calculations for eleven different hydrologic and P These processes are assigned and printed in the output. follows: They are as 1• Initial subarea input, top of stream. 2. Street flow thru subarea, includes subarea 3• Addition of runoff from subarea to stream.run off tream runoff 4. Street inlet and parallel street and i eflow 5• Pipeflow travel time P P and area. 6. Pipeflow travel time (user specified p pesizeesue). 7• Improved channel travel - Area add option. ) 8. Irregular channel travel time - Area add option. 9. User specified entry of data at a point. 10. Confluence at downstream point in current stream. 11. Confluence of main steams. • � J tt' f� / I �\�/. � 1•�/� �/� / � ! � 'fit�`/ 1 � �',� • � '-- },.., � '�� �c _ •\. cam-`•-.''�J -.1 _ `�� , �E•l.�__ '� � i� ,`='� ' _ z ���per• p =• ol ZE cm worse Cl J cm rn ON cm CN NN n � i ►' s • '` CI z � _ z _ w H L L �1 �1 1 � 1 � ,.� Lai _ ___ - -- .7 z < <n -1 co y O C IL F o o O ° 1 ix t, R► U. 1"'1 V w < O C O V _ (/f O t+ C O n • F y 1 Z Q F- < u i '1 • l / ft;t"1 }• } / I LL- ate. ' •'< � o -� ►; \ � J�_ ��� �' `o tn C }.� V:i / c t Z � i• c •�: � z r.�.s z t . . ,r - I I 1 1 � � I I ► o C � - 2en I I ` < < + I _ N O _ _ C < u F- tt1 d U s O W tn. 'L 1 y' 'J T. h • v J G Ci -- — O:= O C) C7 L CJ - \ O CJ ...1 L A2 J U G U X C p 0 7 - L O If �. c c S- N 2 1 N G �-� EJ G �� N� C CL C- 1 i y ^ v v r i C �' vOi O of rs C C G +.+ N C C C O Cj O L C O p b _ N v Q S- Aa j q S-+- C y C II CJ 44—++ v n. C rJ In CJ C O G�+ V' V L C' C .6.4 L L L _ Cu ' r- C C i G CAj Cu H C C C II G WD O ZT In .�. i CJ C r p C! r to y. C1 rCJ f0 v A ,u L a� i L �— GJ-.61 O U- rt C y s- E y = t o •- _ r3 U- y ri 0 to %00 10 C47 ^ C C CJ Z 4.j Qj CJ C of G 4j y y y r L C t m CJ n ,p O r_ Q? 4j R O 0 4. N f•-- Q C1Q ^ G Ln Cz C 6-Hour Precipitation (inches) 77 C%j N .. �/..� — ► �! Cn .'Z•. %0. L •� —�1 1 .1!,1 1 1 1 1 1 1 1 1 1 C. O �I r }�i r 1• ..2 t 1 1 I I v' O. In .../ ': I• .I,1 !- -- � 1 �---��� •1 1 I I�� �1 � 1 1 1 1 1 i I 1 _ E vv iv+ �' �'• -_I�T•"'I' 1 � � ��,� ��-�-��L �'II!1111!I I I I i : � I I t I i — ' r C 1. CD--•�-•1L - _ - - .- I•�•� ,- -%'� �_ T , mil ' , 1 1 , , , `.77 C.C'1 { 1 —_�-' ' -� 1 1- ��._1 1 1••1 1 1 7 1 1 1 1 1 1 1 -- - 11 I I�• { :.111!11 l i l i l I I I O RUNOFF CURVE NUMBERS FOR HYDROLOGIC SOIL-COVER COMPLEXES (C N) TABLE I-A-1 AMC 2 la 0.25 Cover Hydrologic Land Use Treatment Soil Grouos or Practice3 Hydrologi Condition&- A B C D Water Surfaces (during floods) Urban 97 98 99 99 Commercial-industrial High density residential El 90 91 92 Medium dens-ity residential 75 82 88 90 Low density residential 73 80 86 88 Barren 70 78 84 87 Fallow Straight row 78 86 91 93 Vineyards 76 85 90 92 (see accompanying land-use description) disked 76 85 90 92 annual grass or Poor 65 legume cover 78 85 89 Fair 50 69 79 84 Good 38 61 Roads 5 (hard surface) 74 80 (dirt) 74 84 90 92 Row crops Straight row 72 82 87 89 Poor 72 81 88 91 Good 67 78 85 89 Contoured Poor 70 79 84 88 Good 65 75 82 86 Narrowleaf chaparral Poor 71 82 88 91 Fair S5 72 81 86 I-A-5 ti San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3 . 2 Rational method hydrology program based on San Diego County Flood Control Division 1985 h drolo -------"Rational-Hydrology Study Date . gy manual ---------------------------------------------------8/19/98 ENCINITAS RANCH P "AS GRADED" CONDITION FOR DESILT BASIN DESIGN F:\ACCTS\981033\EXIST.RSD Hydrology Study Control Information **********------------- O'Day Consultants-------------------------------------- __ ____ _ San Deigo, California - SIN 10125 -"---`- Rational hydrology stud m-------- "-------------- Y storm event year is 100 . 0 "`--'- Map data precipitation entered: 6 hour, precipitation (inches) = 2 . 600 24 hour precipitation(inches) = 4 . 100 Adjusted 6 hour precipitation (inches P6/P24 = 63 .40 ) = 2 .600 San Diego hydrology manual 'C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station **** INITIAL AREA EVALUATION ****00 . 000 to Point/Station 102 . 000 user specs ie va ue o g Initial subarea flow distance even or su area Highest elevation = 162 .50 (Ft . ) 125 . 00 (Ft. ) Lowest elevation = 157. 00 (Ft . ) Elevation difference Time of concentration calculatedtby the urban areas overland flow method (A X-C) _ TC = [1 . 8* (1 . 1-C) *distance^ 5 -/ 7. 37 min. TC = [1. 8* (1 . 1-0 .5000) * (125 . 00/(5) / (ope^ (1/3) Rainfall intensity (I) _ (1/3) 7.37 Effective runoff coefficient used 334 for are 100 . 0 year storm Subarea runoff = 0 . 533 (CFS) (4=KCIA) is C = 0. 500 Total initial stream area = 0 .200 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ****Process STREET FLOW + SUBAREA FL **** 102 . 000 to Point/Station OW ADDITION **** 104 . 000 0 o s ree segmen a eva ion End of street segment elevation = Length of street segment - 136. 000 (Ft . Height of curb above utter flowline0 (Ft . ) Wideh of half street curb to crown) 42600 (In. ) Distance from crown to crossfall grade break Slope from gutter to grade break (v hz) = 0 . 02021� 000 (Ft . ) Slope from grade break to crown (v/�z) _ Street flow is on [2] sides) of the street 0 ' 020 Distance from curb to property line = 10 . 000 Ft . Slope from curb to ppropert line (v/hz) = 0 . 020 ) Gutter width = 1 .500 (Ft . Gutter hike from flowline = 1 . 500 (In. ) Manning' s N in gutter = 0 . 0300 Manning' s N from gutter to ggrade break = 0 . 0300 Estimatedsmeanrflowrrate at bamito crown str. 0300 Depth of flow = 0 . 228 (Ft . ) , Average velocity = 2 0�71Ft 2 . 134 (CPS) Streetflow hydraulics at midpoint of street travel : ( ) Halfstreet flow width = Flow velocity = 2 . 08 (Ft/Sj651 (Ft . ) Travel time = 3 . 01 min. Adding area flow to street TC = 10 . 38 min. User specified ' C' value of 0 . 500 iven for subarea Rainfall intensity = 4 .277 InC�rl _ Runoff coefficient used for sub�area, )Rational meth0 year storm Subarea runoff = 2 . 566 (CFS) for od�Q-KCIA, C 0 . 500 Total runoff = 3 . 100 (CFS) Total area200 (Ac. ) Halfestreet flownatoendtofestreet = 1 .40 (Ac. ) 3 . 100 (CFS) Depth of flow = 0 . 252 (Ft . ) , Average velocity (= 2 .260 Ft s Flow width (from curb towards crown) = ( / ) 7 . 838 (Ft . ) ++++++++++++++++++t+++++++++++++++++++++++++++++++++++++++++++++++.... Process from Point/Station . 00 to**** PIPEFLOW TRAVEL TIME (Program4estimatedosize)t***on 106 . 000 Ps ream porn s a ion a eva ion = Downstream point/station elevation = - Pipe length = 50 . 00 (Ft . ) Mannin � 11N. 00 (Ft . ) No. of pipes = 1 Required pipe flow g = 0 . 013 Nearest computed ipe diameter _ = 3 .100 (CFS) Calculated individual pipe flow 9 .00 (In. ) Normal flow depth in pi e = = 3 . 100 (CFS) Flow top width inside pipe = 38683�In) ) Critical depth could no be acula t calculated. Pipe flow velocity = be a cola Travel time through pipe = Time of concentration p(TC) = 0 . 04 min. 10 .42 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ProcePlpEFLOWPTRAVELtTIMEn(program estimated ** **** 106 . 000 to Point/Station 108. 000 DowRIB 11, nstreamopoint/Is tation elevation = Pipe length = 1000 . 00 (Ft . ) Mannin 81. 00 (Ft . ) No. of pipes = 1 Re Nearest computed pipe Pipe flow g=s N 3 . 100 (CFS) Calculated individual pipe flow 12 . 00 (In. ) Normal flow depth i Flow to n pipe = 5 .80 (In. j ' 100 (CFS) p width inside P =) Critical Depth = 9 . 11. 99 (In. ) ipe 5 In. Pipe flow velocity = T 8 . 24 (Ft/s) ravel time through pipe = Time of concentration p(TC) = 2 ' 02 min. 12 .44 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station **** SUBAREA FLOW ADDITION 108 .000 to Point/Station **** 108 . 000 ser specs ie va ue o Time of concentration = given or su area Rainfall intensity 12 .44 min. Runoff coefficien£ 3 . 804 (In/Hr) for a 100. 0 year storm Subarea runoff = used for sub-area, Rational method,Q=KCIA, C = 0 . 500 Total runoff f 27-392 (CFS) for 14 .400 (Ac. ) 30 .492 (CFS) Total area 15. 80 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station **** PIPEFLOW TRAVEL TIME (User specifiedosize)t****tion 110 . 000 ps ream porn s a ion a eva ion = Downstream point/station elevation Pipe length = 73 . 00 Ft . 78 . 00 (Ft . ) No, of pipes. = 1 Required pipeMflowng� s N = 0 . 013 Given pipe size = 36 . 00 (In. ) = 30 .492 (CFS) Calculated individual pipe flow Normal flow depth in Pipe = 30 .492 (CFS) Flow top width inside P e = 11 . 63 (In. ) Critical Depth = 21 .46p(In. ) 33 67 (In. ) Pipe flow 15Trvemetrough .45 Ft s Time s 0 . 08 min. 12 .52 min. study area 15 . 80 (Ac. ) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3 . Rational method hydrology 2 San Diego County Mood ContPolgDivisiond1985 h drolo on --------Rational-Hydrology Study Date : manual ENCINITAS RANCH PHASE II ------------------------------------- FUTURE DEVELOPED CONDITION e -`" F: \ACCTS\981033\ONSITE.RSD Hydrology Study Control Information **********------------- O'Day-Consultants, San Deigo, - _-S---1012------------------10125--------- California - ----- '-- Rational hydrology study storm even--year-°--- ------------- event year is 100 . 0 '--° Map data precipitation entered: 6 hour, precipitation (inches) = 2 .600 Adjustedp6ehourttrecipitation (inches 4 . 100 P67P24 = 63 .40 ) = 2 . 600 San Diego h f drology manual 'C' values used Runoff co eficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station **** INITIAL AREA EVALUATION ****00 . 000 to Point/Station 102. 000 ser specs ie va ue o g Initial subarea flow distance even or su area Highest elevation = 162 . 50 (Ft . ) 125 . 00 (Ft . ) Lowest elevation = 157. 00 (Ft. ) Timeaofoconcentration calculated b th 5 .50 (Ft . ) areas overland flow method (App X° ') =e urban TIC = 11 . 8* (1.1-C) *distance 5) ^ 1 . 84 min. TIC = [1 . 8* (1 . 1-0 . 9500) * (125 . 00/(5) %(op4.40/3) 7 Setting time of concentration to 5 minutes (1/3) ] - 1 . 84 Rainfall intensity (I) _ Effective runoff coefficient 6 . 850 a100 . 0 year storm Subarea runoff = 1 .302 (Cus for (Q=KCIA) is C Total initial stream area = = 0. 950 0 .200 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from FPoin1nt/Station + SUBAREA F **** 102 .000 to Point/Station p LOW ADDITION **** 104 . 000 End of street seen e eva i.on = Length of streetgsententevation = 136. 000 (Ft. Height of curb abovem utter flowline0 (= Width of half street curb to crown) = 426000(Ft) ) Distance from crown to crossfall grade break Slope from gutter to grade break v/ = 21.000 (Ft . ) Slope from grade break to crown ( hhz) = 0 . 020 Street low is on [21 sroeert of (therstreet 0 . 020 Slope from curb to properpt liner(v/hz) 10 . 000 Ft. Gutter width = 1 .500 (Ft . 0 . 020 ) Gutter hike from flowline = 1 . 500 (In. ) Manning' s N in gutter = 0 . 0150 Manning' s N from gutter to grade break Manning' s N from grade break to crown = . • 0150 Estimated mean flow rate at midpoint of street Depth fl flow 0 . 240 (Ft . ) , Average velocity = 4 . 3442065 FS) Streetflow hydraulics at mid oint of street travel : ( ) Halfstreet flow width = 7.366 (Ft . ) C Flow velocity = 4 . 34 (Ft/s) Travel time = 1 .44 min. Adding area flow to street TC = 6 .44 min. RUser sppecified ' C' value of 0 . 750 iven for subarea unofflcoeffioient u for -sub-area 5819 (In7Hr) for a used , Rational methodyear storm Subarea runoff = 5 . 237 (CFS) for .4=KCIA, C = 0 . 750 Total runoff = 6 . 539 (CFS) Total area200 (Ac. ) Halfestreet flownatoendtofestreet = 1 .40 (Ac. ) 6. 539 (CFS) Depth of flow = 0 . 255 (Ft . ) , Avera a velocity (CFS)4 . 577 Ft s Flow width (from curb towards crown= ( / ) 8 . 019 (Ft. ) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10 . 00 to**** PIPEFLOW TRAVEL TIME (Program4estimatedo 106. 000 size)/Station +++++++++ ps ream porn s a ion a eva ion = Downstream point/station elevation = - Pipe length = 50 . 00 (Ft . ) Manning's1N• 000(F013 No. of pipes = 1 ppRequired pipe flow Calculatedmiindividual pipeeflow _ In. ) CFS) Normal flow depth in pipe = 5 . 66 (In• j •539 (CF3) Critical depth couldenotpbe calculatedn• ) Travelltimeethrough 22 .33 ( . 04 Time of concentrattionlp(TC) = 0 - 04 min. 6 .48 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station - 00 to **** PIPEFLOW TRAVEL, TIME estimated Point 108. 000 Downstreamopoint/station elevation = Pipe length = 1000 . 00 (Ft . ) •�0 No. of pipes = 1 Requir Manning's8N 0. 013 pe flow ed i Nearest computed pipe diame er _ = 6 .539 (CFS) Calculated individual pipe flow 12 . 00 (In. ) Normal flow depth in pipe = 9 79 (In• 6.539 (CFS) Criitical depth inside pipe calculated. Pipe flow velocity = 9 .54 (Ft/s) Travel time through Pip = Time of concentration p(TC) = 1 ' 75 min. 8 . 22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station **** SUBAREA FLOW ADDITION **** 108 . 000 to Point/Station ++++++++ 108. 000 ser s eci ie va ue o Time o concentration = given or su area Rainfall intensity 8 .22 min. Runoff coefficient used for sub-area, Rational method Subarea runoff = 100.0 year storm Total runoff = 64 .406 (CFS) for 14 .400 (Ac. ) 'Q-KCIA, C = 0. 900 70 . 945 (CFS) Total area 15. 80 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station **** PIPEFLOW TRAVEL TIME (User specified 0 . 0tosPoi Point/Station 110. 000 **** Downstreamopoint/station elevation _ Pipe length = 73 . 00 (Ft . ) Manning' s7N 000.013 No, of pipes = 1 Required pipe flow . Given Pipe size = 3600 (In. ) 70 • 945 (CFS) Calculated individual pipe flow Normal flow depth in pipe = = 70. 945 (CFS) Flow top width inside pipe = 185599(In)) Critical Depth = 32 . 03 (In. ) Pipe flow velocity 19 .36 (Ft/s) Travel time = 0 . 06 min. End of computations, total study 8 . 29 a min. 15. 80 (Ac. ) OFf- 3zo /6o Soo' ..... ..... . _.__._...._.- �.41fks-�iv 1 TC m F�0.4v S,4,vr- 7� = o, - ___-------------------_._-------S,a-rte- = S.s�, _ ------------ - - -- BQow p 17c Zy ,,lov oK OFF s ?� Tc -1by Te IlU c�s ... ............ __ ,,. �OC...(.._U�T� O�1 Cc�►si t�.OL. ��S I t� ELC V �+2E-A VOLv M 60 Z-446-7 8 2 3E30 SS47 a 84 -z.-74.e �$2� 2�woFr = CD,os" (SEE RvQoF-Ftl OFFS. rrE oS /4 At,re.S �j,4, C 3� 1"t C- 0. o �s iTC -- i [S )c 2 -723 -3 7210 C3 80 0K N U) � � a N S ri H F5j IV o h W ci H a x x W o N ° o 0 WF H U ° o ° o °. 0 0 0 ° W o 0 0 W Q W ° C; ° o U ° o H rt Gi U o p m m uni ° ° n 01 ° O N ° m O 0I ri p ° O D1 _ r{ O b N H m M m H 0 w H CID r- m o I Of Ch r- CID N Q O O O O Q% M d In I? ° H p � 00 H F b H n r•1 m O b O Cl� �N Q CL ry rl 11 O I m II ° I O O ri N U m h 'n h O OD Q w ON O O CID x u Q m Q 01 m m m N In DD T O M N N m ° n 0) DI b H U O co ri r0.1 � O 0 a `n o oN p n r1 x u .r In m �° o m N II 11 0-i O Of CID O 0 e N a O p ^ r-1 N Ey b `r RIG W n O OD m 1 O Q m q m r v D1 1k0 m 0 Ch H QI b n m In Ifl r-1 O p p b Q 0 0 p n 0I H ri r-1 m o H M H N m o n EO-I m D1 O1 D�j O N N O N DI O N n n V1 _ II 11 H O p O N N U] ri ri H ° A. In^ In m H > W h sr h o L m Q m Q H In m a m N In DI D1 m N ON > k. M r ri H ,..� N `O M N N DI In m ID N 111 O H a a Ey m m o N H n m N n r m o H w i-1 � .� If O II Op l0 m In DI F o p b �I M y h 1•� O ° O p N M N O f ° U II p O r-I O O O 0 C.14 Of O N ° �' O RC O II II F II O O ° O aa pa n ° x a > fL W o R a Q ° ar� m a F a F F 11 w F 2 o ¢ N O a a F m a y a O In F rt O `o ° E a • a µ� '� rx a 'rl o pp; 0 U H U M m o O O M. 2 w � z w w w r♦ H a m U m O ,.i* n Q w W In u m o z N H r f II O II O N !` U n U 01 w M r-I O M 2 H W W m OD In U m co`l. F W m z z m W M 1-4 O z a ° 11 a O O O II H O II .1 H cil 4J S Nd m f4 Q [v ° o x o o o W m % w w m u°i z W ko Z b .ai S z ° In Ln o 0 p U O ° o o x x p� U ° 0 0 U ° C7 O O M U U O O O O p 0 O b I..I p F•I ° U O O F S N N r f m 5 aD ° aa~ ° N N If II FG ri ri m DD co 'J co ., ri) x p x In x -I m ?Q+ N it (� II H H U �l., U ri .-1 x x x m x b o7 O 11 p 11 r-I V FWD IU.I H M x a 'y^I x x N O O W En z 0 a m rn W Q a z H N H N C) In rn M N N N N N O n ri 174 N U) N H ri ��S£ V� O dqq \ W cx o x u .I a o M o 0 F W W F U o Ln aAa F rE a% U m N F `r w �0 -f r In ca w o N U v � � M ' u `" a ° u w m N Ln OD Ch z H ri O Q F � a ww m 0 F W N y _ > w Fv A 'a u1 M > [v 'n N '"I ai Da F o H w\ m p I� E. o ww V II ro ow o aFa N w F a m L o .H U e„ w U 2 0 u H W a cn a, z w WWq M fn o ro Q o 3: N W z_ a b r-1 U O � � H 4L H w � oz 5 Hs Q W x OF z w� , u u° OW z a q a z N a w F 3� X U R a 0 0 0 Q Q3 a Q a W x F H W z oM H (q ££a W 22 A P W H °uQ Ha W U a W aaz HW Ex. aw H e° z H O ! mm x P4 U U � QO Sawa m W x H co W{ar4 0 CO D H ] Q W W a U W W [zzzzr rr�� aFFHF H W w U' Aa U 4E HQ r1 x 3 H WWE w0 �waaaE°• uu a3oHwW a °a a° 'QwaHH 000 °i 9k: UEF W e E F F a W m W uFi arA ra ] ] � E°. 0000 WWE/laaa a° D vEi F [ OOoo WC £134 0 r� lUi �Ui aaQQQEFxo as W W £ £ £ F W F r� w U w ° ° °wa a a owv) oQ] �] aawww wwFw 0 NNW W W fOwp: ax FFF aD xxG" ww W WU rn z z z W Ert kE 3 F F F i H 0 co ca ca w W W a w w w F N E U U U £ 0 0 -4 H N �z' z�'I O W q U q U q U ° QQcocnw UHExazZZ N cnv� cnwaw � I Q Q Q F Q Q H H H H N h h 1N zhhco ® o 5 > xxxw o QQvwixxx w 0 LL J Figure III-A-2 o z O C7 W O �- ►W.. < V Q z O Z ' d Z 0 O U V) aLn O �CD co cn - _ - - CV U i - --- - to fl W O ^r N N O p sayoul ul Jjoun p aa�io Ul O O ii I-A-5 II� _ Dts i�� I3�Si� DESf Gw / S® C_Y �-Y f'3 ASS f f�( L3A-SE D ON Z� t�XDf �LEy /�c4ZCv, v0 L UM _ q- 4,t> loo Z 4 CO3 Z'7 = 1 � - C Y CD v 0 SE'R L E Z . loo IoZ 100 :;;fit SSvNt L 1 �, i'z�SER _ 146 = �etq� 0,6..-c t`. sed` _ O.B7 co = 1.-7-7 -7-7(Z(3-a 14) c A Z js DESILTING BASIN CAPACITY TABLE ESTIMATED QUANTITIES OF SILT AND DEBRIS (Cubic Yards) DRAINAGE TRACT AREA SOIL CONDITIONS (Acres) AVERAGE STREET SLOPE 10% 12% 1506 10 . 2%Loose Granular Compacted 270 350 370 400 450 500 100 170 200 240 270 15 300 Loose Granular 400 420 460 600 Compacted 675 750 1 � 255 300 360 400 4S0 20 Loose Granular Compacted 540 700 740 800 900 1000 200 340 400 480 540 600 40 Loose Granular Compacted 1080 1400 1480 1600 1800 2000 400 680 800 960 1080 1200 80 Loose Granula.- Compacted 2160 2800 2960 3200 3600 4000 800 1360 1600 1920 2160 2400 100 Loose Granular Compacted 2700 3500 3700 4000 4500 5000 1000 1700 2000 2400 2700 3000 150 Loose Granular Compacted 4000 4200 4600 6000 6750 7500 1500 2550 3000 3600 4000 4500 200 Loose Granular Compacted 5400 7000 7400 8000 9000 10000 2000 3400 4000 4800 5400 6000 NOTE: Always use the value for granular material unless the project i and the. utility trenches are filled with soil which has been compacted Ito 90% relative compaction. The capacity required by the above table shall be in a pit or basin. At ne lower end of the basin there shall be constructed an outlet dike - .1 as per instructions. The size of the desilting basin ma% be reduced by constructing more than one basin. However, the total volu-ne of basins constructed shall be equal to the estimated volume of rinoff solids. 128 �A DESIGN OF SMALL DAMS 3.4. P 2 ..' TS 0 :015 NOTE Dotted lines are Wed on extrapolation of eato. -'77 Id !....................................... —7— to 0.0 04 a$ 16 2 0 figure 223. Relationship of CijCVj0j Crest Coefficient C. to R. for different approach depths(aerated noppe). in tables 22, 23. and 24. These data are based circular crest v springs farther onl in the re-ion c on experimental tests 1131 conducted by the of the high point of the trace, and then only Bureau of Reclamation. The relationships"of H, for L' vales lip to about 0.5. The profiles to H. are shown on figure 225. Typical upper R, `slues wid lower nappe profiles for various values of L, become increasingly suppressed for larger H' % R. R, nre Plotted on figure 226 in terms of � and -Y— values. Below the high point of the prot'lle H. H, the traces cross and the shapes for the higher for the condition of P-2.0. heads fall inside those for the lower heads. Thus, W it the crest profile is designed for heads where 81 0 R. Illustrated on figure 227 are typical lower nappe exceeds about 0.23 to 0.3, it appears that sub- profiles, plotted for various values of H, for a atmospheric pressure vvill occur along,o some given value of 1?,. In contrast to the straight portion of the profile when heads are less than the weir where the nappe springs farther from 7(be designed maximum. If subatmospheric pressures crest as the head increases, it will be seen from are to be avoided along the crest profile, the crest figure 227 iiiat the lower nappe profile for the shape should be selected so that it will give support SIP t L PIK-S S V t 1 K.J Cry O VTL,E'T- C D - �� Low F-Ww " AT- ootie ld8 Q -71 CAS TH Or- FLov✓ - c.aw THEREFo�k.E- THc2t „Hc�� pN �-Z•• S L—OW 1�E- P4 EA Q = Q-AV 5 /SZ r j;�WO�S 1 CSC �L.pw 1�► / ►a�C DES 14--r If ws 44 °J It o. 4 z ' ! c�-� �, _ i c�NTET?- �j G CA L L S 'FRO W� TE-r S o►.� Au D S ED►w�E T, Co HXPJZ�zo C) o = As zi4 3la00C HEAD 4.0 AS = 374 S1= ., A o _ 374,4 3 o.G - - 0•021 5F V3Z,Z /•T�PF F- 73Pts>>J , D ►A x-10 t..ES SL 82 0 � 40„ pq it lip W r Y 1 .. ". • y , sY :a k a_ s P , 17, d•" w mss+ I I � � 77 L a Q V �1 0 U' NrA i �a Q' cu co = a ar cr it- CO ON or CD loo, A Ile op • /. // ' — f 1 1 r II I I SCALE. Y = fool 00 4A Z4 14.4 ,4C A. Hydrology Area A 1 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (c) Copyright 1982-2000 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2000 License ID 1472 Analysis prepared by: Mayers & Associates Civil Engineering, Inc. 19 Spectrum Pointe Drive, Suite 609 Lake Forest, CA 92630 (949) 599-0870, (949) 599-0880 fax ************************** DESCRIPTION OF STUDY ************************** • Plaza @ Encinitas • 100-YR HYDROLOGY AREA A • FILE: PLAZAA.OUT * ************************************************************************** FILE NAME: PLAZAA.100 TIME/DATE OF STUDY: 11:46 12/15/2000 --------- -------------------- ------------------------ USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------- ------------------------------ ----------- 985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. - (FT) --- (FT)-- SIDE-/-SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0.018/0.020 0 67 2 .00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2 . (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2. 00 IS CODE = 21 ---------------------------- ------------------ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 87 2 INITIAL SUBAREA FLOW-LENGTH = 250.00 UPSTREAM ELEVATION = 139.00 DOWNSTREAM ELEVATION = 120 .00 ELEVATION DIFFERENCE = 19.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 9.410 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4 .556 SUBAREA RUNOFF(CFS) = 0.64 TOTAL AREA(ACRES) = 0 .31 TOTAL RUNOFF(CFS) = 0.64 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ----------- ELEVATION DATA: UPSTREAM(FEET) = 120.00 DOWNSTREAM(FEET) = 114.00 FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.62 ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.64 PIPE TRAVEL TIME(MIN. ) = 0.04 Tc(MIN.) = 9.45 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 275.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 9.45 RAINFALL INTENSITY(INCH/HR) = 4.54 TOTAL STREAM AREA(ACRES) = 0.31 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.64 **************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« - COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 90.00 UPSTREAM ELEVATION = 114.70 DOWNSTREAM ELEVATION = 114.00 ELEVATION DIFFERENCE = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 4 .642 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) = 0.62 3 **************************************************************************** FLOW PROCESS FROM NODE 4 .00 TO NODE 4. 00 IS CODE = 1 --------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ---------- ________________________________________________ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.09 TOTAL STREAM AREA(ACRES) = 0.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.62 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 0.64 9.45 4 .544 0.31 2 0.62 6.00 6.090 0.12 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 1.10 6.00 6.090 2 1.10 9.45 4 .544 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.10 Tc(MIN. ) = 9.45 TOTAL AREA(ACRES) = 0.43 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 275.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 4 . 00 IS CODE = 81 ----------------- _____ -------------------------- »>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) 4.544 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) = 0.81 TOTAL AREA(ACRES) = 0.64 TOTAL RUNOFF(CFS) = 1.91 TC(MIN) = 9.45 **************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 4 .00 IS CODE = 81 -------------------------------- -------------- »>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.544 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = . 8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.54 TOTAL AREA(ACRES) = 0.78 TOTAL RUNOFF(CFS) = 2 .45 4 TC(MIN) = 9.45 FLOW PROCESS FROM NODE 4 .00 TO NODE 5.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 114.00 DOWNSTREAM(FEET) = 113 .20 FLOW LENGTH(FEET) = 80.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4.70 ESTIMATED PIPE DIAMETER(INCH) = 12 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.45 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN.) = 9.73 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 355.00 FEET. FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.458 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.08 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 2.53 TC(MIN) = 9.73 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ------------------------ ELEVATION DATA: UPSTREAM(FEET) = 113.20 DOWNSTREAM(FEET) = 112.40 FLOW LENGTH(FEET) = 75.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4.84 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.53 PIPE TRAVEL TIME(MIN. ) = 0.26 Tc(MIN. ) = 9.99 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 6.00 = 430.00 FEET. FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.383 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.07 TOTAL AREA(ACRES) = 0.82 TOTAL RUNOFF(CFS) = 2.60 TC(MIN) = 9.99 5 --FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 31 ---------------------------- ---------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 112.40 DOWNSTREAM(FEET) = 112.20 FLOW LENGTH(FEET) = 20 .00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12 . 0 INCH PIPE IS 7.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4 .74 ESTIMATED PIPE DIAMETER(INCH) = 12 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2 .60 PIPE TRAVEL TIME(MIN. ) = 0.07 Tc(MIN. ) = 10.06 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 7.00 = 450.00 FEET. FLOW PROCESS FROM NODE 7.00 TO NODE 7.00 IS CODE = 81 ----------------- ----------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.363 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.07 TOTAL AREA(ACRES) = 0.84 TOTAL RUNOFF(CFS) = 2 .68 TC(MIN) = 10.06 --FLOW-PROCESS-FROM NODE 7.00 TO NODE 8.00 IS CODE = 31 ------------- --------------------------------- >>»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< > >>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 112.20 DOWNSTREAM(FEET) = 111.60 FLOW LENGTH(FEET) = 60.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12 .0 INCH PIPE IS 8.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4.78 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2 .68 PIPE TRAVEL TIME(MIN. ) = 0.21 Tc (MIN.) = 10.27 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 510.00 FEET. FLOW PROCESS FROM NODE 8. 00 TO NODE 8.00 IS CODE = 81 ----------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4 .306 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.07 TOTAL AREA(ACRES) = 0 .86 TOTAL RUNOFF(CFS) = 2 .75 TC(MIN) = 10.27 6 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 111.60 DOWNSTREAM(FEET) = 110.80 FLOW LENGTH(FEET) = 80.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4 .79 ESTIMATED PIPE DIAMETER(INCH) = 12 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2 .75 PIPE TRAVEL TIME(MIN. ) = 0.28 Tc (MIN. ) = 10.55 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.00 = 590.00 FEET. FLOW PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< --------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.232 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.07 TOTAL AREA(ACRES) = 0.88 TOTAL RUNOFF(CFS) = 2.82 TC(MIN) = 10 .55 FLOW PROCESS FROM NODE 9.00 TO NODE 12.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ------------------- ELEVATION DATA: UPSTREAM(FEET) = 110.80 DOWNSTREAM(FEET) = 110.30 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12 .0 INCH PIPE IS 8.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4.82 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.82 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN. ) = 10.72 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12 .00 = 640.00 FEET. FLOW PROCESS FROM NODE 12 .00 TO NODE 12.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.72 RAINFALL INTENSITY(INCH/HR) = 4.19 TOTAL STREAM AREA(ACRES) = 0.88 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.82 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 -------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 440 .00 UPSTREAM ELEVATION = 140.60 DOWNSTREAM ELEVATION = 114.00 ELEVATION DIFFERENCE = 26.60 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 5. 182 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 2 .12 TOTAL AREA(ACRES) = 0.41 TOTAL RUNOFF(CFS) = 2.12 **************************************************************************** FLOW-PROCESS FROM NODE 11.00 TO NODE 12 .00 IS CODE = 31 ------------------------------ ----------------- >>>-COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) O FLOW LENGTH(FEET) = 60.00 MANNING'SN = 0.0R3AM(FEET) = 110.60 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 8.73 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.12 PIPE TRAVEL TIME(MIN. ) = 0.11 Tc (MIN. ) = 6.11 LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12 .00 = 500.00 FEET. **************************************************************************** FLOW-PROCESS FROM NODE 12.00 TO NODE 12 .00 IS CODE = 1 ---------------------------- --------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 6.11 RAINFALL INTENSITY(INCH/HR) = 6.02 TOTAL STREAM AREA(ACRES) = 0.41 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2. 12 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 2 .82 10.72 4 .188 0.88 2 2.12 6.11 6 .016 0.41 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY 8 NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 4 .30 1.29 16.414 2 4 .09 6.11 6.016 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.30 Tc (MIN. ) = 10.72 TOTAL AREA(ACRES) = 1 .29 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12 .00 = 640.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 1.29 TC(MIN.) = 10.72 PEAK FLOW RATE(CFS) = 4.30 END OF RATIONAL METHOD ANALYSIS 1 B. Hydrology Area B NoText 9 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (c) Copyright 1982-2000 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2000 License ID 1472 Analysis prepared by: Mayers & Associates Civil Engineering, Inc. 19 Spectrum Pointe Drive, Suite 609 Lake Forest, CA 92630 (949) 599-0870, (949) 599-0880 fax ************************** DESCRIPTION OF STUDY * PLAZA @ ENCINITAS * 100-RE HYDROLOGY AREA B * FILE: PLAZAB.OUT * ************************************************************************** FILE NAME: PLAZAB.100 TIME/DATE OF STUDY: 09:23 12/15/2000 ---------------------------- ------------------------- --USER-SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -------------------------------------- -------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8. 00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0 .018/0.018/0. 020 0.67 2 .00 0.0313 0_167 0_0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2 . (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** --FLOW- ------------------ PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 22 ----------------------- _______ »>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< OMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 10 USER SPECIFIED Tc (MIN. ) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.850 SUBAREA RUNOFF(CFS) = 1.22 TOTAL AREA(ACRES) = 0.21 TOTAL RUNOFF(CFS) = 1.22 FLOW PROCESS FROM NODE 22 .00 TO NODE 23 .00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ---------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 115.00 DOWNSTREAM(FEET) = 114.70 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0. 013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.49 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.22 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN. ) = 5.19 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 23 .00 = 40.00 FEET. FLOW PROCESS FROM NODE 23 .00 TO NODE 23 .00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ------------------------ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.687 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 1.08 TOTAL AREA(ACRES) = 0.40 TOTAL RUNOFF(CFS) = 2.30 TC(MIN) = 5.19 FLOW PROCESS FROM NODE 23 .00 TO NODE 24.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< -------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 114 .70 DOWNSTREAM(FEET) = 114 .60 FLOW LENGTH(FEET) = 15 .00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12 .0 INCH PIPE IS 8.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 3.94 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2 .30 PIPE TRAVEL TIME(MIN. ) = 0.06 Tc(MIN. ) = 5.25 LONGEST FLOWPATH FROM NODE 21.00 TO NODE. 24 .00 = 55.00 FEET. FLOW PROCESS FROM NODE 24 .00 TO NODE 24.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< -------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.635 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 11 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.45 TOTAL AREA(ACRES) = 0.48 TOTAL RUNOFF(CFS) = 2. 75 TC(MIN) = 5.25 FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE = 31 -------------- __________________ ------------- >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< --> >>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA UPSTREAM(FEET) = 114.60 DOWNSTREAM(FEET) = 113.50 FLOW LENGTH(FEET) = 100 .00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12 .0 INCH PIPE IS 7.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4.99 ESTIMATED PIPE DIAMETER(INCH) = 12 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.75 PIPE TRAVEL TIME (MIN. ) = 0.33 Tc(MIN. ) = 5.59 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 25.00 = 155.00 FEET. --FLOW-PROCESS-FROM NODE 25.00 TO NODE 25.00 IS CODE = 1 ---------------------------------- --------------- -->>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 5.59 RAINFALL INTENSITY(INCH/HR) = 6.38 TOTAL STREAM AREA(ACRES) = 0.48 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.75 --FLOW PROCESS FROM NODE 26.00 TO NODE 25.00 IS CODE = 21 -------------------------- ------------------------ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "D11 8500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 140.00 UPSTREAM ELEVATION = 114 .70 DOWNSTREAM ELEVATION = 113 .50 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 5.605 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 2. 07 TOTAL AREA(ACRES) = 0.40 TOTAL RUNOFF(CFS) = 2 .07 --FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 1 ------------------------------------ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< -->>>>>AND-COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 = -- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 12 TIME OF CONCENTRATION(MIN. ) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.09 TOTAL STREAM AREA(ACRES) = 0.40 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2 .07 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 2 .75 5.59 6.376 0.48 2 2.07 6.00 6.090 0 .40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 4.73 5.59 6.376 2 4.70 6.00 6.090 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.73 Tc(MIN.) = 5.59 TOTAL AREA(ACRES) = 0.88 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 25.00 = 155.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 25 .00 IS CODE = 81 ---------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW«<< ---------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.376 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 1.19 TOTAL AREA(ACRES) = 1.10 TOTAL RUNOFF(CFS) = 5.92 TC(MIN) = 5.59 **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 27.00 IS CODE = 31 ------------------------------------------------------------------ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<< ELEVATION DATA: UPSTREAM(FEET) = 113.50 DOWNSTREAM(FEET) = 113.10 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5.69 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.92 PIPE TRAVEL TIME(MIN. ) = 0. 12 Tc(MIN. ) = 5.71 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 27 .00 = 195.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 27.00 TO NODE 27.00 IS CODE = 1 ----------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< 13 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 5.71 RAINFALL INTENSITY(INCH/HR) = 6.29 TOTAL STREAM AREA(ACRES) = 1.10 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.92 **************************************************************************** FLOW PROCESS FROM NODE 28. 00 TO NODE 29.00 IS CODE = 21 ------------------------- _______ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< RURAL DEVELOPMENT RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "D" 4500 S.C.S. CURVE. NUMBER (AMC II) 87 INITIAL SUBAREA FLOW-LENGTH = 110.00 UPSTREAM ELEVATION = 140. 00 DOWNSTREAM ELEVATION = 135.00 ELEVATION DIFFERENCE = 5.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.408 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.316 SUBAREA RUNOFF(CFS) = 0.38 TOTAL AREA(ACRES) = 0.16 TOTAL RUNOFF(CFS) = 0.38 --FLOW PROCESS FROM NODE 29.00 TO NODE 27.00 IS CODE = 31 ------------------- ________________ >>>-COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< -->>»>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 135-00 DOWNSTREAM(FEET) = 113 . 10 FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 1.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12 .37 ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 0 .38 1 PIPE TRAVEL TIME(MIN. ) = 0.05 Tc (MIN. ) 7.46 LONGEST FLOWPATH FROM NODE 28.00 TO NODE 27.00 = 150.00 FEET. **************************************************************************** - ------------------ _FLOW PROCESS FROM NODE 27 .00 TO NODE 27.00 IS CODE 1 ----------- ________ _________ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< --»>>>AND-COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 7.46 RAINFALL INTENSITY(INCH/HR) = 5 .29 TOTAL STREAM AREA(ACRES) = 0. 16 PEAK FLOW RATE(CFS) AT CONFLUENCE _ 0.38 ** CONFLUENCE DATA ** 14 STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 5 .92 5.71 6 .291 1.10 2 0.38 7.46 5 .291 0.16 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 6.25 1.26 16.665 2 5.37 7.46 5.291 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.25 Tc(MIN.) = 5.71 TOTAL AREA(ACRES) = 1.26 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 27 .00 = 195.00 FEET. FLOW PROCESS FROM NODE 27.00 TO NODE 27.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< -------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.291 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL. CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 1.18 TOTAL AREA(ACRES) = 1.48 TOTAL RUNOFF(CFS) = 7.42 TC(MIN) = 5.71 FLOW PROCESS FROM NODE 27.00 TO NODE 30.00 IS CODE = 31 -------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 113 .10 DOWNSTREAM(FEET) = 111.90 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 6.18 ESTIMATED PIPE DIAMETER(INCH) = 18 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.42 PIPE TRAVEL TIME(MIN. ) = 0.32 Tc(MIN.) = 6.03 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 30.00 = 315.00 FEET. FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 81 ----------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.071 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0. 09 SUBAREA RUNOFF(CFS) = 0.46 15 TOTAL AREA(ACRES) = 1.57 TOTAL RUNOFF(CFS) = 7. 89 TC(MIN) = 6.03 -FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 31 -------------------------------- >» COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< _- ­-USING PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 111.90 DOWNSTREAM(FEET) 110.90 FLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12 .1 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 6.25 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.89 PIPE TRAVEL TIME(MIN. ) = 0.27 Tc(MIN.) = 6.30 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 31.00 = 415.00 FEET. --FLOW-PROCESS FROM NODE 31.00 TO NODE 31.00 IS CODE = 81 -------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.904 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.65 TOTAL AREA(ACRES) = 1.70 TOTAL RUNOFF(CFS) = 8.54 TC(MIN) = 6.30 -- -------------------- FLOW PROCESS FROM NODE 31.00 TO NODE 32 .00 IS CODE = 31 ---------------- _______________ >>>­COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>­USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 110.90 DOWNSTREAM(FEET) = 109.70 FLOW LENGTH(FEET) = 120. 00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 6.34 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.54 PIPE TRAVEL TIME(MIN. ) = 0.32 Tc(MIN. ) = 6.61 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 32.00 = 535.00 FEET. --FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 1 --------- _____________ --------------------- ____ »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 6.61 RAINFALL INTENSITY(INCH/HR) = 5 .72 TOTAL STREAM AREA(ACRES) = 1.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.54 16 **************************************************************************** FLOW PROCESS FROM NODE 33 .00 TO NODE 34 .00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 87 INITIAL SUBAREA FLOW-LENGTH = 270.00 UPSTREAM ELEVATION = 140.00 DOWNSTREAM ELEVATION = 116.00 ELEVATION DIFFERENCE = 24.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 9.281 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.597 SUBAREA RUNOFF(CFS) = 0.33 TOTAL AREA(ACRES) = 0.16 TOTAL RUNOFF(CFS) = 0.33 **************************************************************************** FLOW PROCESS FROM NODE 34.00 TO NODE 32.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE. FLOW) <<<<< -------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 116.00 DOWNSTREAM(FEET) = 109.90 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 1.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 9.61 ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.33 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN. ) = 9.32 LONGEST FLOWPATH FROM NODE 33.00 TO NODE 32.00 = 290.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 9.32 RAINFALL INTENSITY(INCH/HR) = 4.59 TOTAL STREAM AREA(ACRES) = 0.16 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.33 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 8.54 6.61 5.721 1.70 2 0.33 9.32 4 .586 0.16 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. 17 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 8. 80 1.86 12 .963 2 7.18 9.32 4 .586 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.80 Tc (MIN. ) = 6.61 TOTAL AREA(ACRES) = 1.86 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 32 . 00 = 535 .00 FEET. **************************************************************************** -FLOW-PROCESS FROM NODE 32 .00 TO NODE 35.00 IS CODE = 31 ------------------------------- ------------------- >» OMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< > >>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA UPSTREAM(FEET) = 109-90 DOWNSTREAM(FEET) = 109.60 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13 .1 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 6.37 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8 .80 PIPE TRAVEL TIME(MIN. ) = 0.08 Tc(MIN. ) = 6.69 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 35.00 = 565.00 FEET. --FLOW PROCESS FROM NODE 35. 00 TO NODE 35.00 IS CODE = 81 ----------------- ---------------------------------- >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.677 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.63 TOTAL AREA(ACRES) = 1.99 TOTAL RUNOFF(CFS) = 9.43 TC(MIN) = 6.69 **************************************************************************** - FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 31 ----------------- ________________ >>>-COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< --> >>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 109-60 DOWNSTREAM(FEET) = 108.40 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14 .0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.42 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.43 PIPE TRAVEL TIME(MIN. ) = 0.31 Tc (MIN. ) = 7.00 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 36. 00 = 685.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 36. 00 TO NODE 36.00 IS CODE = 1 18 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7.00 RAINFALL INTENSITY(INCH/HR) = 5.51 TOTAL STREAM AREA(ACRES) = 1.99 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.43 FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<< RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 87 INITIAL SUBAREA FLOW-LENGTH = 110.00 UPSTREAM ELEVATION = 113.90 DOWNSTREAM ELEVATION = 111.00 ELEVATION DIFFERENCE = 2.90 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 8.883 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.729 SUBAREA RUNOFF(CFS) = 0.77 TOTAL AREA(ACRES) = 0.36 TOTAL RUNOFF(CFS) = 0.77 **************************************************************************** FLOW PROCESS FROM NODE 3.8.00 TO NODE 36.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME. THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< ------------------------------------------------ ELEVATION DATA: UPSTREAM(FEET) = 111.00 DOWNSTREAM(FEET) = 108.60 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0 .013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 3 .0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.31 ESTIMATED PIPE. DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.77 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN. ) = 9.02 LONGEST FLOWPATH FROM NODE 37.00 TO NODE 36.00 = 160.00 FEET. FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 9.02 RAINFALL INTENSITY(INCH/HR) = 4.68 TOTAL STREAM AREA(ACRES) = 0.36 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.77 19 FLOW-PROCESS FROM NODE 39.00 TO NODE 40.00 IS CODE = 22 ---------------------------------- » >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS«<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 USER SPECIFIED Tc (MIN. ) = 5 .000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.850 SUBAREA RUNOFF(CFS) = 2 . 04 TOTAL AREA(ACRES) = 0.35 TOTAL RUNOFF(CFS) = 2.04 FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 IS CODE = 31 --------------- __________________ >>>­COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< -->>>>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 115.00 DOWNSTREAM(FEET) = 112.70 FLOW LENGTH(FEET) = 230.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12 .0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4.51 ESTIMATED PIPE DIAMETER(INCH) = 12 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.04 PIPE TRAVEL TIME(MIN. ) = 0 .85 Tc (MIN. ) = 5.85 LONGEST FLOWPATH FROM NODE 39.00 TO NODE 41.00 = 280.00 FEET. --FLOW- ------------------- PROCESS FROM NODE 41.00 TO NODE 41.00 IS CODE = 81 ---------------- _______________ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.191 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = . 8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.53 SUBAREA RUNOFF(CFS) = 2,79 TOTAL AREA(ACRES) = 0 .88 TOTAL RUNOFF(CFS) = 4.83 TC(MIN) = 5.85 --FLOW PROCESS FROM NODE 41. 00 TO NODE 42 .00 IS CODE = 31 ---------- - ___________ ------------ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< -->>>>>USING-COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 112 .70 DOWNSTREAM(FEET) = 111.10 FLOW LENGTH(FEET) = 155.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5 .60 ESTIMATED PIPE DIAMETER(INCH) = 15 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4 .83 PIPE TRAVEL TIME(MIN. ) = 0.46 Tc (MIN. ) 6.31 LONGEST FLOWPATH FROM NODE 39.00 TO NODE 42.00 = 435.00 FEET. 20 FLOW PROCESS FROM NODE 42 .00 TO NODE 42 .00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ----------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5 .895 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0 .35 SUBAREA RUNOFF(CFS) = 1.75 TOTAL AREA(ACRES) = 1.23 TOTAL RUNOFF(CFS) _ , 6.58 TC(MIN) = 6.31 FLOW PROCESS FROM NODE 42 .00 TO NODE 36.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ------------------------------------------------ ELEVATION DATA: UPSTREAM(FEET) = 111.10 DOWNSTREAM(FEET) = 108.60 FLOW LENGTH(FEET) = 60.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12 .0 INCH PIPE IS 9.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 10.00 ESTIMATED PIPE DIAMETER(INCH) = 12 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.58 PIPE TRAVEL TIME(MIN. ) = 0.10 Tc(MIN. ) = 6.41 LONGEST FLOWPATH FROM NODE 39.00 TO NODE 36.00 = 495.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.41 RAINFALL INTENSITY(INCH/HR) = 5.84 TOTAL STREAM AREA(ACRES) = 1.23 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.58 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.43 7 .00 5.513 1.99 2 0.77 9.02 4.684 0.36 3 6.58 6.41 5. 836 1.23 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 16.30 3 .58 8.498 2 16.11 6.41 5.836 3 14.06 9.02 4 .684 21 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 16.30 Tc (MIN. ) = 7 . 00 TOTAL AREA(ACRES) = 3 .58 LONGEST FLOWPATH FROM NODE 21. 00 TO NODE 36.00 = 685 .00 FEET. FLOW PROCESS FROM NODE 36. 00 TO NODE 43 . 00 IS CODE = 31 -------------------- ________________ ------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< -->»>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 108.60 DOWNSTREAM(FEET) 106.50 FLOW LENGTH(FEET) = 210. 00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24 .0 INCH PIPE IS 15.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 7.51 ESTIMATED PIPE DIAMETER(INCH) = 24 . 00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 16.30 PIPE TRAVEL TIME(MIN. ) = 0.47 Tc (MIN. ) = 7.47 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 43.00 = 895.00 FEET. -FLOW PROCESS FROM NODE 43.00 TO NODE 43 .00 IS CODE = 1 ---------------------------- _______ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< -------------------------- __________________________________________ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7.47 RAINFALL INTENSITY(INCH/HR) = 5.29 TOTAL STREAM AREA(ACRES) = 3 .58 PEAK FLOW RATE(CFS) AT CONFLUENCE = 16.30 --FLOW PROCESS FROM NODE 44.00 TO NODE 45.00 IS CODE = 21 --»>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< OMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 330.00 UPSTREAM ELEVATION = 115.00 DOWNSTREAM ELEVATION = 106.90 ELEVATION DIFFERENCE = 8.10 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 6.060 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.051 SUBAREA RUNOFF(CFS) = 3 .75 TOTAL AREA(ACRES) = 0.73 TOTAL RUNOFF(CFS) = 3 .75 -FLOW PROCESS FROM NODE 45.00 TO NODE 43 . 00 IS CODE = 31 --------------- ----------------------------------- >>>­COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< -->>>>USING-COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 106.90 DOWNSTREAM(FEET) = FLOW LENGTH(FEET) = 60.00 MANNING'S N = 0. 013 106.30 22 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5 .24 ESTIMATED PIPE DIAMETER(INCH) = 15 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3 .75 PIPE TRAVEL TIME(MIN. ) = 0.19 Tc (MIN. ) = 6.25 LONGEST FLOWPATH FROM NODE 44 .00 TO NODE 43 .00 = 390.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43 .00 TO NODE 43 .00 IS CODE = 1 ---------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 6.25 RAINFALL INTENSITY(INCH/HR) = 5.93 TOTAL STREAM AREA(ACRES) = 0.73 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.75 **************************************************************************** FLOW PROCESS FROM NODE 46.00 TO NODE 43.00 IS CODE = 21 ------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 290.00 UPSTREAM ELEVATION = 111.50 DOWNSTREAM ELEVATION = 108.60 ELEVATION DIFFERENCE = 2.90 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7 .663 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.201 SUBAREA RUNOFF(CFS) = 1.64 TOTAL AREA(ACRES) = 0.37 TOTAL RUNOFF(CFS) = 1.64 FLOW PROCESS FROM NODE 43.00 TO NODE 43 .00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN. ) = 7.66 RAINFALL INTENSITY(INCH/HR) = 5.20 TOTAL STREAM AREA(ACRES) = 0.37 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.64 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 16.30 7 .47 5.289 3.58 2 3 .75 6.25 5.931 0.73 3 1 .64 7.66 5.201 0.37 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO 23 CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 21.26 4 .68 7.149 2 19.72 6.25 5 .931 3 20.96 7.66 5 .201 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 21.26 Tc(MIN. ) = 7.47 TOTAL AREA(ACRES) = 4.68 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 43 .00 = 895.00 FEET. --FLOW PROCESS FROM NODE 43 .00 TO NODE 47.00 IS CODE = 31 ------------------------------- >>»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< - -->>-USING-COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA UPSTREAM(FEET) 108-60 DOWNSTREAM(FEET) = 108.50 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24. 0 INCH PIPE IS 19.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 7.79 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.26 PIPE TRAVEL TIME(MIN. ) = 0.02 Tc(MIN. ) = 7.49 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 47.00 = 905.00 FEET. --FLOW PROCESS FROM NODE 47. 00 TO NODE 47.00 IS CODE = 1 ------ ----------------------------------------- »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7;49 RAINFALL INTENSITY(INCH/HR) = 5.28 TOTAL STREAM AREA(ACRES) = 4 .68 PEAK FLOW RATE(CFS) AT CONFLUENCE = 21.26 **************************************************************************** FLOW PROCESS FROM NODE 48.00 TO NODE 47.00 IS CODE = 21 --------- -------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = 8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 220 .00 UPSTREAM ELEVATION = 118 .40 DOWNSTREAM ELEVATION = 107.10 ELEVATION DIFFERENCE = 11.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 3 .869 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 24 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 1.45 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) = 1.45 **************************************************************************** FLOW PROCESS FROM NODE 47 .00 TO NODE 47 .00 IS CODE = 1 ------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.09 TOTAL STREAM AREA(ACRES) = 0.28 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.45 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 21.26 7.49 5.279 4.68 2 1.45 6.00 6.090 0.28 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE. FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 22 .51 4.96 6.886 2 19.87 6.00 6.090 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 22 .51 Tc(MIN.) = 7.49 TOTAL AREA(ACRES) = 4.96 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 47.00 = 905.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 49.00 IS CODE = 31 ------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< ELEVATION DATA: UPSTREAM(FEET) = 107.10 DOWNSTREAM(FEET) = 106.50 FLOW LENGTH(FEET) = 60.00 MANNING'S N = 0 .013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.14 ESTIMATED PIPE DIAMETER(INCH) = 27 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22 .51 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN. ) = 7 .61 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 49.00 = 965.00 FEET. FLOW PROCESS FROM NODE 49.00 TO NODE 49.00 IS CODE = 1 ------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< 25 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7.61 RAINFALL INTENSITY(INCH/HR) = 5.22 TOTAL STREAM AREA(ACRES) = 4 .96 PEAK FLOW RATE(CFS) AT CONFLUENCE = 22 . 51 **************************************************************************** --FLOW-PROCESS FROM NODE 50.00 TO NODE 49.00 IS CODE = 21 ------ --------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "D" 8500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 170.00 UPSTREAM ELEVATION = 113.70 DOWNSTREAM ELEVATION = 107.10 ELEVATION DIFFERENCE = 6.60 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 3 .733 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 0.78 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) = 0.78 **************************************************************************** --FLOW PROCESS FROM NODE 49.00 TO NODE 49.00 IS CODE = 1 ----------------------------- _____ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.09 TOTAL STREAM AREA(ACRES) = 0.15 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.78 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 22.51 7 .61 5 .224 4.96 2 0.78 6.00 6.090 0.15 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 23 . 18 5.11 6.755 2 20.09 6. 00 6.090 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 23 . 18 Tc(MIN. ) = 7.61 26 TOTAL AREA(ACRES) = 5.11 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 49.00 = 965.00 FEET. FLOW PROCESS FROM NODE 49.00 TO NODE 51.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ----------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 107.10 DOWNSTREAM(FEET) = 105.10 FLOW LENGTH(FEET) = 200.00 MANNING'S N = 0 .013 DEPTH OF FLOW IN 27 . 0 INCH PIPE IS 18.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 8.19 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23 .18 PIPE TRAVEL TIME(MIN. ) = 0.41 TC(MIN. ) = 8.02 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 51.00 = 1165.00 FEET. FLOW PROCESS FROM NODE 51.00 TO NODE 51.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 8.02 RAINFALL INTENSITY(INCH/HR) = 5.05 TOTAL STREAM AREA(ACRES) = 5.11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 23.18 **************************************************************************** FLOW PROCESS FROM NODE 52.00 TO NODE 53 .00 IS CODE = 21 -----------------------------=--------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 380.00 UPSTREAM ELEVATION = 108.00 DOWNSTREAM ELEVATION = 101.50 ELEVATION DIFFERENCE = 6.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.335 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.350 SUBAREA RUNOFF(CFS) = 4 .23 TOTAL AREA(ACRES) = 0.93 TOTAL RUNOFF(CFS) = 4.23 FLOW PROCESS FROM NODE 53.00 TO NODE 51.00 IS CODE = 31 ------------------------------------------------------------------------ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ------------------------------------------------ ELEVATION DATA: UPSTREAM(FEET) = 101.50 DOWNSTREAM(FEET) = 100.80 FLOW LENGTH(FEET) = 70.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15 .0 INCH PIPE IS 9.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5.39 27 ESTIMATED PIPE DIAMETER(INCH) = 15 . 00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.23 PIPE TRAVEL TIME (MIN. ) = 0.22 Tc (MIN. ) = 7.55 LONGEST FLOWPATH FROM NODE 52 .00 TO NODE 51.00 = 450.00 FEET. FLOW PROCESS FROM NODE 51.00 TO NODE 51.00 IS CODE = 1 ----------------------- _____ -------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 ----___ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 7.55 RAINFALL INTENSITY(INCH/HR) = 5.25 TOTAL STREAM AREA(ACRES) = 0.93 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4 .23 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 23 .18 8.02 5.051 5. 11 2 4 .23 7.55 5.251 0.93 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 27.25 6.04 6.064 2 26.53 7.55 5.251 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.25 Tc(MIN. ) 8.02 TOTAL AREA(ACRES) = 6.04 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 51.00 = 1165.00 FEET. **************************************************************************** --FLOW PROCESS FROM NODE 51.00 TO NODE 54.00 IS CODE = 31 ---------------- ________________ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< -_>>»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 100.80 DOWNSTREAM(FEET) = 100.20 FLOW LENGTH(FEET) = 55. 00 MANNING'S N = 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.72 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27.25 PIPE TRAVEL TIME(MIN. ) = 0.11 Tc (MIN.) 8 .12 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 54 .00 = 1220.00 FEET. **************************************************************************** --FLOW PROCESS FROM NODE 54 .00 TO NODE 54 .00 IS CODE = 1 -------------------- ______________ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< 28 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.12 RAINFALL INTENSITY(INCH/HR) = 5.01 TOTAL STREAM AREA(ACRES) = 6.04 PEAK FLOW RATE (CFS) AT CONFLUENCE = 27.25 FLOW PROCESS FROM NODE 55.00 TO NODE 54 .00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 540.00 UPSTREAM ELEVATION = 115.00 DOWNSTREAM ELEVATION = 103.70 ELEVATION DIFFERENCE = 11.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 8.176 *CAUTION: SUBAREA FLOWLENGTH EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.988 SUBAREA RUNOFF(CFS) = 11.28 TOTAL AREA(ACRES) = 2 .66 TOTAL RUNOFF(CFS) = 11.28 **************************************************************************** FLOW PROCESS FROM NODE 54.00 TO NODE 54.00 IS CODE = 1 -------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 8.18 RAINFALL INTENSITY(INCH/HR) = 4.99 TOTAL STREAM AREA(ACRES) = 2 .66 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.28 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 27 .25 8.12 5.009 6.04 2 11.28 8.18 4.988 2 .66 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 38 .41 8.18 4 .988 2 38 .48 8.70 4 .792 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 38.48 Tc (MIN. ) = 8.12 29 TOTAL AREA(ACRES) = 8 .70 LONGEST FLOWPATH FROM NODE 21. 00 TO NODE 54 . 00 = 1220. 00 FEET. FLOW PROCESS FROM NODE 54. 00 TO NODE 56.00 IS CODE = 31 ------------- _ ----------------------------------- »»>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<<< --»»>USING-COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 100.80 DOWNSTREAM(FEET) = 100-60 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 30. 0 INCH PIPE IS 24 .3 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 9.04 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 38.48 PIPE TRAVEL TIME(MIN. ) = 0. 04 Tc (MIN. ) = 8.16 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 56.00 = 1240.00 FEET. -FLOW PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE = 10 ------------------ -------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK ## 1 <<<<< --FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE = 21 ----------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = . 8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) 92 INITIAL SUBAREA FLOW-LENGTH = 480.00 UPSTREAM ELEVATION = 115 .00 DOWNSTREAM ELEVATION = 104. 10 ELEVATION DIFFERENCE = 10.90 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.501 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5 .273 SUBAREA RUNOFF(CFS) = 1.84 TOTAL AREA(ACRES) = 0.41 TOTAL RUNOFF(CFS) = 1.84 FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 31 ------------- _________________ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< -->>>>>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 104.10 DOWNSTREAM(FEET) = 103 .30 FLOW LENGTH(FEET) = 80. 00 MANNING'S N = 0. 013 DEPTH OF FLOW IN 12 .0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4 .39 ESTIMATED PIPE DIAMETER(INCH) = 12 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1. 84 PIPE TRAVEL TIME(MIN. ) = 0.30 Tc(MIN. ) = 7.80 LONGEST FLOWPATH FROM NODE 57.00 TO NODE 59.00 = 560.00 FEET. 30 FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7 .80 RAINFALL INTENSITY(INCH/HR) = 5.14 TOTAL STREAM AREA(ACRES) = 0.41 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.84 **************************************************************************** FLOW PROCESS FROM NODE 60.00 TO NODE 59.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 430.00 UPSTREAM ELEVATION = 115.00 DOWNSTREAM ELEVATION = 103.50 ELEVATION DIFFERENCE = 11.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 6.723 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5 .659 SUBAREA RUNOFF(CFS) = 3 .80 TOTAL AREA(ACRES) = 0.79 TOTAL RUNOFF(CFS) = 3.80 **************************************************************************** FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.72 RAINFALL INTENSITY(INCH/HR) = 5.66 TOTAL STREAM AREA(ACRES) = 0.79 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.80 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.84 7.80 5.140 0.41 2 3 .80 6.72 5.659 0 .79 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 5.47 6.72 5.659 2 5.29 7 .80 5.140 31 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5 .47 Tc (MIN. ) = 6.72 TOTAL AREA(ACRES) = 1.20 LONGEST FLOWPATH FROM NODE 57. 00 TO NODE 59.00 = 560.00 FEET. FLOW PROCESS FROM NODE 59.00 TO NODE 61.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 103 .30 DOWNSTREAM(FEET) = 102.10 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15 .0 INCH PIPE IS 11.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5.65 ESTIMATED PIPE DIAMETER(INCH) = 15 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.47 PIPE TRAVEL TIME(MIN. ) = 0.35 Tc(MIN. ) = 7.08 LONGEST FLOWPATH FROM NODE 57.00 TO NODE 61.00 = 680.00 FEET. FLOW PROCESS FROM NODE 61.00 TO NODE 61.00 IS CODE = 1 -------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7 .08 RAINFALL INTENSITY(INCH/HR) = 5.48 TOTAL STREAM AREA(ACRES) = 1.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.47 **************************************************************************** FLOW PROCESS FROM NODE 62 .00 TO NODE 63 .00 IS CODE = 21 ------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 430.00 UPSTREAM ELEVATION = 115 .00 DOWNSTREAM ELEVATION = 103 .60 ELEVATION DIFFERENCE = 11.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 6.742 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.649 SUBAREA RUNOFF(CFS) = 4.75 TOTAL AREA(ACRES) = 0.99 TOTAL RUNOFF(CFS) = 4 .75 FLOW PROCESS FROM NODE 63 . 00 TO NODE 61.00 IS CODE = 31 ---------------- ---------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< 32 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ELEVATION DATA: UPSTREAM(FEET) = 103 .60 DOWNSTREAM(FEET) = 102.10 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6 . 9 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 10.17 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.75 PIPE TRAVEL TIME(MIN. ) = 0.05 Tc (MIN. ) = 6.79 LONGEST FLOWPATH FROM NODE 62.00 TO NODE 61.00 = 460.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 61.00 TO NODE 61.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 6.79 RAINFALL INTENSITY(INCH/HR) = 5.62 TOTAL STREAM AREA(ACRES) = 0.99 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.75 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 5.47 7 .08 5.475 1.20 2 4.75 6.79 5.622 0.99 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 10.10 2 .19 11.667 2 10.08 6.79 5.622 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.10 Tc(MIN.) = 7.08 TOTAL AREA(ACRES) = 2.19 LONGEST FLOWPATH FROM NODE 57.00 TO NODE. 61.00 = 680.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 61.00 TO NODE 56.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 102.10 DOWNSTREAM(FEET) = 101.60 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 12.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 6.70 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.10 PIPE TRAVEL TIME(MIN. ) = 0.12 TC(MIN.) = 7.20 LONGEST FLOWPATH FROM NODE 57.00 TO NODE 56.00 = 730.00 FEET. 33 **************************************************************************** FLOW PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE = 11 ----------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK $# 1 WITH THE MAIN-STREAM MEMORY- -,<<< ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 10. 10 7.20 5 .414 2 .19 LONGEST FLOWPATH FROM NODE 57 .00 TO NODE 56.00 = 730.00 FEET. ** MEMORY BANK ## 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 38.48 8.16 4 .994 8.70 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 56.00 = 1240.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN_ ) (INCH/HOUR) 1 45.60 7 .20 5.414 2 47.80 8.16 4 .994 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 47.80 Tc (MIN. ) = 8.16 TOTAL AREA(ACRES) = 10.89 **************************************************************************** FLOW PROCESS FROM NODE 56.00 TO NODE 64.00 IS CODE = 31 ---------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 101.60 DOWNSTREAM(FEET) = 99.70 FLOW LENGTH(FEET) = 185.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.73 ESTIMATED PIPE DIAMETER(INCH) = 33 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 47.80 PIPE TRAVEL TIME(MIN. ) = 0.32 Tc(MIN. ) = 8.48 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 64.00 = 1425.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 64 . 00 TO NODE 64.00 IS CODE = 1 -------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< ---------------------------------------- ________________________ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 8.48 RAINFALL INTENSITY(INCH/HR) = 4 .87 TOTAL STREAM AREA(ACRES) = 10. 89 PEAK FLOW RATE(CFS) AT CONFLUENCE = 47.80 34 FLOW PROCESS FROM NODE 65.00 TO NODE 66.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 170.00 UPSTREAM ELEVATION = 105.50 DOWNSTREAM ELEVATION = 101.50 ELEVATION DIFFERENCE = 4 .00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 4.411 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 1.40 TOTAL AREA(ACRES) = 0.27 TOTAL RUNOFF(CFS) = 1.40 **************************************************************************** FLOW PROCESS FROM NODE 66.00 TO NODE 64 .00 IS CODE. = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 101.50 DOWNSTREAM(FEET) = 101.20 FLOW LENGTH(FEET) = 30.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 4.01 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.40 PIPE TRAVEL TIME(MIN. ) = 0.12 Tc(MIN.) = 6.12 LONGEST FLOWPATH FROM NODE 65.00 TO NODE 64.00 = 200.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 64.00 TO NODE 64 .00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 6.12 RAINFALL INTENSITY(INCH/HR) = 6.01 TOTAL STREAM AREA(ACRES) = 0.27 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.40 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 47.80 8.48 4 .873 10.89 2 1.40 6 .12 6.010 0.27 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CPS) (MIN. ) (INCH/HOUR) 35 1 40. 15 6. 12 6. 010 2 48 .93 8 .48 4 .873 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 48 . 93 Tc (MIN. ) = 8 .48 TOTAL AREA(ACRES) = 11.16 --LONGEST-FLOWPATH FROM NODE 21 . 00 TO NODE 64 .00 = 1425.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) 11. 16 TC(MIN. ) = 8.48 PEAK FLOW RATE(CFS) 48.93 ---------------------------- ___________ END OF RATIONAL METHOD ANALYSIS 1 8 NoText C. Hydrology Area C NoText 36 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (c) Copyright 1982-2000 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2000 License ID 1472 Analysis prepared by: Mayers & Associates Civil Engineering, Inc. 19 Spectrum Pointe Drive, Suite 609 Lake Forest, CA 92630 (949) 599-0870, (949) 599-0880 fax ************************** DESCRIPTION OF STUDY ************************** * PLAZA Q ENCINITAS * 100-YR HYDROLOGY AREA C * FILE: PLAZAC.OUT *************************************************************************** FILE NAME: PLAZAC.100 TIME/DATE OF STUDY: 09:52 12/15/2000 ----------- ----------------------------- ___ -USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------ ---------------------------------- 1985 SAN DIEGO MANUAL CRITERIA -- USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2 .600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0. 018/0.018/0.020 0.67 2 .00 0.0313 0_167 0_0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6. 0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. * **************************************************************************** --FLOW PROCESS FROM NODE 71.00 TO NODE 72 . 00 IS CODE = 21 ---------------------------- _________ > >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT SOIL CLASSIFICATION IS "D" 8500 S.C.S. CURVE NUMBER (AMC II) = 92 37 INITIAL SUBAREA FLOW-LENGTH = 160.00 UPSTREAM ELEVATION = 105.50 DOWNSTREAM ELEVATION = 102 .50 ELEVATION DIFFERENCE = 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 4 .616 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 1.14 TOTAL AREA(ACRES) = 0.22 TOTAL RUNOFF(CFS) = 1.14 FLOW PROCESS FROM NODE 72 .00 TO NODE 73 .00 IS CODE = 31 ---------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 102.50 DOWNSTREAM(FEET) = 101.20 FLOW LENGTH(FEET) = 130.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3 .86 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.14 PIPE TRAVEL TIME(MIN. ) = 0.56 Tc (MIN.) = 6.56 LONGEST FLOWPATH FROM NODE 71.00 TO NODE 73.00 = 290.00 FEET. FLOW PROCESS FROM NODE 73.00 TO NODE 73 .00 IS CODE = 1 --------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< --------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 6.56 RAINFALL INTENSITY(INCH/HR) = 5.75 TOTAL STREAM AREA(ACRES) = 0.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.14 FLOW PROCESS FROM NODE 74.00 TO NODE 75 .00 IS CODE = 21 ------------------------------------------- >>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 92 .00 UPSTREAM ELEVATION = 105.00 DOWNSTREAM ELEVATION = 104.50 ELEVATION DIFFERENCE = 0.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 5.289 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 0.41 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.41 FLOW PROCESS FROM NODE 75 .00 TO NODE 73 .00 IS CODE = 31 38 -------------------------------- ____ »>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA«<<< -->» USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 104-50 DOWNSTREAM(FEET) = 104 -40 FLOW LENGTH(FEET) = 10 .00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8 .000 DEPTH OF FLOW IN 8. 0 INCH PIPE IS 3 .3 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 3 .04 ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = PIPE-FLOW(CFS) = 0.41 1 PIPE TRAVEL TIME(MIN. ) = 0. 05 Tc (MIN. ) = 6.05 LONGEST FLOWPATH FROM NODE 74 .00 TO NODE 73 .00 = 102 .00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 73 .00 TO NODE 73 .00 IS CODE --------------------------- ------- ____ -------------------------- »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 6.05 RAINFALL INTENSITY(INCH/HR) = 6.05 TOTAL STREAM AREA(ACRES) = 0.08 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.41 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 1. 14 6.56 5.749 0.22 2 0.41 6.05 6.055 0.08 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 1.50 6. 05 6. 055 2 1.53 6.56 5 .749 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.53 Tc(MIN. ) = 6.56 TOTAL AREA(ACRES) = 0.30 LONGEST FLOWPATH FROM NODE 71. 00 TO NODE 73.00 = 290.00 FEET. ------------------- ____________________________________________ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.30 TC(MIN. ) = 6.56 PEAK FLOW RATE(CFS) = 1 .53 END OF RATIONAL METHOD ANALYSIS --- 1 39 35 VII. CATCH BASIN, RIP-RAP & HYDRAULIC CALCULATIONS NoText .1' ERS & ASSOCIATES Civil. Engineering, Inc. PLANNING•ENGMEERING•SURN PING Catch Basin Type B Inlet Calcs for Plaza at Encinitas Ranch Phase Il Given Q/L = 1.28 (per Chart 1-103.6C) Inlet No. Q at Inlet Req. Len. Len. Pro. 8 2.1 1.64 4.00 16 0.8 0.63 4.00 19 1.5 1.17 4.00 20 0.8 0.63 4.00 22 11.3 8.83 9.00 (4'basin + 5'wing) 25 4.8 3.75 8.00 (2 4'basins) NoText CHART I-103.6C ` 1.0-12 10 11 s 4 10 o e .0 U. s 3 9 N U. 4 .T Z 3 2 8 #. J p 2 I.S gn T J.-76 _ Z _ _ z Z Z -31- 6 Z o tD �r 2 A�-w IL 9 a lool LA. .9 2 Z = . o E s Z Z s H d CL O /J A �0 2 .T U. o y` /•1 .3 ul t F o W / U. cc z W � W .S CL .000.1-11 Z 3 ~ A8 ~ v W .4 ILK o 06 c .0S W 0 D4 O 2 cL .3 D3 2 Ilotaae or e.ro lorloco N ''2 N�.otor 7 ELEVATION SECTION REV CITY OF SAN DIEGO - DESIGN GUIDE SHT. N0. NOMOGRAM - CAPACITY , CURB INLET AT SAG NoText f /D, eo (/n 10— to wv rs�-e�s e' 2 i1 a��2 a ��Qacl,r2 10 e ti 6 0 e 3 � 2 r W ' W 0.e 0 s O.s 0 03 CURB 0.4 — C===== T wI Q3 Q� J. 0.2 A N CLZM OPENING AREA P 4 2w i L (WITH CURB) •2(X+L) (WITHOUT CURB) 0.I I 2 3 4 3 i e 10 20 30 40 50 60 DtMCHAAU (t (FT3/3) GRATE INLET CAPACITY IN SUMP COMMONS (Table assumes no clogging. ) 5-51 Figure 5-18 NoText Rip — Rap Calculation To determine the class of the rip-rap the velocity of the flow must be considered. The velocity is compared to a table from the Los Angeles County Hydraulic Manual to obtain the required rock weight. This weight is converted to a class by means of table 200-1.6(A) in the Standard Specifications manual. Results are tabulated below. Line Velocity Class E'ly Outlet to Encinitas Creek 11.34 5001b N'ly Outlet to Graded Channel 4.2 501b / Facing NoText Outlet Into Encinitas Creek (for Rip-Rap Sizing) Worksheet for Rectangular Channel Project Description Worksheet Rectangular Channel-1 Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.015 Slope 0.040000 ft/ft Bottom Width 9.00 ft Discharge 48.90 cfs Results Depth 0.48 ft Flow Area 4.3 ft2 Wetted Perimeter 9.96 ft Top Width 9.00 ft Critical Depth 0.97 ft Critical Slope 0.004296 ft/ft Velocity 11.34 ft/s Velocity Head 2.00 ft Specific Energy 2.48 ft Froude Number 2.89 Flow Type Supercritical Project Engineer:Martin Miller untitled.fm2 Mayers b Associates Civil Engineering,Inc. FlowMaster v6.1 [614k] 04/02/01 06:50:37 PM 0 Haestad Methods,Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 NoText Outlet Into Graded Channel (for Rip-Rap Sizing) Worksheet for Rectangular Channel Project Description Worksheet Rectangular Channel-1 Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.015 Slope 0.020000 ft/ft Bottom Width 4.50 ft Discharge 4.30 cfs Results Depth 0.21 ft Flow Area 0.9 ft2 Wetted Perimeter 4.91 ft Top Width 4.50 ft Critical Depth 0.31 ft Critical Slope 0.005770 ft/ft Velocity 4.62 ft/s Velocity Head 0.33 ft Specific Energy 0.54 ft Froude Number 1.79 Flow Type Supercritical Project Engineer:Martin Miller untitled.fm2 Mayers Q Associates Civil Engineering,Inc. FlowMaster v6.1 [614k] 04/02/01 07:03:50 PM (9)Haestad Methods, Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1666 Page 1 of 1 NoText roue r LEVEE CRITERIA Material and Structural Requirements Rip-Rap Levees (2:1 max. side slopes) (Ungrouted) Rock Size Levee Thickness - T Filter Velocities 050 Size) Straight Reach Curved Reach Thickness 0 - 7 f.p.s. 50 lb. (10") 15-inch 20-inch 6-inch 7 - 9 f.p.s. 100 lb. (1211) 18-inch 24-inch 6-inch 10 f.p.s. 150 lb. (15") 23-inch 30-inch 9-inch 11 f.p.s. 300 lb. (1811) 27-inch 36-inch 9-inch 12 f.p.s. 1/4-ton (2111) 32-inch 42-inch 9-inch 13 f.p.s. 1/2-ton (27") 41-inch 54-inch 12-inch 13 - 15 f•p.s. 1-ton (3411) 51-inch 68-inch 12-inch 16 - 175 f.p.s. 2-ton (43") 65-inch 86-inch 12-in, 18 - 20 f.p.s. 4-ton (5411) 81-inch 108-inch 12-inch (Grouted) Can be used only with special District approval 16 - 20 f.p.s. 1-ton (3411) 51-inch 68-inch 12-inch Gabion Levees (2:1 side slopes) Levee Thickness (Straight or Wire Gage Velocities Curved Reach) Rockfill of Baskets Apron Length 0 - 7 f.p.s. 12-inch Baskets 4" - 8" 12 ga. 12 feet 8 - 10 f.p.s. 18-inch Baskets 4" - 8" 11 ga. 18 feet 11 - 15 f.p.s. 18-inch Baskets 4" - 8" 11 ga. 21 feet Gabion levees not permitted where velocities exceed 15 f.p.s. NoText 86 200.1.6.1 i+ 200-1.6.3 i 87 Cobblestone shall not be used on slopes steeper than 1 vertical J Contractor shall notify the Agency in writing of the intended to 2 horizontal. Flat or elongated shapes will not be accepted source of stone at least 60 days prior to use. To ensure the unless the thickness of the individual pieces is at least one- 4 required quality,stone may be subject to petrographic analysis third of the length. ' or X-ray diffraction. J Unless otherwise designated, for application greater than The material shall conform to the following requirements: 180 tonnes(200 tons), design parameters including filter, foundation, and gradation with supporting calculations by a TABLE 200-1.6(B) registered Civil Engineer, shall be submitted to the Engineer I _ TWO_ -Test'Wethod No. Requirements for approval. - Apparent Specific Gravity ASTM C 127 2.50 Min. Stone shall be sound, durable, hard, resistant to abrasion Absorption' Calif.206 4.2%Max. al. free from laminations, weak cleavage planes, and the Durability' Calif.229 52 Min. undesirable effects of weathering. It shall be of such character that it will not disintegrate from the action of air, water, Or { Percentage Wear ASTM C 131 45`,r.Max. the conditions to be met in handling and placing. All material 1. eased on the formula below,absorption may exceed 4.1 percent if the Durability shall be clean and free from deleterious impurities, including i tha Ratio(DAR)is greater than 10.Durability may be less than 52 if DAR 4 tearer cater than 24. alkali,earth,clay,refuse,and adherent coati ngs. r DAR=Coarse Durrbility Index Se Absorption + 1 200-1.6.2 Grading Requirements. Stone for riprap shall be designated by class and conform to the following 200-2 UNTREATED BASE MATERW„S gradations: 200-2.1 General. Materials for use as untreated base or TABLE 200-1.6(A) subbase shall be classified in the order of preference as Percentage Larger Than follows: Rook 225 k9(s00 ID) 170 kg(775 lb) 90 kg(Light) 35 kg(Facing) she class class pass, pass Crushed Aggregate Base or Crushed Slag Base 450 kg(1000 lb) 0.5 If Crushed Miscellaneous Base 320 kg(700 lb) — 0-10 ' Processed Miscellaneous Base 225 kg(500 lb) 50.100 10-50 0-5 Select Subbase 19(2W lb) — e5-100 50-100 0-5 When base material without further qualification is 35 kg(75 m) go-100 95-100 90-100 50-100 specified, the Contractor shall supply crushed aggregate base 10 kg(25 lb) 95.100 95.100 90-100 or crushed slag base. When a particular classification of base 1 kg(2.2 lb) 95.100 material is specified,the Contractor may substitute any higher Note:The amount of material smaller than the smallest size shown in the table for t classification, following the order of preference listed above, any class shall not exceed the percentage limit as determined on a weight basis.Corn of base material for that specified. All processing Or blending pliaace with the Percentage limns shown in the table for all other sizes of the individual Of materials t0 meet the grading requirement Will be Pieces of any class of rock 1110114!Protection shall be determined by the ratio of cite onumber;d„a visual Pieces raiser than the,Peered,sin compared lo me MW nember i performed at the plant or source. The materials shall compact pieces larger than the smallest size listed in the table for that class. to a hard, firm, unyielding surface and shall remain stable 200-1.6.3 Quality Requirements. Visual evaluation of when saturated with water, the quarry, including examination of blast samples and diamond drill core samples, suitable tests and service records may be used to determine the acceptability of the stone. The ' NoText N � � 7 C O �\ �qm o ° \\ ° U .A h a m o a FCC ° a ° o a ° � o a a o 0 y o H N a o 7a iy E� o zz 0 H O O E U) Q M E Q E N o ra M O a E m N U a o N a% H a O, H W m CU N O Pi rI a1 a 0 rt w m .4 a x ID U CFj W W r � ro a a Of ch m N P. H 1 � a of W Of F ?y m o w z a ' N U F3 H O to a o m u N NoText N � N � H H � IX o U H o a o H o 3 � H W W a q a Ln V N U m N F m w N Q N Ln H O F Qw H N V m � � H xu N M H U 0) a m Cl) xu m H cri a O Q N Ol F f4 co z H O Q H Ol F 4 o F, — m 0 F ( _ N UJ tn P, _ > w O H v RC Q H 04 H Q , w N N N O w a F N r p w m Ln w\ m o H H w w U a a � a aaF ro 0 L U m Q W W N Z N w a 41 A w n m o 3 N y 0 � H !+1 a F E rn H w Of� x m U W U) aw �z-I 0 H N a Q a NoText a w F U FC q a 0 0 0 s q x F H W z o ar H rp Pz E a w w h z a z O uq uaw .7 z ] x F vi 0z m H z H ° u] w W Q g wU x r� WW O E co W Wwh 0 H y U ] AA W ] EErHH H W ? p r rH F n R nMH Q o9 z z aaa W F4M00 W W W I H u E. a GGGa111Fwh E E� 2 2 a O H W W H H H D O a E x x 000 q W HHE- E+ P, a a 2 0 0 0 a a a 0 a El 01 r£w� rat r H t 000 0 F w� rxcpq� � F04 Oa (D W W twow W Q x rrtt � ' �' m r0- E. 000WW„ W x HH aanQ0EEx0 rr�7 � W W E E E P W E w4 W a a wa °W WW O W W O �wwwwEW0 Eawa FEu W N U M rq° o w w w w w w u 9 9 ON 0 E F E E E H x z z z W d Q S P H H H u 3 3 O w 0 w 3 W W w a w w w E F F zuzuzux000 g q F F E U E H Ery' q H ,HMHx W W UHM.� �..j N .-iNgggFqqQH � w Carr r i r r r i ,'7 ga h h r� �1-4 ri�i zhhw�' 0 ® » >exxr.. QQw ° w NoText M M M rl r-I Z O O O O O O ri r-1 ri H ri r-I r-I M M M M M M M M O O O O O O O O p O O O O O O O O O O O O O O (] O O O O O O O O O O O O O O aO� P-3 O O O O O O O O O O O O O O O o ° O O O O M M O O O N O O O O v aF � o Cz7 Q a 0 Cl 0 0 0 0 0 o ° ° C; 0 ° 0 0 0 0 0 ° 0 0 0 OM r ON C; 0 ° ° O O 0 0 0 O O O O O O O O O O O m o o o m 0v U) ° M ° o m 0 0 0 In o o 0 0 o tn M a ° 0 O O O O O N O O O O O O O O O O O p p p O p ry ° ° N N O O O O O O O O m O O O O O O O N r•1 r-I N ° ° ° O In CD N Cry 0 O O O O M V' O O In b 01 O O H r O 0 0 O O O p O O O O ° p O 0 O 0 O O O O O O O O O O o 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r1 r-I r--1 r-1 rl ri r-i r-I ri rl r1 N O O O O p O 0 O p O O p O O O O O O O O O O O O O O O O O O O p p ' O O O O O O O O O O O Hz O O O O O O O p O O O O O O O O O O O O O �! v O O O O O p O O O O O O p ° £a(� W M M M M M M M M M M M M M M ri ri M M ri r1 r-i r-1 M M O O O O O O O O O O O O C; O O O O O y Q M M M M M M r/M M r-1 ri H .--1 r-I rO-I O v CD co co co CD CD F ri N N r-I ri r♦ H H Q r-1 O O O O O O O O O O 0 ° O O O O O O O O O O O O O O p E. O O O O O O O p O O O N u O O O O O O O O O p O O O O O O O O a N M N C 1 O r-1 CD CD Vl N r O° p O O O N d' O co O ~ a r-4 V' V' co M V/ M O CD r r w 01 lD W co W 01 01 Ol O\ 01 01 0 0 0 r,0 0 r-I 0 0 0 � Ol C% O1 O\ Ch O O O U w M a r r N m m'? - - - r- M O O O O O m O 0 r O O b 01 01 r-I r'1 CD r M N OD O N N 44 O O O T 01 T 01 O1 O O O O O O O Ch M O Ln 0 0 r♦ 0 CD OI Ch 0h m 0) O O O r-1 x O r ri d' lD rl r O ° ° ° ° CO a r-I m O CD co O O r � F r w r r to a o 0 0 m a Ln In In In o o N o W W O Ol to rl ; M O d' p - O CD O p � L a r•1 07 r•1 N r-I N N M O O 01 C13 V' N Vi CD N r in 1r1 lD tl ri 3 N d �h] m r co r M N M w co 1n m r co to H M In W N r/ CD %D CO uy.... .-i ri RG M N N N N r-I m CO CD r V� N O rl O1 If1 rl ri V' M lD cM a -r1 H v a Or co Ln M N In M M (D co {fl 0) r co Ln aM r-I Ln CD M N m CD CD F £ M N N N r-I CD CO - CD , N r1 r a N p ri O In . . . M . . F W UO y N r-I N M -0 Ln CD r co Oi C) r-1 m m r-I Ln ri ri O 0% O r-I N M w an N r-I N N N N N N W Q P O N N N N Cl) N N N N N N N N N N N N N N N N N N N NoText m m N O H H r-1 N �l O p sT O O O V�\ m O O O O \\ O O O U rl h a F CW4 �waa mm 0 0 0 o ° o a p o 0 m o 0 0 a a ° ° ° U o O rn a H N O O O O O O 0 0 0 O p p N ry ry O O O O O O Z O O O N v Q V) N ri r-1 0 �+ O O O E O m m m F rl S o 0 0 A E o 0 0 Ho 0 0 U p O N O N H a m w m W O O a% U a o 0 0 N r % w o o m L J N rI •r{ O O 0 0% m W W v w-0 N a H N co X ° 3 N � d o m ko W h N o N a O 00 m E. ' COJ h C.7 a N N N 0 co a Q Q N N N NoText N rj) w o h h h ca a U H o O o o o W O H O O O O o o o o o O O O O O o ° 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 aAa o 0 ` O O o O O O O o 0 o 0 o O O lD M p p o 0 o M r-I 0 0 0 0 0 0 0 0 0 0 0 o m I o m E N C4 m N O N In In In O In r O L1 "' N N d' N N H H H H O H. ' r m r � O m O N O M m N m H H o b In H H m M m O H•� m m u1 w In H m I!1 H b O 1D N V� Q W N N M N H N H N H O H H N H H • N II 11 II II 11 C7 Q N in Q N Q .•+ b -w Q H ,-� o µ� r r b In b lD m Q ! O N P1 AC U rn m A m C] o Q o 0 o A In b n m m m . ON V ro-1 -f-1 H ,°-I off O% Ca m ,.I p M m o l kD O m N r b H H a H M H N H H to m H m m Ill O o m m m ,�{ M an . .x U m pNj In N O lD O O H N N in tD r O O O O O O O O O O N co II 11 II H H II H H H H H H m _ II Za N f-I 'd M h N h m O H h lD lD to h Or N r, ep O ° RI R! pq Ir°i h I� a W m (r, �- �- v m rn rl w In to tD r r CQ rydH m m (� m (a m m m Q m O Q o H H H H H m A 14 H Q H M 1 9 r al• M M In In O r o v o O p H O O m O O O EI . m In r r • In m M m In H o tD ch ON m • r M m W W m m H aa, H aa% aml amt aml amt o H v In In tD r o O o o o 0 0 o m F H H H H H H 1 m rj) _ II II II It N Cn H y II P. b m m m b O tD b m !n r m N F > W r m W r w b m lD In M w ID c w N H o h Q W M D4 (] H D) O m r d' H m m Co o In lD O r W o in r tD M N > W r lD In r M 01 N In m a f•1 d� Q r O r M In M lD a N m N N m In H H O p If-j� m N H M H M m O H H In W r Ill p N Ill lD O H N N m W N in In II M II H N ° N H r II r In to N O O M M p m o 0 o 0 0 0 o o 0 0 0 o N o 11 H W W , p O o O .� O O O o O o m ° cn" p ° ° � °h X DC X X o 0 0 3 w a F F a F F F F F a F a a a a H II m o a o cr�C o Q o a p� C� [� a rr1] p1 W F H CL p, °• CO � a' 14 a o a a W o Q W o .� 5 W o a W w pl ZO o o O w o a cn W W rn w F w co M H ° ° z m N N O ID tD b b tD H In m M M tp In M H H H O m lD N W .ZH-1 N N II N II H H H II H H H II H H II H O O 11 O IZ. O II aCQ� H la� Q W W H CIN H X O X H H X N loll VMl in l°n m tmp X N w H z fW,): H H H o H H o ° o ' 3 N y U O H ° U d -4 S H U o 0 0 O r O O O o o O O trn o o .mi o o p p N a s H o o c o N U it) Q H .ati w lD b lD O H al Imrl H M FC M M M M M M M M H OD H H H H m m m m F £ (� H H H Q H [!] x m m II II II a .• .K. X M N N M M m II m to II m r m 11 l!1 II a U •T M N N N X N H m x m m X r v N X O „1 ki U W 0 h H w O fq Z O H N M �' N lD r m m o H w A a H H .N•I In u) N M � NoText H M M M M M N rl ri ri H r-4 H H 2 O O O O O s1 0 O O O O O d co Q O O O O O U ri f7 O O O O O W rxcaa Q o 0 0 .0 0 M o 0 0 0 0 FC m ri o o o 0 FC m w a o 0 0 0 0 a �D 0 O 0 p aM �r ui o 0 aH O O 0 M O O 0 O 0 O O O O O 0 0 0 0 0 _.. C) r0-I C) O O N N O O O O O O O O O O � O O O O p aN z O O O O O R Q rj) M M M H H O O O O O F Cl) [] m m m m m rd ii d F 0 0 0 o 0 0 � 0 0 -r o 0 0 0 0 m H o N rd U ri w 0 0 0 o m N r N C\ N O H r m rn m ri r-4 r4 H U O O O O O w m M O m W N b r D1 kD O O O O O L .•i H r-f ri r-1 .T. M O N ri m F Ln o p %D w w � Ln ri r a a a 1n M 1D CO2 4J N f6 0 O< M m In Ln In N v 17) N N N ri + a •.i W Ol M m in Ln ,..� •• a WZ .N] rl N M v rn to h H 0 co 81, Ix Q V m N N N " ry NoText N a£ 04 Of H H �F O � m a ° x u H ° a o H 0 0 0 0 � x o ° a F r4 F U o 0 0 o 0 a q a 3 U o o m o ,.� 0 o r m F U o 0 0 o o rn jn N n tMD b In N N Vr r 1O m 1(1 1D o H O %D aD H r) p O l0 m II II II N U o W C7 � 1D xU o oQ oa D; GN H o 0 N In M M HU m mo nHjjo °D ] 1D O x U o 0 m m n o o O H H { H If 11 H II N ^ n N f'] Ql 1'3 N o h aw �D r � ao W m � W z w v .oi 0 Q Q .p•� H q H to ID O O Vj O O H H 1D m rj O O t(j Q F p co O a w ° rl o n m o ° o 0 O H H F p II II II N W W O m ^ M 4J 1:4 P4 III 'C1 H W r H N H aD M O n H , m M > w M N N jn N H co N O N o in H aE o co '' m r 1D o w 7' 11 o II o H O n O w o o o o II_ o M H O O y O O O H O^ .Ci W II O ° h C. O '7 U p, a Oa •>+ 134 O I Q Q O Q a Fa M W F F a W a • p, z o Ln 1p a AIJ 0 D1 M o O U W W b tD 1° U N z o o 11 o u o u W U H z O 11 W o w W (n IMn 2 m 2 m 2 W rMn z a "d o o x o x o x o x U S H U o 0 0 0 0 0 o U o o £ O z 5 m m w m o 41 H Q H H H H P: H F £ II 11 II II CA x r1 • x . x j^, x H U z ly U d' N N ry N x U 0 to Di W H z H N M d' jn M �p �NI w ca a NoText a w N a u Q w a 0 z 0 a� a a w x E H W z O W H .3 u0 uapa w a a x E Q N w to 0z+ w z O H WOz wW x cn 0a o W � co W a E ti E W W O W ! U w W to x a E H E E P4 xE H W W d U U 333 a F w .] z �z �z �z a � oHww H H H o 0 a H x x zq as aUHE+ Wz F H N £a O W Q Q µsa W hhpa ] Cl) m �+ W W w H H E. m a� a� ] r]� ] o °aoo N ww � 9r:) C4 a, m a s Q m H Q � z� PzE� W13 11 Hz33ygg33z�yz azZ� H O 0 o x W W £ Q H rUi l] C7 aga E E °R' U ]Q " W GW. 0004a w a3R: Q wWaxa 0W U) 0 aawwwwwEW0 � � FE+ EF gggn wxx o .-1 N W W W O N N E ri wWwwaa Qrr�� QQ xxwwwg1W U " FEHF zzzwQQ3 HHH 330EQ Uz y7 U U £ 0 Ow waa a o N Q O F F E- g F F H g q p - cnrnmwaa ZZ5 cv •H H H x W W U N N H E F v FD zhhmaa � ° ° ., D > k � xwcaraoixxx w° D �- i HYDROLOGY A CiTy OFENGINITA � HYDRAULIC ANALYSIS FOR PLAZA at ENCINITAS RANCH CITY OF ENCINITAS Q�OFESS/CN PREPARED UNDER THE SUPERVISION OF: �O v �. MA ), <'F No. 38474 m W Exp.3/31101 d Dru J. Mayers, R.C.E. 38474 Exp. 3/31/01 Date: sT ctvl%_ �TFOF CN- 0 TABLE OF CONTENTS INTRODUCTION...................................................................................................2 A. Purpose...........................................................................................................2 B. Methodology...................................................................................................2 II. STUDY AREA........................................................................................................3 A. Description......................................................................................................3 B. Existing Drainage Facilities..........................................................................3 III. HYDROLOGIC ANALYSIS.................................................................................4 A. General............................................................................................................4 B. Rational Method Hydrology Analysis..........................................................5 IV. PROPOSED DRAINAGE FACILITY.................................................................6 V. WATER QUALITY BASIN...................................................................................7 A. General............................................................................................................7 B. Reference........................................................................................................7 VI. 100-YEAR HYDROLOGY CALCULATIONS...................................................8 A. Hydrology Area A...........................................................................................9 B. Hydrology Area B.........................................................................................10 C. Hydrology Area C ........................................................................................11 VII. CATCH BASIN, RIP-RAP & HYDRAULIC CALCULATIONS....................12 VIII. HYDROLOGY MAPS.........................................................................................13 - I INTRODUCTION A. Purpose The purpose of this report is to provide a hydrology analysis for the Plaza @ Encinitas Ranch located within the City of Encinitas in San Diego County. This study will calculate the 100-year storm discharges to support the processing of the precise grading and improvement plans for the development site. B. Methodology The methodology used to determine the peak discharges is based upon the criteria contained in the San Diego County Hydrology Manual dated April 1993. A hydrology analysis was prepared for both the existing and developed conditions of the project site. The following work plan and analyses were undertaken in the preparation of this drainage study. All available information and improvement plans were collected. A field review of the project site was performed. The drainage areas within and tributary to the project site were defined. A hydrologic computer model was prepared based on the existing and proposed drainage patterns. The results of the study and the calculations for the hydrological analysis are presented in this report. STUDY AREA A. Description The proposed Plaza at Encinitas Ranch is located west of El Camino Real and north of Leucadia Boulevard in the City of Encinitas, County of San Diego, California. The site is bounded on the west by undeveloped natural land, to the east by a natural drainage course and El Camino Real, to the north by the construction site for a mixed-use development and to the south by Leucadia Boulevard and the Encinitas Town Center retail complex. The proposed development will include construction of three (3) commercial structures, retaining walls, the extension of Garden View Road and renaming of that portion to Calle Barcelona. A wildlife corridor and undercrossing, parking lots, and associated site improvements are also included in this project development. The site consists of approximately 15 acres B. Existing Drainage Facilities The project site presently drains in a northeasterly direction. A temporary desilting basin, located in the northeast corner of the construction site, accepts drainage from the development. This runoff is outlet into a permanent water quality basin constructed at the bottom of the slope. The majority of the site outlets into this basin, which discharges into Encinitas Creek. III. HYDROLOGIC ANALYSIS A. General The hydrologic studies prepared in this report utilized the rational method in accordance with the San Diego County Hydrology Manual, dated 1993. Hydrology calculations were prepared using the "Rational Method Hydrology Computer Program Package" by Advanced Engineering Software based on the 1993 hydrology manual criterion. The rational method computes the peak runoff as a function of area, rainfall intensity, and a coefficient of runoff. The basic formula in the rational method is as follows: Q = CIA Where: Q = Peak runoff in cubic feet per second (cfs) C = Coefficient of runoff I = Average rainfall in inches per hour corresponding to the time of concentration A = Drainage area in acres This formula computes the peak flow rate at all points of concentration. The hydrology analysis is provided in this report. Land use in the study area is a significant factor in the development of the hydrology study in that the coefficient of runoff used in the rational method are partially dependent upon the type of surface development is within the area. The land use used in this study was based upon the development proposed for the Plaza @ Encinitas Ranch. The major factor affecting infiltration is the nature of the soil. Hydrologic soil types within the study area were determined from the Hydrologic Classification of Soils map contained in the San Diego County Hydrology Manual. The soil classification is based on the Soil Conservation Service criteria as follows: Soil Group A Low runoff potential, consisting mainly of deep, well- defined sands or gravel. Soil Group B Soils having moderate infiltration rates, consisting of moderately well drained sandy-loam soils with fine to moderate coarse textures. Soil Group C Soils having slow infiltration rates, consisting of silty- loam soils with moderate fine textures. Soil Group D High runoff potential with slow infiltration rates, consisting mainly of clay soils with a permanent high water table or shallow soils over impervious material. Rainfall intensity is expressed in inches of rainfall per hour and is developed by statistical methods from historical rainfall records. The rainfall intensity data used in this study was obtained from the curves for mean precipitation intensities included in the San Diego County Hydrology Manual. B. Rational Method Hydrology Analysis Approximately 12.75 acres, of the total tributary area, are being developed for commercial use. The site, after development, will contain three (3) buildings and parking area. Upon completion of the project site, the natural drainage patterns will be altered. Drainage Area "A°, after development, will contain approximately 1.29 acres and produce approximately 4.30 cfs in the 100-year storm, respectively. Drainage Area "B" will contain approximately 11.16 acres and produce approximately 48.93 cfs in the 100-year storm, respectively. Drainage Area "C" will contain approximately 0.30 acres and produce approximately 1.53 cfs in the 100-year storm, respectively. The hydrology map for the developed condition analysis contains all pertinent information and is presented in Section VIII of this report. - IV. PROPOSED DRAINAGE FACILITY The project site presently drains in a northeasterly direction. A temporary water quality basin, located in the northeast corner of the construction site, presently accepts drainage for the development. Upon completion of the project, a permanent "first flush" water quality basin will be constructed in the northeast area to accept "first flush" drainage only. The majority of the storm water run-off for the site will discharge into Encinitas Creek. The northerly portion of the project site will discharge into an existing earthen channel, flowing easterly and eventually discharging into Encinitas Creek. Drainage Area "A", located in the northwesterly portion of the project site will accept surface run-off and discharge into an existing earthen channel located north of the proposed development. The earthen channel flows in an easterly direction and eventually discharges into Encinitas Creek. The majority of the project site will be affected by Drainage Area "B". This storm drain system drains in a northeasterly direction, accepting surface run-off from the parking lots and eventually discharging into the permanent Water Quality Basin. Anything above its capacity of acceptance will empty directly into Encinitas Creek located east of the proposed project sit. The proposed storm drain system located in the far northeasterly portion of the project site is referred to as Drainage Area "C". This proposed drainage facility will include a permanent "first flush" water quality basin to accept "first flush" drainage only. (Please refer to the Hydrology Map located in Section VIII for details.) The remainder of the runoff will be intercepted by catch basins located throughout the project site. V. WATER QUALITY BASIN A. General The design criteria for the water quality basin, previously approved, was prepared by O'Day Consultants, Inc. This water quality basin was designed to accept the first flush which is Y2" rainfall. This Y2" rainfall will carry the pollutants from the streets and parking lots to the water quality basin to allow them to settle out before the drainage is released into the Encinitas Creek. B. Reference The design of the water quality basin was prepared by O'Day Consultants, Inc. and is entitled "Drainage Study for Encinitas Ranch Phase II" dated August 20, 1998 and revised September 25, 1998. A copy of the approved basin design is made a part of this report. 51998 I DRAINAGE STUDY FOR ENCINITAS RANCH PHASE II August 20, 1998 Rev. Sept. 25. 1998 J.N.: 981003 oQ-OVESSfp,�,�l� CARj�,OI' Cl) 0 �n 1 z r� iT1 W i- fir).X5381 ;� d �xa.t_131lGO -,fir z� C V%. ��rFOF CAL��� c Timothy 0. CaKollt RCE No. 55381 Exp. 12/31/00 Prepared by: O'Day Consultants,Inc. 5900 Pasteur Court Suite 100 Carlsbad, CA 92008 (760) 931-7700 TABLE OF CONTENTS • Vicinity Map • Narrative • Rational Method Description • Program Process • Isopluvial Maps • Intensity Duration Chart • Curve Number Table • "As Graded" Rational Study • "Future Developed" Rational Study e Offsite Drainage • Brow Ditches • Pollution Control Design • Direct Runoff Chart • Desilt Basin Design • Desilt Basin Capacity Table • Standpipe Chart Spillway Design • Dewatering Calc' s . • Hydrology Maps 1 Introduction l This report contains hydrologic and other related supporting calculations necessary to properly design the various drainage facilities, both interim and future, for Encinitas Ranch Phase II mass grading. This report includes sections covering the future and interim runoff, the permanent pollution control basin, and the temporary desilt basin. Project Location The project site is located along Leucadia Blvd. in the northern portion of the City of Encinitas at the southerly boundary of the City of Carlsbad just west of E1 Camino Real. This site is due north of the recently completed Encinitas Town Center shopping 1 center. Description The site area is approximately 15 acres and over 95k of the site is previously graded. The site was used as a borrow pit and is now being brought to grade for a future shopping center. A small area of native vegetation flows onto the site, being intercepted by brow ditches . Runoff for this project was studied to size both the interim drainage requirements for the mass graded condition, and for any future drainage needs after the site is improved. It was assumed the site would be developed per the approved master plan and which calls for the land usage to be commercial . 1 This site will also be used to perform permanent pollution 1 control for this site and a portion of the existing Encinitas Town Center drainage basin, as shown in the Drainage Study for Encinitas Ranch Units 1 and 3 . This study looks into the requirements for a pollution control basing designed to accept the first flush which is taken to be a half inch rainfall . This half inch rainfall will carry the pollutants from the streets and parking lots to the proposed pollution control basin to allow them to settle out before the drainage is released into the environment. Systems 300 and 700 of the Drainage Study for Units 1 and 3 shows 65 acres contributing to this basin. Out of these 65 offsite acres, 26 of the acres are native and don' t require any form of pollution control. It can also be argued that the dense vegetation and soil condition of this native land would retain all of the precipitation from the first flush, i therefor not affecting the design of this basin. 1 SITE Bolin t I�CJID!!l � a m QL BLS PACIFIC I d OLD OCEAN amu Q.,� a CAROF VICIN ITY MAP N 0 5 CALF l Rational Method Description The rational method as described in the 1985 San Diego County Flood ControUHvdroloQv manual, is used to generate surface runoff flows, which are then used to size both permanent and temporary drainage and desiltation facilities. The basic equation: Q = CIA C = runoff coefficient (varies with surface) I = intensity (varies with time of concentration) A = Area in acres The design storm for this project is the 100 year event, the corresponding 6-hour rainfall amount is 2.6 inches. A computer program developed by CivilCADD/Civildesign Engineering Software, (c) 1993 Version 3.2, was used to determine the times of concentration and corresponding intensities and flows for the various hydrological processes performed in this model. This program also determines the street flow and pipeflow characteristics for each segment modeled. Program Process The rational method program is a computer aided design program where the user develops a node link model of the watershed. I The node link model is created by developing independent node link models of each interior watershed and linking these sub-models together at confluence points. The program has the capability of performing calculations for eleven different hydrologic and hydraulic processes. These processes are assigned and printed in the output. They are as follows: 1. Initial subarea input, top of stream. 2. Street flow thru subarea, includes subarea runoff. 3. Addition of runoff from subarea to stream. 4. Street inlet and parallel street and pipeflow and area. 5. Pipeflow travel time (program estimated pipesize). 6. Pipeflow travel time (user specified pipesize). 7. Improved channel travel - Area add option. 8. Irregular channel travel time - Area add option. 9. User specified entry of data at a point. 10. Confluence at downstream point in current stream. 11. Confluence of main steams. • cn cz amm No I Ln r - us � • � � `r- - G� CN N arF C14 CC=D F _ _ 2 s� U L 7. tP1 F S. v O V : o 0 co W 1416 V <— C N -T =ems'► — .i O N'1 t = U- 0 1 G' v < — � 0 V� z r It ~ Fes- i G < O ui H O v � F- v < I cr_ i x o � o O w F i z ti- I , u 1 d .�-.-- �.// ���'' --- J , y ice• r a � 2 _ — I U _ H < t u G Z y < O C rn � FC•' tt1 O t11 u1 J � � Q 1 F- o O < Z. < `'� O 3 • V r C�+ L Cu C C•^ N O � � �1 G s-tp �) L ..+ � _^ `-7 A u U � :3 r LO Qj .- - U C7 L Cl � C � •-- +- V N C c4.J C) G to 1p N 1 C1 A 4-� O — _ L k C IG G U= E�� vCv C L CJ I .a G v '•'• G C T 1 .O N C O C L O G y N G N N r C A C C >1 O C C ct 0 u i p O C7 N -^ r' C to O A Ct O ` ." C7 .� a+ a! .� = A A v tz C7 iJ C C L G� y .6--k _ C A L•r'7 7 r r r C:7 r Gl _ \ A U .O O L CTJ U G C V Cj C rS N aJ C O C=+ G G CC C C ro C G C++ aj N C c c C tt O T t0 G O U .r v.•r p (y . f1 y c C.0– C r i. +� L t r y: U_ V/ O �- C7 '� E A �!�.f �. L U C A Z I IA C O C •- u C C! Ct O Cl C N fu to O A n W U_N}.--_ a O C C }- +La to Q_ ►U 1••� G Olz Cn Ir> < O N en -M, - v 6-Hour Precipitation (inches) t 7 O to O N O t1� C Ln O LO O Cli }. II9 \ e7 I t.L1 ,a Z r .t :•Irk. , I r . 1 , _' L+ �+ C 1 ..1 - •�. —��- --1. .1 1 I I'r 4 1 1 1 r 1 r i ( 1 _. N L _Cj �, ! I; I r - -- 1 1•" le''Illi! 111 i t + I 1 1 I i �• Q v ti v _.I:T •I I — � /'�– I •I ..ice-� ''111'�11�!?� 1 I 1 ' i I 1 1 N – _E Q ++ ... t.-. - _ __ - - -- — _ -I :1�' I�• :1111't;l!il l r I I 1 I I 1 I I cn� Cn �_ r . 1 1. 1•. I � r r 1 r L7 • � I 1 1 ' ' 1 1 1 i 1 ..�.. ! :.r l r�l 1 1 1 ! 1 1 1 r i RUNOFF CURVE NUMBERS FOR HYDROLOGIC SOIL-COVER COMPLEXES (CN) TABLE I-A-I AMC 2 Ia 0.25 Cove r Hydrologic Soil Grouos Land Use Treatment Hydrologi or Practice 3 Condition&' A 8 C D Water Surfaces (during floods) 97 98 99 99 Urban v=cD *j'0 Commercial-industrial 89 90 91 92 High density residential 75 82 88 90 Medium density residential 73 80 86 88 Low density residential 70 78 84 87 _. Barren 78 86 91 93 t Fallow Straight row 76 85 90 92 Vineyards (see accompanying land-use description) disked 76 85 90 92 annual grass or Poor 65 78 85 89 legume cover Fa i r 50 69 79 84 Good 38 61 74 80 Roads (hard surface) 74 84 90 92 (dirt) 72 82 87 89 Row crops Straight row Poor 72 81 88 91 Good 67 78 85 89 Contoured Poor 70 79 84 88 Good 65 75 82 86 J Narrowleaf chaparral Poor 71 82 88 91 Fair 55 72 81 86 I-A,-5 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3 .2 j Rational method hydrology program based on San Diego County Flood Control Division 1985 h drolo manual Rational Hydrology Study Date: 08/19/98 gy ------------------------------------------------------------------ ENCINITAS RANCH PHASE II "AS GRADED" CONDITION FOR DESILT BASIN DESIGN F:\ACCTS\981033\EXIST.RSD ********* Hydrology Study Control Information ********** O'Day Consultants, San Deigo, California - SIN 10125 ------------------------------------------------------------------- Rational hydrology study storm event year is 100 . 0 Map data precipitation entered: 6 hour, precipitation(inches) = 2 .600 24 hour precipitation(inches) = 4 . 100 Adjusted 6 hour precipitation (inches) = 2 .600 P6 P24 = 63 .40 San Diego hydrology manual ' C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100 . 000 to Point/Station 102 .000 **** INITIAL AREA EVALUATION **** user specs ie value o given or subarea Initial subarea flow distance = 125.00 (Ft. ) Highest elevation = 162 .50 (Ft . ) Lowest elevation = 157. 00 (Ft . ) Elevation difference = 5 .50 (Ft. ) Time of concentration calculated by the urban areas overland flow method V/ (t X-C) = 7.37 min. TC = [1 . 8* (1 . 1-C) *distance� slope (1/3) ] TC = [1. 8* (1. 1-0 . 5000) * (125 .5) / ( 4 .40 (1/3) 1 = 7 .37 Rainfall intensity (I) = 5 .334 for a 100 .0 ear storm Effective runoff coefficient used for area (Q=K�IA) is C = 0.500 Subarea runoff = 0. 533 (CFS) Total initial stream area = 0.200 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102 .000 to Point/Station 104 . 000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** op o street segment elevation = End of street segment elevation = 136 .000 (Ft. ) Length of street segment = 375 .000 (Ft. ) Height of curb above gutter flowline = 6 .0 (In. ) Width of half street (curb to crown) = 42.000 (Ft. ) • Distance from crown to crossfall grade break = 21. 000 (Ft. ) Slope from gutter to rade break (v/hz) = 0 . 020 Slope from grade break g to crown (v hz) = 0 . 020 Street flow is on [2] side (s) of the street Distance from curb to property line = 10 .000 (Ft. ) Slope from curb to ro ert line (v/hz) = 0 . 020 Gutter width = 1 .pp 00 (Ft . ) Gutter hike from flowline = 1 . 500 (In. ) Manning' s N in gutter = 0 . 0300 Manning' s N from gutter to grade break = 0 . 0300 Manning' s N from grade break to crown = 0 . 0300 Estimated mean flow rate at midpoint of street = 2 . 134 CFS) Depth of flow = 0 . 228 (Ft . ) , Average velocity = 2 . 077 (Ft�s) Streetflow hydraulics at midpoint of street travel : Halfstreet flow width = 6 . 651 (Ft . ) Flow velocity = 2 . 08 (Ft/s) Pipe flow velocity = 15 .45 (Ft/s) Travel time through pipe = 0 . 08 min. Time of concentration (TC) = 12 .52 min. End of computations, total study area = 15 . 80 (Ac. ) I San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Version 3 .2 Rational method hydrology program based on San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 08/19/98 ------------------------------------------------------------------------ ENCINITAS RANCH PHASE II FUTURE DEVELOPED CONDITION F:\ACCTS\981033\ONSITE.RSD ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ O'Day Consultants, San Deigo, California - SIN 10125 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100 .0 Map data precipitation entered: 6 hour, precipitation (inches) = 2.600 24 hour precipitation(inches) = 4 .100 Adjusted 6 hour precipitation (inches) = 2 .600 P67P24 = 63 .40 San Diego h drology manual ' C' values used Runoff coefficients by rational method ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 102 .000 **** INITIAL AREA EVALUATION **** usexspecitied cl value ot 0 . 950 given ror subarea Initial subarea flow distance = 125.00 (Ft. ) Highest elevation = 162 .50 (Ft. ) Lowest elevation = 157 . 00 (Ft. ) Elevation difference = 5 .50 (Ft. ) Time of concentration calculated by the urban areas overland flow method (A p X-C) = 1. 84 min. TC = [1 . 8* (1. 1-C) *distance� .5) 70c slope (1/3) ] TC = [1 . 8* (1 . 1-0 . 9500) * (125 .00 .5) / ( 4 .40 (1/3) 1 = 1 .84 Setting time of concentration to 5 minutes Rainfall intensity (I) = 6 . 850 for a 100 .0 ear storm Effective runoff coefficient used for area (Q=K IA) is C = 0. 950 Subarea runoff = 1 .302 (CFS) Total initial stream area = 0 .200 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102 .000 to Point/Station 104 . 000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** op o street segment elevation = End of street segment elevation = 136.000 (Ft. ) Length of street segment = 375 . 000 (Ft. ) Height of curb above gutter flowline = 6 . 0 (In. ) Width of half street (curb to crown) = 42 .000 (Ft. ) Distance from crown to crossfall grade break = 21.000 (Ft. ) Slope from gutter to grade break (v/hz) = 0 . 020 Slope from grade break to crown (v/hz) = 0 . 020 Street flow is on [2] side (s) of the street Distance from curb to property line = 10 . 000 (Ft. ) Slope from curb to property line (v/hz) = 0 . 020 Gutter width = 1 .500 (Ft . ) Gutter hike from flowline = 1 . 500 (In. ) Manning' s N in gutter = 0 . 0150 Manning' s N from gutter to grade break = 0 . 0150 Manning' s N from grade break to crown = 0 . 0150 Estimated mean flow rate at midpoint of street = 5 .206 (CFS) Depth of flow = 0 .240 (Ft . ) , Average velocity = 4 . 344 (Ft s) Streetflow hydraulics at mid oint of street travel : Halfstreet flow width = 7 .366 (Ft . ) C Flow velocity = 4 . 34 (Ft/s) Travel time = 1 .44 min. TC = 6 .44 min. Adding area flow to street User specified ' C' value of 0 . 750 iven for subarea Rainfall intensity = 5 . 819 (In7Hr) for a 100 . 0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0 . 750 Subarea runoff = 5 . 237 (CFS) for 1.200 (Ac. ) Total runoff = 6 . 539 (CFS) Total area = 1.40 (Ac. ) Street flow at end of street = 6 .539 (CFS) Half street flow at end of street = 3 .269 (CFS) Depth of flow = 0 . 255 (Ft . ) , Average velocity = 4 .577 (Ft/s) Flow width (from curb towards crown) = 8 .019 (Ft. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104 . 000 to Point/Station 106 .000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station a eva ion = Downstream point/station elevation = 115. 00 (Ft. ) Pipe length = 50 . 00 (Ft. ) Manning's N = 0 .013 No. of pipes = 1 Required pipe flow = 6 .539 (CFS) Nearest computed pipe diameter = 9.00 (In. ) Calculated individual pipe flow = 6 .539 (CFS) Normal flow depth in pipe = 5 . 66 (In. ) Flow top width inside pipe = 8 . 70 (In. ) Critical depth could not be calculated. Pipe flow velocity = 22 .33 (Ft/s) Travel time through pipe = 0 . 04 min. Time of concentration (TC) = 6 .48 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106 . 000 to Point/Station 108.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** upstream point/station elevation = Downstream point/station elevation = 81. 00 (Ft. ) Pipe length = 1000. 00 (Ft . ) Manning's N = 0.013 No. of pipes = 1 Required ipe flow = 6 .539 (CFS) Nearest computed pipe diameter= 12 .00 (In. ) Calculated individual pipe flow = 6 .539 (CFS) Normal flow depth in pipe = 9 . 79 (In. ) Flow top width inside pipe = 9 .31 (In. ) Critical depth could not be calculated. Pipe flow velocity = 9 .54 (Ft/s) Travel time through pipe = 1.75 min. Time of concentration (TC) = 8 .22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108 .000 to Point/Station 108 . 000 **** SUBAREA FLOW ADDITION **** user s ecitied IC, value or given tor s area Time of concentration = 8 .22 min. Rainfall intensity = 4 .970 (In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0 . 900 Subarea runoff = 64 .406 (CFS) for 14 .400 (Ac. ) Total runoff = 70 . 945 (CFS) Total area = 15. 80 (Ac. ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108 . 000 to Point/Station 110 .000 **** PIPEFLOW TRAVEL TIME (User specified size) **** - upstream point/station elevation = Downstream point/station elevation = 78 . 00 (Ft . ) Pipe length = 73 . 00 (Ft . ) Manning' s N = 0 . 013 No. of pipes = 1 Required pipe flow = 70 . 945 (CFS) Given pipe size = 36 . 00 (In. ) Calculated individual pipe flow = 70. 945 (CFS) Normal flow depth in pipe = 18 . 52 (In. ) Flow top width inside pipe = 35 . 99 (In. ) Critical Depth = 32 . 03 (In. ) Pipe flow velocity = 19 .36 (Ft/s) Travel time through pipe = 0 . 06 min. Time of concentration (TC) = 8 .29 min. End of computations, total study area = 15.80 (Ac. ) I J i OFF-5176 DRAlluoA66 .&VS /A-) OFF ,7E 1 ;. A = it ZS AC C, 4 S o ... ..L = Soo' . .. 7 = l o f o r t�_9 L :3gs _.. /�•_.Y� 1n.+h.- _ SU baoc--j D ,Tcm Is - _C Uo1)E . toy Eat Z) . I '---- --- - ---------._...-------�Ava s- -- - - - - --- - — -- f3p-ow DI-rc# C DFf9.T,�. 1 17C 90� � l c�� OK OFD JIIdoE 1 b y Te 1.10 . LV F-o2 1 c+ 'F L u S 1-{ O. S •• rZ X 10 Fi.[_L CAP^-C —1 ,-e a&-s.J i`l ELc V A2EA. A VOLut-1 go Z-4 G'7 SS47 laz S060 > -3-74-14, , N (SEE � .GR �QR. .OS I�I' OFFS ITt %J -7o-7 I i Ovi s ITC- / S7 Ar-rr, s PI o 8 Z7 23 = 801 ao 1 L IZ37 O K Y N to a a x N H H V. o m a 0 U H o 0 0 0 0 0 0 0 0 0 a o N o 0 0 0 0 0 0 0 0 0 F W W F U 0 0 0 0 0 0 0 0 0 0 PI F u W Q Q aqa 0 o r a %D r o o r m 3 IUl ° o w m m In o o rn VI F Q ° o rn ° co N ° ° ON �o U °` o m o o ° M M m DD m N m v p M N H m r N r m m O \D M V v In M m .4 N r•1 m O c0 7 m O O cD H W r 0 m ID r v a M ri F q V' N H H O O O O H r-1 O it II N U M h M h O N co O m m O W U, Q d' Q m OD 10 N M aC U It q m q m p aD N r m m cD m ON m 0 m O O O O H H rl r-1 r•I .0 p N m CD '!m N m O cD H m O 0 cD � u en oo M r to o ID e o M V In a , x U m m m m m 0 0 0 0 0 a u n H H H H H N F m tD 0013 %D r v m ID Ip O M - m- m co r %D c- ao %D w m q m q m m m o 0 o O 0 2 H H H H H H In In 0 0 o r m o o r o 0 0 0 N m o N N N o r a W I-1 M m to r .-1 N r r N w m m at m m O O O O O O r-1 ri r-1 ri H � 11 II N a W h m O Ill m M r O m > W In VI H r a M In M M N F w w Q q ri w N In m m M N cD M N w N • vl a r • H N > w M - .-1 ,-11 0 In c M N ri r Q CD m H .� N N fD 0 D. a7 F I" rn umi N r N m o In H M m m to M Iv ID M m O M O '> w Vr H II O 11 O cD H c0 H H H N M N O N O w\ m n O O O o m u H m n O u O O n O O O 0 H O H O O O O O O O O h o o o ° o 0 X x p In o n o C 3 W a a F H a F a F a ° ° a a a F F F �+ °o F m aa F m a m w F Z CO o a vi a x a 2 a F a F a a w - ro O m U m U m N O H O 'A a _ z N •rl O F U m In N r U r U m co to H U M M q w w W W W W M •U H rl 11 O II O H H H O II fZ-I O II H O O O U z O II w In z m 2 M a m a a a W u q � w to v W W M W z w . w v m In 41 `Iv. W r�i x ° x ° o o X o X 0 0 o x o x 3 N v 3 Z O o In o 0 o u C7 ° C7 0 t7 o C7 0 o u o 0 0 0 0 0 0 ° o° •e l W a rm-1 ° H H O H O H O H O J F q H O N r m 7 m O m co N - ri .� rl ri r{ H Q H rt H Q W F F q u u �w M aN N 11 fgti a cY 11 u F •• a C3,CAP Z C; X I. x .� S - x 2 co ID e m ox . x F w U H '1 O M cD d' N O uz H U h H w w q a Z d 4 -1i N In H n N m M o c Ill to o r N N N ri N N N I••1 N 1 N V1 • x N (� rl r1 R£( � O v 00 W � a 0 U I••1 0 a o In o F U O F W W W F C7 w Q Q Ln a q a g U r F am U rn v N F ao w Ln F q w o N U a M 0a x � m m I U o 0Q v x U at 1 .a y >+ o N If! 7d a w ao z H Q O q F a w In E w--- m a 0 F m N m r > a w v F v Q to rn a N > w N QNQ .1 --• r m a F o U w v N wE m o H I F o H w w U, u II U it 0 a 0 a a w H H a z ro _ 0 u U v U F ao o q w w U H � _ a w 2 N rt F W x L q W qa ro a o $ ro w 3 z C7 0 IV r-I H U J 4 .a N ao Fa a w x a �J+ V z V UQ w rU+ w 0 .�I N 1 a w F Q U Q to a 0 0 0 Q 3 a Q a w x F H W z o >• N [p F a W Hx z 0WHa uQ vaw aaz sa1wF U) .3 aE0 z H x °Qz Hx 'J QW W ru ru 0 0 O E. gw aa �n W h .7 U q a ':) M U W W zaF rO� E- FF Nf34 aE- E. E U' Q AQa. u < x 3 x U W H U) 0 0 xaaa F, Q .10HF 04 w 333 �WaF W .720 E4 U) Qhh �zz a ouiwW O 00 O w H F F W pgFgHqEhh0 .7 a. mcn £ Q WW gW a a u w £ U U u2E1a 4 u Ead 31% V) Ix 04 0 =)) pW UMax w hh R x w EE°-• OOV zWr W £ HH QQQFFxO .7 .] W W£ £ £ F W F W U Q O k. w000Qaa 3u: W W a W. a O W m O Q aawwW W6. FW a >. � W E. 0+ Q ac w x y� x m H CID W W WO QrxxFFrF� N xxhW. [W.. D4 Of- H(4 w CEFF zzzwQQ w s rz Uz� Qz Uz U E O O a a a o .,••� QFFUFFF ,gg7Hq, qzH ,F7qquq-,1 N QQQ E+ QQH a 2 E w w m P a ..i Q H � aA h m >> xxxwQQUwixxx 0 O Q O cr- F— z -- U- O O Figure III-A-2 O c3 W . O w F— u H O cc H D z 1 Q D z a z O Z o ¢ w < J V vvO oLn w 0 C m m ti CD (D to - - -— --- - ----� -- i- -- -1- - - - X�A - -- ;-- -H\i-- x I vA -- - - — -- C — -- , - - - —— -- —r — - -' -- LO o LO o. to o o rh N N — - sapui ui l jouna pajio p O TII-A-5 c II' DES ZA-S �� DESrGly C So C-`c c�pr�c TY 13 ArS r Q ( BA-SED OrJ 2 1`ZAD� US $01�w�� E V AIR Elk Vo L.0 M C 100 Z4 Co3 .4 7 tsp CDK 3-s o:vEtz��ow � jGQ-� vJS M Poe o w s D.s I0Z too I co = 1.-7 9 Q l Y►AX I.s ' tneG� Q o�; c 1 DESILTING BASIN CAPACITY TABLE ESTIMATED QUANTITIES OF SILT AND DEBRIS (Cubic Yards) DRAINAGE TRACT AREA SOIL CONDITIONS AVERAGE STREET SLOPE (Acres) 2% 5% 8% 10% 12% 15% 10 Loose Granular 270 350 370 400 450 500 Compacted 100 170 200 240 270 300 15 Loose Granular 400 420 460 600 675 750 Compacted 255 300 360 400 450 20 Loose Granular 540 700 740 800 900 1000 Compacted 200 340 400 480 540 600 40 Loose Granular 1080 1400 1480 1600 1800 2000 Compacted 400 680 800 960 1080 1200 80 Loose Granular 2160 2800 2960 3200 3600 4000 Compacted 800 1360 1600 1920 2160 2400 100 Loose Granular 2700 3500 3700 4000 4500 5000 Compacted 1000 1700 2000 2400 2700 3000 150 Loose Granular 4000 4200 4600 6000 6750 7500 Compacted 1500 2550 3000 3600 4000 4500 200 Loose Granular 5400 7000 7400 8000 9000 10000 Compacted 2000 3400 4000 4800 5400 6000 NOTE: Always use the value for granular material unless the project is f inished and the utility trenches are filled with soil which has been compacted to 90% relative compaction. The capacity required by the above table shall be in a pit or basin. At t'ie lower end of the basin there shall be constructed an outlet dike with- dimensions as per instructions. The size of the desilting basin may be reduced by constructing more than one basin. However, the total volume of basins constructed shall be equal to the estimated volume of rxiof: solids. 128 DESIGN OF SMALL DAMS N\ N\ I I N.\V rs I I I 3.0 -IN VN z P :2 0..-- 1 P TS S u Lytw VULT,F r- t.6 NOTE Dofttd lines are bosed on ex,rapolof'on 01 C.1a. I V\\ tj t 100.0 04 04 16 to.4 a HT lFs Figure 223. Relationship of circular crest coefficient C.10 R•for different approach depths(aerated nappe). in tables 22, 23. and 24. These data are based circular crest springs farther only in the region on experimental tests 1151 conducted by the of the high point of the trace, and then only Bureau of Reclamation. The relationships of H. for ' values tip to about 0.5. The profiles to H. are shown on figure 225. Typical upper R, L- H. Mid lower nappe profiles for various values of become increasingly suppressed for larger R. C 0 values. Below the high point of the profile are Plotted on figure 226 in terins of fuld 2- Y. H, the traces cross and the shapes for the higher P heads fall inside those for the lower heads. Thus, for the rotidition of w-2.0. H. if the crest profile is designed for heads where Illustrated on figure 227 are typical lower nappe exceeds about 0.25 to 0.3. it appears that sub- profiles, plotted for 'Various values of H. for a aLMOSplicric pressure will occur alone some given value of R,. In contrast to the strai-lit portion of the profile when heads are less than the weir where the nappe springs farther from the desi-ned maximum. If subatmospheric pressures crest as the head increases, it will be seen from arc to be avoided alone the crest profile, the crest ii-ure 227 that the lower nappe profile for the shape should be selected so that it will give support, S� � r=t_w�� '�C s �G t•.l 1 l�ssu M � G. ou-�trc�T loo QMMt �v-}vrc = Q?�hK �•N � vTvRE �, LOw �Lt)W ~ 10 3 G`"ZC,? -71 CIF S DEP TH Or- F Lov✓ = 18• S �• •• tow�..�ivy R C. >. TH M e e-o2e TNC z w l L-L- 3 E $ . S •• L-ow PLOW" 9 ^ 'l :;; Goy►��c,E = o. � ST C^Sc r-LOvJ IS ► P. DES LT 1 _ St'' � L„Lw�-� i��S►G� Gore'. W 5 BS 32 9 C� = 10.E- cis O. 44 so L..\/ - ��! C�� W •44 6�,� �o k�E _ .I __ D Cw�T��. ► � G Cr�L L S a Tt-+J_r; E! OL c 0 AQb C-b stn E L- o = 0o(,T'C1 G klNt-RC t Ao = oR.\Fi:*c-E {-� = HEM o r- w^me,z = 4 0 1T :- '32.2 `r'/SZ ;?oL v.-r l a m Co Nj-T2c L- S s N As 3-744 ST-: 374 sr- Z C�1 = 0102 l 5F ... A° X00(qp� O•C� 3Z.Z 2 'T`�PE � •[3 Pis r� lot D At �40 L-ES 82 0 , rk a 1 JF►' "` w If �'�" - � gar _. ♦!r t t 1'C; 00 `jC b UA ILLbb\LLU(86\J b U( \:J .dr11Ef86 'MCC96 '9Cf86 '91*JX 1S3 ud HILI12 86-S2-6 aAHEE86\EE0186\SHOE\l.i AV II I � Q O . p till---------- ---- --- / II ' _ I , 1 JO \;---------------- -____ I 111 ' � r /A7/ t _ / If "'lip-- f rr r i' - I /// / 4 C , I w - - UPI _ Ile V1. 100-YEAR HYDROLOGY CALCULATIONS NoText A. Hydrology Area A 3 NoText ' RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (c) Ver. 1.5A Release ODate: 01/O1/2000ee fLicenseIDa aes) 1472 Analysis prepared by: Mayers & Associates Civil Engineering, Inc. 19 Spectrum Pointe Drive, Suite 609 Lake Forest, CA 92630 (949) 599-0870, (949) 599-0880 fax ************************** DESCRIPTION OF STUDY ************************** * • Plaza @ Encinitas • 100-YR HYDROLOGY AREA A • FILE: PLAZAA.OUT ************************************************************************* FILE NAME: PLAZAA.100 TIME/DATE OF STUDY: 11:46 12/15/2000 __ _ ------------------------------ ------------ ------------- ---------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: --------------- -------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) 8 00 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) _ SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) _(FT) - (FT) _ ==(n) _= 1 30.0 20.0 o.018/0.018/0.020 0 67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2 . (Depth) * (Velocity) Constraint = 6 .0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 1.00 TO NODE 2 .00 IS CODE----21---------- --------------- -- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS« << ---------------- _. RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 87 2 INITIAL SUBAREA FLOW-LENGTH = 250.00 UPSTREAM ELEVATION = 139. 00 DOWNSTREAM ELEVATION = 120.00 ELEVATION DIFFERENCE = 19.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) _ *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH 9'410 DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.556 SUBAREA RUNOFF(CFS) 0.64 TOTAL AREA(ACRES) = 0.31 TOTAL RUNOFF(CFS) _ 0.64 --FLOW-PROCESS FROM NODE -2 .00 TO NODE 4.00 IS CODE = ---------------------- --------- -- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< _->>>>>USING-COMPUTER-ESTIMATED-PIPESIZE- (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 120.00 DOWNSTREAM(FEET) = FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013 114 00 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 10.62 ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.64 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN. ) = 9.45 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 4.00 = 275.00 FEET. **************************************************************************** - FLOW-PROCESS-FROM NODE -4.00 TO NODE 4.00 IS CODE ----------------- - = - »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 9.45 RAINFALL INTENSITY(INCH/HR) = 4.54 TOTAL STREAM AREA(ACRES) = 0.31 PEAK FLOW RATE(CFS) AT CONFLUENCE 0.64 --FLOW-PROCESS FROM NODE------3.00 TO NODE ----------------4.00 IS CODE = -- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<«< ----------- ---------- COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = -- SOIL CLASSIFICATION IS "D" 8500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 90.00 UPSTREAM ELEVATION = 114.70 DOWNSTREAM ELEVATION = 114.00 ELEVATION DIFFERENCE = 0.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 4 .642 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 0.62 TOTAL AREA(ACRES) = 0. 12 TOTAL RUNOFF(CFS) = 0.62 3 4 .0 4 0 TO NODE 00 IS CODE ________ FLOW PROCESS FROM NODE ------------------- t >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUVLUES NAC <<< -->>>>>AND-COMPUTE-VARIOUS-CONFLUENCED-STREAM------ <<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN•) = ,09 RAINFALL INTENSITY(INCH/HR) = TOTAL STREAM AREA(ACRES) = 0 6 6. 0,62 PEAK FLOW RATE(CFS) AT CONFLUENCE _ ** CONFLUENCE DATA ** AREA STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH4/SOUR) (ACRO 31 1 0.64 9.45 6,090 0.12 2 0.62 6.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 1.10 6.00 6.090 2 1.10 9.45 4 .544 COMPUTED CONFLUENCE ESTIMATES 10 E S FOLLOWS: 9 45 PEAK FLOW RATE(CFS) = TOTAL AREMACRES) = 0.43 1,00 TO NODE 4 .00 = 275.00 FEET. LONGEST FLOWPATH FROM NODE FLOW PROCESS FROM NODE 4.00 4*00*_IS CODE si __******** TO NODE ---------- ____ ___----______ ------------ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW—«<_______________________ TY(INCH/HOUR) = 4 . 100 YEAR RAINFALL INTENSI COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8855 00 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 0.81 SUBAREA AREA(ACRES) = 0.21 SUBAREA RUNOFF(CFS) =S) 1.91 TOTAL AREA(ACRES) = 0.64 TOTAL RUNOFF(CF _ TC(MIN) = 9.45 4*oo*IS*CODE,►*,r*Si 4 .00 TO NODE _ FLOW PROCESS FROM NODE __________________ _________ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4 .544 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 0.54 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 2 .45 TOTAL AREA(ACRES) = 0.78 TOTAL RUNOFF(CFS) _ 4 TC(MIN) = 9.45 FLOW PROCESS FROM NODE , 4 .00 TO NODE 5.00 IS CODE = 31 --------------------------------------------- »>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< -->>>>>USING-COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) 114-00 DOWNSTREAM(FEET) = 113 20 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 12.0 INCONG'S 6 INCHES N .013 H PIPE PIPE-FLOW VELOCITY(FEET/SEC. ) _ ESTIMATED PIPE DIAMETER(INCH) = 12.00 PIPE-FLOW(CFS) = 2.45 NUMBER OF PIPES 1 PIPE TRAVEL TIME(MIN. ) = 0,28 LONGEST FLOWPATH FROM NODE Tc(MIN.) = 9.73 1.00 TO NODE 5.00 = 355.00 FEET. --FLOW-PROCESS FROM NODE ------ --- 5.00- NODE-- 5.00 IS CODE _ >>>>>ADDITION OF SUBAREA TO MAINLINE ----------------- ________ -- PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HO_______________________ ____ UR) = 4.458 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) 0.02 SUBAREA RUNOFF(CFS) = 0.08 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = TC(MIN) = 9.73 2.53 --FLOW-PROCESS FROM NODE --- ---- NODE 6.00 IS CODE _ ----------------- _ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU_SUBAREA<<«< ------------- -->>>>>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 113-20 DOWNSTREAM(FEET) 112-40 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 12.0 INCHOPIPEEISING7.6NINCHES013 PIPE-FLOW VELOCITY(FEET/SEC. ) _ ESTIMATED PIPE DIAMETER(INCH) = 12.00 PIPE-FLOW(CFS) = NUMBER OF PIPES = 1 PIPE TRAVEL TIME(MIN.) 2=53 0,26 LONGEST FLOWPATH FROM NODE Tc(MIN.) = g,gg 1.00 TO NODE 6.00 = 430.00 FEET. FLOW PROCESS FROM NODE ---6.00-TO NODE -6.00--- IS CODE _ -------------------- --»»>ADDITION-OF _ _-SUBAREA TO MAINLINE PEAK FLOW<<«< 1 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.383 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = . 8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) _ TOTAL AREA(ACRES) = 0.82 TOTAL RUNOFF(CFS) = 0.07 TC(MIN) = 9.99 2.60 ) 5 7*o0*IS*CODE****31 6 .00 TO NODE ********** _________ FLOW PROCESS FROM NODE -------------- >>>COMPUTE PIPE-FLOW TRAVE PIPESIZEU(NON PRESSURE FLOW) <<«<_----__--_- >>>USING COMPUTER-ESTIMATED EAM(FEET) 112.20 ELEVATION DATA: UPSTREAM(FEET) = 112 .40 DOWNSTR = FLOW LENGTH(FEET) _ 20.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS7.9 INCHES 4 74 PIPE-FLOW VELOCITY(FEET/SEC. ) = 12.00 NUMBER OF PIPES = 1 ESTIMATED PIPE DIAMETER(INCH) _ PIPE-FLOW(CFS) = 2.60 10.06 PIPE TRAVEL TIME(MIN. ) = 0.07 Tc(MIN.) _ 1.00 TO NODE 7 .00 = 450.00 FEET. LONGEST FLOWPATH FROM NODE .*07*oo*IS*CODE81********** 70 TO NO _______ FLOW PROCESS FROM NODE ------- --_ _ -------- ----------- _->>>>>ADDITION OF SUBAREA TO MAINLINE-PEAK-FLOW««<_______________________ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.363 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" 92 S.C.S. CURVE NUMBER (AMC II) = 0.07 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 2 .68 TOTAL AREA(ACRES) = 0.84 TOTAL RUNOFF(CFS) _ TC(MIN) = 10.06 ************************************************8**0*0*IS*CODE****31*********+ 7.00 TO NODE _ FLOW PROCESS FROM NODE ______________________ _______ >>> - >»>USING C OMPUTER-ESTIMATED PIPESIZE (NONPRESSURE-PRESSURE «<----------- ELEVATION DATA: UPSTREAM(FEET) 112.20 DOWNSTREAM(FEET) = 111.60 _ 60.00 MANNING'S N = 0.013 FLOW LENGTH(FEET) DEPTH OF FLOW IN 12 .0 INCH PIPE I� 788.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) _ ESTIMATED PIPE DIAMETER(INCH) = 12 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2 .68 PIPE TRAVEL TIME(MIN. ) = 0.21 Tc(MIN.) = 10.27 1.00 TO NODE 8.00 = 510.00 FEET. LONGEST FLOWPATH FROM NODE 8*oo*IS*CODE****81*__-_______ ----- 8.00 TO NODE FLOW PROCESS FROM NODE _________________ --------------------------------------- -------------------- >>>ADDITION OF SUBAREA TO MAINLINE PEAK-FLOW««<--_---_- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4 .306 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" 92 S.C.S. CURVE NUMBER (AMC II) 0.07 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 2 .75 TOTAL AREA(ACRES) = 0.86 TOTAL RUNOFF(CFS) _ TC(MIN) = 10.27 6 FLOW-PROCESS FROM NODE 8.00 TO NODE --9.00-IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< -------- -->>>>>USING-COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = FLOW LENGTH(FEET) 111 60 DOWNSTREAM(FEET) = 110-80 _ DEPTH OF FLOW IN 12.0 INCOMA NING'S 2 INCHES N .013 H PIP PIPE-FLOW VELOCITY(FEET/SEC. ) = 4,79 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.75 PIPE TRAVEL TIME(MIN.) = 0.28 Tc(MIN. ) = 10.55 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 9.00 = 590.00 FEET. --FLOW- ------------PROCESS FROM NODE 9.00 TO NODE 9.00 IS CODE = 81 ------- ---- > >>ADDITION OF SUBAREA TO - MAINLINE PEAK FLOW««<----------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.232 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) = 0.88 TOTAL RUNOFF(CFS) = 2 82 07 TC(MIN) = 10.55 --FLOW-PROCESS FROM NODE 9.00 -TO NODE 12.00 IS CODE = 31 --------------- ----- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< ------------ -->>>>>USING-COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) 110-80 DOWNSTREAM(FEET) = 110.30 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 12.0 INCHOPIPEEISING'S N = 0.013 PIPE-FLOW VELOCITY(FEET/SEC.) = 4.82 8'4 INCHES ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.82 PIPE TRAVEL TIME(MIN. ) = 0.17 Tc(MIN. ) = 10.72 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 640.00 FEET. FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 1 -------- »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.72 RAINFALL INTENSITY(INCH/HR) TOTAL STREAM AREA(ACRES) = 88 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.82 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 21 - »»>RATIoNAL METHOD-INITIAL-SUBAREA ANALYSIS<<«<________________________ COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" 92 S.C.S. CURVE NUMBER (AMC II) = 440.00 INITIAL SUBAREA FLOW-LENGTH = UPSTREAM ELEVATION = 114.00 DOWNSTREAM ELEVATION = 26.60 ELEVATION DIFFERENCE = 5.182 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = *CAUTION. SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 6 090 100 YEAR RAINFALL INTENSIT2(12CH/HOUR) _ SUBAREA RUNOFF(CFS) = 2.12 TOTAL AREA(ACRES) = 0.41 TOTAL RUNOFF(CFS) _ 00 . 12* *IS*CODE***,t3i*_______-_- 11 TO NODE 00 -_ FLOW PROCESS FROM NODE ______-- --»»>COMPUTE PIPE- L U -P ER-ESTIMATED ED PIPESIZE (NONP RESSURE FLOW) <<«< >>>USING COMPUT _= 114 00 DOWNSTREAM(FEET) 110.60 = ELEVATION DATA. UPSTREAM(FEET) _ FLOW LENGTH(FEET) _ 60.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 734 .9 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 9.00 NUMBER OF PIPES = 1 ESTIMATED PIPE DIAMETER(INCH) _ PIPE-FLOW(CFS) = 2 .12 6.11 PIPE TRAVEL TIME(MIN.) = 0.11 TC(MIN. ) = 500.00 FEET. LONGEST FLOWPATH FROM NODE 10.00 TO NODE 12.00 = TO NODE 12 .00 __________ 12.00 00 FLOW PROCESS FROM NODE _______ >>>>>DESIGNATE INDEPENDENT STREAM »»>AND COMPU TE VARIOUS CONFLUCEDSTREAM VALUES<<«<___________________ ___-- ---- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = .02 0 6 6. RAINFALL INTENSITY(INCH/HR) = TOTAL STREAM AREA(ACRES) = 2 .12 PEAK FLOW RATE(CFS) AT CONFLUENCE _ ** CONFLUENCE DATA ** AREA STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)88 2.82 10.72 4 .188 1 6 .016 0.41 2 2.12 6.11 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF TIC INTENSITY 8 NUMBER (CFS) (MIN. ) 1 (INCH/HOUR) 4.30 1.29 16.414 2 4 .09 6. 11 6.016 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4 .30 Tc(MIN. ) = TOTAL AREA(ACRES) = 10.72 LONGEST FLOWPATH FROM NODE 29 ----------------------------------100-TO-NODE 12.00 = 640.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) _ PEAK FLOW RATE(CFS) 1'29 TC(MIN. ) = 10.72 4 .30 -------------------------- __________________________________________ -------------------- END OF RATIONAL METHOD ANALYSIS 1 g, Hydrology Area B NoText �^ g. Hydrology Area B NoText 9 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL Software (aes) (c) Copyright 1982-2000 Advanced Engineering Ver. 1.5A Release Date: 01/01/2000 License ID 1472 Analysis prepared by: Mayers & Associates Civil Engineering, Inc. 19 Spectrum Pointe Drive, Suite 609 Lake Forest, CA 92630 (949) 599-0870, (949) 599-0880 fax ************************** DESCRIPTION OF STUDY ************************** * • PLAZA @ ENCINITAS • 100-RE HYDROLOGY AREA B • FILE: PLAZAB.OUT ************************************************************************ FILE NAME: PLAZAB.100 TIME/DATE OF STUDY: 09:23 12/15/2000 --------------------------------- ----------------------- ------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: -- -------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 2 600 6-HOUR DURATION PRECIPITATION (INCHES) 8-00 SPECIFIED MINIMUM PIPE SIZE(INCH) _ SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HE WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) -(FT) - (FT) _ --(n) -= 1 30.0 20.0 0.018/0.018/0 .020 0 67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2 . (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 21.00 TO NODE 22*00 IS CODE 22 ---- ----------------------- »>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< _- COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 10 USER SPECIFIED Tc (MIN. ) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.850 SUBAREA RUNOFF(CFS) = 1.22 TOTAL AREA(ACRES) = 0.21 TOTAL RUNOFF(CFS) _ 1.22 FLOW PROCESS FROM NODE 22 .00 TO NODE---- 23.00 IS CODE = 31 ---------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«<______________ -->>>>>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) 115.00 DOWNSTREAM(FEET) FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 114 70 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 3.49 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.22 PIPE TRAVEL TIME(MIN. ) = 0.19 Tc (MIN. ) = 5.19 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 23.00 40.00 FEET. FLOW PROCESS FROM NODE 23 .00 TO NODE 23.00 IS CODE = 81 ---------------------- __ >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.687 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 1.08 TOTAL AREA(ACRES) = 0.40 TOTAL RUNOFF(CFS) = TC(MIN) = 5.19 2.30 FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 31 --------------------------------- _________ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< _->>>>>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) FLOW LENGTH(FEET) = 15.00 MANNING'S0N = 0.013 (FEET) = 114.60 DEPTH OF FLOW IN 12 .0 INCH PIPE IS 8.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3 .94 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.30 PIPE TRAVEL TIME(MIN. ) = 0.06 Tc(MIN. ) = 5.25 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 24.00 = 55.00 FEET. FLOW PROCESS FROM NODE 24 .00 TO NODE 24.00 IS CODE = 81 ---------------------- _______________ »>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.635 --------____ COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 ll 0.45 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 2 75 TOTAL AREA(ACRES) = 0.48 TOTAL RUNOFF(CFS) _ TC(MIN) = 5.25 25*00*IS*CODE****31********** FLOW PROCESS FROM NODE 24 .00 TO NODE ----------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE-FLOW)««<------_---- 114 60 DOWNSTREAM(FEET) = 113.50 ELEVATION DATA: UPSTREAM(FEET)MANNING S N = 0.013 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 12 .0 INCH PIPE ISS 997.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) _ ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2 .75 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN. ) 5.59 = LONGEST FLOWPATH FROM NODE 21.00 TO NODE 25.00 155.00 FEET. = FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE _ ------------ ------- -->>>>>DESIGNATE-INDEPENDENT-STREAM-FOR-CONFLUENCE««<--_____----- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 538 RAINFALL INTENSITY(INCH/HR) = 0 6.. TOTAL STREAM AREA(ACRES) = 2 75 PEAK FLOW RATE(CFS) AT CONFLUENCE _ **************************************************************************** FLOW PROCESS FROM NODE 26.00 TO NODE 25.00 IS CODE = 21 - ----------------------- -- ----- METHOD INITIAL SUBAREA ANALYSIS<<<<<----__-_--- COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 140.00 UPSTREAM ELEVATION = 114.70 DOWNSTREAM ELEVATION = 113 .50 ELEVATION DIFFERENCE = 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 5.605 _ TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 6.090 100 YEAR RAINFALL INTENSITY(INCH/HOUR) _ SUBAREA RUNOFF(CFS) = 2.07 TOTAL AREA(ACRES) _ 0.40 TOTAL RUNOFF(CFS) = 2.07 **************************************************************************** FLOW PROCESS FROM NODE 25 .00 TO NODE 25.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE­<<< -->>>>>AND-COMPUTE-VARIOUS-CONFLUENCED-STREAM-VALUES<<«<------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 12 TIME OF CONCENTRATION(MIN. ) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.09 TOTAL STREAM AREA(ACRES) = 0.40 / PEAK FLOW RATE(CFS) AT CONFLUENCE 2.07 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) AREA (MIN. ) (INCH/HOUR) (ACRE) 1 2.75 5.59 6.376 2 0.48 2.07 6.00 6.090 0.40 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.73 5.59 6.376 2 4.70 6.00 6.090 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 4.73 Tc(MIN. ) = 5.59 TOTAL AREA(ACRES) = 0.88 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 25.00 = 155.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = 81 ------------------- _______________ »>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.376 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = . 8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 1.19 TOTAL AREA(ACRES) = 1.10 TOTAL RUNOFF(CFS) = 5.92 TC(MIN) = 5.59 **************************************************************************** --FLOW-PROCESS-FROM-NODE 25.00 TO NODE 27.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< -->>>>USING-COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 113 .50 DOWNSTREAM(FEET) = FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 113.10 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5.69 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5. 92 PIPE TRAVEL TIME(MIN. ) = 0. 12 Tc (MIN. ) = 5.71 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 27.00 = 195.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 27.00 TO NODE 27.00 IS CODE = 1 -------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ]3 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = .29 1 6 RAINFALL INTENSITY(INCH/HR) = 6 TOTAL STREAM AREA(ACRES) = 5.92 PEAK FLOW RATE(CFS) AT CONFLUENCE _ **************************************************************************** FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 21 --------------------- -- -- >>>>>RATIONAL METHOD INITIAL SUBAREA-ANALYSIS<«<________________________ RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 87 INITIAL SUBAREA FLOW-LENGTH = 110.00 UPSTREAM ELEVATION = 140.00 DOWNSTREAM ELEVATION = 135.00 ELEVATION DIFFERENCE = 5.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 7.408 _ *CAUTION- SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. :316 100 YEAR RAINFALL INTENSITY(INCH/HOUR) _ SUBAREA RUNOFF(CFS) = 0.38 TOTAL AREA(ACRES) _ 0.16 TOTAL RUNOFF(CFS) = 0.38 *,r*****,t**,t****,t*,r*****,r,t*,r**,►**********,r******27*00*IS*CODE****31 FLOW PROCESS FROM NODE 29.00 TO NODE -- _ ----------------- ,._ ---- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE_FLOW) <<«<__-____---- ELEVATION DATA: UPSTREAM(FEET) 135 00 DOWNSTREAM(FEET) 113.10 = FLOW LENGTH(FEET) = 40.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 1.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 12 .37 8,00 NUMBER OF PIPES = 1 ESTIMATED PIPE DIAMETER(INCH) _ PIPE-FLOW(CFS) = 0.38 PIPE TRAVEL TIME(MIN.) = 0.05 Tc (MIN. ) = 7.46 LONGEST FLOWPATH FROM NODE 28 .00 TO NODE 27.00 = 150.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 27 .00 TO NODE 27 .00 IS CODE =---1---------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<< -->>>>>AND-COMPUTE-VARIOUS-CONFLUENCED_STREAM-VALUES<<«<---------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 7 .46 RAINFALL INTENSITY(INCH/HR) = 5 .29 TOTAL STREAM AREA(ACRES) = 0.16 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.38 ** CONFLUENCE DATA ** 14 STREAM RUNOFF Tc NUMBER INTENSITY AREA (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 5.92 5. 71 6.291 / 2 0.38 7.46 1.10 5.291 0.16 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 6.25 1.26 16.665 2 5.37 7.46 5.291 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.25 Tc(MIN. ) = 5.71 TOTAL AREA(ACRES) = 1.26 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 27.00 = 195.00 FEET. **************************************************************************** --FLOW-PROCESS FROM NODE 27.00 TO NODE 27.00 IS CODE = 81 --------------------- _____________ >>>­ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6,291 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 1.48 TOTAL RUNOFF(CFS) 1.18 7,42 TC(MIN) = 5.71 **************************************************************************** FLOW PROCESS FROM NODE 27.00 TO NODE 30.00 IS CODE = 31 --------------------- ____ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< -->>>>USING-COMPUTER-ESTIMATED-PIPESIZE- (NON-PRESSURE-FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 113.10 DOWNSTREAM(FEET) 111.90 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 6.18 ESTIMATED PIPE DIAMETER(INCH) = 18 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7,42 PIPE TRAVEL TIME(MIN. ) = 0.32 Tc(MIN.) = 6.03 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 30.00 = 315.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 30.00 TO NODE 30.00 IS CODE = 81 ------------------------------- _________ --»>>>ADDITION-OF-SUBAREA-TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.071 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.46 15 TOTAL AREA(ACRES) _ 1.57 TOTAL RUNOFF(CFS) = 7 .89 TC(MIN) = 6.03 **,r********,t*************,r**,r******,r*****,t****,r * * * *,t** *,r,r*,r*,►,t* FLOW PROCESS FROM NODE 30.00 TO NODE 31-00 IS CODE 31 _ -- ... >COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< »>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE-FLOW) <«<----__-_-_- ELEVATION DATA: UPSTREAM(FEET) = 111.90 DOWNSTREAM(FEET) = 110.90 FLOW LENGTH(FEET) _ 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE ISS 252 .1 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) _ ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.89 PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) = 6.30 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 31.00 = 415.00 FEET. FLOW PROCESS FROM NODE 31.00 TO NODE 31 00 IS CODE si --------- -------- -------------- ---------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< << 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.904 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 0.65 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) _ TOTAL AREA(ACRES) _ 1.70 TOTAL RUNOFF(CFS) = 8.54 TC(MIN) = 6.30 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS-CODE- 31---------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE_FLOW)<<<<< ---_ ELEVATION DATA: UPSTREAM(FEET) = 110.90 DOWNSTREAM(FEET) = 109.70 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12 8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) _ ESTIMATED PIPE DIAMETER(INCH) = 18 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.54 PIPE TRAVEL TIME(MIN.) = 0.32 Tc (MIN. ) = 6.61 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 32.00 = 535.00 FEET. FLOW PROCESS FROM NODE 32.00 TO NODE 32 .00-IS-CODE-_-- 1--- --- -- --------------- -->>>>>DESIGNATE-INDEPENDENT-STREAM_FOR_CONFLUENCE««<------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 6.61 RAINFALL INTENSITY(INCH/HR) = 5 .72 TOTAL STREAM AREA(ACRES) = 1 .70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.54 16 **************************************************************************** FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 21 -------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<«< --------------------- _________________________________________ _ RURAL DEVELOPMENT RUNOFF COEFFICIENT SOIL CLASSIFICATION IS "D" 4500 S.C.S. CURVE NUMBER (AMC II) = 87 INITIAL SUBAREA FLOW-LENGTH = 270.00 UPSTREAM ELEVATION = 140.00 DOWNSTREAM ELEVATION = 116.00 ELEVATION DIFFERENCE = 24.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 9.281 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.597 SUBAREA RUNOFF(CFS) = 0.33 TOTAL AREA(ACRES) = 0.16 TOTAL RUNOFF(CFS) = 0.33 FLOW PROCESS FROM NODE 34.00 TO NODE 32.00 IS CODE = 31 ----- --------------------------------- _ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< -->>>>>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 116-00 DOWNSTREAM(FEET) = 109.90 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 1.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.61 ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.33 PIPE TRAVEL TIME(MIN. ) = 0.03 Tc(MIN. ) = 9.32 LONGEST FLOWPATH FROM NODE 33.00 TO NODE 32.00 = 290.00 FEET. **************************************************************************** --FLOW-PROCESS FROM NODE 32.00 TO NODE 32.00 IS CODE = 1 ------------ ___ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< -->>>>>AND-COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 9.32 RAINFALL INTENSITY(INCH/HR) = 4 .59 TOTAL STREAM AREA(ACRES) = 0.16 PEAK FLOW RATE(CFS) AT CONFLUENCE _ 0.33 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) AREA 1 8.54 6.61 (ACRE) 5.721 1.70 2 0.33 9.32 4 .586 0.16 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. 17 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 8.80 1.86 2 7 .18 9.32 4 .586 COMPUTED CONFLUENCE ESTIMATES 80 E AS FOLLOWS: 6 61 PEAK FLOW RATE(CFS) = 1.86 TOTAL AREA(ACRES) = 21,00 TO NODE 32.00 = 535.00 FEET. LONGEST FLOWPATH FROM NODE 35* * * **** ********** FLOW PROCESS FROM NODE 32.00 TO NODE 00 IS CODE 31 -------------- --------------------------------------- »>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE-FLOW)<<«<---__-__-_- 109 90 DOWNSTREAM(FEET) = 109.60 ELEVATION DATA: UPSTREAM(FEET)) MANNING'S N = 0.013 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.37 13 .1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) _ ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.80 6.69 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) _ LONGEST FLOWPATH FROM NODE 21.00 TO NODE 35.00 = 565.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE =--81---------- __ -- ------------ ----------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW-<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.677 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC 0.13 SUBAREA RUNOFF(CFS) = 0.63 SUBAREA AREA(ACRES) = 9.43 TOTAL AREA(ACRES) = 1.99 TOTAL RUNOFF(CFS) _ TC(MIN) = 6.69 **************************************************************************** FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 31 >>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE-FLOW)<<«<__---_----_ 109.60 DOWNSTREAM(FEET) = 108.40 ELEVATION DATA: UPSTREAM(FEET)) MANNING'S N = 0.013 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 18.0 INCH PIPE IS6 424 .0 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) _ ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.43 0.31 Tc (MIN. ) = 7 .00 PIPE TRAVEL TIME(MIN. ) = 36.00 = 685.00 FEET. LONGEST FLOWPATH FROM NODE 21 .00 TO NODE FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE _ 18 -------------- ___ > >>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 --------- ------------ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 7.00 RAINFALL INTENSITY(INCH/HR) = 5.51 TOTAL STREAM AREA(ACRES) = 1.99 PEAK FLOW RATE(CFS) AT CONFLUENCE _ 9.43 FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE 21 ---------- --- » ____»>RATIONAL METHOD INITIAL SUBAREA ANp.I,YSIS««< RURAL DEVELOPMENT RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "D" 4500 S.C.S. CURVE NUMBER (AMC II) = 87 INITIAL SUBAREA FLOW-LENGTH = 110.00 UPSTREAM ELEVATION = 113.90 DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE = 111.00 URBAN SUBAREA OVERLAND TIME OF9FLOW(MINUTES) _ *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH 8 883 DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.729 SUBAREA RUNOFF(CFS) = 0.77 TOTAL AREA(ACRES) = 0.36 TOTAL RUNOFF(CFS) _ 0.77 **************************************************************************** FLOW PROCESS FROM NODE 38.00 TO NODE 36.00 IS CODE = 31 --------- ------ __ ------------ __ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< -->>>>>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 111-00 DOWNSTREAM(FEET) 108.60 FLOW LENGTH(FEET) = 50.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 3 .0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.31 ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.77 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN. ) = 9.02 LONGEST FLOWPATH FROM NODE 37.00 TO NODE 36.00 = 160.00 FEET. FLOW-PROCESS- ---------------- _FROM NODE 36.00 TO NODE 36.00 IS CODE = 1 ------------------ ________ ___ --»>>>DESIGNATE-INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3______________________________ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 9.02 RAINFALL INTENSITY(INCH/HR) = 4.68 TOTAL STREAM AREA(ACRES) _ PEAK FLOW RATE(CFS) AT CONFLUENCE 6= 0.77 19 40*00*IS*CODE****22 FLOW PROCESS FROM NODE _________ ********** 39.00 TO NODE ---------------------- - _. >>>>>RATIONAL METHOD-INITIAL-SUBAREA-ANALYSIS<<«<------------------------ COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) 5 000 USER SPECIFIED Tc(MIN-) = 6 .850 100 YEAR RAINFALL INTENSIT2( IINCH/HOUR) _ SUBAREA RUNOFF(CFS) = 4 2.04 TOTAL AREA(ACRES) = 0.35 TOTAL RUNOFF(CFS) _ 41*00*IS*CODE*= 31 FLOW PROCESS FROM NODE 40.00 TO NODE --------- ------ >>>>>COMPUTE PIPE-FLOW-ESTIMATED PIPESIZEU(NON-PRESSURE-FLOW)<<«<----------- »»>USING COMPUTE ELEVATION DATA: UPSTREAM(FEET) = 115.00 DOWNSTREAM(FEET) = 112.70 230.00 MANNING'S N = 0.013 FLOW LENGTH(FEET) = DEPTH OF FLOW IN 12.0 INCH PIPE I� 516.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) _ ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.04 5.85 PIPE TRAVEL TIME(MIN.) = 0.85 Tc O NO _ LONGEST FLOWPATH FROM NODE 39.00 TO NODE 280.00 FEET. 41.00 = _. 41*00*IS*CODE 8i,t********,r FLOW PROCESS FROM NODE 41.00 TO NODE---------------------------------- ---------------------------- ------ >>>>>ADDITION OF SUBAREA TO MAINLINE-PEAK-FLOW<<«<----------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.191 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC OI53 SUBAREA RUNOFF(CFS) = 2.79 SUBAREA AREA(ACRES) = 4.83 TOTAL AREA(ACRES) = 0.88 TOTAL RUNOFF(CFS) _ TC(MIN) = 5.85 *************,r***************,r****,►************42*00*IS*CODE****31 FLOW PROCESS FROM NODE 41.00 TO NODE ---------------------------- _ ------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE-FLOW) ««<----------- _= 112 70 DOWNSTREAM(FEET) = 111.10 ELEVATION DATA: UPSTREAM(FEET) = FLOW LENGTH(FEET) _ 155.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 609 9 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) _ ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4 .83 PIPE TRAVEL TIME(MIN. ) = 0.46 0 TO N. )NODE 435.00 FEET. = 6.31 42 .00 39.00 TO LONGEST FLOWPATH FROM NODE = 20 FLOW PROCESS FROM NODE-----42 .00 TO NODE 42.00 IS CODE = 81 ---- --------- ---- --------- >>>­ADDITION OF SUBAREA TO - - MAINLINE PEAK FLOW«-------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.895 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 SUBAREA AREA(ACRES) = 0.35 SUBAREA RUNOFF(CFS) TOTAL AREA(ACRES) = 1.23 TOTAL RUNOFF(CFS) = 1.75 TC(MIN) = 6.31 6.58 FLOW PROCESS FROM-NODE 42.00 TO NODE 36.00 IS CODE = 31 ----------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< ------------ -->>>>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) 111-10 DOWNSTREAM(FEET) 108.60 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 12.0 INCH OPIPE ISING9.4NINCHES013 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.00 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.58 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 6.41 LONGEST FLOWPATH FROM NODE 39.00 TO NODE 36.00 = 495.00 FEET. FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 1 ------------------ »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< --»>>>AND-COMPUTE-VARIOUS-CONFLUENCED-STREAM-VALUES<<<<< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 6.41 RAINFALL INTENSITY(INCH/HR) _ TOTAL STREAM AREA(ACRES) = 5.84 PEAK FLOW RATE(CFS) AT CONFLUENCE S= 6.58 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.43 7.00 (ACRE) 2 5.513 1.99 3 0.77 9.02 4.684 0.36 6.58 6.41 5.836 1.23 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 16.30 3.58 8.498 2 16.11 6.41 5.836 3 14.06 9.02 4.684 21 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: 7 .00 1630 Tc(MIN. ) _ PEAK FLOW RATE(C FS) = . 685.00 FEET. 3 .58 36.00 = TOTAL AREA(ACRES) = 21,00 TO NODE LONGEST FLOWPATH FROM NODE .*00**************43*00*IS*CODE***,r31 36 TO NODE _--______ FLOW PROCESS FROM NODE ------------- _ ----- »»>COMPUTE PIPE-FLOW RESTIMATED PIPESIZEU(NON PRESSURE-PRESSURE «<_------- >>>>>USING COMPUTE ELEVATION DATA: UPSTREAM(FEE = 108.60 DOWNSTREp.M(FEET) = 106.50 T) FLOW LENGTH(FEET) _ 210.00 MANNING IS N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE I� 515.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 24.51 NUMBER 630 OF PIPES = 1 ESTIMATED PIPE DIAMETER(INCH)( CH) _ PIPE-FLOW(CFS) = p 47 Tc(MIN.) = 7 .47 PIPE TRAVEL TIME(MIN.) = 21.00 TO NODE 43.00 = 895.00 FEET. LONGEST FLOWPATH FROM NODE TO NODE 43 -00 43.00 00 ________ FLOW PROCESS FROM NODE ---------- ------------------- EPENDENT-STREAM_FOR-CONFLUENC-««< >>>>>DESIGNATE IND --_----- TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5 29 RAINFALL INTENSITY(INCH/HR) = 3 58 TOTAL STREAM AREA(ACRES) _ PEAK FLOW RATE(CFS) AT CONFLUENCE _ 16.30 45* *IS*CODE****21****_______****** 44.00 TO NODE 00 FLOW PROCESS FROM NODE ------- ---------------------------->>>>>RATIONAL METHOD INITIAL SUBAREA p,Np,1,YSIS««<________________________ COMMERCIAL DEVELOPMENT RD OFF COEFFICIENT = .8500 SOIL CLASSIFICATION I S.C.S. CURVE NUMBER (AMC II) = 330.00 INITIAL SUBAREA FLOW-LENGTH 115.00 UPSTREAM ELEVATION = 106.90 DOWNSTREAM ELEVATION = 8.10 ELEVATION DIFFERENCE = 6.060 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES6 051 100 YEAR RAINFALL INTENSIT3(1NCH/ HOUR) _ SUBAREA RUNOFF(CFS) = 3 .75 TOTAL AREA(ACRES) = 0.73 TOTAL RUNOFFICFS) _ ,t**43*00*IS*CODE*= 31 45.00 TO NODE _--___ FLOW PROCESS FROM NODE ------ >>»>COMPUTE PIPE-FLOW TERESTIMATED PIPESIZEU(NON-PP PRESSURE FLOW) <<«<--___------ >>>>>USING COMPU _= 106 90 DOWNSTREAM(FEET) = 106.30 ELEVATION DATA: UPSTREAM 0 .013(�ANNING'S N = 0 .013 FLOW LENGTH(FEET) _ 22 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) _ ESTIMATED PIPE DIAMETER(INCH) = 15.00 PIPE-FLOW(CFS) = 3.75 NUMBER OF PIPES 1 PIPE TRAVEL TIME(MIN. ) = 0.19 LONGEST FLOWPATH FROM NODE Tc(MIN. ) = 6.25 44 .00 TO NODE 43 .00 = 390.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE = 1 ---------- _ ----------- _____ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.25 RAINFALL INTENSITY(INCH/HR) = 5.93 TOTAL STREAM AREA(ACRES) _ PEAK FLOW RATE(CFS) AT CONFLUENCE S= 3.75 **************************************************************************** --FLOW-PROCESS-FROM-NODE-----46.00-TO NODE 43.00 IS CODE = 21 ---------------- > >>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<«<------ COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "D" 8500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 290.00 UPSTREAM ELEVATION = 111.50 DOWNSTREAM ELEVATION ELEVATION DIFFERENCE = 108.60 URBAN SUBAREA OVERLAND TIME OF9FLOW(MINUTES) 7.663 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.201 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = 1.64 0.37 TOTAL RUNOFF(CFS) _ 1.64 **************************************************************************** FLOW PROCESS FROM NODE 43.00 TO NODE 43.00 IS CODE 1 > >>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ------------- --> >>AND-COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< -------------- ---------------- ___ TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN. ) = 7.66 RAINFALL INTENSITY(INCH/HR) = 5.20 TOTAL STREAM AREA(ACRES) _ PEAK FLOW RATE(CFS) AT CONFLUENCE 7= 1.64 ** CONFLUENCE DATA ** STREAM RUNOFF Tc NUMBER INTENSITY AREA (CFS) (MIN.) (INCH/HOUR) 1 16.30 7.47 (ACRE) 2 5.289 3 .58 3 3 .75 6.25 5.931 0.73 1 .64 7.66 S.201 0.37 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO 23 CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 21.26 4.68 2 19.72 6.25 5.931 3 20.96 7.66 5.201 COMPUTED CONFLUENCE ESTIMATES 2ARE AS(FOLLOWS: 7 47 PEAK FLOW RATE(CFS) _ TOTAL AREA(ACRES) = 4 .68 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 43 .00 = 895.00 FEET. 47*00*IS*CODE,r***31 FLOW PROCESS FROM NODE 43 .00 TO NODE ----- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE-FLOW)<<«<_-- _= 108 60 DOWNSTREAM(FEET) = 108.50 ELEVATION DATA: UPSTREAM(FEET) MANNING'S N = 0.013 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 24.0 INCH PIPE IS 7199.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) _ ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.26 PIPE TRAVEL TIME(MIN.) = 0.02 Tc N. ) = 7.49 LONGEST FLOWPATH FROM NODE 21.00 TO O 905.00 FEET. NODE 47.00 = FLOW PROCESS FROM NODE 47 .00 TO NODE 47.00 IS CODE ---------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-«< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 5 28 RAINFALL INTENSITY(INCH/HR) = 4.68 5. TOTAL STREAM AREA(ACRES) = 21.26 PEAK FLOW RATE(CFS) AT CONFLUENCE _ 47*00*IS*CODE****21 FLOW PROCESS FROM NODE 48.00 TO NODE ---------------------- -- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<«<________________________ COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 220.00 UPSTREAM ELEVATION = 118.40 DOWNSTREAM ELEVATION = 107 .10 ELEVATION DIFFERENCE = 11.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 3 .869 _ *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 24 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 1.45 TOTAL AREA(ACRES) = 0.28 TOTAL RUNOFF(CFS) _ 1.45 **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE = 1 -------------- > >>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< -->>>>AND-COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 ----------------- CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.00 RAINFALL INTENSITY(INCH/HR) = 6.09 TOTAL STREAM AREA(ACRES) = 0.28 PEAK FLOW RATE(CFS) AT CONFLUENCE 1.45 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CPS) (MIN. ) (INCH/HOUR) AREA 1 21.26 7.49 (ACRE) 2 5.279 4.68 1.45 6.00 6.090 0.28 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 22.51 4.96 6.886 2 19.87 6.00 6.090 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 22.51 Tc(MIN.) = 7.49 TOTAL AREA(ACRES) = 4.96 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 47.00 = 905.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 47.00 TO NODE 49.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< >>-USINGCOMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) 107.10 DOWNSTREAM(FEET) = FLOW LENGTH(FEET) = 60.00 MANNING'S N = 0.013 106 50 DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 8. 14 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.51 PIPE TRAVEL TIME(MIN. ) = 0.12 Tc(MIN. ) = 7.61 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 49.00 = 965.00 FEET. FLOW PROCESS FROM NODE 49.00 TO NODE 49.00 IS CODE = 1 ----------- _____ »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< 25 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR IN 7 .61 STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 5 22 RAINFALL INTENSITY(INCH/HR) = 4 .96 TOTAL STREAM AREA(ACRES) = 22 ,51 PEAK FLOW RATE(CFS) AT CONFLUENCE _ FLOW PROCESS FROM NODE 50.00 TO NODE 49.00 IS CODE = 21 --------------------- ---- -- --------------- METHOD INITIAL SUBAREA ANALYSIS««<________________________ COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 170.00 UPSTREAM ELEVATION = 113 .70 DOWNSTREAM ELEVATION = 107.10 ELEVATION DIFFERENCE = 6.60 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 3 .733 _ *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 6 090 100 YEAR RAINFALL INTENSITY(INCH/HOUR) _ SUBAREA RUNOFF(CFS) = 0.78 0.78 TOTAL AREA(ACRES) = 0.15 TOTAL RUNOFF(CFS) _ **************************************************************************** FLOW PROCESS FROM NODE 49.00 TO NODE 49.00 IS CODE = 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< >>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< " TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6,09 RAINFALL INTENSITY(INCH/HR) = 0.15 TOTAL STREAM AREA(ACRES) = p,78 PEAK FLOW RATE(CFS) AT CONFLUENCE _ ** CONFLUENCE DATA ** AREA STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 22 .51 7 .61 0.15 2 0.78 6.00 6.090 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 23 .18 5.11 2 20.09 6.00 6.090 COMPUTED CONFLUENCE ESTIMATES 18 E AS FOLLOWS: 7 61 PEAK FLOW RATE(CFS) _ 26 TOTAL AREA(ACRES) = 5.11 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 49.00 = 965.00 FEET. FLOW PROCESS FROM NODE 49.00 TO NODE 51.00 IS CODE = 31 --------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«<___ -->>>>>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) 107-10 DOWNSTREAM(FEET) = 105.10 FLOW LENGTH(FEET) = 200.00 _ DEPTH OF FLOW IN 27.0 INCH PIPEAISIN1gS1NINCHES013 PIPE-FLOW VELOCITY(FEET/SEC. ) = 8.19 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 23 .18 PIPE TRAVEL TIME(MIN. ) = 0.41 Tc(MIN. ) = 8.02 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 51.00 = 1165.00 FEET. r,t****,r*,r,r,r*,r,r,r******,r***,r,r*,r*,t,r***,t****,t,r*********,r*,r****,r,t,r,r,r,r*,►,r,r**,r,t,r*** --FLOW-PROCESS-FROM NODE 51.00 TO NODE 51.00 IS CODE = 1 ------------------------- ______________ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MTN. ) = 8.02 RAINFALL INTENSITY(INCH/HR) = 5.05 TOTAL STREAM AREA(ACRES) = 5.11 PEAK FLOW RATE(CFS) AT CONFLUENCE _ 23.18 **************************************************************************** --FLOW PROCESS FROM NODE 52.00 TO NODE 53.00 IS CODE = 21 --------------------------------------------- »>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<« --- < --------------------- COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "D" 8500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 380.00 UPSTREAM ELEVATION = 108.00 DOWNSTREAM ELEVATION = 101.50 ELEVATION DIFFERENCE = 6.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.335 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.350 SUBAREA RUNOFF(CFS) = 4.23 TOTAL AREA(ACRES) = 0.93 TOTAL RUNOFF(CFS) _ 4.23 --FLOW PROCESS FROM NODE 53.00 TO NODE 51.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< -->>>>>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 101-50 DOWNSTREAM(FEET) = 100.80 FLOW LENGTH(FEET) = 70.00 MANNING'S N = 0. 013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 5.39 27 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4 .23 7.55 PIPE TRAVEL TIME(MIN. ) = 0.22 Tc (MIN. ) _ 51.00 = 450.00 FEET. LONGEST FLOWPATH FROM NODE 52.00 TO NODE FLOW PROCESS FROM NODE 51.00 TO NODE 51 00 IS CODE ---------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« << _->>>>>AND-COMPUTE-VARIOUS_CONFLUENCED-STREAM VALUES<<«<----------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = RAINFALL INTENSITY(INCH/HR) = 0 5.25 TOTAL STREAM AREA(ACRES) = 4.23 PEAK FLOW RATE(CFS) AT CONFLUENCE _ ** CONFLUENCE DATA ** AREA STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE)11 1 23 .18 8.02 0.93 2 4 .23 7.55 5.251 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY - NUMBER (CFS) (MIN.) (INCH/HOUR) 1 27 .25 6.04 2 26 .53 7 .55 5.251 COMPUTED CONFLUENCE ESTIMATES 2ARE Tc(MIN.)FOLLOWS: 8 02 PEAK FLOW RATE(CFS) = 6.04 TOTAL AREA(ACRES) = 21,00 TO NODE 51.00 = 1165.00 FEET. LONGEST FLOWPATH FROM NODE **************************************************************************** FLOW PROCESS FROM NODE 51.00 TO NODE 54.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE-FLOW) ««<--------_-- _= 100 80 DOWNSTREAM(FEET) = 100.20 ELEVATION DATA: UPSTREAMSFEOEOT) Mp,IgNING'S N = 0.013 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 27 .0 INCH PIPE IS 8 729 .8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) _ ESTIMATED PIPE DIAMETER(INCH) = 27 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 27 .25 8 .12 PIPE TRAVEL TIME(MIN. ) = 0.11 Tc(MIN. ) _ 0 TO NODE 54.00 = 1220.00 FEET. LONGEST FLOWPATH FROM NODE 21.0 54 .00-TO-NODE-----54 .00 IS CODE _ FLOW PROCESS FROM NODE ____ __________ ______ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE-<<< 28 --------------------------------- _______________ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE__ TIME OF CONCENTRATION(MIN.) = RAINFALL INTENSITY(INCH/HR) = 8.12 TOTAL STREAM AREA(ACRES) = 6.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.25 **************************************************************************** FLOW PROCESS FROM-NODE 55.00 TO NODE 54.00 IS CODE = 21 ------------ ------ ------------- --- ________ >>>>>RATIONAL METHOD INITIAL SUBAREA-ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "D" 8500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 540.00 UPSTREAM ELEVATION = 115.00 DOWNSTREAM ELEVATION = 103.70 ELEVATION DIFFERENCE = 11.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 8.176 *CAUTION: SUBAREA FLOWLENGTH EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.988 SUBAREA RUNOFF(CFS) = 11.28 TOTAL AREA(ACRES) = 2.66 TOTAL RUNOFF(CFS) _ 11.28 **************************************************************************** FLOW PROCESS FROM NODE 54.00 TO NODE 54.00 IS CODE = 1 ----------------------------------- ___ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< / -->>>>>AND_COMPUTE-VARIOUS-CONFLUENCED-STREAM-VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) _ RAINFALL INTENSITY(INCH/HR) = 4.99 TOTAL STREAM AREA(ACRES) = 2.66 PEAK FLOW RATE(CFS) AT CONFLUENCE _ 11.28 ** CONFLUENCE DATA ** STREAM RUNOFF Tc NUMBER (CFS) INTENSITY AREA (MIN. ) (INCH/HOUR) (ACRE) 1 27.25 8.12 5. 009 2 11 .28 8. 18 4.988 6.04 2.66 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 38.41 8.18 4.988 2 38.48 8.70 4 .792 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) _ 38.48 Tc (MIN. ) = 8.12 29 TOTAL AREA(ACRES) = 8.70 54.00 = 1220.00 FEET. LONGEST FLOWPATH FROM NODE 21.00 TO NODE 0 TO NODE*************56*00*IS*CODE****31********** 54.0 FLOW PROCESS FROM NODE -------- -------------------------- ----------------------_ ------------------------------------------ >>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA« <<» ««< >USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE_FLOW) ____-- 00 80 DOWNSTREAM(FEET) = 100.60 ELEVATION DATA: UPSTREAMp(FEpEpT) 1MRNNI00 S N = 0.013 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 30.0 INCH PIPE ISg 0244 3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 30.00 NUMBER OF PIPES = 1 ESTIMATED PIPE DIAMETER(INCH) _ PIPE-FLOW(CFS) = 480.04 Tc(MIN.) = 8.16 PIPE TRAVEL TIME(MIN.) = 21.00 TO NODE 56.00 = 1240.00 FEET. LONGEST FLOWPATH FROM NODE ***********************************************56*00*IS*CODE****io********** 56.00 TO NODE _- FLOW PROCESS FROM NODE ---------" -------------------------------------------------- «<_________________ FLOW PROCESS FROM NODE 57.00 0 TO NODE 5 _______________ ----------- >>>RATIONAL-METHOD_INITIAL-SUBAREA ANALYSIS<<«<________________________ COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 480.00 INITIAL SUBAREA FLOW-LENGTH = UPSTREAM ELEVATION = 0 1 04. DOWNSTREAM ELEVATION = 104-10 ELEVATION DIFFERENCE = 7.501 URBAN SUBAREA OVERLAND TIME OF FLOW loo YEAR RAINFALL NTENSITY(INCH/HOUR) = 5.273 SUBAREA RUNOFF(CFS) = 1.84 1.84 TOTAL AREA(ACRES) = 0.41 TOTAL RUNOFF(CFS) _ 59*00*IS*CODE**,r*31,r*,r*,r**,r** 58.00 TO NODE ___- FLOW PROCESS FROM NODE ------ >>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< «< >>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE-FLOW) _<<<< 104.10 DOWNSTREAM(FEET) = 103 .30 ELEVATION DATA: UPSTREAM(FEET). MANNING'S N = 0.013 FLOW LENGTH(FEET) _ INCH PIPE I4 396.3 INCHES DEPTH OF FLOW IN 12 .0 PIPE-FLOW VELOCITY(FEET/SEC. ) = 12.00 NUMBER OF PIPES = 1 ESTIMATED PIPE DIAMETER(INCH) _ PIPE-FLOW(CFS) = 1 .84 PIPE TRAVEL TIME(MIN. ) = 0 .30 Tc(MIN. ) = 7.80 59.00 = 560.00 FEET. LONGEST FLOWPATH FROM NODE 57.00 TO NODE 30 -FLOW-PROCESS-FROM-- ---- ------- ---- -----------9.----------------------- NODE5 00 TO NODE 59.00 IS CODE = 1 > >>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< TOTAL -____---- NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 TIME OF CONCENTRATION(MIN.) = 7.80 TIME RAINFALL INTENSITY(INCH/HR) = 5.14 TOTAL STREAM AREA(ACRES) _ PEAK FLOW RATE(CFS) AT CONFLUENCE I= 1.84 **************************************************************************** --FLOW-PROCESS FROM- -- IS CODE 21 NODE 60.00 TO NODE 59.00 = ----------- >>>>>RATIONAL METHOD INITIAL SUBARE---- A--------------------------------------- A ALYSIS««< - AN _ COMMERCIAL DEVELOPMENT RUNOFF COEFFI=C=I=E=N=T=================================== _______ ________________ SOIL CLASSIFICATION IS "D" •8500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 430.00 UPSTREAM ELEVATION = 115.00 DOWNSTREAM ELEVATION = ELEVATION DIFFERENCE = 103.50 URBAN SUBAREA OVERLAND TIME lOFSFLOW(MINUTES) _ *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH 6 723 DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.659 SUBAREA RUNOFF(CFS) _ TOTAL AREA(ACRES) = 3 .80 0.79 TOTAL RUNOFF(CFS) _ 3.80 **************************************************************************** FLOW PROCESS FROM NODE 59.00 TO NODE 59.00 IS CODE 1 ----------------- - --- --------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< ----------------- -->>>>>AND-COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 TIME OF CONCENTRATION(MIN.) = E' RAINFALL INTENSITY(INCH HR) = 6 72 TOTAL STREAM AREA(ACRES) = 79 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3 .80 ** CONFLUENCE DATA ** STREAM RUNOFF Tc NUMBER INTENSITY AREA 1 (CFS) (MIN.) (INCH/HOUR) AREA 1.84 7.80 5.140 2 3.80 6.72 0.41 5.659 0.79 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 5.47 6.72 2 5.659 5.29 7.80 5. 140 31 COMPUTED CONFLUENCE ESTIMATES 4ARE S FOLLOWS: 6 .72 PEAK FLOW RATE(CFS) = 20 TOTAL AREA(ACRES) = 1 57.00 TO NODE 59.00 = 560.00 FEET. LONGEST FLOWPATH FROM NODE ,r****,r*,►**61*00*ZS*CODE****31 FLOW PROCESS FROM NODE 59.00 TO NODE ----------------- »>COMPUTE PIPE-FLOW PUT R-ESTIMATED PIPESIZEU(NON PRESSURE-PRESSURE «<----------_ »>USING COMPUTE _= 103 30 DOWNSTREAM(FEET) = 102 .10 ELEVATION DATA: UP 120-00 MANNING'S N = 0.013 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 15.0 INCH PIPE 15.651 0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) _ ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.47 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) = 7.08 61.00 = 680.00 FEET. LONGEST FLOWPATH FROM NODE 57.00 TO NODE FLOW PROCESS FROM NODE 61.00 TO NODE 61 00 IS CODE >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<_-----'-_-_- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = ,48 _ RAINFALL INTENSITY(INCH/HR) = 1 5 5. TOTAL STREAM AREA(ACRES) = 5,47 PEAK FLOW RATE(CFS) AT CONFLUENCE _ FLOW PROCESS FROM NODE 62.00 TO NODE 63 00 IS CODE 21 -------------- --------------- ---- -- ------------------ METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) 430.00 INITIAL SUBAREA FLOW-LENGTH = UPSTREAM ELEVATION = 115.00 DOWNSTREAM ELEVATION = 103 .60 ELEVATION DIFFERENCE = 11.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 6.742 _ *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. :649 4 100 YEAR RAINFALL INTENSITY(?NCH /HOUR) _ SUBAREA RUNOFF(CFS) = 4 .75 TOTAL AREA(ACRES) = 0.99 TOTAL RUNOFF(CFS) _ 61* *IS*CODE****31 63 .00 TO NODE 00 --- - ------ FLOW PROCESS FROM NODE ------------------ >>>>USING COMPUTER-ESTIMATED PIPESIZEU (NON PRESSURE FLOW) «<<< »»>USING C 32 ELEVATION DATA UPSTREAM(FEET) = 103-60 DOWNSTREAM(FEET) = 102 FLOW LENGTH(FEET) = 10 DEPTH OF FLOW IN 12.0 INCH OPIPE SING'S N = 0.013 PIPE-FLOW VELOCITY(FEET/SEC.) = 10. 176 9 INCHES ESTIMATED PIPE DIAMETER(INCH) = 12.00 = 1 PIPE-FLOW(CFS) = 4.75 NUMBER OF PIPES PIPE TRAVEL TIME(MIN. ) = 0.05 Tc(MIN. ) 6.79 LONGEST FLOWPATH FROM NODE 62.00 TO NODE 61.00 460.00 FEET. FLOW PROCESS FROM NODE -----------------------------------------------61.00 NODE 61.00 IS CODE _ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««<--------------------- -->>>>>AND-COMPUTE-VARIOUS-CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2_____________________ CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 6.79 RAINFALL INTENSITY(INCH/HR) = 5.62 TOTAL STREAM AREA(ACRES) _ PEAK FLOW RATE(CFS) AT CONFLUENCE 9= 4.75 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CPS) AREA (MIN.) 1 (INCH/HOUR) (ACRE) 5. 2 7.08 5.475 1.20 4.75 75 6.79 5.622 0.99 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CPS) (MIN. ) (INCH/HOUR) 1 10.10 2.19 11.667 2 10.08 6.79 5.622 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 10.10 Tc(MIN.) 7.08 TOTAL AREA(ACRES) = 2. 19 LONGEST FLOWPATH FROM NODE 57.00 TO NODE 61.00 = 680.00 FEET. **************************************************************************** --FLOW-PROCESS-FROM NODE 61.00 TO NODE 56.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«< ------------ -->>>>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) = 102-10 DOWNSTREAM(FEET) 101.60 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 21.0 INCH OPIPE IS IN12.6NINCHES013 PIPE-FLOW VELOCITY(FEET/SEC. ) = 6.70 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 10.10 PIPE TRAVEL TIME(MIN. ) = 0.12 Tc(MIN. ) = 7.20 LONGEST FLOWPATH FROM NODE 57.00 TO NODE 56.00 730.00 FEET. 33 ***********************************************56*00*IS*CODE****11********** • -- 56.00 TO NODE FLOW PROCESS FROM NODE -------------- ----------------------- »>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY««< ** MAIN STREAM CONFLUENCE DATA ** AREA STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 10.10 7.20 5.414 57.00 TO NODE 56.00 = 730.00 FEET. LONGEST FLOWPATH FROM NODE ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 38.48 8.16 4.994 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 56.00 = 1240.00 FEET- LONGEST PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 45.60 7 .20 2 47.80 8.16 4 .994 COMPUTED CONFLUENCE ESTIMATES 80 E S FOLLOWS: 8.16 PEAK FLOW RATE(CFS) _ TOTAL AREA(ACRES) = 10.89 FLOW PROCESS FROM NODE 56.00 TO NODE 64.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE-FLOW) <<«<--_-____--- 101 60 DOWNSTREAM(FEET) = 99.70 ELEVATION DATA: UPSTREAM(FEET) (yADtNING'S N = 0.013 FLOW LENGTH(FEET) _ DEPTH OF FLOW IN 33 .0 INCH PIPE IS 9 735 .4 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) _ ESTIMATED PIPE DIAMETER(INCH) = 33 .00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 47.80 PIPE TRAVEL TIME(MIN. ) = 0.32 Tc( .) = 8.48 LONGEST FLOWPATH FROM NODE 21.00 TO O NODE 64.00 = 1425.00 FEET. N FLOW PROCESS FROM NODE 64 .00 TO NODE 64.00 IS CODE _ ------------------ -->>>>>DESIGNATE_INDEPENDENT-STREAM-FOR_CONFLUENCE««<-----____-_- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 8.48 RAINFALL INTENSITY(INCH/HR) .10.89 TOTAL STREAM AREA(ACRES) = 47.80 PEAK FLOW RATE(CFS) AT CONFLUENCE _ 34 FLOW PROCESS FROM NODE 65.00 TO NODE 66.00 IS CODE = 21 -------------- ___ --»»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<«< ------------- ---------------------------------------------------- COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = SOIL CLASSIFICATION IS "D" 8500 S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 170.00 UPSTREAM ELEVATION = 105.50 DOWNSTREAM ELEVATION = 101.50 ELEVATION DIFFERENCE = 4.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 4.411 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 1.40 TOTAL AREA(ACRES) = 0.27 TOTAL RUNOFF(CFS) 1.40 **************************************************************************** FLOW PROCESS FROM NODE 66.00 TO NODE 64.00 IS CODE = 31 --------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<«<____________ _->>>>>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) 101-50 DOWNSTREAM(FEET) = 101-20 FLOW LENGTH(FEET) O DEPTH OF FLOW IN 9.0 INCHPIPEISING'S N = 0.013 PIPE-FLOW VELOCITY(FEET/SEC. ) = 4.016.6 INCHES ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.40 PIPE TRAVEL TIME(MIN. ) = 0.12 Tc(MIN.) = 6.12 LONGEST FLOWPATH FROM NODE 65.00 TO NODE 64.00 200.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 64 .00 TO NODE 64.00 IS CODE = 1 »>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< -->>>>>AND-COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN. ) = 6.12 RAINFALL INTENSITY(INCH/HR) = 6.01 TOTAL STREAM AREA(ACRES) PEAK FLOW RATE(CFS) AT CONFLUENCE 7= 1.40 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) AREA (MIN. ) (INCH/HOUR) (ACRE) 1 47.80 8.48 2 4.873 10.89 1.40 6. 12 6.010 0.27 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 35 1 40.15 6 .12 6.010 2 48.93 8 .48 4 .873 COMPUTED CONFLUENCE ESTIMATES 9ARE AS (FOLLOWS: 8 .48 PEAK FLOW RATE(CFS) = 1.16 TOTAL AREA(ACRES) = 1 21.00 TO NODE 64.00 = 1425.00 FEET. LONGEST FLOWPATH FROM NODE END OF STUDY SUMMARY: 11.16 TC(MIN.) = 8.48 TOTAL AREA(ACRES) 48.93 ----- PEAK FLOW RATE(CFS) _ END OF RATIONAL METHOD ANALYSIS 1 8 1 C. Hydrology Area C } NoText 36 **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985, 1981 HYDROLOGY MANUAL (c) Copyright 1982-2000 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2000 License ID 1472 Analysis prepared by: Mayers & Associates Civil Engineering, Inc. 19 Spectrum Pointe Drive, Suite 609 Lake Forest, CA 92630 (949) 599-0870, (949) 599-0880 fax ************************** DESCRIPTION OF STUDY ************************** * • PLAZA @ ENCINITAS • 100-YR HYDROLOGY AREA C • FILE: PLAZAC.OUT ************************************************************************** FILE NAME: PLAZAC.100 TIME/DATE OF STUDY: 09:52 12/15/2000 -------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2 .600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL ,C" VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) _(FT)- (FT) - --(n) _ 1 30.0 20.0 0 018/0 018/0 020 0.67 2 .00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2 . (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE. * **************************************************************************** FLOW PROCESS FROM NODE 71.00 TO NODE 72 .00 IS CODE = 21 ------------------------------------ >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS—<< << COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" r . . S.C.S. CURVE NUMBER (AMC II) = 92 37 INITIAL SUBAREA FLOW-LENGTH = 160.00 UPSTREAM ELEVATION = 105.50 DOWNSTREAM ELEVATION = 102.50 ELEVATION DIFFERENCE = 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 4.616 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 1.14 TOTAL AREA(ACRES) = 0.22 TOTAL RUNOFF(CFS) = 1.14 --FLOW-PROCESS FROM NODE 72.00 TO NODE 73.00 IS CODE = 31 ---------------- __________________ >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< -->>»>USING-COMPUTER-ESTIMATED-PIPESIZE (NON-PRESSURE FLOW)<<<<< ELEVATION DATA: UPSTREAM(FEET) 102-50 DOWNSTREAM(FEET) 101.20 FLOW LENGTH(FEET) = 130.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 3 .86 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.14 PIPE TRAVEL TIME(MIN. ) = 0.56 Tc(MIN. ) = 6.56 LONGEST FLOWPATH FROM NODE 71.00 TO NODE 73.00 = 290.00 FEET. --FLOW- -------------------------------- PROCESS FROM NODE 73 .00 TO NODE 73 .00 IS CODE = 1 ------------ ____ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< -_____---- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN. ) = 6.56 RAINFALL INTENSITY(INCH/HR) = 5.75 TOTAL STREAM AREA(ACRES) = 0.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.14 **************************************************************************** --FLOW PROCESS FROM NODE 74.00 TO NODE 75.00 IS CODE = 21 ---------- -------------------------------------- »>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ------------------- COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL SUBAREA FLOW-LENGTH = 92.00 UPSTREAM ELEVATION = 105.00 DOWNSTREAM ELEVATION = 104.50 ELEVATION DIFFERENCE = 0.50 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 5.289 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CFS) = 0.41 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.41 FLOW PROCESS FROM NODE 75.00 TO NODE 73 .00 IS CODE = 31 38 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA-­< >>>>>USING COMPUTER-ESTIMATED PIPESIZE-(NON-PRESSURE_FLOW)««<-------__-_ ELEVATION DATA: UPSTREAM(FEET) = 104 .50 DOWNSTREAM(FEET) = 104.40 FLOW LENGTH(FEET) = 10.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 3.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC. ) = 3 .04 ESTIMATED PIPE DIAMETER(INCH) = 8.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.41 PIPE TRAVEL TIME(MIN. ) = 0.05 Tc(MIN.) = 6.05 LONGEST FLOWPATH FROM NODE 74 .00 TO NODE 73.00 = 102.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 73 .00 TO NODE 73 .00 IS CODE = 1 ----------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE«<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<«< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.05 RAINFALL INTENSITY(INCH/HR) = 6.05 TOTAL STREAM AREA(ACRES) = 0.08 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.41 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA f NUMBER (CFS) (MIN. ) (INCH/HOUR) (ACRE) 1 1.14 6.56 5.749 0.22 2 0.41 6.05 6.055 0.08 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN. ) (INCH/HOUR) 1 1.50 6.05 6.055 2 1.53 6.56 5.749 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.53 Tc (MIN.) = 6.56 TOTAL AREA(ACRES) = 0.30 LONGEST FLOWPATH FROM NODE 71.00 TO NODE 73.00 = 290.00 FEET. END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.30 TC(MIN. ) = 6.56 A( PEAK FLOW RATE(CFS) = 1.53 END OF RATIONAL METHOD ANALYSIS 1 39 35 VII. CATCH BASIN, RIP-RAP & HYDRAULIC CALCULATIONS NoText J ERS & ASSOCIATES Civil Engineering, Inc. PLANNING•ENGINEERIN(;•SURNTNING Catch Basin Type B Inlet Calcs for Plaza at Encinitas Ranch Phase II Given Q/L= 1.28(per Chart 1-103.6C) Inlet No. Q at Inlet Req. Len. Len. Pro. 8 2.1 1.64 4.00 16 0.8 0.63 4.00 19 1.5 1.17 4.00 20 0.8 0.63 4.00 22 11.3 8.83 9.00 (4'basin + 5'wing) 25 4.8 3.75 8.00 (2 4'basins) 1 NoText CHART 1-103.6C 1.0 2 t0 S g 4 3 10 : S 4 u 2 9 Z 3 .7 ,.. g 1.5 I.7 e> �. o 0-01 x ~ v / z = 0 +p a , z .3 g z o O 9 1000' •� c 8 O CD N = _ 8 z s = z E W J 4 = .7 ui CL ° y.. moo,`' 3 .6 4 '- `� 2 c • = N h- .S c� Z CL/ } Dg i .4 3 d V D6 W .0s z z 04 tea. .3 2 D3 2 ..2 `..�.f- � �oe�� NYr���ion (01 SECTION ELEVATION SHT. N0. REV. CITY OF SAN DIEGO DESIGN GUIDE NOMOGRAM - CAPACITY , CURB INLET AT SAG NoText �-]rc�� �� e4ey ,o e ti Al A I L Y V a s 7' S 0 0 S 2 W 1 t 0.8 0 = 0.6 CURB °s T - 0.3 Q• ' � 1 r--- L --� / 0 •at�ut Ot ING ARU G4 � !$� 02 -4F A., ` 1. 2w+ L. (WITH CURB) 1 .2(1/+6) (WITHOUT CURB) O.t = 3 + 0 a a t 0 20 30 40 50 60 1 OtiQL a (FT 3/=1 GRATE INLET CAPACITY IN SUMP CONDMONS (Table assumes no clogging.) 5-51 Figure 5-18 NoText Rip — Rap Calculation To determine the class of the rip-rap the velocity of the loconsidered. The velocity is compared to a table from the Los Angeles County Hydraulic Manual to obtain the required rock weight. This weight is converted manual t a class by means of table 200-1.6(A) in the Standard Specifications tabulated below. Line Velocity Class E'ly Outlet to Encinitas Creek 11.34 5001b N'ly Outlet to Graded Channel 4.2 501b / Facing NoText Outlet Into Encinitas Creek(for Rip-Rap Sizing) Worksheet for Rectangular Channel ? Project Description Worksheet Rectangular Channel-1 Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.015 Slope 0.040000 ft/ft Bottom Width 9.00 ft Discharge 48.90 CIS Results Depth 0.48 ft Flow Area 4.3 ft' Wetted Perimeter 9.96 ft Top Width 9.00 ft Critical Depth 0.97 ft Critical Slope 0.004296 ft/ft Velocity 11.34 fUs Velocity Head 2.00 ft Specific Energy 2.48 ft Froude Number 2.89 _. Flow Type Supercritical Project Engineer:Martin Miller Inc. FlowMaster v6.1 [6141(] Mayers&Associates Civil Engineering, Page 1 of 1 untitled.fm2 04/02/01 06:50:37 PM ®Haestad Methods.Inc. 37 Brookside Road Waterbury,CT 06708 USA (203)755-1 NoText Outlet Into Graded Channel (for Rip-Rap Sizing) Worksheet for Rectangular Channel Project Description Worksheet Rectangular Channel-1 Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.015 Slope 0.020000 ft/ft Bottom Width 4.50 ft Discharge 4.30 cis Results Depth 0.21 ft Flow Area 0.9 W Wetted Perimeter 4.91 ft Top Width 4.50 ft Critical Depth 0.31 ft Critical Slope 0.005770 ft/ft Velocity 4.62 ft/s Velocity Head 0.33 ft Specific Energy 0.54 ft Froude Number 1.79 Flow Type Supercritical Project Engineer:Martin Miller FlowMaster v6.1 (614k] Mayers&Associates Civil Engineering,Inc. 755-1666 Page 1 of 1 untitled.fm2 Inc. 37 Brookside Road Waterbury.CT 06708 USA (203) 04/02/01 07:03:50 PM O Haestad Methods. NoText rdUC r->.> LEVEE CRITERIA Material and Structural Requirements Rip-Rap Levees (2:1 max. side slopes) J (Ungrouted) Levee Thickness - T filter Rock Size Curved Reach Thickness Velocities (D50 Size) Straight Reach 20-inch 6-inch 0 - 7 f.p.s. 50 lb. (10") 15-inch 7 - 9 f.p.s. 100 lb. (12"} 18-inch 24-inch 6-inch 10 f.p.s. 150 lb. (15") 23-inch 30-inch 9-inch 11 f.p.s. 300 lb. (18") 27-inch 36-inch 9-inch P• 42-inch 9-inch 12 f.p.s. 1/4-ton (21") 32-inch 13 f.p.s. 1/2-ton (27") 41-inch 54-inch 12-inch 13 - 15 f-P•s- 1-ton (34") 51-inch 68-inch 12-inch 16 - 175 f.p.s. 2-ton (43") 65-inch 86-inch 12-in, j 4-ton (5411) 81-inch 108-inch 12-inch 18 - 20 f.p.s. (Grouted) Can be used only with special District approval 1-ton (3410) 51-inch 68-inch 12-inch 16 - 20 f.p.s- Gabion Levees (2:1 side slopes) Levee Thickness Wire Gage (Straight or ron Length Velocities Curved Reach) Rockfill of Baskets AP 0 - 7 f.p.s. 12-inch Baskets 4" 8" 12 ga. 12 feet - g 11 ga. 18 feet 8 - 10 f.p.s. 18-inch Baskets 4" �� 11 - 15 f.p.s. 18-inch Baskets =8to a. 21 feet Gabion levees not permitted where velocities exceed 15 f.p.s. NoText 86 200.1.6.1 1I 100-1.6.3 8T Cobblestone shall not be used on slopes steeper than 1 vertical I Contractor shall notify the Agencyrio coca e.OTohensure the to 2 horizontal. Flat or elongated shapes will not be accepted source of stone at least 60 days p unless the thickness of the individual pieces is at least one- ( required quality,stone may be subject to petrographic analysis ' or X-ray diffraction. third of the length. i j Unless otherwise designated, for application greater than The material shall conform to the following requirements: 180 tonnes(200 tons), design parameters including filter, TABLE 200-1.6(B) foundation, and gradation with supporting calculations by a Test Motttod No. Requirements registered Civil Engineer, shall be submitted to the Engineer T4,9l —��--- ASTM C 127 2.50 Min. for approval. Apparent Specific Gravity Absorption' Calif.206 4.2%Max. Stone shall be sound, durable, hard, resistant to abrasion Calif.229 52 Min. at. free from laminations, weak cleavage planes, and the Durability' ASTM C 131 459/6 Max. unaesirable effects of weathering. It shall be of such character percentage Wear that it will not disintegrate from the action of air, water, or 1. Based on the formula below,absorption may exceed 4.2 percent if the Durability the conditions to be met in handling and placing. All material Absorption Ratio(DAR)is treater that 10.Durability may be less that 52 if DAR is shall be clean and free from deleterious impurities, including treater than 20 Coarse Durability Index alkali,earth,clay,refuse,and adherent coatings. ; DAR=:�t Absorption + 1 200-1.6.2 Grading Requirements. Stone for riprap shall I 200-2 UNTREATED BASE MATERIALS be designated by class and conform to the following gradations: 200-2.1 General. Materials for use as untreated base or TABLE 200-1.6(A) subbase shall be classified in the order of preference as pereemmmse Larger Than follows: 41b) (`+0010) 170 kg(37S lb► 90 kg(Ugh:) 3$kg(Facing) Crashed Aggregate Base or Crushed Stag Base a s Class as®e Bass i Crushed Miscellaneous Base ;450 5 processed Miscellaneous Base 320 — 0-10 225 kg(500 lb) 50.100 so-so 0-5 Select Subbase 90 k9(200 m) — e5-100 50.100 0-5 When base material without further qualification is 35 kg p5 m) 90-100 95-100 90-100 50-100 specified,the Contractor shall supp ossification of base 10 kg(25 th) 95-100 95-100 90-100 or crushed slag base. When a particular material is specified.the Contractor may substitute listed higher 1 kg(22 m) 5-5-100 classification, following the order of preference listed above, Note:The amount of material smaller than the smallest sirs shown in glee table for 1 any eLas,ball not excced the pacenuge,limit as determined on a weight basis.Co m. of base material for that specified All processing or blending p1�ce with'"petcWAW limits shown to the table for an ether sites of the tndividuaf Of materials to meet the grading requirement will be plea of any else or took:lope protection shall be demmined by ghee total of of thr performed at the plant or source.The materials shall Compact rtmnber of individual pieces Barger these the specified size eo opared of iadiv'tduol pieces law than the smallest sirs listed in the table for that class. t0 a hard. firm, unyielding surface and shall [amain Sta e 200-1.6.3 Quality Requirements. Visual evaluation of when saturated with water. the quarry, including examination of blast samples and diamond drill Core samples,suitable tests and service records may be used to determine the acceptability of the stone. The NoText i N z o a O O m 0 0 �� o Ed Q 4 Q o a q a ri o Q a a o a r, o a ,4 o a U H a 0 g o �4 0 U) o 1 H (4 N El) x 1-3 o x a o Hz q 3 0 O H N q � A F n o H a r� o a H m N U I a o .� N O� H .7 ON H W m .0 U O ro 14 ON a .a o m w m a u -.i 4 x Ln H d' U C7 • W W r a v4 u x m W. a o row 3 rt ,-4 q � U -4 .i Q raa a, Of ON y� a -- x E- z N + N O U 0 H O 14 En a U m N NoText N x N ag W o m a a o L) .a o W O H 3 o L) H U o F W W W F C7 waQ aQ ° N V to 3 a H Q M U a, m N F N W Q - N N O F N U OD a � O Q x U N rn Ln � u rn a Q xu co m vt } H W O ra, w m z H O { ON Q E. 0 D. - o, 0 F N t a > w Hv a 1 > w ro Q N N O a a F N Ln w m o H H o H w w to - o ,q n U 0 13 o a w F F w m z y U u H N .�1 Q W Z ry H � a W a z H W x rt °k' 0 H H W a £ Qz 7 10 va H Q m H W CeU x v u z u O N z 0 1 N awn az NoText x w E a v Q m a 0 R 0 A s A a W x F H z w or E- p0 a W Hx wz ow hz uaw .4 .1 F? xM E I CO oz > 00 EwN azw ca 0W0 C Cl) aa °xxmZ U Q h F a 0 U) QD A WU) a Hxwx E. O FFEE x3 F-4 V)0 pzz Ug) FcnO [0� W W W Q it HUU F En izir" H nOaExx 0 0 0 —A W H E F aaaaa 06UFF Az 00066mo .: wzFEF � tiaaamm w hao aaHw £Uu ai a a a WA E- 0 w aFEF AOrnmzz33uzz33, x5C mouu ��F7 �i HHOO Q AFHxOxH .H7 W W £ £ £ E W N w U W ww000Qxa 3 p aix wwW wEE.. w .O3 >>4 uwr C0w = x H N w W W O W Q Q NQ F Q FQ N W W W W 0: W. x x .. OOr.. mw W w m xx AE E+ FFF •+ zzzwQa3 H H H � 3 .0 O w w N a w W w wwwa WGaG. EEF It U u u £ 0 0 Q Q Q H � � � u x x w H H H N AAEFE+ 11 El u) v) wWaa. Qzzz N -H H H x W w U H M H N A A A F A A Q a E E- 5 w w � .-iN zh 'io�o WA ® 7 0 >> xxE.. AAV� xx W NoText 14 M M M M M M M M M M M M M M M M M en M M M M m ri r♦ rl r-1 ri .-1 ri r/ rd rl ra rl r-1 r+ r-1 11 11 ri rl rl rl N Z o 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v o pa a m 0 0 0 0 0 0 0 0 0 0 o O 0 C. 0 0 0 0 0 O o 0 0 0 \\ o O O O O O o O o O o 0 0 0 0 0 0 0 0 0 0 0 0 0 O a h O N O O O a O d' a 0 0 0 o O 0 0 m o 0 o o o o o 0 0 0 0 0 0 0 0 0 WI w Q m 0 u, o 0 0 o ui vi o 0 0 0 0 0 0 o rn o 0 0 0 0 0 0 m r m m r w r o m o 0 o In o o M o o 0 0 0 0 0 0 0 ° = r m 14 a rn a 0 O O O O O O N O O O O O O O O 0 0 O O O o O 0 0 0 o O 0 ro o O 0 O 0 0 0 M r m � N ° o o a -4 ri N N N N to ri M C U1 %D r m m O rl N M d' UI to O O a) N O O O O N N a 14 ri H 11 ri ra U 0 0 0 0 0 0 0 0 0 0 0 0 0 o M a o o U1 �D m 14 ° a r m o o 0 o o 0 o O O o O o o o 0 o o o o o o o o o 0 0 0 0 0 0 o O o 0 0 0 0 0 0 0 0 0 0 0 0 O 0 O O O O O O O 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o O o 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 1 W H ri rd r♦ H rl r-1 r-1 H ri ri r-1 ri r-I N N .-1 ri N N N N r-1 rl A O O O O O O O O O >- O O O O O O Q 14 ry O O O O O O O O O O O O O O O O O O O O O O O O 17 O O O O O O O O O O O O O O O O O O O O O O O O Z p, x O O O O O o O O O O O O O O O O O O O O O O O O Hz m M M M M M M M M M M M M M M ra ri M M � � •-� '"1 rl a S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O q �D �o �n �D O o o O m m m m m m m m a v m m m m m m M M M M M M M M �-1 rd e-/ .� .-1 ri rl N N r-i r'1 '"1 O O O O O O O O O O O O O O O O O O O O O O CD O p [�i H 0 0 0 0 0 0 0 0 0 O 0 0 0 0 O O 0 0 0 0 O o 0 0 N , N 0 0 0 0 0 CC 0 C 0 0 0 C 0 0 0 0 0 0 0 0 0 ° ° Q F m QNa U (y O O O O N r♦ O O O O O O O O O O O O N v O m O d' N a M N m O r-1 %D %D U1 r N r V O M Ui M m m m O ra v ut m ID r r �D M m CO m r r-1 lD r H (u m m m m ON m m 0 o C> H ri r-4 r-4 m m m m m m 14 rl 14 F U q o 0 0 0 o m o r o 0 0 0 0 0 0 0 0 o m o o r o ,y ,� M a r M M ui In r M m m ri m r M N m o N N o 0. 7 Orn r ON a Ui co m m 0 H v ui ui %D l� m ra m W vi r� N r O OD m m m m m m m 0 O 0 O 0 O O m m m m m m 0 H 14 14 r-4 14 li q y o r ra m O m m O o r N ri m M 0 o O o a 0 o m c m m ui u o 0 0 e o 0 �D In o U C7 (+ z O m N ri V� M m e O N O O r1 r O N ra a N Ul N M m %D m .-1 Ul m Ln r♦ M M O O m N O N V m m r N V1 rl rl N r-1 r'1 H r'1 aro d m m u1 M N 1n M M m m V1 m r m Ul r♦ M Ui m N r♦ m 'D m O ro w 3 N O1 rj m r m r M N .-1 �D m m m r a N O r-1 m t!1 ri H v M %D C ro r-1 v M N N N N r•1 r-1 r/ cC a -r, QJ £ co as m Ul M N U1 M M m m Uf m r m U1 UI m M N m w m m r C', r M N r-4 w m m m r V� N o r♦ .O-1 U1 .-1 H' M V v M N N N N r-1 E. E. F W N M d' U1 r m m O 4 C13 ri H ri ri H N N N N N N 0 En H Q a w0 (1 m N N N N N N N N N N N N N N N N N N N N N N NoText 1 N z O O O � o a� OD O O O O O O 0 U N 0 0 0 a o W Q Q a o 0 0 x p a M o 0 0 Q .4 0 0 0 Q v o 0 0 a C, 0 0 0 a H 0 0 0 a U o o m a H 14 0 0 O g O o 0 94 0 0 0 0 0 0 (a� N N N O O O O Z H z p p 3 O O o O F W p m m m Q3 0 0 0 p F 0 0 . N a o 0 0 (y O N O N �D O 1I1 a m %D OD H w 0 o H H x o O O o brl r N r 0. . a r N m el y W O O L .A q x o o a .,4 zr v N N o m %D 3 bw Q N o a a .+ S m m y (r E N O •1' U z N ID r m O W U a N N N o m a ix w 4 p N N N NoText 1 w N y Ll ar PwG h 2 x O m x x x ° o 0 0 ° ° 0 0 0 0 0 0 �� p o 0 0 0 o p p o . C. 0 O W ° 1 0 0 0 0 0 0 O O O O o ° ° U o 0 M 0 ° C ° N O O O O o 0 ko O o p O r O ° 0 O m m o �•, U o 0 0 ° ° ° •-1 v m In � o a ri N 14 �n en � � ,n � o Ln N (y m N O N - N O Q O ri N r-1 rl rl 14 14 N N N O r r m m O1 In .i %o M c .-1 14 i O �O N N m O N O M mm N N r, m m O r-1 r♦ N N E.r N N en N 14 N r4 N 14 11 C] W 11 II 11 11 C �] O b .-1 tD N CD tD m !j l0 r1 O r r w O N N N U N I!1 a. N Q r-1 �O V ID A A A r m o Q c 0 0 Q o N m %D 0 0 o o ° x m m m m m 0 r+ 1 a ri 14 1 ra ri m o '^ H m �o N m c � �o ' m ,.{ r.., m rl O w � N O m O O m N � m UI o O m m m rl N In m m rNI In r b p p .-1 N O O O O o O m m m ,.., rl .-1 r1 .-1 r-1 11 u i n It 0 o p o,•. aN a M mh N RI o r-1 a In ut �o r r m A Iv CID W W m rn A m A °� m Q m 14 r4 4a � 14 r-I '+ '� A 2 N o p o O �o H °: u°i m ,°., a°D In 1 m Q o 0 0 o m m 0 co N 'r? IInn r • o a �^ m a r r M In N r m m m rm•1 r1 m m m m m 0 °i ° °-1 m £ w m m 14 11 o II 11 0 11 m Ln ,� m aT N h U) N a m h UI M h �G a a N r-1 0 W > W r m r a �o W It W G W m v QIn v, o r �o o In r w M m A r•I U] O m r ar m m m ro ut N r♦ O ° rl a W 0 M m a ro r N N > r Ln LA r-I N 14 r„ `° r Q N ri N m N m N N ID O r-1 N r•1 V N1 m O r-1 O m N o Lo l0 O r O N O 11 a O %D to N 0 O W [Fir N INn N 11 M 11 H r1 rl u N rl r 11 O O O o m O�+ ° O O p�. p p p .-. O O O O O O h ra F p H m o o h p y o o o% 0 0 o X o n X X X p� a r� r� o �+ °o 0 o a o pr F N w H F a a O a a a o a a u) 0 w O a w w p m1 m 2 ° ° ,n In M m M M O �c ro U m U1 r-I m rl r-1 N rt r, A .� -.� U H N N ° O 11 z N N 11 N N r♦ .-1 rl II r-1 ri rl II r-1 r-1 II r1 O O II O a z� .oz .7 N m z r z m N N z N a L ? � ,°n z M m I'D%N Q X W T-r H W m m% r % N N I"1 X X 0 ,.� X rd o o ° aWW ° L O W 9 rl r/ o ri .� r-1 r"'1 � N Ur N x ro ay r m O N 3 N Q/ 3 T. U O O O O r O O O O O O O 1f1 O O r-1 O O O dr O IU-I rl m ro .a V N 0 o p 14 m m m m m In m Q cc ., a a•� 0 z ? `o a �D e o M 0 0 r 'i 14 ,� � I .i � V r„ M In r1 11 p 11 aF E A u Un n rl N In n m m m n m N X m r m X A X m X m X r r+l N X r♦ � m X m m r V N o E., •• a d w a a F M N N N N e-1 W V O -4 N M r U a W M Z -1 N v ut %D r m m �{ .� r1 '� w o a NoText 1 M M M M M 14 14 N z O O O O O r1 rl O O O O O v O a� a m O 0 0 0 d \ 0 0 0 0 0 U r+ y a v v o 0 Ow o a o o O o 0 waa Q aoa M O O O o O in o 0 � m v d o 0 0 0 0 a O O O a M Ln o 0 a U i o 0 o M a 0 0 0 0 0 0 0 0 0 0 0 0 0 o O 0 0 o O o (� rl rl rl N N N O O O a Q O o 0 0 0 0 0 0 a 0 0 0 0 0 Hz m M M M a F� 3 O o 0 0 0 O F y q m m m m m H N 3 0 0 0 o O o \ 0 0 0 0 0 0 M a o 0 0 0 o O rt F o N U � b W N N N O N . H a Of 01 OD H 0 p O O O 14 4 4 14 j: U O O O O O b14 %D m M O m a .7 N ko r of %D U) o O o o O A f+ H 11 ri I L O N -4 m Ln O O a% zm r+ r v Ln 14 a1 Ln M N L a aO, M m Ln u� Ln p A N h v N N N r-4 r/.i ' y £ of M m Ln 1n 14 N U z N 14 N M v to W p w U H aW m N N N N N a 4 U NoText 1 a N �a( N y y c o w A e o a x 0 x x 0 W o r4 3 ,� °. O O O p H U o 0 E. 4' ro m U o 0 m H Q ° ° E) -4 Ln rn c� Ul N H �' 1O ' o ° Ll w c o 0 a N N m m o In �n o m 0 m ,4 In p o ° O 04 o .i ° II 11 11 N U m M y N m lD Q `� a m m A x U r r O m Q m o 0 0 0 0 14 4 H 1.1 U! C. 14 U m m 0 N O W 14 r- N N r m m C7 ° O Q x u H It I u n N r N -! y N Im aw to r � m mo oq O vi Ln In 0 H O O In O O m H m M O O . p O Q a W N %D r m o W O O 0 rl O n II n H 1n N In o � my w v a w r1 m fn w +' o r r rl N m (IN 111 W N M 7 W N N N m N O b N N m N O w O 0 11 0 11 0 p O W F r°i 0 C O .� O °, y H y W y y p `. 0 o X ° % C; n �C n E. a' 0 f. H W pQ. c QLL * N a a` � sC % %o ° m z ° v O cq L 0 m cn u Ln In w H O z O o n o n O n II U m g w z p W rl to In— In K '^• >C V7 L Cl W a+ 0 O X 0 X p ° X Id w7 o U ° 3 N w 3 z U o 0 0 0 0 0 0 0 0 u ° rt ri v H O ° O a o f ga z Z) m m m m 'm'I H 4 14 •�-1 W F £ u• u n n C] II O rl m N ui x x x H .. a d w x V N X N X N N uz � U a W rwz+ 0 14 N r1 lv `,� a o a NoText a w F a U Q CI a 0 0 0 a w x E- 0 H C1 a w w H z p, hZa U Wn w H aaH aWE E- W E-WEp �' 0z ZzH �oo H W Q z W W U W W x oao �a C a u a `n . w6 E-4 r3 aa0 El) W NW Hxx E H F H H H A W Q w U Q Q x x � WE°, m00" axWxo Q W 0E. r) u 333 FNWaQ E. Z Z a O H W W H H H ]O a E x x 0 0 0 "0 W Ha E E D4 M oOOaoWaa wg �F IR F�[ Egy� n � a a py; m Q W W R H H U W to V U a a H g U U ar1H °aoo v, xaa � x 1, "pp pE; w a -::) wnxx �+ Qwh �) oo9RRwwr42: HH E+ F000xx f] L1C1FFE- 0O4UQ ? W W E S E W W 3 w w o O O Q U W W 0 0' wwaaa a a w w w U W W 0 w x x o EFHP4m4 � H. rFj O W W w W U' W V E- W Q x x F z Z Z W Q Q 3 F F rl pz Qz H H H u 3 3 a W W W w a W W W E F F o UUy U OOtnUQjU o Htv7yZ uxx W HHH E. FF g FpgqA cU UI m W a a Q Z Z Z N H H H = W W U H H H N G1 in 0 E Cl O 00 P. E. E. Z 7 h h Y7 O Tiro zhho�oQw � � w > % X W g q cn x x x NoText Celebrating Ao y `= Leighton and Associates 1961 - 2001 GEOTECHNICAL CONSULTANTS AG �� UPDATE GEOTECHNICAL REPORT, EXPO DESIGN CENTER, ENCINITAS RANCH, TM 94-066, ENCINITAS,CALIFORNIA May 7,2001 Project No. 940028-027 Prepared For: Encinitas Town Center Associates II, LLC 707 Wilshire Boulevard, Suite 3036 Los Angeles,California 90017 ' 3934 Murphy Canyon Road, #6205, San Diego, CA 92123-4425 (858) 292-8030 - FAX (858) 292-0771 - www.leightongeo.com Ge�brattng�o Leighton and Associates 1961 2001 GEOTECHNICAL CONSULTANTS May 7,2001 ` Project No.940028-027 To: Encinitas Town Center Associates II,LLC 707 Wilshire Boulevard,Suite 3036 Los Angeles,Califomia90017 Attention: Mr.Sandy Kopelow Subject: Update Geotechnical Report, Expo Design Center, Encinitas Ranch, TM 94-066, Encinitas,California I In accordance with your request and authorization,we have prepared an updated geotechnical report for the proposed Expo Design Center project (formerly Encinitas Town Center Plaza). This report provides a summary of our updated geotechnical conclusions and recommendations relative to the current site development plans. This report highlights the significant geotechnical constraints on the site and provides preliminary geotechnical recommendations. Based on the results of our geotechnical analysis,the proposed development of the site is considered feasible from a geotechnical standpoint provided the recommendations summarized in this report are implemented during grading and construction. If you have any questions regarding our report,please contact this office.We appreciate this o be of service. 0!O R. Respectfully submitted, No.1349 r • CERTIFIED —' LEIGHTON AND ASSOCIATES,INC. ENGINEERING pFESSI GEOLOGIST CO(ONq`Fy 9OFCALIF���`� - CD - No.54033 rn Sean o,JRCE 5 Exp. 12/31/03 4033 �o Michael R. Ste EG 1349 Director of Engineering * Vice President/Directorof Geology clvl1- Distribution: (1) Addressee �OF CA1.\FAQ (1) Encinitas Town Center Associates II,Attention:Mr.Larry Dodd (1) Perkowitz Ruth Architect,Attention: Mr.Rueben Gonzales (2) Greensburg Farrow Architects: Attention: Ms Elisabeth Young (2) Mayer and Associates,Attention: Mr.Dru Mayer 3934 Murphy Canyon Road, #13205, San Diego, CA 92123-4425 (858) 292-8030 • FAX (858) 292-0771 • www.leightongeo.com 940028-027 TABLE OF CONTENTS Section Page 1.0 INTRODUCTION......................................................................................................................................................1 2.0 PROJECT DESCRIPTION.......................................................................................................................................3 2.1 SITE DESCRIPTION AND HISTORY...........................................................................................................................3 2.2 PROPOSED DEVELOPMENT.....................................................................................................................................3 3.0 FIELD INVESTIGATION AND LABORATORY TESTING.................................................................................4 3.1 FIELD INVESTIGATION BY LEIGHTON.....................................................................................................................4 3.2 FIELD INVESTIGATION BY OTHERS.........................................................................................................................5 3.3 LABORATORY TESTING.........................................................................................................................................5 4.0 SUMMARY OF GEOTECHNICAL FINDINGS.....................................................................................................6 4.1 REGIONAL GEOLOGY.............................................................................................................................................6 4.2 SITE GEOLOGY......................................................................................................................................................6 4.2.1 Artificial Fill(Map Symbol—Af and Afo)..................................................................................................... 6 4.2.2 Topsoil(Unmapped).................................................................................................................................... 6 4.2.3 Quaternary Slope Wash(Map Symbol—Qsw)............................................................................................. 7 4.2.4 Torrey Sandstone Formation(Map Symbol-Tt).......................................................................................... 7 4.2.5 Delmar Formation(Map Symbol-Td).......................................................................................................... 7 4.3 GROUNDWATER AND SURFACE WATER.................................................................................................................8 4.4 FAULTING..............................................................................................................................................................8 4.5 SEISMICITY............................................................................................................................................................9 4.5.1 Shallow Ground Rupture........................................................................................................................... 10 4.5.2 Liquefaction................................................................................................................................................ 10 4.5.3 Dynamic Settlement................................................................................................................................... 11 4.5.4 Lateral Spreading....................................................................................................................................... 11 5.0 CONCLUSIONS AND RECOMMENDATIONS...................................................................................................12 5.1 CONCLUSIONS AND RECOMMENDATIONS............................................................................................................. 12 5.2 EARTHWORK............................................................................................................. 5.2.1 Site Preparation.......................................................................................................................................... 12 5.2.2 Removals and Recompaction...................................................................................................................... 12 5.2.3 StructuralFill............................................................................................................................................. 13 5.2.4 Transition Lots or Steeply-DippingBedrock Areas..................................................................................... 13 5.2.5 Utility Trenches.......................................................................................................................................... 13 5.3 SLOPE STABILITY................................................................................................................................................ 14 5.3.1 Fill Slope Stability...................................................................................................................................... 14 5.3.2 Stability Fill Back Cuts............................................................................................................................... 14 5.3.3 SurficialSlope Stability............................................................................................................................... 15 5.3.4 Slope Face Compaction and Finishing....................................................................................................... 15 5.4.5 Slope Landscaping and Drainage............................................................................................................... 16 Mum 940028-027 TABLE OF CONTENTS(CONTINUED) Section Pam 5.5 CONTROL OF GROUNDWATER AND SURFACE WATER.......................................................................................... 16 5.6 FOUNDATION DESIGN-COMMERCIAL STRUCTURES............................................................................................. 16 5.7 FLOOR SLAB DESIGN.......................................................................................................................................... 16 5.8 FOOTING SETBACK.............................................................................................................................................. 17 5.9 ANTICIPATED SETTLEMENT................................................................................................................................. 17 5.10 LATERAL EARTH PRESSURES AND RESISTANCE................................................................................................... 18 5.11 SEGMENTAL RETAINING WALL DESIGN.............................................................................................................. 19 5.12 GEOCHEMICAL ISSUES........................................................................................................................................ 19 5.12.1 Concrete..................................................................................................................................................... 19 5.12.2 Metallic Corrosion......................................................................................................................................20 6.0 PAVEMENT SECTION DESIGN...........................................................................................................................21 6.1 TRAFFIC INDEX...................................................................................................................................................21 6.2 ASPHALT CONCRETE AND CRUSHED AGGREGATE BASE SECTIONS......................................................................21 6.3 ALTERNATIVE WITH SUBBASE LAYER.................................................................................................................22 6.4 PAVEMENT MATERIALS AND GRADING RECOMMENDATIONS...............................................................................23 7.0 GEOTECHNICAL REVIEW..................................................................................................................................24 7.1 PLANS AND SPECIFICATIONS................................................................................................................................24 7.2 CONSTRUCTION REVIEW.....................................................................................................................................24 8.0 LIMITATIONS........................................................................................................................................................25 FIGURES FIGURE I -SITE LOCATION MAP-PAGE 2 FIGURE 2-CROSS-SECTION A-A' AND B-B' -REAR OF TEXT FIGURE 3 -CROSS-SECTION C-C' AND D-D' -REAR OF TEXT FIGURE 4-RETAINING WALL DRAINAGE DETAIL-REAR OF TEXT TABLE TABLE 1 - SEISMIC PARAMETERS FOR ACTIVE FAULTS-PAGE 9 TABLE 2-DYNAMIC SETTLEMENT RESULTS-PAGE 1 1 TABLE 3 -EQUIVALENT FLUID WEIGHT-PAGE 18 TABLE 4-EQUIVALENT AXLE-LOAD TO TRAFFIC INDEX CONVERSION-PAGE 21 TABLE 5 -ASPHALT CONCRETE AND AGGREGATE BASE PAVEMENT SECTION-PAGE 22 TABLE 6-ASPHALT CONCRETE AND AGGREGATE BASE OVER GRANULAR SUBBASE PAVEMENT SECTION-PAGE 22 PLATE PLATE I -GEOTECHNICAL MAP-IN POCKET 940028-027 TABLE OF CONTENTS(Continued) APPENDICES APPENDIX A-REFERENCES APPENDIX B-EXPLORATORY LOGS APPENDIX C-LABORATORY DATA ANALYSIS APPENDIX D-GENERAL EARTHWORK AND GRADING SPECIFICATIONS APPENDIX E-SLOPE STABILITY -iii- _�� 6 940028-027 1.0 INTRODUCTION 6 This report has been prepared in accordance with your request and presents an updated geotechnical review 6 for the Expo Design Center project located in Encinitas,California. The intent of our geotechnical review was to develop geotechnical conclusions and recommendations relative to the revised site development layout to accommodate the Expo Design Center. Specifically,our scope of services included the following: 6 • Review of referenced reports and maps(Appendix A). 6 • Site reconnaissance and geologic mapping of current site conditions. • Preparation of a Geotechnical Map(Plate 1)reflecting site geology,previous boring locations,and both existing and proposed grades. • Geotechnical evaluation of the field and laboratory data generated during the recent and previous investigations with regard to the proposed development. A compilation of the exploratory logs is presented in Appendix B. A compilation of the laboratory test results is presented in Appendix C. • Preparation of this report presenting the results of our findings,conclusions,and geotechnical design and construction recommendations for the proposed Expo Design Center development. t ■ �PIRfNEOS / _ F OQ n O� v u.i N RfPpS O U > z cqG GP9 �SGE GO � n W O � � �9 m Z Q GA `-v' \p0 O � J GPq D pARC !� o0c CL Q- � p o0[ GAVIOTA TT_ L t--,I 5EG0 1A L � O MISION ESTANCIA O ugi L �9 IERRA V15TA 92 � PROJECT ¢ LA PL �P/ S > �q v EL LIE A 5p�0 9 SITE LA IN A C �� ® �i2 CALLS 0 9�L WILL EN 9I°O w Q ORCHARD WOOD > q�F O H GLEN z m Q P lY F O NpVtN10P 92i v4 o m 9 TTE91 9 ORANGE 5 05 5UMMERII O pW w Q n 2 '¢ > °C VANES 3 a W I N _ 2 O U t IJ y VALLED HILL TO , Ci0 o� ELON O tZO 9UR G B U5 c� z ONA G a n c P NORTH BASE MAP: Thomas Bros.GeoFinder for Windows,San Diego County, 1995,Page 1147 0 1000 2000 4000 1"=2,000' Scale in Feet SITE Project No. Expo Design Center 940028-027 Encinitas Ranch LOCATION Encinitas, California Date MAP May 2001 Figure No. 1 940028-027 2.0 PROJECT DESCRIPTION 2.1 Site Description and History The proposed Expo Design Center project is located west of El Camino Real and north of Leucadia Boulevard in the City of Encinitas,California(see Figure 1, Site Location Map). The site is bounded on the west by undeveloped natural land, to the east by a natural drainage course and El Camino Real,to the north by the construction site for a mixed-use development and to the south by Leucadia Boulevard and the Encinitas Town Center retail complex. The site was previously utilized as a borrow site for earth materials during the adjacent Encinitas - Ranch Phase I grading. Subsequent to the completion of the Phase I development, the site was converted to an import site for various ongoing projects in the North County area. We anticipate remaining earthwork will be primarily cut and fill grading with minor import. 2.2 Proposed Development Based on our review of the referenced geotechnical investigation prepared for Expo Design Center (GPI, 2000), the proposed development will include construction of an Expo Design Center, retaining walls,the extension of Garden View Road, a wildlife corridor and undercrossing,parking lots, and associated site improvements. The grading plan was utilized as the base map for our Geotechnical Map (Plate 1) and the proposed site plan identified on that map was utilized for the development of the updated recommendations presented in this report. The discussions within this report focus on the development within the site for the Expo Design Center. Discussions relevant to design and construction of the wildlife corridor and undercrossing proximal to Garden View Road are presented in our previous geotechnical report specific to those improvements(Leighton, 1999). Design recommendations for the smaller retail/restaurant structures situated in the east portion of the site are presented in our previous update report(Leighton,2000b). Conventional cut and fill grading is anticipated to complete the remaining site grading required to establish the design grades. Fill slopes located within the site are proposed with inclinations of 2 to 1 (horizontal to vertical),or flatter. Steeper grade changes are accomplished by retaining walls that are planned up to maximum heights of 25 feet. ZZ -3- `a 6 940028-027 3.0 FIELD INVESTIGATION AND LABORATORY TESTING 6 3.1 Field Investigation by Lei ton 6 Several phases of geotechnical investigation have been performed within the Expo Design Center site. A brief description of each phase is summarized below in chronological order. 6 In September 1995, as part of our preliminary geotechnical investigation of the site, five 8-inch diameter hollow-flight auger borings were excavated, sampled, and logged by geologists from our 6 office (Leighton, 1996a). Logs of these borings(B-38 through B-42) are provided in Appendix B and their approximate locations shown on the Geotechnical Map(Plate 1). Much of the alluvial and slope wash soils encountered above the groundwater table in these borings was removed during the 6 subsequent export operations at the site and then replaced with compacted imported fill soil. On October 16, 1996,four 8-inch diameter hollow-flight auger borings were excavated,sampled,and logged by geologists from our office (Leighton, 1996b). These borings (B-1 through B-4) were located in areas of building pads at that time. The approximate locations of these borings are depicted on the Geotechnical Map(Plate 1)and the boring logs are included in Appendix B. On October 1, 1999, five exploratory trenches were excavated along the westernmost portion of the site as part of a limited geotechnical investigation for the proposed wildlife undercrossing and associated grading at Garden View Road (Leighton, 1999). The approximate locations of these trenches are depicted on Plate 1.The logs of the trenches are included in Appendix B. The most recent subsurface exploration by Leighton consisted of the advancement of nine cone penetration test soundings(CPT-1 through CPT-9)on January 14, 2000 and four mud rotary borings (M-I through M-4) on February 21, 2000. The CPT soundings were advanced to depths ranging from approximately 30 feet below the existing ground surface in CPT-9 to approximately 115 feet below the existing ground surface in CPT-7. The mud rotary borings were advanced to depths ranging from approximately 60 to 100 feet below the existing grade. The approximate locations of _ the CPT soundings and mud rotary borings are shown on the Geotechnical Map(Plate 1)and the logs are provided in Appendix B. - During each of the above drilling and trenching operations,bulk and relatively undisturbed samples were obtained from the borings for laboratory testing and evaluation. Drive samples were utilized to collect samples during drilling operations. The relatively undisturbed in-place samples were obtained utilizing a modified California drive sampler driven with a 140 pound hammer dropping 30 inches. Disturbed samples were obtained during Standard Penetration Tests (SPT) that were performed using a 24-inch long standard penetration sampler driven with a 140 pound hammer dropping 30 inches. For both types of samplers the blow counts required to drive the sampler each successive 6 inches was recorded and the final 12 inches of measured blow counts is presented on the boring logs. � iwv_�alum iR-4 ` 940028-027 6 3.2 Field Investigation_ by Others Most recently,an additional seventeen,21-inch diameter borings and 23 additional CPT soundings were advanced by others (GPI, 2000). These logs are included in Appendix B and approximate 6 locations are plotted on Plate 1. 6 3.3 Laboratory Testing Previous laboratory test results are provided in Appendix C. Previous laboratory testing along with summaries of the testing procedures are presented in the various reports listed in Appendix A and in- situ moisture and density determination are presented on the boring logs(Appendix B). 6 6 -5- �`= 940028-027 4.0 SUMMARY OF GEOTECHNICAL FINDINGS 4.1 Regional Geolo The site is situated in the coastal section of the Peninsular Range province,a California Geomorphic province with a long and active geologic history throughout Southern California. Throughout the last 54 million years,the area known as the"San Diego Embayment"has undergone several episodes of marine inundation and subsequent,marine regression. This has resulted in a thick sequence of marine and nonmarine sedimentary deposits on rocks of the Southern California batholith with relatively minor tectonic uplift of the area. 4.2 Site Geology Geologic units present on the site include artificial fill, topsoil, slope wash/alluvium,Tertiary-aged Torrey Sandstone,and Tertiary-aged Delmar Formation. The approximate areal distribution of these units is depicted on the Geotechnical Map (Plate 1) and our interpretation of the subsurface conditions is also indicated on the cross-sections(Figures 2 and 3). A brief description of the onsite units is provided below. 4.2.1 Artificial Fill(Map Symbol—Af and Afo) Artificial fill soils are presently covering the majority of the site. These fill soils have been placed as part of the ongoing import operations and have been documented by representatives of Leighton and Associates. Documented compacted fill soil associated with existing embankments for Leucadia Boulevard is present along the southern boundary of the site. These fills were placed under the observation and testing of Leighton and Associates during grading of Encinitas Ranch Phase I. 4.2.2 Topsoil(Unmapped) The distribution of topsoil was not mapped, but was observed above undisturbed slope wash soils within the ungraded area on the west side of the site. Topsoil materials are formed in-place as a result of weathering of the underlying soils. These soils should be removed within the areas of planned grading and may be reused as compacted fill. Topsoil thickness' are estimated to be on the order of 2 to 3 feet in thickness and may be locally thicker. -6- _ 940028-027 4.2.3 Quaternary Slope Wash(Map Symbol—Qsw) Slope wash and or alluvial material underlies the majority of eastern portion of the subject site beneath the compacted fill soils. These materials were not differentiated during mapping and are depicted on the geotechnical map as slopewash as the contact between these materials is gradational and the engineering properties nearly identical. During site grading slope wash materials were removed to a depth near the groundwater table. Remaining slope wash materials generally increase in the thickness in a west to east direction with a maximum estimated thickness of approximately 85 feet at the easternmost edge of the planned parking area(Figures 2 and 3). As encountered,the slope wash is an accumulation of poorly to moderately consolidated silty sands derived from the adjacent hillsides by downslope gravitational creep and sheetflow from surface runoff. The slope wash material consists of a highly variable thickness of loose to medium dense,silty,fine- to medium-grained sand interbedded with relatively thin to thick layers of firm,fine sandy silt and clays. These soils are anticipated to be encountered within the westerly portion of the site during grading proximal to Garden View Road and will require complete removal and recompaction(see Plate 1). 4.2.4 Torrey Sandstone Formation(Map Symbol-Tt) The Tertiary-aged Torrey Sandstone is exposed along the westernmost portion of the existing grades and in the natural bluffs and ridges along the western property boundary. The Torrey Sandstone was also encountered underlying the slope wash material at depth. The Torrey Sandstone is also a source material for the slope wash accumulations. The Torrey Sandstone consists of light gray to light brown-brown,dense to very dense, silty, fine-to medium-grained,sandstone. 4.2.5 Delmar Formation(Map Symbol-Td) The Tertiary-aged Delmar Formation was encountered during this and previous investigations(Appendix A). The approximate aerial extent of the Delmar Formation as mapped during earlier investigations is shown on the Geotechnical Map (Plate 1). The Delmar Formation was also encountered at depth (below the alluvial soils) in the central and eastern portions of the site. The Delmar Formation is exposed off site in the existing cut slopes along the east side of El Camino Real below elevations of± 60 feet mean sea level.(ms]). The Delmar Formation was encountered on site in Boring B-41 at a depth of 75 feet. This formation consists of olive-gray, siltstone and claystone. Due to its considerable depth,the Delmar Formation is not anticipated to be encountered during the proposed grading operations. -7- MINN 940028-027 4.3 Groundwater and Surface Water Groundwater was encountered in our previous and the current investigation of the site subsurface soils. Groundwater was also observed in the borrow pit excavation on the site and during site remedial grading (Leighton, 1997) at an approximate elevation of 70 feet mean sea level, or approximately 30 to 55 feet below anticipated pad grade elevations. A subdrain was installed as part of previous site grading adjacent to Leucadia Boulevard. The location of this drain is shown on the geotechnical map. Surface water is also present in the adjacent drainage channel to the east almost year round. The approximate depths and elevations of the encountered groundwater are depicted on the borings logs (Appendix B). The water table encountered is generally thought to be part of a regional water table controlled by the major drainage to the east and south of the site. No surface water or seepage conditions were encountered during the most recent investigations and groundwater is not anticipated to be a significant constraint to site development;however,seasonal fluctuations of surface water and groundwater should be. expected. It should be noted that groundwater levels may vary at the time of construction from those obtained in this and earlier studies. In addition,significant improvements to the surface drainage will be installed as part of the project.This will reduce the potential for water to infiltrate into the subsurface soils. Seeps were observed during our previous investigations and grading activities with the westerly portion of the site. Observed seepage is attributed to groundwater perched at the contact between the slope wash and formational materials. Accordingly, subdrains have been recommended behind stability fill and retaining wall backcuts within the westerly portion of the site. 4.4 Faulting Our discussion of faults on the site is prefaced with a discussion of California legislation and policies concerning the classification and land-use criteria associated with faults. By definition of the California Mining and Geology Board, an active fault is a fault that has had surface displacement within Holocene time(about the last 11,000 years). The state geologist has defined a potentially active fault as any fault considered to have been active during Quaternary time (last 1,600,000 years). This definition is used in delineating Earthquake Fault Zones as mandated by the Alquist-Priolo Earthquake Fault Zoning Act and as subsequently revised in 1997. The intent of this act is to assure that unwise urban development and certain habitable structures do not occur across the traces of active faults. The subject site is not included within any Earthquake Fault Zones as created by the Alquist-Priolo Act(Hart, 1997). Our review of available geologic literature(Appendix A) indicates that there are no known major or active faults on or in the immediate vicinity of the site. The nearest active regional fault is the Rose Canyon Fault Zone located approximately 4.6 miles west of the site. -8- �_ ` 940028-027 4.5 Seismicity The site can be considered to lie within a seismically active region, as can all of southern California. Site specific evaluation of the earthquake hazard was performed using a deterministic and a probabilistic approach. A summary of our deterministic evaluation is provided in Table 1. ` Table 1 Seismic Parameters for Active Faults (Blake, 1996 and 1998,CDMG, 1996) Distance Moment Peak Ground Acceleration Fault from Fault to Magnitude (g) Site(miles) Rose Canyon 4.6 6.9 0.50 Newport- Inglewood 11 6.9 0.29 Coronado Bank 20 7.4 0.25 Based on a deterministic approach,Table 1 presents the postulated peak ground acceleration that could be produced by the maximum credible earthquake. The maximum credible earthquake is defined as the maximum event that a fault is capable of producing considering the known tectonic setting. Site-specific seismic parameters reported are the distances to the causative faults, earthquake magnitudes,and expected peak ground accelerations. As indicated in Table 1, the Rose Canyon fault zone is considered to have the most significant affect at the site from a design standpoint. The maximum credible earthquake is expected to produce a peak ground surface acceleration at the site of 0.50g. The Rose Canyon Fault Zone is considered a type B seismic source according to Table 16-U of the 1997 Uniform Building Code(UBC). From a probabilistic approach, the design ground motion for this project (ICBO, 1997, Section 1629) is the ground motion having a 10 percent probability of being exceeded in 50 years. This ground motion is referred to as the maximum probable ground motion (CBSC, 1998). A maximum probable ground motion of 0.26g is postulated for the westerly portion of the site where the fills overlie Tertiary-aged formational material. A maximum probable ground motion of 0.31g is postulated within the easterly portion of the site where fills overlie appreciable thickness of saturated alluvium. The earthquake source data used for probabilistic determination of the design ground motion was obtained from the California Division of Mining and Geology (CDMG,Open File Report 96-08). ` The effect of seismic shaking may be mitigated by adhering to the Uniform Building Code and state-of-the-art seismic design parameters of the Structural Engineers Association of California. The site is located within Seismic Zone 4 as designated by the Uniform Building Code (ICBO, 1997, Figure 16-2). The soil profile designation for the Expo building pad is considered to be type Sp per the 1997 UBC, Table 16-J. Near source factors Na and Nv for the site equal to 1.0 and 1.1, respectively, are appropriate based on the seismic setting and criteria of Tables 16-S and 16-T of the 1997 UBC. L "NQ -9- ANVAN 940028-027 Secondary effects that can be associated with severe ground shaking following a relatively large earthquake include shallow ground rupture, soil liquefaction and dynamic settlement, seiches and tsunamis.These secondary effects of seismic shaking are discussed in the following sections. 4.5.1 Shallow Ground Rupture Ground rupture because of active faulting is not likely to occur on-site due to the absence of known active faults. Cracking due to shaking from distant seismic events is �I not considered a significant hazard, although it is a possibility at any site. 4.5.2 Liquefaction Liquefaction of cohesionless soils can be caused by strong vibratory motion due to earthquakes. Research and historical data indicate that loose granular soils underlain by a near surface groundwater table are most susceptible to liquefaction,while the stability of most silty clays and clays deposited in fresh water environments are not adversely affected by vibratory motion. Liquefaction is characterized by a total loss of shear strength in the `i affected soil layers,thereby causing the soil to behave as a viscous liquid. This effect may be manifested at the ground surface by settlement and/or sand boils. Liquefaction potential was evaluated recently for an alternative site layout. Liquefaction is not considered a concern below the western half of the site due to the lack of a groundwater table and the density of the compacted fill and underlying formational material. The equivalent blow count data used to evaluate liquefaction was taken from the CPT soundings since repeatability of that test method is more consistent than demonstrated using borings. Samples obtained from boring samples were, however, utilized to assess fines contents and plasticity of clayey layers. The potential for liquefaction and was evaluated by the procedures outlined by Tokimatsu and Seed(Tokimatsu and Seed, 1987) with modifications outlined by Youd(NCEER, 1997) The groundwater table was taken as encountered in the borings/soundings. The factor of safety against liquefaction was calculated using the maximum probable grading motion earthquake(PGA uec = 0.31 g)on an individual sounding basis. Following evaluation by calculations, soil properties were evaluated to determine if the soils are of the type that can experience liquefaction. The granular soils encountered below the groundwater table were found to be interbedded with occasional clays, silty clays,and clayey silts. Data on these soils were compared to the Chinese Building Code criteria using Army Corp of Engineer modifications. The laboratory test results reveal that the fine- grained clayey layers are not susceptible to liquefaction;therefore,it is our opinion that the potential for liquefaction of the fine-grained clayey layers is low. � LkWAM- i o- 940028-027 The liquefaction potential below the western portion of the site was evaluated to be very low due to the lack of saturated slopewash materials.Liquefaction effects are limited to the approximate eastern half of the subject site. Our analysis indicates that zones of the saturated alluvial soils are susceptible to liquefaction as a result of the design ground motion. It should be recognized; however, that many of the parameters used in liquefaction evaluation are subjective and open to interpretation. It should also be recognized that much of Southern California is an area of moderate to high seismic risk and is not generally considered economically feasible to building structures totally resistant to earthquake hazards. Current state-of-art standards for design and construction are intended to reduce the potential for major structural failure. ` 4.5.3 Dynamic Settlement Based on the observations during site grading, results of our subsurface exploration, geotechnical analysis and dynamic settlement calculations,the eastern portions of proposed development are underlain by slopewash deposits at depth and have a potential for dynamic settlement as a result of ground shaking by the design ground motion. Dynamic settlement was evaluated utilizing procedures outlined by Tokimatsu and Seed, 1987 for saturated sands, and Pradel, 1998 for unsaturated sands. The results are presented below on an individual boring basis. Table 2 Dynamic Settlement Results Estimated Dynamic Estimated Dynamic Location Settlement in Settlement in Total Estimated Saturated Alluvium Unsaturated Alluvium Dynamic Settlement and Fill Soils CPT-1 I inch <1A inch 1 to 1-1/2-inches CPT-2 3-1/2 inches <1/4 inch 3 to 4 inches CPT-3 2-1/2 inches <1/4 inch 2 to 3 inches CPT-4 -- <1/4 inch '/4 to 1/2 inches CPT-5 I inch <1A inch 1 to 1/2 inches CPT-6 3-I/2 inches <1/4 inch 3 to 4 inches CPT-7 3-1/2 inches <1/4 inch 3 to 4 inches 4.5.4 Lateral Spreading Post-liquefaction slope stability analysis was performed for Cross-Section D-D' (through the slope at CPT-2). For post-liquefaction analysis,a residual shear strengths were selected utilizing procedures outlined by Seed and Harder 1990. Based on our analysis, it is our opinion that the slope will possess a factor safety in excess of 1.3 when liquefied residual strengths are considered. A summary of the analysis is presented in Appendix E. noun � IiR=- - ii - 940028-027 5.0 CONCLUSIONS AND RECOMMENDATIONS 5.1 Conclusions and Recommendations Based on our geotechnical evaluation, it is our opinion that the proposed development is feasible from a geotechnical standpoint provided the following recommendations are incorporated into the design and construction. The following sections discuss the principal geotechnical concerns affecting the site development and provide preliminary foundation design recommendations which should be implemented during site development. 5.2 Earthwork ` Grading and earthwork should be performed in accordance with the following recommendations and the General Earthwork and Grading Specifications for Rough Grading included as Appendix D. 5.2.1 Site Preparation Due to the periodic grading activities at the site, majority of the site has remained relatively free of vegetation and debris. If encountered,vegetation and debris should be removed prior to the recommencement of grading operations. Prior to grading,areas below and within 10 feet (horizontally)of buildings and pavements should be cleared of surface vegetation and moisture-conditioned. 5.2.2 Removals and Recompaction The existing slope wash, topsoil, and any undocumented fill soils that exist on-site are potentially compressible in their present state and will likely settle under the loading of additional fill soils and upon further wetting. In areas that will receive additional fill soils,or will support settlement-sensitive structures or other improvements (such as buildings, retaining walls, pavement, utility lines, etc.), these soils should be removed down to competent formational or properly compacted fill materials as determined by the geotechnical consultant, moisture-conditioned,and recompacted to a minimum 90 percent relative compaction(based on ASTM Test Method DI 557). The lateral removal limit should be established by a 1:1 projection downward and outward from settlement-sensitive structures or embankments to the recommended removal bottom and then projecting another 1:1 line upward to the ground surface. This projection should start 10 feet horizontally from the outermost perimeter footing edge. Removals should be accomplished as recommended above or to a minimum of 10 feet (measured laterally) beyond any embankment,building,pavement and hardscape perimeter,whichever is greater. Fill soils should be free of debris and organic materials(trees,shrubs,stumps,roots, leaves, etc.). Care should betaken by the contractor to protect any existing underground utilities and improvements that are to remain. ZZ - 12- _�MM 940028-027 5.2.3 Structural Fill Import and onsite soils are generally acceptable for use as compacted fill, provided they are relatively free of organic materials and debris. Areas to receive structural fill and/or other surface improvements should be scarified to a minimum depth of 6 inches, brought to near optimum moisture content, and recompacted to at least 90 percent relative compaction (based on ASTM Test Method D1557). The optimum lift thickness to produce a uniformly compacted fill will depend on the type and size of compaction equipment used. In general, fill should be placed in uniform lifts not exceeding 8 inches in thickness. Fill soils should be placed at or above the soils optimum moisture content. Placement and compaction of fill should be performed in accordance with local grading ordinances under the observation and testing of the geotechnical consultant. Import soils should be evaluated by representatives of Leighton and Associates prior to site delivery. Fills placed within 4 feet of finish grade should consist of granular soils of very low to low expansion potential and contain no materials over 6 inches in maximum dimension. Oversize material(such as rock or clean concrete)may be incorporated into structural fills if placed in accordance with the recommendations of Appendix D. All grading should be performed under the testing and observation of Leighton. 5.2.4 Transition Lots or Steeply-Dipping Bedrock Areas. ` Based on the elevations depicted on the grading plans, a transition condition from formational to fill materials will be created by the proposed grading for the Expo Design Center pad. This condition should be evaluated during grading operations by a representative from this firm. We recommend that the entire cut (formational)portion of building area be over-excavated and replaced with properly compacted fill of very low to low expansion potential. Over-excavation should be extended to a depth such that all footings that traverse the formation to fill contact so that overlying wall footings will be underlain by at least 2 feet of compacted fill. The lateral extent of over-excavation should extend a minimum of 10 feet outside the limits of the building foundations where attainable. Where site constraints limit the lateral extent of removals,revised recommendations will be necessary. 5.2.5 Utility Trenches The onsite soils may generally be suitable as trench backfill provided they are screened of rocks over 6 inches in diameter and organic matter. Trench backfill should be compacted in uniform lifts (not exceeding 8 inches in compacted thickness) by mechanical means to at least 90 percent relative compaction(ASTM Test Method D 1557). Excavation of utility trenches should be performed in accordance with the project plans, specifications and all applicable OSHA requirements. Each contractor is responsible for providing a "competent person" to review excavations as required by OSHA standards. Sandy native or compacted fill soils and/or adversely-oriented bedrock structures can make excavations particularly unsafe if all safety precautions are not taken. Excavations in bedrock may expose planar bedding which may be adverse and dip into the excavation - 13 - �all" 940028-027 depending on trench orientation. Such a condition requires special considerations when the excavation and trench safety are being reviewed by the designated"competent person". In addition, excavations at or near the toe of slopes and/or parallel to slopes may be highly unstable due to the increased driving force and load on the trench wall. Spoil piles and construction equipment should be kept a safe distance away from and on the down slope side of the trench. 5.3 Slope Stability Our understanding of the proposed grading indicates that fill slopes at inclinations of 2:1 (horizontal to vertical)or flatter with an approximate maximum height of approximately 30 feet(respectively) are proposed to create the proposed design grades. We do not expect that cut slopes exposing natural deposits will be created east of the Garden View Road improvements. 5.3.1 Fill Slope Stability Fill slopes to a maximum height of± 30 feet are anticipated. According to topographic information on Plate 1,up to approximately 18 feet of additional fill materials are required to reach the project design grades along the northern limits of the subject site. It is our understanding that the materials anticipated for construction of the remaining fill slope will predominately consist of silty sands derived from excavation of the existing formational and compacted fill soils from the western portion of the site. We generally recommend against the exclusive use of cohesionless sand in the slope faces as these materials are prone to extensive rilling. We anticipate however, some slopes may be constructed with the onsite or import cohesionless sands due to economics and earthwork logistics. Accordingly,the construction and maintenance of slopes should be strictly adhered to. Our analysis,assuming homogeneous slope conditions,indicates the proposed fill slopes and buttresses created during earlier phases of grading have been constructed at inclinations of 2:1 (horizontal to vertical),or flatter,and have a calculated static factor of safety in excess of the minimum typically required(1.5)with respect to potential,deep-seated failure. The remaining proposed slopes should be constructed in accordance with the recommendations of this report,the attached General Earthwork and Grading Specifications(Appendix D),and the City of Encinitas grading ordinances. 5.3.2 Stability Fill and Retaining Wall Back Cuts Stability fill and retaining wall back cuts should be observed and geologically mapped by the geotechnical consultant during construction. The purpose for this mapping is to substantiate the geologic conditions we have assumed in our analysis. In order to expedite the geologic mapping of these temporary slopes by our field geologist,we recommend that the grading contractortrim these cuts with a slope board as they are excavated. - 14- _ ` 940028-027 Because the temporary back cuts may be excavated into loose,friable,or saturated material, back cut failures and surficial sloughing should be anticipated. Loose soils which may be deposited into the stability fill key areas as a result of such failures should be removed per the recommendations of the geotechnical consultant prior to placement of the compacted stability fill. Where excessive failures or sloughing are noted during grading, it may be necessary to lay slopes back to a flatter inclination. The potential for back cut slope failures may be reduced by constructing the stability fill in several sections. The length and geometry of construction sections can be provided during grading based on actual field performance observations. Extreme care should be taken by the contractor in areas where stability fill backcuts are near existing utilities or improvements. In general,to reduce the potential for back cut failures,we recommend that the stability ll h' excavation and embankment be planned to minimize the time the back cut remains open and unsupported by compacted fill. Segmental retaining wall backcuts along Garden View Road should be excavated prior to construction of concrete curbing or pavements. ` 5.3.3 Surficial Slope Stability Our analysis of properly compacted fill slopes (Leighton, 1996a) generally indicates an adequate factor of safety against surficial failures assuming adequate protection against erosion is provided. In addition,the outer 2 to 3 feet of fill slopes generally become less dense with time. Accordingly, since the onsite soils have a high susceptibility to erosive rilling,proper vegetation selection and ongoing maintenance are imperative to achieving the desired long-term project performance. All slopes should be constructed in accordance with the General Earthwork and Grading Specifications(Appendix D) and City of Encinitas grading ordinances. Berms should be provided at the tops of fill slopes,and brow ditches should be constructed at the tops of cut slopes. Drainage should be directed such that surface runoff on slope faces is minimized. Inadvertent over-steepening of cut and fill slopes should be avoided during fine grading and construction. If seepage is encountered in slopes, special drainage features may be recommended by the geotechnical consultant. Erosion and/or surficial failure potential of fill slopes may be reduced if the following measures are implemented during design and construction of the slopes. - 5.3.4 Slope Face Compaction and Finishing ` In order for the recommended minimum of 90 percent relative compaction to be achieved - out to the slope face,fill slopes should be overbuilt and trimmed back to expose the properly compacted slope face core or periodically backrolled with increasing height of the fill slope with a weighted sheepsfoot compactor and trackwalked. - 15- M ` 940028-027 5.4.5 Slope Landscaping and Drainage We recommend that all graded slopes be landscaped with drought-tolerant,slope stabilizing vegetation as soon as possible to minimize the potential for erosion and slumping. Moisture iin the slope face should be maintained relatively constant(i.e.,prolonged drying and wetting of the slope faces should be avoided). Burrowing activity by rodents and other vermin should be controlled at all times. i 5.5 Control of Groundwater and Surface Water iWe recommend that measures be taken to properly finish grade each building area, such that drainage water from the building area is directed away from building foundations (2 percent i minimum grade for a distance of 5 feet),slabs,and tops of slopes. Ponding of water should not be permitted,and installation of roof gutters which outlet into a drainage system is considered prudent. Planting areas at grades should be provided with positive drainage directed away from buildings. iDrainage and subdrainage design for these facilities should be provided by the design civil engineer. 5.6 Foundation Design-Commercial Structures It is our understanding that the proposed Expo Design building will utilize a combination of continuous perimeter footings and conventional interior isolated-spread footings for building support.The following recommendations are based on the assumption that soils of very low to low expansion potential(50 or less per UBC 18-1-B)will be in the upper 4 feet of pad grade.This should be confirmed during grading by the geotechnical consultant and alternate recommendations provided,if necessary. Footings bearing in competent natural soil materials or properly compacted fill should extend a minimum of 18 inches below the lowest adjacent grade. At this depth,footings may be designed using an allowable soil-bearing value of 2,000 pounds per square foot. The allowable soil-bearing pressure may be increased by 500 psf for each additional foot of foundation embedment to a maximum allowable-bearing pressure of 2,500 pounds per square foot(psf). This value may be increased by one-third for loads of short duration including wind or seismic forces. Continuous perimeter footings should be designed as grade beams to accommodate the design settlements,reinforced by placing at least two No. 4 rebar near the top and two No. 4 rebar near the bottom of the footing,and in accordance with the structural engineer's requirement. We recommend a minimum widths of 18 inches for continuous footings and 24 inches for isolated-spread footings. The structures should also be designed for the anticipated settlement(see Section 5.9). 5.7 Floor Slab Design ` All slabs should have a minimum thickness of 4 inches and be reinforced at slab midheight with No. 3 rebar at 18 inches on center (each way) or No. 4 rebar at 24 inches centers (each way). Additional reinforcement and/or concrete thickness to accommodate specific loading conditions should be evaluated by the structural engineer based on a modulus of subgrade reaction of 150 pound per cubic inch. Slabs subjected to vehicular,forklift,and other heavy loads may require increase thickness and reinforcing. We emphasize that is the responsibility of the contractor to ensure that the slab reinforcement is placed at midheight of the slab. Slabs should be underlain by a - 16- M ` 940028-027 2-inch layer of clean sand(S.E.greater than 30)to aid in concrete curing,which is underlain by a 6- mil(or heavier)moisture barrier,which is, in turn,underlain by a 2-inch layer of clean sand to act as a capillary break. All penetrations and laps in the moisture barrier should be appropriately sealed. The spacing of crack-control joints should be designed by the structural engineer or architect. Our experience indicates that use of reinforcement in slabs and foundations will generally reduce the potential for drying and shrinkage cracking, however, some cracking should be expected as the concrete cures. Minor cracking is considered normal; however, it is often aggravated by a high water content,high concrete temperature at the time of placement,small nominal aggregate size and rapid moisture loose due to hot, dry, and/or windy weather conditions during placement and curing. Cracking due to temperature and moisture fluctuations can also be expected. The use of concrete mix that possess a low water content can reduce the potential for shrinkage cracking. Moisture barriers can retard,but not eliminate moisture vapor movement from the underlying soils up through the slab. We recommend that the floor coverings installer test the moisture vapor flux rate prior to attempting application of the flooring. 'Breathable" floor coverings should be considered if the vapor flux rates are high. A slip sheet should be provided beneath settlement sensitive floor coverings. ` 5.8 Footing Setback We recommend a minimum horizontal setback distance from the face of slopes for all structural footings and settlement-sensitive structures. This distance is measured from the outside edge of the footing,horizontally to the slope face(or to the face of a retaining wall)and should be minimum of 10 feet. We should note that the soils within the structural setback area possess poor lateral stability, and improvements(such as retaining walls,sidewalks,fences,pavement,underground utilities,etc.) constructed within this setback area may be subject to lateral movement and/or differential settlement. 5.9 Anticipated Settlement ` Settlement of properly compacted fill soils can occur upon application of structural loads and upon wetting due to water infiltration which may occur over a period of many years. Based on data provided by Expo,we understand maximum column loads will be up to 120 kips and wall loads will be 120 kips up to 5 kips per foot. The recommended allowable-bearing capacity is based on maximum total and differential settlement of 3/4 inch. mma- 17- ` 940028-027 5.10 Lateral Earth Pressures and Resistance Embedded structural walls should be designed for lateral earth pressures exerted on them. The magnitude of these pressures depends on the amount of deformation that the wall can yield under load. If the wall can yield enough to mobilize the full shear strength of the soil, it can be designed for "active" pressure.If the wall cannot yield under the applied load, the shear strength of the soil cannot be mobilized and the earth pressure will be higher. Such walls should be designed for "at rest"conditions. If a structure moves toward the soils,the resulting resistance developed by the soil is the "passive"resistance. For design purposes, the recommended equivalent fluid pressure for each case for walls founded above the static groundwater table and backfilled with very low to low expansion potential soils is provided below. Determination of which condition,active or at-rest, is appropriate for design will depend on the flexibility of the wall. The affect of any surcharge(dead or live load)should be added to the proceeding lateral earth pressures. Based on our investigation,the sandier onsite soils may provide low to very low expansive potential backfill material. All backfill soils should have an expansion potential of less than 50(per UBC 18-I-13). The passive pressures provided below assume the setback recommendations are adhered to. Table 3 Equivalent Fluid Weight Level 2:1 Slope Co ndition (pcf) (pcf) Active 35 55 At-Rest 55 75 3 Passive 50 150 (Maximum of 3 ksf) (sloping down) ` The above values assume low expansion potential backfill and free-draining conditions. If conditions other than these covered herein are anticipated, the equivalent fluid pressure values should be provided on an individual-case basis by the geotechnical engineer. A surcharge load for a restrained or unrestrained wall resulting from automobile traffic may be assumed to be equivalent to a uniform lateral pressure of 75 psf which is in addition to the equivalent fluid pressures given above. All retaining wall structures should be provided with appropriate drainage and waterproofing. Typical drainage design is illustrated in Figure 5. As an alternative, an approved drainage board system installed in accordance with the manufacturer's recommendations may be used. Wall backfill should be compacted by mechanical methods to at least 90 percent relative compaction (based on ASTM Test Method D1557-91). Surcharges from adjacent structures,traffic,forklifts or other loads adjacent to retaining walls should be considered in the design. - 1s- 940028-027 Wall footing design and setbacks should be performed in accordance with the previous foundation design recommendations and reinforced in accordance with structural considerations. Soil resistance developed against lateral structural movement can be obtained from the passive pressure value provided above. Further, for sliding resistance, a friction coefficient of 0.35 may be used at the concrete and soil interface. These values may be increased by one-third when considering loads of short duration including wind or seismic loads. The total resistance may be taken as the sum of the frictional and passive resistance provided that the passive portion does not exceed two-thirds of the total resistance. 5.11 Segmental Retaining Wall Design Segmental retaining walls may be considered at several locations on the subject property. Settlement-sensitive structures should be set back from the top of the wall at a minimum distance equal to the wall height. Appropriate geotechnical design parameters for the reinforced earth type 0 retaining walls are provided below: Friction angle of backfill soils 32 degrees Cohesion 0 psf Weight of backfill soils 120 psf Allowable bearing capacity 2,000 psf(18 inch minimum embedment) (18 inches minimum width) Expansion index <50(per UBC Test 18-2) kTemporary backcut per OSHA Seismic Acceleration Maximum Probable Ground Motion Adequate drainage should be designed behind the wall by the wall design engineer and reviewed by the geotechnical consultant. Typical drainage includes a PVC pipe surrounded by gravel and filter cloth with outlets into positive drainage facilities. Backdrains should be provided behind the reinforced zone within the westerly portion of the site. 5.12 Geochemical Issues 5.12.1 Concrete Laboratory tests performed on native soils indicate a negligible concentration of soluble sulfates in onsite soils (less than 0.005 percent) for tested representative samples (Appendix A).Accordingly,typical cement may be used for concrete in contact with onsite native soils. Import soils placed near finish surface should be tested for sulfate content. _ 19- AL 940028-027 5.12.2 Metallic Corrosion Minimum resistivity and pH tests were performed on representative onsite soil samples. Test results indicate the onsite soils possess a mild to moderate corrosion potential for buried uncoated metal conduits. It is recommended that a qualified corrosion engineer be consulted for the necessary protective measures. -20- = 940028-027 6.0 PAVEMENT SECTION DESIGN Because of the variability of materials on-site and unknown import soils, it is not possible to know which soils will be placed or exposed at pavement subgrade. In order to provide the following recommendations, we have visually evaluated the onsite soils and utilized representative R-value test results from previous investigations(Appendix A). The following pavement sections are provided for the site interior driveways and parking areas. Pavement design should be in accordance with the City of Encinitas and Caltrans Highway Design Manual. Utilizing traffic indices provided by the City of Encinitas, and an assumed R-value of 21,we provide the following preliminary sections. 6.1 Traffic Index In accordance with your request,we have reviewed EXPO Design Center requirements for asphalt concrete (AC) pavements in order to develop preliminary design recommendations for areas to receive AC pavements. The EXPO design requirements identify pavement types for two traffic conditions,a standard duty and a heavy duty. Their pavement design information is summarized in Table 4 below. Also provided in the table is the traffic index determined using Table 603AA of the Caltrans Highway Design Manual. Table 4 Equivalent Axle Load to Traffic Index Conversion Traffic Type Equivalent Axle Load Design Traffic Index Standard Duty 50,000 6.5 Heavy Duty 22,000 7.5 L Although not specifically addressed in the EXPO design requirements,the design requirements allow for alternative design recommendations based on local practices. It is customary in local practice to construct automobile parking stalls to traffic index values in the 4.5 to 5.0 range. For this reason,we have provided the lower traffic index for consideration in designing parking stall areas. 6.2 Asphalt Concrete and Crushed Aggregate Base Sections The design of the asphalt concrete over aggregate base section presented below was performed using Caltrans design methodology and an R-Value of 21 as determined by test results presented within the referenced GPI report. -21 - jm a 940028-027 ` Table 5 Asphalt Concrete and Aggregate Base Pavement Section AC over Aggregate Base Pavement Location Traffic Index(T.I.) Design R-Value Asphalt Concrete Aggregate Base Thickness(inches) Thickness(inches) Auto Parking Stalls 5.0 21 3 7 Auto Driveway 6.5 21 4 11 Truck Driveway 7.5 21 4-1/2 13 6.3 Alternative with Subbase La,per Based on our understanding of the remaining grading for the site, we understand that excavations will be required to lower the existing grades in the westerly portion of the site and placement of fills will be required to raise grades in the easterly portion of the site. As we anticipate that much of the excavations will encounter granular materials with R-Values in excess of 21, we have provided alternative sections that would allow for an increase in subgrade R-Value. For preliminary analysis, we have used an R-Value of 40. The column identified as subbase thickness corresponds to the minimum amount of granular R-Value 40 material that would be required within areas to receive AC pavements. This approach would require that the grading contractor selectively grade the pavement areas so that the most granular of onsite materials is below the aggregate base layer of the pavement section. Table 6 Asphalt Concrete and Aggregate Base over Granular Subbase Pavement Section AC over Crushed Aggregate Base and Granular Subbase with R>40 Asphalt Pavement Traffic Index Desi n Concrete Aggregate Base Granular g Subbase Layer Location (T.I.) R-Value Thickness Thickness with R>40 -- (inches) (inches) (inches) Auto Parking ng 5.0 21 3 4 8 Auto Driveway 6.5 21 4 6 12 Truck 7.5 21 4-1/2 g Driveway 12 ZZ —_ -22- " 940028-027 6.4 Pavement Materials and Grading Recommendations All aggregate base,subbase,and the upper 12 inches of subgrade should be compacted to a minimum 95 percent relative compaction based on American Standard of Testing and Materials(ASMT)Test Method D1557. Compacted materials should be placed at near optimum moisture content. Crushed aggregate base and Asphalt Concrete should conform to and be placed in accordance with the "Greenbook"Standard Specifications for Public Works Construction requirements. We recommend that the curb, gutter, and sidewalk be designed by the civil engineer or structural engineer. We suggest control joints at appropriate intervals as determined by the civil or structural engineer be considered. We also suggest a minimum thickness of 4 inches for sidewalk slabs. If pavement areas are adjacent to heavily watered landscape areas, we recommend measures of moisture control be taken to prevent the subgrade soils from becoming saturated. It is recommend that the concrete curbing separating the landscaping area from the pavement extend below the aggregate base to reduce the migration of irrigation water in the aggregate base. Concrete swales should be designed in roadway or parking areas subject to concentrated surface runoff. -23- MA� 940028-027 7.0 GEOTECHNICAL REVIEW Geotechnical review is of paramount importance in engineering practice. The poor performance of many foundation and earthwork projects have been attributed to inadequate construction review. We recommend that Leighton and Associates be provided the opportunity to review the following items. 7.1 Plans and Specifications The geotechnical engineer should review the project plans and specifications prior to release for bidding and construction. Such review is necessary to determine whether the geotechnical recommendations have been effectively implemented. Review findings should be reported in writing by the geotechnical engineer. 7.2 Construction Review Observation and testing should be performed by the geotechnical engineer during construction. It should be anticipated that the substrata exposed during construction may vary from that encountered in the test borings or trenches. Construction observation during site grading and foundation installation allows for evaluation of the exposed soil conditions. Site preparation,removal of unsuitable soils, approval of imported earth materials, fill placement, foundation installation and other site geotechnically-relatedoperations should be observed and tested by Leighton. ■ MANs-24- s ` 940028-027 8.0 LIMITATIONS The conclusions and recommendations in this report are based in part upon data that were obtained from a limited number of observations, site visits, excavations, samples, and tests. Such information is by necessity incomplete. The nature of many sites is such that differing geotechnical or geological conditions can occur within small distances and under varying climatic conditions. Changes in subsurface conditions can and do occur over time; therefore, the findings, conclusions, and recommendations presented in this report can be relied upon only if Leighton has the opportunity to observe the subsurface conditions during grading and construction of the project in order to confirm that our preliminary findings are representative for the site. -25- �= A A• L T B-40 (proj.75' M-3 north) (P rt ) ----CPT-1 north) ----- -----o -------------- -------- --- 100 LAf ---- _ Af goo L 50 = TD=51' — —— TD-6 50 I TD=70' 0 0 LElevation —50 (in feet) Elevation (in feet) L B B, L B-40 (Prof.75' south) CPT-4 ----------------- _ _ 100 Af :J-P-r-oposed--- .------ 1100 fill --------------- rD=S(' — — 50 TD=70' 0 Td I 0 Elevation (in feet) 1 _50 Elevation (in feet) -50 Project No. 940028-027 Stale V=60' Engr./Geol. SACIMRS Drafted By KAM Date _May 2001 Leighton and Associates,Inc. Figure No. 2 1 C C L M-3 (Prof.25' CPT-1 west) B-3 ` i------ ----- ----- -------------------------- 100 100 Af t ------- ---------- QswI rD=36' 50 ----------- — -- 50 TD=61' Td TD=70' 0 0 L -50 -50 Elevation Elevation (in feet) (in feet) D D' CPT-2 Existing grade B-38 M-1 (Proj.10' west) ----- - --------------- ------------------------------------- ------------ 1 100 00 -- -----_-- ---------- --- 50 50 O TD=102' — TD=85' O TD=102' ---? 1 Elevation (in feet) Elevation (in feet) -50 -50 Project No. 940028-027 Scale 1"=60' Engr./Geol. SACIMRS Drafted By KAM Date May 2001 Leighton and Associates,inc. Figure No. 3 RETAINING WALL BACKFILL AND OPTION 2: GRAVEL WRAPPED DRAINAGE DETAIL IN FILTER FABRIC For Maximum 6—Foot High Walls with On—Site Soils Having Very Low to Low WITH PROPER SURFACE DRAINAGE Expansion Potentials (i.e. on Expansion SLOPE Index of 50 or Less) OR LEVEL 12" NATIVE WATERPROOFING •r OPTION 1: PIPE SURROUNDED WITH (SEE GENERAL NOTES) IC (SEE NOTE CLASS 2 PERMEABLE MATERIAL 12" MINIMUM WEEP HOLE A To 1 Y2 INCH SIZE WITH PROPER (SEE NOTE 5) SURFACE DRAINAGE GRAVEL WRAPPED IN FILTER -- FABRIC SLOPE LEVEL OR OR LEVEL SLOPE 12" NATIVE WATERPROOFING Class 2 Filter Permeable Material Gradation (SEE GENERAL NOTES) Per Caltrons Specifications 12" MINIMUM Sieve Size Percent Passing 1" 100 CLASS 2 PERMEABLE 3/4" 90-100 WEEP HOLE FILTER MATERIAL 40-100 (SEE NOTE 5) (SEE GRADATION) 3/8" 0-40 _._ No. 4 4 INCH DIAMETER No. 8 18-33 LEVEL OR PERFORATED PIPE No. 30 5-15 SLOPE (SEE NOTE 3) No. 50 0-2 No. 200 0-3 GENERAL NOTES: —" " Waterproofing should be provided where moisture nuisance problem through the wall is undesirable • Water proofing of the walls is not under purview of the geotechnical engineer All drains should have a gradient of 1 percent minimum • Outlet portion of the subdrain should hove a 4—inch diameter solid pipe discharged into o suitable disposal area designed by the project engineer. The subdrain pipe should be accessible for maintenance (rodding) " Other subdrain backfill options ore subject to the review by the geotechnical engineer and modification of design parameters Notes: 1) Sand should have a sand equivalent of 30 or greater and may be densified by water jetting 2) 1 Cu. ft. per ft, of 114— to 1 112—inch size gravel wrapped in filter fabric 3) Pipe type should be ASTM 01527 Acrylonitrile Butadiene Styrene (ABS) SDR35 or ASTM D1785 Polyvinyl Chloride plastic (PVC), Schedule 40, Armco A2000 PVC, or approved equivalent. Pipe should be installed with perforations down. Perforations should be 318 inch in diameter placed at the ends of a 120—degree arc in two rows at 3—inch on center (staggered) 4) Filter fabric should be Mirafi 140NC or approved equivalent 5) Weephole should be 3—inch minimum diameter and provided at 10—foot maximum intervals. if exposure is permitted, weepholes should be located 12 inches above finished grade. !f exposure is not permitted such as for a wall adjacent to a sidewalk/curb, a pipe under the sidewalk to be discharged through the curb face or equivalent should be provided. For a -- basement—type wall, a proper subdrain outlet system should be provided 6) Retaining waft plans should be reviewed and approved by the geotechnical engineer 7) Walls over six feet in height are subject to a special review by the geotechnical engineer and modifications to the above requirements RETAINING WALL BACKFILL PROJECT NO. 940028-027 �p n r AND SUBDRAIN DETAIL PROJECT NAME ETC ( L °` (rev. June 2000) Leighton and Associates, Inc. Figure No. 4 0 ° C v ° 1 1 L 1 , � 1 •r ' 1♦ I LL 1 1 I 1 1 1 1 1 I II 1 1 r I � I1 r 1 I Q I q 0 i i I O N a� I I DI,. g 11 r r 1 / I 1 1 1 I1 I� I 1 � O 1 d• I ^ 4J a+ L 4- N ,r7 0 m UD r0 4+ L V C L 0 j I I a Vf w j 1 Z I I I d 1 N 1 1 0 1 1 1 0— � 1 fu c 1 I c v I N 1 I Q w 6 ' LU ; I z N I 1 < V y.. x '0 Lu ; 1 I 1 c •r 1 I 6 1 Q w r-+ 0 1 1 1.1 1 I N —R j N 1 1 I Z b+ N O ' I O 1 ��i 0 N 4 ' I 0 ' H u •r F— c C 0 1 1 I u G9 U a ; �p ; LU 0 , y 1 I N w 3 f Ln x o O w '01 �� V U 1] C. V 1 0 1 I I M 1 � a V N Q o^ LU ; I o m o_ ' O I � 1 I H. W m Q 0 m•p O v C 1 I ' I / I �O t I y r 1 / 1 CC) ; I aoo I o° a I2 I � V I 1 I CD 1 CD l �+- I I !-I Q /ca LL I I y l I I I I M N a C I I I a , V I u 1 , I Q i i I I 0 n 1 O p Ln dC ; m.O O I i I I I I Q I O °v m O 1 0 1p `o O E h _ h O h o F O O q W ` 1 W v QU I I L 1 � I , 1 I LL. I I I 1 O , 1 00 M.-. m co � I a 1 I o � I I � n O I N 0 1 I q N Go I I Q7- l 1 PM i I o a 4 !, '0 W r i I w U ' I , I 1 , 1 0 � v ° c (U o M w to L U C L ro a to W ° ° J to 1 I i _ I I 1 1 I U �3 ' Z 1 'X a i I I 0 Q N m W I I F I I — D a 1 ° I I c •� O) 1 I I ~ u W f~O toil V) L U Q I I I �-I VI m o cc w In w ' (/1 to 1 0 I V) 0 1 I I I O 'i I 1 I I v I 1 I a ^y 1 I li I 1 I t Q II I I N I I DII I ; I 1 ( 1 I I I I I ' I I M ' I 1 � 1 I � � I ° u i i 'o j 1 Q 1 1 ' , I 1 I LLLL. 1 � I I 3 I cc ' I y 1 MC4 �•a; � to � I I ' I U i I I a N 1 � '-- -; `l' c.. � 1 I I ' 1 � 1 I I ' P I I I I U � =MM �rllri rnr ■� rllr 940028-027 - APPENDIX A REFERENCES Bartlett,S.F., and Youd,T.L., 1992,Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-InducedLateral Spread,Technical Report NCEER-92-002 1. Bartlett,S.F.and Youd,L.T., 1995,Empirical Prediction of Liquefaction-InducedLateral Spread,Journal of Geotechnical Engineering,Vol. 121,No.4,April 1995. California Building Standards Commission(CBSC),1998,California Building Code,Volumes and 2. California Department of Conservation, 1996, Division of Mines and Geology, Probabilistic Seismic ` Hazard Assessment for the State of California,Open File Report 96-08. California Division of Mines and Geology, 1997, Guidelines for Evaluating and Mitigating Seismic iHazards in California,Special Publication 117,March 13, 1997. 1988,Standard Specifications,dated January 1988. __.. Eisenberg, L.I., 1985a, Pleistocene Faults and Marine Terraces, Northern San Diego County, in Abbott, P.L., Editor, 1983, On the Manner of Deposition of the Eocene Strata in Northern San Diego County,San Diego Association of Geologists Fieldtrip Guide,pp. 87-91. 1985b, Pleistocene Faults and Marine Terraces, Northern San Diego County, in, Abbot, P.L., ed., On the Manner of Deposition of the Eocene Strata in Northern San Diego County; San Association of Geologists Guidebook,dated April 13, 1985. Eisenberg, L.I., and Abbott, P.L., 1985, Eocene Lithofacies and Geologic History, Northern San Diego County,in Abbott,P.O.Editor, 1983,On the Manner of Deposition of the Eocene Strata in Northern San Diego County,San Diego Association of Geologists Fieldtrip Guide,pp. 19- 35. Geotechnical Professionals, Inc., 2000, Geotechnical Investigation, Proposed Expo Design Center NEC Leucadia Boulevard and Garden View Road,Encinitas,California(DRAFT),GPI Project iNumber 1680.1,dated December 18,2000. Hart,E.W., 1997,Fault-Rupture Hazard Zones in California,Alquist-Priolo Earthquake Fault Zoning with ` Index to Special Study Zones Maps: Department of Conservation,Division of Mines and Geology,Special Publication 42. ICG,Inc., 1989,Supplemental Geotechnical Investigation Green Valley Property,Carlsbad,California,Job _ No.04-73 50-002-0 1-00,dated October 19, 1989. ` Ishihara,K., 1996,Soil Behaviour in Earthquake Geotechnics,Claredon Press,Oxford, 1996,350 pp. International Conference of Building Officials,1997,Uniform Building Code. -- A-1 -' APPENDIX A(Continued) 940028-027 Jennings, C.W., 1975, Fault Map of California:Faults,Volcanoes,Thermal Springs, and Thermal Wells, California Division of Mines and Geology,Geologic Data Map No. 1, Scale 1:750,000. 1994, Fault Activity Map of California and Adjacent Areas; California Division of Mines and Geology, Geologic Map 6, Scale 1:750,000. Kramer, 1996,Geotechnical Earthquake Engineering,Prentice Hall,630 pp. Leighton and Associates, Inc., 1996a, Geotechnical Investigation, Encinitas Ranch Plaza 2, Encinitas Ranch,TM 94-066,Encinitas,California,Proj ect No.4940028-08,dated May 17, 1996. 1996b, Supplemental Geotechnical Evaluation,Proposed Fill Area,Buildings F and E and Lots 5 -- and 7, Encinitas Ranch Plaza 2, Encinitas, California, Project No. 4940028-019, dated October 28, 1996. - ,1997, Interim As-Graded Report, Encinitas Ranch Plaza 2, TM 94-066, Encinitas, California, ProjectNo. 11940028-019,dated July 23, 1997. �. 1998a, Recommended Replacement Stability Fill Adjacent to Leucadia Boulevard, Northeast Corner of Intersection Between Leucadia Boulevard and Garden View Road, Encinitas Ranch Plaza 2,Encinitas,California,ProjectNo.4940028-022,dated February 20, 1998. 1998b,Treatment of Stockpiled Soils,Encinitas Ranch Plaza 2,Encinitas,California,Project No. 4940028-023,dated September 28, 1998. ,1998c, Interim Compaction Report, Encinitas Ranch Plaza 2, Encinitas, California,Project No. 4940028-023,dated November 12, 1998. ,1999a, Recommendations for Subdrain Outlet, Encinitas ranch Plaza 2, Encinitas, California, ProjectNo.4940028-023,dated January 5, 1999. ,1999b, Interim Compaction Report, Encinitas Ranch Plaza 2, Encinitas,California,Project No. 4940028-023,dated January 22, 1999. - ,1999c,Import Soil Recommendations,Encinitas Ranch Plaza 2, Encinitas,California,ProjectNo. 4940028-023,dated January 25, 1999. - ,1999d, Interim Compaction Report, Encinitas Ranch Plaza 2, Encinitas, California,Project No. 4940028-023,dated February 17, 1999. 1999e Limited Geotechnical Investigation,Proposed Wildlife Undercrossing,Garden View Road, Encinitas Town Center- Phase I1, Encinitas,California,Project No. 4940028-026,dated ` November 24, 1999. A-2 940028-027 - APPENDIX A(Continued) ,2000a, Interim Compaction Report, Encinitas Ranch Plaza 2, Encinitas, California,Project No. 4940028-023,dated January 10,2000. ,2000b, Update Geotechnical Investigation, The Promenade Encinitas Ranch, Encinitas Ranch, TM 94-066,Encinitas,California,Project No.4940028-027,dated March 28,2000. - ,Unpublished,in-house data. iNCEER, 1997, Summary Report of Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Ed. Youd, T.L. and Idriss, I.M., Technical Report NCEER 97-0022, dated December 31, 1997. - Pradel, D. 1998, Procedure to Evaluate Earthquake-Induced Settlements in Dry Sands, Journal of Geotechnical and Geoenvironmental Engineering,Vol. 124,No.4,April 1998. �- Seed,H.B.and Hon,M., 1987,Design Problems in Soil Liquefaction,Journal of Geotechnical Engineering, Vol. 113,No. 8,August 1987. Seed,H.B. and Harder,L.F., 1990, SPT-Based Analysis of Cyclic Pore Pressure Generation and Undrained Residual Strength,H.Bolton Seed Memorial Symposium,1990. Tokimatsu, K., and Seed, H.B., 1987, Evaluation of Settlements in Sands Due to Earthquake Shaking, ASCE Journal of Geotechnical Engineering,Vol. 113,No. 8,dated August 1987. U.S.Department of the Navy, 1986,Soil Mechanics,DM 7.01. Youd, L.T., Hansen, C.M. and Bartlett, S.F., 1999, Revised MLR Equations for Predicting Lateral Spread ` Displacement,Proceedings of the Seventh U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Soil Liquefaction,August 15-17, Seattle Washington, Multidisciplinary Center for Earthquake Engineering Research, Technical Report,MCEER-99-0019,November 19, 1999. AERIAL PHOTOGRAPHS AGENCY DATE FLIGHT NO. PHOTO NOS. �- San Diego County 1928 37 E1-6,FX1-3 USDA 1953 AXN 8M-74,75 and 76 USDA 1960 3 79 and 80 USDA 1967 1 174 and 175 USDA 1978 17B 32,33 and 34 USDA 1989 1 209,211 and 213 A-3 NoText GEOTECHNICAL BORING LOG KEY Sheet 1 of 1 Date RING LOG GRAPHICS Project No. Project KEY TO BO Type of Rig Drilling Co. Drop in. _ Hole Diameter Drive Weight Elevation Top of Hole +/- ft. Ref.or Datum T .. C o 4- *' 0%.., InN GEOTECHNICAL DESCRIPTION ` O N d" t d 0 0 Tn N o Ub Vd L O O ' .0 f- - U 0 (d Logged By 0%.41 e a L)w U) u)v Sampled By 0 Inorganic day of low to medium plasticity,gravelly day,sandy clay,silty,clay,lean CL day CH Inorganic day of high plasticity,fat clay w w w O1-OH Organic day,silt or silty clay-clayey silt mixtures w w w w w w w ML Inorganic silk very fine sand;silty or clayey fine sand;clayey silt with low plasticity adicate MH inorganic silt;diatomaceous fine sandy or silty soils;elastic silt Sly S Sam CL-ML Low plasticity day to silt mixture ice MLSM Sandy silt to silty sand mixture Cal Sample CL-SC Sandy day to clayey sand mixture v SCSM Clayey sand to silty sand mixture 1M°w at tine SW Well graded sand,gravelly sand,little or no fines d�e 10-- SP Poorly graded sand;gravelly sand,little or no fines SM Silty sand;poorly graded sand-silt mixture SC Clayey sand;poorly graded sand-lay mixture GW Well graded gravel;gravet•sand mixture,little or no fines a e. • GP Poorly galled gravel;gravel and mndute,tittle or no fines o• 1S GM Silty gravel;gravel-sa"t mixture GC ClaRy 8mvc4 gravel-amd-clay mixture Sandstone Siltstow ■ — Ck"one G e O BreccIa(angular gravel and cobbles or matrixsupported conglomerate) ` Conglomerate(rounded gravel and cobble,dast4upported) _ Igneous granitic or granitic type rock i� Metavolcanic of metamorphic rode Artificial or man-made fill ZS Asphaltic concrete Portland Cement Concrete sos�t»irr� LEIGHTON &ASSOCIATES GEOTECHNICAL BORING LOG M-1 Date 2-21-00 Sheet 1 of 4 Encinitas Ranch Project No. 940028-027 Project Drilling Co. Gregg Drilling Type of Rig Mud Rotary Hole Diameter 5 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/- 97 ft. Ref. or Datum See Geotechnical Map C o �' N�, GEOTECHNICAL DESCRIPTION o, o ,� z ,� O 0,•, L 0 3 O C4- O� b� [ly 0.0 4- OtL OO a N W UU ` a>i4 o�� �J z 00 31 o C —� Logged By MDJ W � cn a o z t0 co m Sampled By MDJ 0 SC ARTIFICIAL FILL(Afl 0': Clayey,silty fine SAND:light brown,moist,dense(per driller) 95 5 k 9° k IO 85 k _._. 15 k 80 k 20 k 75 k 25 1 30 SM 25': Silty,fine to medium SAND:brown,moist,medium;traces of CLAY k 70 2A 7 23.9 SC OUATE NARY SLOPE WASH(Osw) 2B 19.2 @ 28': Clayey,fine to medium SAND:brown,moist to damp,loose 505A(11177) LEIGHTON & ASSOCIATES k GEOTECHNICAL BORING LOG M-1 --• Date 2-21-00 Sheet 2 of 4 Project Encinitas Ranch Project No. 940028-027 Drilling Co. Gregg Drilling Type of Rig Mud Rotary Hole Diameter 5 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/- 97 ft. Ref. or Datum See Geotechnical Map - ^ .- C z o �v b cn GEOTECHNICAL DESCRIPTION N +- t W 0 0 + 0! 30<L y V n C U U tU d 0! Q O _ D o- N W w4 o4- �� z° E m w 311_1 o — . Logged By. MDJ W cn oL U cn" Sampled By MDJ 30 23.E SC QUATERNARY SLOPE WASH(Osw)continued Q 30': Groundwater encountered 3 8 Cad 31': Clayey,medium SAND:orange-brown,wet,loose 65 _ SpT 4 7 24.0 SM @ 34': Clayey,silty,very fine SAND:orange-brown to light brown,wet,loose ` 35 alibratio 60 5 9 19.3 (?P 37': Silty,very fine to fine SAND:light brown,wet,loose 40 2 p @ 40': Silty,very fine to medium SAND: light brown,wet,loose;slightly 8 2 6 -LL micaceous 55 SPT 7 9 20.2 0 43': Silty,very fine to fine SAND:light brown,wet, loose;traces of CLAY alibratio 45 g 8 21.8 SM/SC Q 46': Clayey,silty,very fine SAND:light brown,wet,loose; interbedded silt and clayey sand 50 ` q 5 25.6 @ 49': Silty to clayey,very fine SAND: light brown to brown,wet,loose;upper portion of sample was sand and lower 6 inches was clayey sand 50 50': Started using NW drill rod 45 55 SPT 10 8 22.0 SM (V 55': Silty,fine SAND:light brown to orange-brown,wet,loose alibratio 40 505A(11/77) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG M-1 2-21-00 Sheet 3 of 4 Date Project No. 940028-027 Project Encinitas Ranch Drilling Co. Gregg Drilling Type of Rig Mud Rotary 5 in. Drive Weight 140 pounds Drop 30 in. Hole Diameter See Geotechnical Map Elevation Top of Hole +/- 97 ft. Ref. or Datum } N^ GEOTECHNICAL DESCRIPTION �,• �; O� U N Z N D to�-. 7 v N tN L01 + 30LL NU C L) ` �►" o.. L z m a a o —u! Logged By MDJ -- w to O L) to Sampled By MDJ 60 11 17 19.1 SM QUATERNARY SLOPE WASH(Osw)continued @ 60': Silty,fine to medium SAND;light brown,wet,medium dense;slightly micaceous 35 65 12 21 24.7 SC/SM @ 65': Silty,clayey SAND to silty SAND:light brown to brown,wet,medium dense;interbedded CLAY 30 ` 70 13 10 26.4 SC @ 70': Clayey,very fine to fine SAND:brown to light brown,wet,loose;thin layer of silty sand 25 75 SPT 14 17 20.7 SM @ 75': Slightly clayey,silty,very fine to fine SAND:light brown to gray brown, alibratio wet,medium dense: rare gravels 20 80 15 21 25.5 SC @ 80': Silty,sandy CLAY:orange-brown to olive-green,wet,very stiff;very fine sand layers 15 85 16 18 22.0 @ 85': Very fine sandy,silty CLAY:orange-brown to olive-green,wet,very stiff 10 Qn 505A(11/77) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG M-1 Date 2_21-00 Sheet 4 of 4 Project Encinitas Ranch Project No. 940028-027 Drilling Co. Gregg Drilling Type of Rig Mud Rotary Hole Diameter 5 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/- 97 ft. Ref. or Datum See Geotechnical Map } o to GEOTECHNICAL DESCRIPTION C o + _ W X in o} �} L01 + Ol Oli WV +'C VU i0 w (U(U 0-0 — o a N w w4- o4- L� z E 00 w �" o- _N Logged By. _ MDJ _ w M o U (°n Sampled By MDJ 90 17 15 22.8 Sc QUATERNARY SLOPE WASH(Osw)continued Q 90': Silty,clayey,fine SAND:olive-green,wet,medium dense 5 95 18 19 @ 95': Silty,clayey,fine SAND:olive-green to orange-brown,moist to wet; medium dense 0 100 TRTIARY DEL MAR FORMATION 19 5015" Q100': Silty,fine SAND.gray-brown to orange brown,moist,very dense -5 Total Depth = 101.5 Feet Ground Water Encountered at 30 Feet at Time of Drilling Backfilled with native soil on 2/22/00 105 -10 110 -- -15 115 -20 505A(11/77) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG M-2 ' Date 2-22-00 Sheet 1 of 3 Encinitas Ranch Project No. 940028-027 Project Type of Rig Mud Rotary Drilling Co. Gregg Drilling _ Hole Diameter 5 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/- 100 ft. Ref. or Datum See Geotechnical Map T .. .. C o (,X N to GEOTECHNICAL DESCRIPTION o.. ,. u z N o a,, L ro t o m� 0.W ao +01- o� o U to �� wv ov LJ z m T.. o c —�_ Logged By. . MDJ CD CL W cn o� 0 con Sampled By MDJ 100 0 SM QUATERNARY ARTIFICIAL FILL(Afl @ 0': Silty,fine to medium SAND:orange-brown,moist,dense(per driller) 95 5 90 la --- 85 15 80 20 141 75 25 1 32 @ 25': Silty,fine to medium SAND:orange-brown to gray-brown,moist,dense - 2 23 SM QUATERNARY SLOPE WASH(Osw) - - - - - - - - - - - - - -- - - - @ 28': Silty,fine SAND:orange-brown,moist,medium dense;slightly micaceous 505A(11/M LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG M-2 Date 2-22-00 Sheet 2 of 3 Project Encinitas Ranch Project No. 940028-027 Mud Rotary Drilling Co. Gregg Drilling Type of Rig Hole Diameter 5 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/- 100 ft. Ref. or Datum See Geotechnical Map C 0 o �v we i GEOTECHNICAL DESCRIPTION _} t} _ to N O N^ O 3 C U + b(U 0-0) X0.0 + O O a N U U a) o� LJ Z E CO T" o _N Logged By MDJ fA 0- L O O --- W to o U U) Sampled By MDJ 70 30 SM QUATERNARY SLOPE WASH(Osw)continued) fine SAND:orange-brown to light brown,wet,loose 3 7 @ 31': Silty, @ 33': Ground water encountered 8 @ 34': Silty,fine SAND:orange-brown to light brown,wet,loose 4 65 35 5 4 SP-SC @ 37': Slightly clayey,poorly graded medium SAND:orange-brown,wet,very loose 60 40-- 0 6 9 SM @ 40': Silty,fine to medium SAND:light brown,wet,loose;few gravel-size grain 7 9 @ 43': Silty medium SAND:light brown,wet,loose .._ 55 45 8 5 a 46': Clayey,silty,fine SAND:light brown,wet,loose;few gravel-size grains 9 10 c@ 49': Silty,fine SAND:.orange-brown,wet,loose 50 50 @ 50': Started using NW drill rod 45 55 10 12 @ 55': Silty,fine to medium SAND:light brown,wet,medium dense;few gravel-size grains 505A(11/77) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG M-2 Date 2-22-00 Sheet 3 of 3 Project Encinitas Ranch Project No. 940028-027 Drilling Co. Gregg Drilling Type of Rig Mud Rotary Hole Diameter 5 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/- 100 ft. Ref. or Datum See Geotechnical Map } o (O o . z O LL. a ro ^N GEOTECHNICAL DESCRIPTION _CZ N o 0 Z —to tv — o a _ �► _ w ov c�J z ro °° V Tv o C —=Cn Logged By. MDJ w U) 0 U con" Sampled By MDJ 40 60 15 24.0 SC QUATERNARY SLOPE WASH(Osw) 60': Silty,clayey SAND:orange-Drown,wet,medium dense Total Depth = 61.5 Feet Ground Water Encountered at 33 Feet at Time of Drilling Backfilled with Native Soil on 2/22/00 35 65 ` 30 70 _. 25 75 20 80 15 85 505A(11/77) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG M-3 Date 2-22-00 Sheet 1 of 3 Project Encinitas Ranch Project No. 940028-027 Drilling Co. Gregg Drilling Type of Rig Mud Rotary Hole Diameter 5 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/- 107 ft. Ref. or Datum See Geotechnical Map } 0^ GEOTECHNICAL DESCRIPTION o,., s., 0 z °o N r, L m W aW M w 0� wu Nc L) ` w� o� L z E m W a o —� Logged By MDJ W U) o �U (nn= Sampled By MDJ 0-- SM QUATERNARY ARTIFICIAL FILL(AD a 0': Silty,fine to medium SAND:light orange-brown,moist,dense(per driller) 105 5 100 10 95 15 90 20 85 25 1 41 @ 25': Slighty clayey,silty,fine to medium SAND:orange-brown,moist,dense; slightly micaceous 80 2 gg @ 28': Silty,fine to medium SAND:orange-brown,moist,dense ■ 505A(11i77) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG M-3 Date 2-22-00 Sheet 2 of 3 Encinitas Ranch Project No. 940028 Project -027 Drilling Co. Gregg Drilling Type of Rig Mud Rotary Hole Diameter 5 in. Drive 140 pounds Drop 30 in. Weight Elevation Top of Hole +/- 107 ft. Ref. or Datum See Geotechnical Map C,. o � GEOTECHNICAL DESCRIPTION Z O L O U N ft1 U b� tl0) QO O� O Q N C UU W.. 0. cL z Co T`� c o Logged By MDJ L U u)" Sampled By MDJ 30 SM QUATERNARY ARTIFICIAL FILL(Afl continued 3 40 @ 31': Silty,fine to medium SAND:orange-brown,moist,dense;few organics 75 _ _ _ _ _ _ _ _ _ 4 27 SM 4itATERNARY SLOPE WASH(Osw) — — — — — — — — — - - - - — - — - - — - 34': Silty,fine SAND:orange-brown to light brown,moist to wet,medium 35 dense,rare organics 1 70 5 24 16.1Z— a 37': Silty,fine to medium SAND:light brown,moist to wet, medium dense 37.5': Ground water encountered 40-- 13 @ 40': Silty,fine to medium SAND:orange brown,wet,medium dense 65 7 5 24.9 a 43': Silty,very fine to fine SAND;orange-brown to light brown,wet,loose; traces of CLAY 45 8 12 @ 46': Slightly clayey,silty,very fine to fine SAND:light brown,wet;medium 60 dense 9 11 23.8 ML a 49': Slightly clayey,very fine sandy SILT:light brown,wet,stiff 50 @ 50': Started using NW drill rod 55 55 _ 10A 20 18.7 CL/SC g 55': Fine sandy, silty CLAY to clayey,silty SAND:green to dark brown,moist; lOB 22.8 very stiff/medium dense;sandy silty clay at 55'-56',clayey,silty sand 56'-56.5' 50 505A(11/77) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG M-3 Date 2-22-00 Sheet 3 of 3 Project Encinitas Ranch Project No. 940028-027 Drilling Co. Gregg Drilling Type of Rig Mud Rotary Hole Diameter 5 in. Drive Weight 140 pounds Drop 30 in Elevation Top of Hole +/- 107 ft. Ref. or Datum See Geotechnical Map C L} N �� _0 U) GEOTECHNICAL DESCRIPTION 00 to O b W ay 0.0 4- O� O o- N UU WC+- 04- L z E 00 w M, o _ Logged.$Y MDJ w U) oL U U) Sampled By MDJ 60 23 SM QUATERNARY SLOPE WASH(Osw)continued 60': Silty,medium SAND,orange-brown,moist to wet,medium dense 45 Total Depth = 61.5 Feet Ground Water Encountered at 37.5 Feet Backfilled-with Native Soils on 2/22/00 65 40 70 35 75 30 80 25 85 20 ` 505A(11/77) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG M4 Date 2-22-00 Sheet 1 of 3 Encinitas Ranch Project No. 940028-027 Project Gregg Drilling Type of Rig Mud Rotary Drilling Co. 140 pounds Drop 30 in. Hole Diameter 5 in. Drive Weight Elevation Top of Hole +/- 101 ft. Ref. or Datum See Geotechnical Map T ., �. o„ z 4- ~ W v o u; GEOTECHNICAL DESCRIPTION ip� O y 00 – Od N (U U 30 C4- >4- oo� LJ z E m aLi .T" o —Logged By MDJ CD U1 cn o U con Sampled By MDJ 0 SM QUATERNARY ARTIFICIAL FILL(Af) @ 0': Silty,fine to medium SAND:orange-brown,moist,dense(per driller) too 5 95 i r 10 - 90 i - i 15 85 - 20 i 80 i - 25 1 37 @ 25': Silty,medium SAND:orange-brown,moist,dense 75 i 2 24 SC/SM @ 28': Clayey,silty SAND to silty,medium SAND:light brown to orange-brown, moist,medium dense in- 505A(t t in) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG M4 Date 2-22-00 Sheet 2 of 3 Project Encinitas Ranch Project No. 940028-027 Drilling Co. Gregg Drilling Type of Rig Mud Rotary Hole Diameter 5 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/- 101 ft. Ref. or Datum See Geotechnical Map ■ M^ GEOTECHNICAL DESCRIPTION C O 4- _ `. w �- Or. �.- V N Z N 0 tn.. bN 3LL C 4- 4- —U N 0 0 Q.O +- 0! O D d N y U wv 04- L z° £ °° w �" o —�_ Logged By MDJ W to o` M U u) Sampled By MDJ 30 SC QUATERNARY ARTIFICIAL FILL(Afl continued 70 3 19 @ 31': Silty,clayey,fine to medium SAND: light orange-brown,moist,medium dense - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - 4 6 — SC QUATERNARY SLOPE WASH(Oswl @ 34': Silty,clayey,fine SAND:light brown,wet,loose 35 @ 34': Ground water encountered 65 5 g SM @ 37': Silty,fine SAND:light brown,wet,loose;traces of CLAY 40- 6 4 22,2 @ 40': Silty,fine SAND:light brown to brown,wet,loose; 1 inch clay bed 60 7 g 23.9 @ 43': Silty,fine SAND:light brown,wet,loose; 1"clay bed; *began with a seating blow 45 55 g 9 22,6 @ 46': Silty,fine SAND:light brown,wet,loose;traces of CLAY 9 g 22.2 SM/SC @ 49': Silty,fine SAND to clayey SAND.-brown,.wet,loose 50 @ 50': Change from AW to NW rod 50 55 10 17 SM @ 55': Silty,fine to medium SAND:light brown, wet,medium dense 45 505A(11/77) LEIGHTON & ASSOCIATES .- r :... �.► .r• +-- r- .� r- r GEOTECHNICAL BORING LOG B-38 _ Date 9-19-95 Sheet 1 of 3 Project Encinitas Ranch/Phase 2 Project No. 4940028-008 Drilling Co. Scott's Drilling Service Type of Rig Hollow-Stem Aut Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 Elevation Top of Hole +/-___.g7 ft. Ref.or Datum T X GEOTECHNICAL DESCRIPTION C L} u a Z N o N� L roN .V }Q � LC.O � OLL WV NC UV ` �� °� �J z E O°w T a o c —N Logged By MLF w N a o L)i t°nv Sampled By MLF 0 Bag-2 QUATERNARY ALLUVIUM(Oall @0-5' a5 5 =' - -------------------- - --------------- - 1 28 1114 9.0 SM SLOPE WASH @ 5': Reddish brown,moist,medium dense;fine to medium silty SAND 3 22 108.2 5.1 SP @ 10': Reddish tan,moist,loose,fine to medium SAND;few cobbles;trace of - SILT 75 15— 52 4 11 120.0 21 SP @ 15': As above;saturated,loose 70 5 1 for 12 SP-SM @ 20': Light brown,saturated,very loose,SAND with SILT 65 6 2 SP-SM @ 251: As above 60 505A(11i77) LEIGHTON & ASSOCIATES i GEOTECHNICAL BORING LOG B-38 --- Date 9-19-95 Sheet 2 of 3 Project Encinitas Ranch/Phase 2 Project No. 4940028-008 Drilling Co. Scott's Drilling Service Type of Rig Hollow-Stem Auger Hole Diameter 8 in. Drive Weight 140}pounds Drop 30 in. Elevation Top of Hole +/-___87 ft. Ref.or Datum } GEOTECHNICAL DESCRIPTION =M 0"l Z 30 C4- +p-+- U w ! L NJ 41 LL O Oa NEW U— y:ae ov Z m T..E O C Logged By M Y CD CL to ton Sampled By MLF 7 13 SP-SM @ 30': As above;loose SS 35 9 @ 351: No recovery S SC 40': Brown wet to saturated;medium dense, des from near top of samper, 8 10 P/ @ clayey SAND to medium to coarse sand to clayey sand near bottom of sample 45 4S- 9 g SP/SM @ 451: Brown,wet to saturated,medium dense,medium to coarse SAND;near bottom of sampler,silty sand trace of CLAY 40 SO 10 8 SP @ 50': Brown,saturated,loose,medium to coarse SAND;clayey sand in bottom 2 inches of sampler _.. 35 55 11 4 SP @ 551: Brown,saturated,loose,medium SAND 30 505n<111rn LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG B-38 _ Date 9-19-95 Sheet 3 of 3 Project Encinitas Ranch/Phase 2 Project No. 4940028-008 Drilling Co. Scott's Drilling Service Type of Rig Hollow-Stem Aus Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 is Elevation Top of Hole +/- 87 ft. Ref.or Datum �._. o„ Z o �� �N GEOTECHNICAL DESCRIPTION a a 0 toe% L m zM (0 30—(U N av °v CD 31 Z E to a T" o c _N Logged By MLF W Cron a 0 �U cnnv Sampled By MLF 12 8 SP 60-7-- @ 61': Brown,saturated,loose,fine to medium SAND;bottom 6 inches of sampler. reddish brown,1 inch thick tense,6 to 7 inches from bottom of 25 sample;highly micaceous 13 13 SP-SM @ 65': Reddish brown,saturated,medium dense,fine to medium SAND with SILT 70—'* 0 14 37 111.4 18.8 SP-SM @ 70': As above 15 75 10 5 85 @ 85': Heaving sands,able to get about 3 inches of native;brown,wet,fine to medium SAND with trace of silt Total -= 85 Feet Ground Water Encountered at 15 Feet 0 Backfilled on September 19,1995 r 505AC11/77> LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG B-39 - Date 9-20-95 Sheet 1 of 2 Project Encinitas Ranch/Phase 2 Project No. 4940028-008 Drilling Co. Scott's Drilling Service Type of Rig Hollow-Stem Auger Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/- 115 ft. Ref.or Datum C 4- GEOTECHNICAL DESCRIPTION +} t Z to W Z 3U-° C:4- +:1 b U 01� °w L z E m w av ° _N izgged By may w Cron n 0 �c°) t°n v Sampled By MLF 115 0 Bag-1 SM SLAPE WASH @b0-5' @ 0': Brown,damp,fine to medium silty SAND 110 5 2 28 108.6 7.2 SP-SM @ 5': Light brown,medium dense,damp,fine to medium SAND;trace of SEM,, iron oxide staining in sample at bottom of sampler 105. 10 100 3 50 for 98.9 9.1 SP @ 151: Light brown,dense,damp,fine to medium SAND with iron oxide staining 5" (possible sand in auger causing high blow count) 95 20 4 50 for 93.7 10.0 SP @ 25': As above 4" 505A(11/T7) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG B-39 Date 9-20-95 Sheet 2 of 2 Project Encinitas Ranch/Phase 2 Project No. 4940028.008 L Drilling Co. Scott's Drilling Service Type of Rig Hollow-Stem Aug, Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 i Elevation Top of Hole +/- 115 ft. Ref.or Datum o U 0 tau; DESCRIPTION i-� t t to W Z 3 °O C44-- Z� NN >� 0) M� o � °� o a a� -� °% �� cD Z E m(U 31 o c m Logged By MLF w cn n o EU cnnv Sampled By MLF s5 30 TORRFY SANDSTONE SM Q 311: Driller indicated drilling became very difficult ._ 80 50 for Q 35': Ught tan with iron oxide stained lenses,SANDSTONE;dry,very dense Total Depth-35 Feet 3 Inches No Ground Water Encountered at Time of Drilling Backfdled on September 19,1995 75 40 70 45 65 50 60 55 i 505n(11in) LEIGHTON & ASSOCIATES ` GEOTECHNICAL BORING LOG B-40 Date 9-19-95 Sheet 1 of 2 Project Encinitas Ranch/Phase 2 Project No. 4940028-008 ` Drilling Co. Scott's Drilling Service Type of Rig Hollow-Stem Augg - Hole Diameter 8 in. Drive Weight 140 Rounds Drop 30 in. Elevation Top of Hole +/-___28 ft. Ref.or Datum 4" ` GEOTECHNICAL DESCRIPTION op 0 o +- _ o X a +-w }a crn } to 30 r-wv }c c�� >°� w01 ro� o — oa No wv M W L z E m 4, 31 o c N Logged By MU w to n. o �U ton' Sampled By MLF _0 SM SLOPE WASH @ 01: Brown silty SAND 95 ` 5 1 16 106.7 6.2 SP @ 51: Brown,damp,loose,fine to medium SAND J. Bag.2 90 10 - ._.. 3 7 SM @ 10': Brown,moist,medium dense,silty sand with fine to medium SAND 85 15 4 18 1095 103 SM @ 15': light yellowish brown,moist,medium dense,silty fine to medium SAND go- 20 5 18 109.2 9.8 SM @�' above i 75- 25 6 27 106.3 11.9 SM @ 251. Yellowish brown,moist,medium dense,silty fine to medium SAND 70 505n(11i77) LEIGHTON & ASSOCIATES ` GEOTECHNICAL BORING LOG B-40 Date 9-19-95 Sheet 2 of 2 Project Encinitas Ranch/Phase 2 Project No. 4940028-008 ` Drilling Co. Scott's Drilling Service Type of Rig Hollow-Stem Aue Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 i Elevation Top of Hole +/- 98 ft. Ref.or Datum T ^ ^ o +- _ WL " GEOTECHNICAL DESCRIPTION p} =t 2 " Z "0 "^ � b Ln >� W W NJ O 0! -L D d N W UU —N tug °� tD Z to °0 a 31 c - . Logged By MLF - w o L) u)' Sampled By MLF 7 22 104.1 22.F SM @ 301: As above;saturated 65 ` 8 54 107.9 17.8 SM @ above;wet 60 40 9 57 SP SM @�' Light brownish gray Ye llowish brown two colors with o:dde staining; medium dense,fine to medium SAND with SILT 55 --——————————————————————————— 10 22 —CI. — DEL MAR FORMATION @ 45': Olive with oxide staining,moist,very stiff silty CLAY with local fine SAND so- 50 11 40 CL @ 501: Grayish green,damp,very stiff,silty CLAY with occasional iron oxide staining Total Depth =51 Feet Ground Water Encountered at 30 Feet Backfilled on September 19,1995 45- 55 ` 40 505A(11i77) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG B-41 ~~ Date 9-20-95 Sheet 1 of 3 Project Encinitas Ranch/Phase 2 Project No. 4940028-008 Drilling Co. Scott's Drilling Service Type of Rig Hollow-Stem Auger --- Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/-__.8§4 ft. Ref.or Datum T ^ ^ 6 ;- t WX ta • GEOTECHNICAL DESCRIPTION O^ t^ V N z N 0 N^ L' NN j� 0al� bJ O O� Oa Nd VU w� o� tL z E m w T" o C _N Logged By IVII.F w M IV a o �U u)' Sampled By MLF 0 Bag-1 SM SLOPF WASH @0.5+ @ 0': Dark brown,damp,silty SAND;fine sand 80 i5 2 13 103.8 4.1 SP-SM @5': Brown-yellow,moist,loose,fine to medium SAND with SILT i i 75 10 3 13 112.1 6.9 SP @ 10': As above 4 13 110.0 17� SP Q IS': As above;vets'moist,however,driller used water in auger. Driller indicated that ground water encountered at 15 feet 65 20 5 14 107.9 21.7 SP @ 201: Yellowish brown,saturated,loose,fine to medium SAND;trace of SILT 60 6 19 111.2 19.3 SP @�� a 'e i 55- 505A(11i77) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG B-41 _. Date 9-20-95 Sheet 2 of 3 Project Encinitas Ranch/Phase 2 Project No. 4940028-008 Drilling Co. Scott's Drilling Service Type of Rig Hollow-Stem Auer Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 i Elevation Top of Hole +/- 84 ft. Ref.or Datum '% +- o • GEOTECHNICAL DESCRIPTION Co} z N 0O 0^ 7 bN j W Oal M NJ O UP 01 0 Goo '}^d U 01� ow L z E m W M o —� Logged By MLF W CD a 0 E0 (nn" Sampled By MLF 7 17 SP @ 30': As above 50 35 8 23 104.9 243 SP-SM @ 35': light yellow-brown,loose,saturated fine to medium SAND with SMT i . 45 r40 9 21 1055 215 SP-SM @ 40': As ab'e 45—".'.*. 10 18 104.1 22.7 SM @ 45': Light brown,loose,saturated,fine to medium silty SAND with nodules of dark brown CLAY 35 50 30 55 11 25 108.0 19.2 SM @ 55': Light yellow-brown,loose,saturated,fine to medium silty SAND i 25 505A(11/77) LEIGHTON & ASSOCIATES k GEOTECHNICAL BORING LOG B-41 ° Date 9-20-95 Sheet 3 of 3 Project Encinitas Ranch/Phase 2 Project No. 4940028-008 Drilling Co. Scott's Drilling Service Type of Rig Hollow-Stem Augei - Hole Diameter 8 in. Drive Weight 140 hounds Drop 30 in Elevation Top of Hole +/-__14 ft. Ref.or Datum - C 4- GEOTECHNICAL DESCRIPTION o roN U z o ; � X ° E� °� o°a ay 0>� w o vv L z E m W T" o C —u' Logged By MLF W cn a o EU tnv Sampled By MLF 20 12 SO 109.6 19.9 SP-SM @ 65': Li t yellow-brown,medium dense,saturated,fine to medium SAND with _. SILT _ 70 10 75 13 84 SP DFff-&A_R_FORMATION -------------- ----————-- @ 75': light yellow-brown with iron oxide staining;dense,wet,fine to coarse SAND;few nodules of green silty CLAY S 14 99 SP @ 80': As above 0 15 71 1093 19.9 CL As above;drive shoe and at least one ring may contain: Green,hard,damp,silty CLAY with iron oxide staining Total Depth =86 Feet Ground Water Encountered at 15 Feet Backfilled on September 20,1995 -5 505A(11/77) LEIGHTON & ASSOCIATES ` GEOTECHNICAL BORING LOG B-42 - Date 9-20-95 Sheet 1 of 1 Project Encinitas Ranch/Phase 2 Project No. 4940028-008 Drilling Co. Scott's Drilling Service Type of Rig Hollow-Stem Aul Hole Diameter 8 in. Drive Weight 140 hounds Drop 30 Elevation Top of Hole +/-__1L0 ft. Ref.or Datum 0 GEOTECHNICAL DESCRIPTION U N z to 0O Ills. NN >(o W(U mJ O 2L OGU. NW UGU aim o� C z E to a 31 o c —N Logged By M Y ''' to a o >EU c°nv Sampled By MLF 120 0 Bag-1 SM SLOPE WASH @0.5+ @ 0': Brown,moist,silty SAND;topsoil 115 S 2 23 101.7 4.0 SP @ S': Light brown,loose,damp,fine to medium SAND with occasional lenses of -- iron oxide staining 110 10 loose moist fine to medium SAND 3 26 104.7 12.1 SP @ 10. Light brawn, , 105 15 4 25 102.4 20.5 SM @ 15': Grades from dark brown(top)to light brown(bottom);loose,moist,fine to medium silty SAND with iron oxide staining Total Depth- 16 Feet No Ground Water Encountered at Time of Drilling Backfilled on September 20,1995 100 20 9S 25 505A(11i77) LEIGHTON & ASSOCIATES GEOTECHNICAL BORING LOG B-1 Date 10-11-96 Sheet 1 of 1 Project Encinitas Ranch/Plaza 2 Project No. 4940028-019 Drilling Co. Barge's Drilling Service Type of Rig Hollow-Stem Auger. Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/. ?8 ft. Ref.or Datum Mean Sea Level T X '"o GEOTECHNICAL DESCRIPTION ;- _ w to +-+ 4-f- C U) W Z 3 ° C 4�- } ro U wW- o� Z E m (U T" o C _� Logged By KAB U1 N C3 L) cnn Sampled By KAB 0 SM ARTIFICIAL FILL.(AD @ 0-5': Mixed brown light brown,damp to moist,medium dense,silty fine to coarse SAND 75 5 1 44 99-5 8.7 SM n[14TFRNARY Si.()PR WASH(Osw) ——— — — — — — @ 5': Light brown,damp,dense,silty fine SAND with scattered well-rounded pebbles 70 _ @ 9': Ground water encountered 10 2 28 95.2 27.8 @ 10': LSightt brown with gray mottling throughout,medium dense,silty fine L 65 3 42 99.6 28.3 @ 151: As at 10 feet,sample completely saturated Total Depth = 16 Feet Ground Water Encountered at 9 Feet Backtilled on October 11,1996 20 55 ` 50 505A(11/77) LEIGHTON & ASSOCIATES ` GEOTECHNICAL BORING LOG B-2 Date 10-11-96 Sheet 1 of 2 Project Encinitas Ranch/Plaza 2 Project No. 4940028-019 Drilling Co. Barge's Drilling Service Type of Rig Hollow-Stem Auger - Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 ire Elevation Top of Hole +/- 105 ft. Ref.or Datum Mean Sea Level ` T o W X to GEOTECHNICAL DESCRIPTION L rn W Z 3 o C4- 7� bui ` > (U MJ o °� ono m c�c i o)� 0� tL Z E m w n," o —� Logged By KAB W N o �U t°n-' Sampled By KAB ` 0 SM ARTIFICLAL.FILL(Af) @ 0': Mixed light brown and brown,damp,dense,silty fine to medium SAND 100 5 1 72 116.2 11.6 @ 5': As above,dense @ 7-9': Gravel in spoils 95 _. 10 — 2 50 109.0 10.6 SM QUATERNARY SLOPE WASH(Oswl @ 10': Orange-brown to brown,damp,dense,silty fine to medium SAND with scattered oxidized zones 90 15 3 35 106.9 65 @ 15': Light brown,damp,medium dense,silty fine to medium SAND sag-3a 17- 85 2t) 4 36 1095 8.7 @ 20': Yellow-brown,damp,medium dense to dense,silty fine to coarse SAND 80 5 22 107.0 12.9 @ 25': As above at 20 feet 75 -- 505A(11/77) LEIGHTON & ASSOCIATES ` GEOTECHNICAL BORING LOG B-2 Date 10-11-96 Sheet 2 of 2 Project Encinitas Ranch/Plaza 2 Project No. 4940028-019 Drilling Co. Barge's Drilling Service Type of Rig Hollow-Stem Auger Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/- 105 ft. Ref.or Datum Mean Sea Level • X a^, C� � U N z N o N� ro� GEOTECHNICAL DESCRIPTION E —N w v m w "° z T C Logged By-, KAB cW n o U c°n" Sampled By KAB ` 6 29 105.4 10.4 SM QUATERNARY SLOPE WASH(OOn4 Continued @ 30': Light brown to brown,moist,medium dense,silty fine SAND 70 7 35 106.1 11.4 @ 35': As at 30 feet ` 65 40 g 55 109.2 9.9 @ 40': Yellowish brown,moist,dense,silty fine to coarse SAND ` @ 44'6": Ground water encountered 60 —_Sz 45—. 9 28 108.7 18.7 @ 451: Brown,saturated,medium dense,silty fine to coarse SAND Total Depth =46 Feet Ground Water Encountered at 44 Feet 6 Inches Bac>ttilled on October 11,1996 55 50 50 SS 45 - 505A(i1/77) LEIGHTON & ASSOCIATES ` GEOTECHNICAL BORING LOG B-3 Date 10-11-96 Sheet 1 of 2 Project Encinitas Ranch/Plaza 2 Project No. 4940028-019 Drilling Co. Barge's Drilling Service Type of Rig Hollow-Stem Auger Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/- 97 ft. Ref.or Datum Mean Sea Level _ _ GEOTECHNICAL DESCRIPTION ti _ w;., " f-+ 4--} C to 0"! Z 3 tn O >0 N0 b,J O 01 OL 0000. Ny U 0)4- °� C Z E m (U 31 o C —� Logged By KAB W U) 0 �L) t°n Sampled By KAB 0 SM ARTIFICIAL FILL(Af) @ 01: Mixed brown to dark brown,damp to moist,medium dense to dense,silty fine to coarse SAND 95 5 - - - - - - - - - - - - - - - - -- - - - - - - - ---- - - - - ----- -- - 72 114.0 10.9 SM QUATERNARY SLOPE WASH(Oswl @ 5': Yellow-brown,moist,dense,silty fine to medium SAND,well-rounded Bag-2 gravel clast in top ring 90 @6'$' _. 10 3 40 109.9 10.1 @ 10': Brown,damp,dense,silty fine to medium SAND 85 4 36 103.3 6.7 @ 15': As at 10 feet go 20 5 19 99.8 9.7 @ 201: Light brown,moist,medium dense,silty fine to medium SAND 75 6 25 103.3 10.3 @ 25': As at 20 feet 70 t In 505A(11/77) LEIGHTON & ASSOCIATES ` GEOTECHNICAL BORING LOG B-3 Date 10-11-96 Sheet 2 of 2 Project Encinitas Ranch/Plaza 2 Project No. 4940028-019 Drilling Co. Barge's Drilling Service Type of Rig Hollow-Stem Auger Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/. 97 ft. Ref.or Datum Mean Sea Level _ GEOTECHNICAL DESCRIPTION O _ WX N O OLL O( O>� � NJ E W o z OU N W U (U �" o _N Logged By KAB W U) a o U in" Sampled By KAB ` 7 48 111.6 5.3 SM QUATERNARY SLOPE WASH(OswXContinug.Q @ 30': Light brown,moist,dense,silty fine to medium SAND 65 _ @ 34': Ground water encountered 35 8 27 @ 35': Yellow-brown,saturated,silty,fine to medium SAND(disturbed) Total 60 Ground ept ter Encountered at 34 Feet Backfilled on October 11,1996 40 55 45 50 50 45 55 40 -- 505A(11/77) LEIGHTO N & ASSOCIATES S ` GEOTECHNICAL BORING LOG B-4 Date 10-11-96 Sheet 1 of 2 Project Encinitas Ranch/Plaza 2 Project No. 4940028-019 ` Drilling Co. Barge's Drilling Service Type of Rig Hollow-Stem Augei Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 in Elevation Top of Hole +/. 90 ft. Ref.or Datum Mean Sea Level T .. 0 �- GEOTECHNICAL DESCRIPTION O^ r^ t) N Z N O N^ �' bin j ` GEOTECHNICAL BORING LOG B-4 Date 10-11-96 Sheet 2 of 2 Project Encinitas Ranch/Plaza 2 Project No. 4940028-019 ` Drilling Co. Barge's Drilling Service Type of Rig Hollow-Stem Auger - Hole Diameter 8 in. Drive Weight 140 pounds Drop 30 in. Elevation Top of Hole +/- 90 ft. Ref. or Datum Mean Sea Level T ^ _ GEOTECHNICAL DESCRIPTION O +- "- ��• " >� E w NJ O O� O d .0 w U wI o- z E 00 y 31 o C —� Logged By KAB CD w N 0 X:0 t°n'-' Sampled By KAB ` 60- 30 6 19 87.4 27.8 SM OUA RNARY SLOPE WASH(Ow-)(Continued) @ 30': As at 25 feet saturated medium dense slightly coarser sand fraction Total Depth = 31 Feet Ground Water Encountered at 29 Feet Backfiilled on October 11,1996 ` 55 35 50 40 45 45 40 50 35 55 �_. 505A<11i77> LEIGHTON & ASSOCIATES NoText ` BORINGS a.OTHERS t 2 o cwi o a DESCRIPTION OF SUBSURFACE MATERIALS °w cc Cn ►-zo W �F a~i o a 3 a o LL This summary applies only at the location of this boring and at the time of drilling. J LL } Z cop g Subsurface conditions may differ at other locations and may change at this w w a location with the passage of time.The data presented is a simplification of actual W a m conditions encountered. 0 Fill: CLAYEY SAND(SC) brown and grey, moist, dense,with thin sandy clay lenses 9.4 116 9 D 120 @ 4 feet, sand tens, light brown 5 9.9 124 8 D SILTY SAND (SM) red-brown, very moist, dense, trace - 10.3 121 7 D - gravel 115 8.5 120 6 D 10 @ 10 to 23 feet, red-brown to olive-brown, moist, some sand lenses,with clay lenses 110 15 15 to 20 feet, medium dense 10.0 116 5 D @ 105 20 10.6 114 6 D 100 ` Natural: SAND WITH SILT(SPlSW-SM)white, moist, µ very dense 7.9 104 12 D 25 @ 25 feet, sandy silt lens 95 30 13.3 108 30 D @ 31 feet, very moist Total Depth 32 feet .......................... SAMPLE TYPES DATE DRILLED:11-1-00 PROJECT NO.: 1680.1 CJ Rock Core �-- EXPO-ENCINfTAS S❑Standard Split Spoon EQUIPMENT USED: ❑D Drive Sample 24"Bucket Auger LOG OF BORING NO. B- 1 ❑ l B Bulk sample GROUNDWATER LEVEL(ft): Not Encountered FIGURE B-1 ❑T Tube Sample ` 2 Q v o a DESCRIPTION OF SUBSURFACE MATERIALS °w 1.40 z U_ �� e o a N N w LL This summary applies only at the location of this boring and at the time of drilling. J LL o } z o a. O-- Subsurface conditions may differ at other locations and may change at this w g w a location with the passage of time.The data presented is a simplification of actual o a F m u� conditions encountered. p 110 g,p 115 B Fill: CLAYEY SAND(SC) red-brown to brown, moist, medium dense to dense, trace gravel,trace sandy clay lenses 5 105 8.8 120 6 D @ 8 feet, some sand lenses SILTY SAND (SM) brown, moist, dense 10 100 7.8 100 7 D ■ 15 feet li ht brown and dark brown, medium 95 15 to 17 9 g,g 114 5 D dense, mottled CLAYEY SAND (SC)olive-brown, very moist, medium dense, trace gravel 20 90 11.9 115 5 D @ 20 1/2 feet, silty sand tens @ 21 to 23 feet,with grey clay lenses SILTY SAND (SM) light brown and olive-brown, very moist, dense, mottled 25 85 12.9 115 7 D 9 feet sand silt lens @ 2 Y 80 10.3 114 20 D 30 @ 30 to 35 feet, light brown @ 32 to 35 feet, pieces of burnt wood (10% to 20% debris by volume) 35 75 20.1 105 22 �Dj Natural: SILTY SAND(SM) light grey-brown, very moist, very dense,with clay @ 35 feet, sandy silt lens SAMPLE TYPES DATE DRILLED:11-2-00 PROJECT NO.: 1680.1 ,�-- EXPO-ENCINITAS ©Rock Core ❑S Standard Split Spoon EQUIPMENT USED: ❑D Drive Sample 24"Bucket Auger LOG OF BORING NO. B- 2 B GROUNDWATER LEVEL(ft): Bulk Sample ❑ Water at 51 feet FIGURE B-2 ❑7 Tube Sample ou, � o n o a DESCRIPTION OF SUBSURFACE MATERIALS a W v�� f=z0 �F o a N a w LL This summary applies only at the location of this boring and at the time of drilling. J LL z-o g o— Subsurface conditions may differ at other locations and may change at this w w o a location with the passage of time.The data presented is a simplification of actual p a�CO conditions encountered. 40 70 16.5 112 35 D 45 65 17.1 111 24 D CLAY(CL) grey,wet, hard,with silty sand lenses 23.3 102 20 D 50 60 -- Total Depth 52 feet SAMPLE TYPES DATE DRILLED:11-2-00 / PROJECT NO.: © EXPO-ENCINITA ITAS Rock Core ❑S Standard Split Spoon EQUIPMENT USED: r r ❑D Drive Sample 24"Bucket Auger LOG OF BORING NO. B- 2 B Bulk Sample GROUNDWATER LEVEL: ❑ Water at 51 feet FIGURE B-2 ❑T Tube Sample Z Z w o- DESCRIPTION OF SUBSURFACE MATERIALS °w �zo xF ` o a a o LL This summary applies only at the location of this boring and at the time of drilling. J LL o } Z D a. Subsurface conditions may differ at other locations and may change at this w w Q location with the passage of time.The data presented is a simplification of actual W 0.o:Co U) conditions encountered. 0 Fill: CLAYEY SAND (SC) brown and grey, slightly moist, dense,with gravel, mottled,with clay lenses 7194..0 7 115 9 D �- 115 119 9 D 5 SILTY SAND (SM) red-brown and grey, moist, dense, some clayey sand lenses 10.5 117 6 D ` 110 11.4 120 7 D 10 @ 10 feet,with fragments of wire 105 11.1 116 9 D 15 @ 17 112 feet, sandy clay lens 100 11.6 115 7 D 20 95 11.4 115 8 D 25 @ 25 feet, sand with silt lens, light brown, slightly moist, i dense CLAYEY SAND(SC) red-brown, very moist, some sandy clay lenses 90 9.6 122 15 D 30 @ 33 to 38 feet, olive-brown,with fragments of asphalt and wood (20% debris by volume) 85 35 �. 38 feet piece of fabric? Natural: SILTY SAND(SM)olive-brown, wet, medium Ftn SAMPLE TYPES DATE DRILLED:11-1-00 PROJECT NO.: 1680.1 © Rock Core -- EXPO-ENCINITAS (]S Standard Split Spoon EQUIPMENT USED: []D Drive Sample 24"Bucket Auger LOG OF BORING NO. B- 3 © Bulk Sample GROUNDWATER LEVEL(ft): Water at 37 feet FIGURE B-3 Tube Sample i Z of o a DESCRIPTION OF SUBSURFACE MATERIALS F i=zo �� Qw I o w v ~ o w lies onl at the location of this boring and at the time of drilling. J LL v� o a ►- o w LL This summary app y o y z ur o CL O,. Subsurface conditions may differ at other locations and may change at this w w 0 a location with the passage of time.The data presented is a simplification of actual o a w m cn conditions encountered. I 40 dense 16.6 107 9 D ' 33.3 9 D @ 43 feet,with clay Total Depth 44 feet 75 i SAMPLE TYPES DATE DRILLED:11-1-00 ' PROJECT NO.: 1680.1 EXPO-ENCINITAS Rock Core S[] Standard Split Spoon EQUIPMENT USED: []D Drive Sample 24"Bucket Auger LOG OF BORING NO. B- 3 © Bulk Sample GROUNDWATER LEVEL: Water at 37 feet FIGURE B-3 TCJ Tube Sample 000 a DESCRIPTION OF SUBSURFACE MATERIALS °W ►-z0 x� Qw e w H N W °~w lies onl at the location of this boring and at the time of drilling. J LL cn o 0 �- a w,� This summary app Y o } z rn 0 M o - Subsurface conditions may differ at other locations and may change at this w w_j a location with the passage of time.The data presented is a simplification of actual W a W Co U) conditions encountered. i 15. 108 15 D 40— . Natural: SILTY SAND (SM)olive,wet, dense, trace 4 porosity i. 70 18.2 107 7 D 45 CLAYEY SAND (SC) olive,wet, medium dense i SANDY CLAY(CL)olive-grey,wet SANDY SILT(ML)olive, wet, hard,with clay 65 50 15.9 112 40 D Total Depth 51 feet r r �- SAMPLE TYPES DATE DRILLED:11-1-00 ' PROJECT NO.: 1680.1 ©Rock Core EXPO-ENCINITAS S1 Standard Split Spoon EQUIPMENT USED: ° QD Drive Sample 24"Bucket Auger LOG OF BORING NO. B- 4 _.. Bulk Sample GROUNDWATER LEVEL: Not Encountered FIGURE B4 QT Tube Sample - ---------- o� o w o a DESCRIPTION OF SUBSURFACE MATERIALS F w LU � cn„ ¢ � ►=-w a z u g• e Wo CL c~n N w LL This summary applies only at the location of this boring and at the time of thisn > o Y z N O a- 0— Subsurface conditions may differ at other locations and may change at this w w a location with the passage of time.The data presented is a simplification of actual o a m Co m conditions encountered. B 0 Fill: SILTY SAND (SM) brown and grey, slightly moist, 125 dense, trace gravel, mottled 6.6 116 8 D SAND WITH SILT(SPISW-SM) grey, slightly moist 7.1 119 6 D 5 SILTY SAND (SM) brown and grey, moist, medium 120 dense to dense, trace gravel,with sand lenses, mottled 8.3 113 5 D _ @ 7 feet, trace clayey sand lenses @ 7 to 13 feet, slightly moist to moist 10 9.4 118 8 D 115 10.9 111 5 D 15 Natural: SILTY SAND (SM) red-brown, moist to very 110 moist, medium dense @ 20 to 26 feet, dense 20 11.6 119 8 D 105 15 D 25 100 Total Depth 26 feet k �- SAMPLE TYPES DATE DRILLED:11-1-00 � ' PROJECT NO.: 1680.1 ©Rock Core �.-- EXPO-ENCINITAS ❑S Standard Split Spoon E024"Bucket Auger LOG OF BORING NO. B- 5 �D Drive Sample GROUNDWATER LEVEL(ft): ©Bulk Sample Not Encountered FIGURE B-5 Tube Sample Z o 0 O DESCRIPTION OF SUBSURFACE MATERIALS °w ' F7w;i- �„ �z0 FQWEw,,. w o a N This summary applies only at the location of this boring and at the time of drilling. J _ o } z(n 0o M o�- Subsurface conditions may differ at other locations and may change at this w g w_j a location with the passage of time.The data presented is a simplification of actual o a o:Co Cn conditions encountered. B 0 Fill: SILTY SAND(SM) light brown, moist 110 SANDY CLAY(CL) brown and grey,very moist, hard 14.1 117 4 D CLAYEY SAND (SC) brown to dark brown, very moist, trace brick, mottled INTERBEDDED SILTY SAND(SM)AND SAND 5 (Sp/SW) grey and brown, moist, dense,with claystone 105 13.7 109 7 D fragments, and cobbles, mottled,with sandy clay and grey clay lenses 11.5 117 4 D - @ 7 to 10 feet, medium dense 10 100 13.5 112 6 D it ■ 15 TY SAND SM) brown, moist, medium — 10.2 120 5 D Natural: SIL ( 95 dense,with sand lenses, trace gravel and brown B @ 18 to 26 feet, grey 20 90 10.1 113 5 D 10.8 121 5 D 25 85 Total Depth 26 feet i i i DATEDRILLED:11-1-00 SAMPLE ROJECT NO.: 1680.1 E TYPES © Rock Core �._.— EXPO-ENCINITAS i RS Standard split Spoon EQUIPMENT USED: Q Drive Sample 24"Bucket Auger LOG OF BORING NO. B- 6 ©Bulk Sample GROUNDWATER LEVEL(ft): Not Encountered FIGURE B-6 QT Tube sample i Z o i;o a DESCRIPTION OF SUBSURFACE MATERIALS a w cn,- ►=z0 =F v~i° o a N 3 a w LL This summary applies only at the location of this boring and at the time of drilling. J LL i o y z o g 0 Subsurface conditions may differ at other locations and may change at this w w_ a location with the passage of time.The data presented is a simplification of actual — o a W CO CO conditions encountered. i 0— . Fill: SILTY SAND (SM) brown, moist 130 CLAYEY SAND(SC) red-brown,very moist, dense, i mottled 10.9 120 9 D SILTY SAND (SM) red-brown, very moist, dense, 5 mottled,with clay i 125 @ 7 feet, trace twigs 10.4 116 6 D 10 @ 11 feet, some sandy clay lenses 120 i 10.9 120 8 D 15 115 @ 17 112 to 19 feet, red-brown to olive, moist @ 19 to 26 112 feet, moist, no clay i 20 8.5 109 7 D 110 ` 8.2 110 7 D @ 24 to 26 feet, very moist, cemented sand lenses 25 (grey) and siltstone fragments? 12.9 110 25 D Natural: SILTY SAND (SM) grey-white, slightly moist to 105 moist, very dense, fine to medium grained - 30 6.5 110 40 D 100 6.5 103 0/11 D 35 ,. Total Depth 35 feet SAMPLE TYPES DATE DRILLED:11-2-00 , PROJECT NO.: 1680.1 © Rock Core EXPO-ENCINITAS NT USE MS Standard Split Spoon E024"Bucket Auge LOG OF BORING NO. B- 7 MD Drive Sample GROUNDWATER LEVEL(ft): ©Bulk Sample Not Encountered FIGURE B-7 TQ Tube Sample i I:)z°o _ DESCRIPTION OF SUBSURFACE MTERIALS .e w �(n a w lies only at the location of this boring and�at he time of drilling. w LL w LL This summary app Y w in Subsurface conditions may differ at other locations and may change at this w - 0 } Z w a location with the passage of Ume.The data presented is a simplification of actual o a.Cr m conditions encountered. 0 Fill: SILTY SAND(SM) brown, moist, dense, trace wire 135 and clay lenses, mottled,with sand lenses 5 4.8 116 6 D @ 5 1/2 to 6 1/2 feet, sand lens 130 10.2 105 5 D 10 @ 10 feet, red-brown and brown,very moist, med ium 125 dense @ 13 feet, sandy clay lens i 15 120 -- 9.9 107 4 D @ 15 1/2 to 16 feet, sand lens 20 7.9 103 5 D 115 @ 22 feet, some sandy clay lenses 11.5 106 4 D 25 @ 25 feet, twig fragment 110 9.8 110 15 D Natural?: SILTY SAND (SM) red-brown, moist, dense 30- 105 i8.4 111 17 D i9.1 110 16 D 35 ' 100 ` CLAYEY SAND (SC) olive-brown, very moist, dense 10.6 110 12 D Total Depth 40 feet SAMPLE TYPES DATE DRILLED:11-2-00 PROJECT NO.: 1680.1 © Rock Core v�---- EXPO-ENCINITAS nS Standard Split Spoon EQUIPMENT USED: QD Drive Sample 24"Bucket Auger LOG OF BORING NO. B- 8 ©Bulk Sample GROUNDWATER LEVEL(ft): Not Encountered FIGURE B-8 []T Tube Sample i0- -- o z°o DESCRIPTION OF SUBSURFACE MATERL4LS Q w e w va~i w w w This summary applies only at the location of this boring and at the time of drilling. j LL o o a z o o Subsurface conditions may differ at other locations and may change at this W W a location with the passage of time.The data presented is a simplification of actual -- 2 o a m conditions encountered. 0 Fill: CLAYEY SAND(SC) red-brown and brown, moist, medium dense, mottled 120 Natural?: CLAYEY SAND (SC) brown, very moist, _- 12.5 105 2 D 5 loose to medium dense, trace porosity, some clay lenses @ 4 feet, light red-brown 115 15.5 104 3 D 10 @ 11 feet, sandy clay lens 5.7 100 2 D SAND WITH SILT(SP/SW-SM) light brown, slightly 110 moist, medium dense, some silty sand lenses 15 5.8 111 3 D 105 7.3 99 2 D 20 @ 20 to 25 feet, loose to medium dense 100 4.8 100 4 D 25 @ 25 feet, dry to slightly moist 95 — 30 8.8 97 8 D i 90 CLAYEY SAND (SC) brown, wet, dense -- 17.0 98 14 D 35 Total Depth 36 feet ` SAMPLE TYPES DATE DRILLED:11-2-00 PROJECT NO.: 1680.1 ' © Rock Core EXPO-ENCINITAS (S Standard Split Spoon EQUIPMENT USED: MD Drive Sample 24"Bucket Auger LOG OF BORING NO. B- 9 ©Bulk Sample GROUNDWATER LEVEL(ft): _ Not Encountered FIGURE B-9 QT Tube Sample O� o v o a DESCRIPTION OF SUBSURFACE MATERIALS 0 w �zo r xE a Ln W a 3 a w LL This summary applies only at the location of this boring and at the time of drilling. J LL Ln } z cn p o" Subsurface conditions may differ at other to and may change at this w w o a location with the passage of time.The data presented is a simplification of actual o a m m conditions encountered. 0_ . Fill: SILTY SAND(SM) light brown, dry 11.9 107 5 D CLAYEY SAND(SC) light brown, moist, medium dense, mottled 7,g 112 6 D SILTY SAND (SM)dark red-brown, moist, dense, trace 100 - 5 gravel, mottled 5 D @ 9 to 10 feet, medium dense 95 10 Total Depth 10 feet i i i i i i i i k SAMPLE TYPES DATE DRILLED:11-1-00 ' PROJECT NO.: N TA _. MC Rock Core EXPO-ENCINITAS ❑S Standard Split Spoon EQUIPMENT USED: ❑D Drive Sample 24"Bucket Auger LOG OF BORING NO. B-10 ❑ B Bulk Sample GROUNDWATER LEVEL(ft): Not Encountered FIGURE B-10 —• T❑Tube Sample zw w goo a = DESCRIPTION OF SUBSURFACE MATERIALS o P ' Dom. Zli ~Q� aW aW o a v~i _j w w This summary applies only at the location of this boring and at the time of drilling. J U. p y z�o M o Subsurface conditions may differ at other locations and may change at this w W w_j a location with the passage of time.The data presented is a simplification of actual a a X m V) conditions encountered. B 0 Fill: CLAYEY SAND(SC) light brown, slightly moist to 95 moist, medium dense,with fragments of asphalt and concrete to 12 inches in diameter(10% debris by 7.3 105 5 D volume), some clay lenses 11.3 118 5 D SILTY SAND(SM) red-brown and brown, moist, r 5 medium dense to dense 90 _ @ 7 feet, clayey sand lens i g D 10 Total Depth 10 feet i i i i i i - SAMPLE TYPES DATE DRILLED:11-1-00 PROJECT NO.: 1680.1 ©Rock Core — EXPO-ENCINITAS MS Standard Split Spoon EQUIPMENT USED: ❑D Drive Sample 24"Bucket Auger LOG OF BORING NO. B-11 — ©Bulk Sample GROUNDWATER LEVEL(ft): (D Tube Sample Not Encountered FIGURE B-11 ., o z°o Z =„ DESCRIPTION OF SUBSURFACE MATERIALS °� z� q�a� w a� aw y e o a y N w w This summa a plies onl at the location of this boring and at the time of drilling. w LL p } z cop a Subsurface conditions may differ at other locations and may change at this W Lu o a m location with the passage of time.The data presented is a simplification of actual conditions encountered. 0 Fill: Crushed Asphalt pavement, black 110 CLAYEY SAND(SC) grey, very moist, medium dense, 11.6 115 4 D mottled SILTY SAND (SM) red-brown, moist to very moist, 9.6 111 6 D 5 medium dense to dense 105 10 Total Depth 10 feet i i i i i i iSAMPLE TYPES DATE DRILLED:11-1-00 ' PROJECT NO.: 1660.1 © Rock Core �._— EXPO-ENCINITAS i OS Standard Split Spoon EQUIPMENT USED: D Drive Sample 24"Bucket Auger O LOG OF BORING NO. B-12 B Bulk Sample GROUNDWATER LEVEL(ft): - QT Tube Sample Not Encountered FIGURE B-12 i ` Z o DESCRIPTION OF SUBSURFACE MATERIALS o F=LU F aW o a w This summary applies only at the location of this boring and at'the time of drilling. w LL 0 r Subsurface conditions may differ at other locations and ma than eat this o location with the passage of time.itions encountered d is a simplification of actual 0 Fill: CLAYEY SAND(SC) light brown, moist, medium dense, mottled,with fragments of concrete and visqueen (10% debris by volume),upper 6 to 8 inches, silty sand, T9:.2 110 5 D brown, moist @ 3 112 feet, clay lens 100 110 4 D 5 SILTY SAND(SM) brown, moist, medium dense SAND WITH SILT(SPISW-SM) brown, moist 95 i 8 112 to 9 feet with or anics - 10 Total Depth 10 feet i i SAMPLE TYPES DATE DRILLED:11-1-00 PROJECT NO.: 1680.1 [C]Rock Core g EXPO-ENCINITAS MS Standard Split Spoon EQUIPMENT USED: D❑Drive Sample 24"Bucket Auger LOG OF BORING NO. B-13 ❑ B l Bulk Sample GROUNDWATER LEVEL(ft): Not Encountered FIGURE B-13 Tube Sample z o W"° a DESCRIPTION OF SUBSURFACE MATERIALS ° � 0 2z0 r �t ;W i o wo a N w LL This summary applies only at the location of this boring and at the time of drilling. J p y z-3: 0- ° Subsurface conditions may differ at other locations and may change at this w 2 o a W m < location with the passage of ttime.To s ata pr sent d is a simplification of actual i B 0 Fill: CLAYEY SAND(SC) light brown, moist, medium dense, mottled, some gravel and asphalt, with silty sand lenses 105 i10.9 107 4 D - 11.8 116 5 D SILTY SAND (SM) red brown to brown, moist, medium 5 dense,with clay lenses i - @ 7 feet, fragments of AC 100 Crushed Asphalt, black i10 INTERBEDDED SANDY CLAY(CL)/CLAYEY SAND 10.6 114 4 D (SC) olive-brown, moist, hard/medium dense,with as halt fragments Total Depth 12 feet SAMPLE TYPES DATE DRILLED:11-2-00 ' PROJECT NO.: 1680.1 © Rock Cored EXPO-ENCINITAS nS Standard Split Spoon EQUIPMENT USED: 0 Drive Sample 24"Bucket Auger LOG OF BORING NO. B-14 B Bulk Sample GROUNDWATER LEVEL(ft): - Tube Sample Not Encountered FIGURE B-14 TQ z W g V O DESCRIPTION OF SUBSURFACE MATERIALS 7. zti ~Z¢ f=W Qw W a z o a w LL This summary applies only at the location of this boring and at the time of drilling. J z�n p g Subsurface conditions may differ at other locations and may change at this w - w w-� ¢ location with the passage of time.The data presented is a simplification of actual p a it m V) conditions encountered. 0 Fill: CLAYEY SAND(SC) brown, very moist, medium dense, mottled @ 1 1/2 to 4 feet, light red-brown, trace fragments of 15.1 100 3 D concrete and gravel 15.4 114 6 D 5 @ 4 feet, sand lens, dense 95 SANDY CLAY(CL)dark brown, very moist CLAYEY SAND (SC) red-brown to light red-brown, tvery moist, medium dense 90 _. 10 Total Depth 10 feet SAMPLE TYPES DATE DRILLED:11-2-00 ' PROJECT NO.: 1680.1 ©Rock Core v E.— EXPO-ENCINITAS QS Standard Split Spoon EQUIPMENT USED: OD Drive Sample 24"Bucket Auger LOG OF BORING NO. B-15 ©Bulk Sample GROUNDWATER LEVEL(ft): 0 Tube Sample Not Encountered FIGURE B-15 ` Z 7,: g v o a DESCRIPTION OF SUBSURFACE MATERIALS °w W co P20 �� >W o a ~N uj w w This summary applies only at the location of this boring and at the time of drilling. J p } Z rn p g o v Subsurface conditions may differ at other locations and may change at this w g o a M m N location with the passage of time.The data presented is a simplification of actual conditions encountered. 0 Fill: CLAYEY SAND(SC) light brown, slightly moist 1 1/2 feet brown 10.3 122 7 D SILTY SAND(SM)dark brown, moist, dense 105 22.6 108 8 D 5 CLAY(CL) dark grey,wet, stiff CLAYEY SAND (SC) grey and brown, very moist, dense 100 ` SILTY SAND (SM) brown, very moist to wet, medium - 10 dense Total Depth 10 feet r SAMPLE TYPES DATE DRILLED:11-2-00 rom --- ' PROJECT NO.: 1680.1 ©Rock Core � EXPO-ENCINITAS OS Drive Standard Sample Spoon EQUIPMENT 4"Bucket Auger LOG OF BORING NO. B-16 �D Drive Sample GROUNDWATER LEVEL(ft): _ ©Bulk Sample Not Encountered FIGURE B-16 D Tube Sample iz w Q v O a DESCRIPTION OF SUBSURFACE MATERIALS 0— cn.. �z0 �� ¢w i N o a u~i N w w This summary applies only at the location of this boring and at the time of drilling. J LL p z�n 30 0- o Subsurface conditions may differ at other locations and may change at this W o a it m < location with the passage of time.The data presented is a simplification of actual conditions encountered. i g 0 Fill: CLAYEY SAND (SC)AND SANDY CLAY(CL) light brown and dark brown, moist and very moist, medium 100 i 6.0 118 4 D dense/very stiff to hard, mottled 14.4 109 3 D 5 SANDY CLAY(CL) brown, very moist to wet, mottled i95 i CLAYEY SAND (SC) dark brown, very moist, medium 4 D dense 10 Total Depth 10 feet i i . i i i i i i i i -- SAMPLE TYPES DATE DRILLED:11-2-00 ' I PROJECT NO.: 1680.1 ©Rock Core EXPO-ENCINITAS i [)S Standard Split Spoon EQUIPMENT USED: D Drive Sample 24"Bucket Auger p LOG OF BORING NO. B-1 — ©Bulk Sample GROUNDWATER LEVEL(ft): Tube Sample Not Encountered FIGURE B-17 to U w V) �d Li LLJ pal w o ~ w e F-w o 0- •r- Q F-Cm r--1 O O Qw Of O CL F-3wp Z a-U F-w CD S Z Q) �OOJ CL 0 W W rru ,-{ QC.7ZY � w Cn cn F- W U ~ . + Z F-Z m LL- QD O w U X: E p O O V) V) Z J W U ~ O~ 3: LLJ O= a � ° w C9 w r � � O Ln i-3 Q)r J Q) -r Q) w L- L 4- C +-) O U CO I'D Q ]QLN4- �U �+J O _. l0 O r�-� E-0 N r1 r +I cn ro 3 N O N O C O Q) - O O L- �+ -;•r 0 M Q) ro+-- O Q>> ro - U Orb O .. . " Q) U •r In 0- O a--, V) -JWJ r Z3 4-) FO- O ro E Q� II L Z (0-0 � . .� 0 N O -0 O -0 O r U d -�t Q)-14 O =3 �-� :i. _.. U m Q' L a) a) J V 0-0 V) w r- Q) rro > O 3 N 0 0 = V) F- O N m 3 -0•- � Q 3 r►•v -0 () V) OL ro N 0 Ql d -C E r- r- Npri E � r-0 LLJ ra0r� o �o � } z Q-N Q) O O O O L '-i F- U O Q) F- WQ1p W Z O -� F- Q .� Q Z L.� � p w O O Q o Q' r-r N w E E O O fw- oU a ro w '+-� Q) U W + U Q) QJ a CD S S d O O J L L Q O F- � aaw w� t'3 C.�Q 501-A - (10/90) Leighton & Associates F-- Ln u LLI LLJ Q C/7 LL- U...i Cil W ° \ N LLJ C 7 - ~ a--).. F-W O W N a•2 Q F- '--� p 0 Q w CD m F=-3w° Z °F-w U LL)ZZJ C.7 °OOJ z CL r r N CD CD LLJ aC w (� I¢-UWU F- m LL- CD W U E E O W J Q. F- �--�F- c):: C) d F es- o LO LLJ r W CL O N J U U C U (J) LL� 4-J O w U CnOC'3 •� L O l.Qi_ ¢L CO 4-- 4-) U 'O O V) ] L-C) O r 0-0 (� r +I3 NN 0V) a--) -- -0 O C Ln N O l r O_ O L Q) rho 4--) O O S lT> cc U O() U �V) 0— O d--) to t r W J •r 4-) i Ln �-J E U Ln .0 N[ I C O O . C�[-1-j LLI cc O o0 OUO J U U S- X >> U LLJ 4- N ° 0-0 N W v•r _ a--) C•r Z C N O O C to > F- O �[ C/) O E 0 ° -0 U 3 M 3 -0•r � Q 3 rip N Lfl m Cn W a--) O O N O =3 �E �No� O •0 w v M I I,- r•--1 J •r O C •r r 00 V) J a-•) rp O 0-N (1) O O U O U -4 Q wMp0 W Z O F- C Q w ray Z W N • �o ° Q o � ° w -0 LLJ � w z z Of +-) a--) O U w U O U E ~ `� S 0 0 O:3 J F- a O O �-+ L L t? C) a a w w O -- C7 Q 501-A - (10/90) Leighton & Associates 4-J--� LLJ LLJ w LL \ � In _O F- +) W O w V)ale a ¢f— '" •r v o � g S3L O . d�FW---Lw z W Z Z J _ = Z pOO-j z E z J Cr_U U- LLJ Z]C clC w cn 3 QCD W F— z w 1�—zm LL- CD c� w a CO cn cn z w J � � O� � H CO W L r a C] Ul) _ a--) C (L r- J LLJ 4- a-J Cli U CO M(13 -C L O LL- ]sZ Cl)4- 4-) U •0 N O +13 V) U) Ovvi a--> O _O O UO L >-)4-) (T> tp C7l(1) U U N 0— O +-) N r- .,.,.- J W J •r i-) In E . V) Q-O+-J Q) E .;.;. FO- � O aE 11 ..;:.: _ CZ- O L Z cED� � 4-) -4 .. �O 4-) O O N L U Cl. C,L a--) O CO O O J U U L 3 r- X >> U CU ;t W O•0 N W r 4--) C•r Z C to � S 3 � N N L- -14 to O E N O .O Q) - N CO 3 �_0 a) N O L a -C Er ry N C� C) >- -0 N O r_ ro—N QJ O O O4-J � O r O O L r-i >- F ►-� WU O a) ~Q MM W Z LLLJ L : L M F- I N mm w N O Q O Cl) W a)-0 w ro = �, i-- a z z 4-j w +->4--) O U W U U U E M �.�,r O O J►-+ L s_ � O a a w w C.3 Q I I I I I 'I--- 501-A - (10/90) Leighton & Associates V) U C Q LLJ W Q�1 N W ) W C:l I Of F- = a--) O W to 32 uj_., Cl. •r Q F-- O S3� • . z W Z Z J C7 Q� p=SJ S Z r z Of Ez ri JO O LL- LLJ w (10 QC'3Z]4 w N V z z LL. (-D O w V S S p O N (/) W Of _U ~ F- LLJ w 3 C7 �. w •r m Q J a N LL S- ra tb t�C'3 C'0 N � QJ LQi Y mot-4- O to 0 N O p _-q O -0 O ry O to c/) ±I to L E-0 W O C O 0-0 U O a to l ra 4-j QJ U to O rp �� J W J r �O•r d -04-- N E a--) L >., - - C S_ I- ln a-J >> Q•r L1) _... � O•r � rp O it �� '�. . .. JL to rte- -0 E L Z U - U - O ri l � O �--� stn �•, 'p •'' �[ F- 4--) C r- L U a O 4-•> N C LLJ r O C O m Of N 0) C 4- V _ U' ri •'r O U '' •'r'. V) _ `}- N p F- 00 O O Z r- N Z N L C O r o � 4--• C r° O N Stn -Nz 3 u O r 844- O Z O D N m p O •r N �i }Oi to 3 ru rp N O d1 J .a a--) 4-J >- O L NOrt J r C Q N W r- rD e--1 �t In Q)E-= r0 r- _. Cl-CO C"�Jj O O w Ln U O L rA J UO O Q WQIp W U ti i Q CO Z C Q U- r i I W L p (DO F- O � to W LLJ EE O Q M.) f- v0 0- C W zz +) � �+> Uw U U E � U Q) t2 (D S = CD F- rj.�,r L- L Q" C) a a w LLJ O C7 Q 501-A - (10/90) Leighton & Associates ' 4.. r 4- UC1 W Ql W O v L.L Q\l LO ,--' .-a O F-- � a--i � .__ W to 3? Q LLJ CD Cl. r v CD 0 O CD QW Z Cl.CM Lu C� W Z Z J p= J z w Ez r + J=�W W W A ro <F—�WU CL W N 3 F— Z W F—Z CCOO r-i LL- CD w U M: p C = N N LZ J � U ♦- P- 4 O►~� OS Q F— O _. W 3 C7 • • O w r CL � Q O"O ro N L L r U LL- CO n C7 ra C _N +-) Q) IQL ra Y-zl-4- OtnQ) LO p C"io N > ) chi) N ... +I LLl L S 0-0 �+�•r -0 O Q) Q)Q) U to U t0 C C O O 4-� r C U Ql rp JWJ r 'prN r cn � . CL 4- r I; O 4-r- N Q-0 L Z UNU � O O +•) O r Q) •a...) Ne ►--� � to >> ^ ` �' L V CL �•i-� N C W Q ,,�:��• O O N r J O CO CC N Q) r 4- Q LLJ N 4- N p pW CO rEp N W O >� _ � � Z cn� L C O v•r -Z � 4-- C � E L~ 3N -NZ ZD 3 u O r OL 4-J U Z OL-a _... Nam p 4)-0 t/) N ��ru rp N O Ol J -0 d-J a--> >- O L N O' J •r te N N W r- rp � 1� �--1 ►--i In Q)E ra r- r-CO i L1.. •r•r O r- 4J C Z O_CV (3) (.n V C) >- r CD F-d U < ~ W Ol p W U of F— �- 'IT Q CO Z C Q U- W N C) O F— O W ru Z Z W a -J _.. U U E p 4) d) Cl C'3 S S 0 n r CL O O O J� L L Cr O� aaW W CO C3 Q 501-A - (10/90) Leighton & Associates PRESENTATION OF CONE PENETRATION TEST DATA ETC-2 ENCINITAS, CALIFORNIA Prepared for: LEIGHTON &ASSOCIATES San Diego, California Prepared by: GREGG IN SITU, INC. Signal Hill, California Prepared on: January 19, 2000 TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 FIELD EQUIPMENT & PROCEDURES 3.0 CONE PENETRATION TEST DATA & INTERPRETATION APPENDIX - CPT Plots - Interpretation Chart - Interpretation Output - Pore Pressure Dissipation Plots - References - Computer Diskette with ASCII Files PRESENTATION OF CONE PENETRATION TEST DATA 1.0 INTRODUCTION This report presents the results of a Cone Penetration Testing (CPT) program carried out at the ETC-2 site located in Encinitas, CA. The work was performed on January 14, 2000. The scope of work was performed as directed by LEIGHTON & ASSOCIATES personnel. 2.0 FIELD EQUIPMENT & PROCEDURES The Cone Penetration Tests (CPT) were carried out by GREGG IN SITU, INC. of ` Signal Hill, CA using an integrated electronic cone system. The CPT soundings were performed in accordance with ASTM standards (D3441). A 20 ton capacity cone was used for all of the soundings. This cone has a tip area of 15 sq.cm. and friction sleeve area of 225 sq.cm. The cone is designed with an equal end area friction sleeve and a tip end area ratio of 0.85. The cones used during the program recorded the following parameters at 5 cm depth intervals: - Tip Resistance (Qc) - Sleeve Friction (Fs) - Dynamic Pore Pressure (Ut) The above parameters were printed simultaneously on a printer and stored on a p P computer diskette for future analysis and reference. The pore water pressure element was located directly behind the cone tip. The pore water pressure element was 5.0 mm thick and consisted of porous plastic. ` Each of the elements were saturated in glycerin under vacuum pressure prior to penetration. Pore pressure dissipations were recorded at 5 second intervals when appropriate during pauses in the penetration. A complete set of baseline readings was taken prior to each sounding to determine temperature shifts and any zero load offsets. Monitoring base line readings ensures that the cone electronics are operating properly. The cones were pushed using GREGG IN SITU's CPT rig, having a down pressure capacity of approximately 25 tons. Nine CPT soundings were performed to depths of approximately 30 to 115 feet below ground surface. Test locations and depths were determined in the field by LEIGHTON & ASSOCIATES personnel. i GREGG IN SITU, INC. LEIGHTON & ASSOCIATES January 19, 2000 ECT-2 Encinitas, CA 3.0 CONE PENETRATION TEST DATA & INTERPRETATION The cone penetration test data is presented in graphical form in the attached Appendix. Penetration depths are referenced to existing ground surface. This data includes CPT logs of measured soil parameters and a computer tabulation of interpreted soil types along with additional geotechnical parameters and pore pressure dissipation data. The stratigraphic interpretation is based on relationships-between cone bearing (Qc), sleeve friction (Fs), and penetration pore pressure (Ut). The friction ratio (Rf), which is-sleeve friction divided by cone_bearing, is-a calculated parameter which is used to infer soil behavior type. Generally, cohesive soils (clays) have high friction ratios, low cone bearing and generate large excess pore water pressures. Cohesionless soils (sands) have lower friction ratios, high cone bearing and generate little in the way of excess pore water pressures. Pore Pressure Dissipation Tests (PPDT's) were taken at various intervals in order to measure hydrostatic water pressures and approximate depth to groundwater table. In addition, the PPDT data can be used to estimate the horizontal permeability (kh) of the soil. The correlation to permeability is based on the time required for 50 percent of the measured dynamic pore pressure to dissipate NO). A summary of the PPDT data is provided in Table 2. The PPDT plots and correlation figure are provided in the Appendix. The interpretation of soils encountered on this project was carried out using recent correlations developed by Robertson et al, 1998. It should be noted that it is not always possible to clearly identify a soil type based on Qc, Fs and Ut. In r these situations, experience and judgement and an assessment of the pore pressure dissipation data should be used to infer the soil behavior type. The soil classification chart used to interpret soil types based on Qc and Rf is provided in ` the Appendix. We hope the information presented is sufficient for your purposes. If you have any questions, please do not hesitate to contact our office at (562)427-6899. Sincerely, ` GREGG IN SITU, INC. ` Brian Savela Operations Manager APPENDIX ■ ■ Y 1 i 1 1 1 1 i Y i �EGG GREGG IN SITU, INC. Geotechnical and Environmental In Situ Testing Contractors THE PIEZO CONE PENETROMETER The electrical piezocone(CPTU) is the premier soil logging tool. The CPTU provides a rapid, reliable and k economic means of determining soil �rL stratigraphy, relative density, strength ` and equilibrium groundwater pressures. Gregg In Situ offers a choice of 2.5, 5, 10 and 15 ton tip (Qc) capacity cones. Triaxial Geophones Our cones also have variable capacity or Accelerometer z (vp$vs) friction sleeves(Fs)and pore pressure (U). The pore pressure can be �:. measured at one of 2 locations, either £, x on the face of the cone tip or behind the cone tip. Pore pressure ( Inclinometer(1) dissipation data is recorded Thermistor(T) automatically. ` All data is displayed in real time at the y Friction Sleeve(Fs) ground surface, facilitating the on site T decision making process. Field data Load Cells „34 reduction, plotting and CPT 3 -- interpretation can be carried out upon 3x Pore Pressure fegU @St. Porous Filter Transducer(U) Element Cone Tip(Qc) Geotechnical and Environmental In Situ Testing Contractors "EG Los Angeles • San Francisco • Houston • Aiken Vancouver Edmonton • Salt Lake City • New Jersey Tel.(562)427-6899 Fax.(562)427-3314 • E-mail.jgregg@greggdrilling.com _ EGG : Gregg In Situ Environmental and Geotechnical Site Investigation Contractors Gregg In Situ CPT Interpretations as of January 7, 1999 (Release 1.00.19) Gregg In Situ's interpretation routine should be considered a calculator of current published CPT correlations and is subject to change to reflect the current state of practice. The interpreted values are not considered valid for all soil types. The interpretations are presented only as a guide for geotechnical use and should be carefully scrutinized for consideration in any geotechnical design. Reference to current literature is strongly recommended. The CPT interpretations are based on values of tip, sleeve friction and pore pressure averaged over a user specified interval (typically 0.25m). Note that Qt is the recorded tip value, Qc, corrected for pore pressure effects. Since all Gregg In Situ cones have equal end area friction sleeves, pore pressure corrections to sleeve friction, Fs, are not required. The tip correction is: Qt= Qc +(1-a) •Ud where: Qt is the corrected tip load Qc is the recorded tip load Ud is the recorded dynamic pore pressure a is the Net Area Ratio for the cone (typically 0.85 for Gregg In Situ cones) Effective vertical overburden stresses are calculated based on a hydrostatic distribution of equilibrium pore pressures below the water table or from a user defined equilibrium pore pressure profile (this can be obtained from CPT dissipation tests). The stress calculations use unit weights assigned to the Soil Behavior Type zones or from a user defined unit weight profile. Details regarding the interpretation methods for all of the interpreted parameters is given in table 1. The appropriate references referred to in table 1 are listed in table 2. The estimated Soil Behavior Type is based on the charts developed by Robertson and Campanella shown in figure 1. Table 1 CPT Interpretation Methods Interpreted Description Equation Ref Parameter Depth mid layer depth . ........I........ ............... I............................... . ................. . -- . ....... ..... ....... . .......... ............. .--....-- •............. ............... ......... ...... Avgat Averaged corrected tip(Qt) 1 AvgQt=—i Qt, n AvgFs Averaged sleeve friction(Fs) 1 AvgFs=— Fs, n ................................... ...... .... ...............................................................................................................-.. ....... ...................-............. ................ AvgRf Averaged friction ratio(Rf) AvgFs AvgRf 100%• Av SQ t AvgUd Averaged dynamic pore pressure(Ud) I AvgUd 1 Ud n SBT Soil Behavior Type as defined by Robertson and Campanella 1 CPT Interpretations U.Wt. Unit Weight of soil determined from: - 1) uniform value or 2) value assigned to each SBT zone 3) user supplied unit weight profile .. TStress Total vertical overburden stress at mid layer depth TStress-LV A ,-I where r,,is layer unit weight hi is layer thickness _. ................................................................................................................................................................. EStress Effective vertical overburden stress at mid layer depth EStress=TStress-Ueq Ueq Equilibrium pore pressure det............................................................................................................................................................ .......................................... ermined from: 1) hydrostatic from water table depth 2) user supplied profile Cn SP N60 overburden correction factor where Q,.'is in tsf 0.5<C„<2.0 ....................................... .......................................................................................................................... ................................................................... ......................... N6o SPT N value at 60%energy calculated from Qt/N ratios assigned to each SBT zone (N 460 SPT Nfio value corrected for overburden pressure N16o=Cn.No ............................................................................_......_............_......................._.................................. ...... ........... ..... ....._.. pA(Ni)60 0(N1) Equivalent Clean Sand Correction to(N1)6o - Ksrr (Nt) _ 7 � Where: Ksar is defined as: ` 0.0 for FC<5% 0.0167•(FC-5) for 5%<FC<35% 0.5 for FC>35% FC-Fines Content in% ........................................................................................................................................................ ........................................ ..................................................... (N1)60.5 Equivalent Clean Sand(N1)6o (N1)wo (N1)6o + A(N1)co 7 ... - Su Undrained shear strength-Nkt is use selectable S_ u=Qt-U. 2 Nkr 5.... k Coefficient of p"e"'r'm' ermeability(assigned to each SBT zone) ........................................... ............................ ................ . ....... ....................... .................................... ................... Bq Pore pressure parameter gq= 4u 2 Qt-Q, Qtn Normalized Qt for Soil Behavior Type classification as defined by Qtn=Q t- 4 av Robertson,1990 Q .......................... ................................. .................................................................................. 4 Rfn Normalized Rf for Soil Behavior Type classification as defined by R fs fn=100%• Robertson,1990 Qt-6v ......................................................... .............. ................................................................................ ............. ....................... ............--------- SBTn Normalized Soil Behavior Type(slightly modified from that published by 4 Robertson,1990. This version includes all the soil zones of the original non-normalized SBT chart-see figure 1) ................................................................................................................................................................................................. ............................ Qc1 Normalized Qt for seismic analysis qc1 =qc.(Pa/a,)0.6 where: Pa=atm.pressure ...... .............................................................................................. Qc1 N Dimensionless Normalized Qt1 qc1 N=qc1/Pa where: Pa=atm.pressure EGG CPT Interpretations AQc1 N1 Equivalent clean sand correction AqclN= K,,, •qc1N 5 1—K,, Where: KcpT is defined as: 0.0 for FC<5% 0.0267•(FC-5) for 5%<FC<35% 0.5 for FC>35% FC-Fines Content in% ........................... --.-...-..-........-.-..-.-.-........ .."...-'..'..'......... .................... ............................ .. -- --------------------------------------------------- ......... clNcs=qc1N+Aqc1N ..........6lea n S a nd equivalent QcIN.....................................................................................q.............. ........... . ....... . ................ =[347-loQ + F+ is Soil ind e x for estimating grain characteristics ( . 1.22) . .................... ..... n..t......................... .............. ........................ ........ F C Fines�ie % ...... FC=100 for Ic>3.5 FC=O fur k<1.26 FC=5%if 1.64<k<2.6 AND Rfn<0.5 .................... ......jk4�................................................................................................................................................................ .............................. .... PHI Friction Campanella and Robertson Durunoglu and Mitchel Janbu ........................................................................................................................................................... Dr Relative Density Ticino Sand Hokksund Sand Schmertmann 1976 Jamiolkowski-All Sands -.............................................................. ....................... ................... ....................................... .......................... .................. I Over Consolidation Ratio ............................................................................................................................................................... ............ i OCR .................................................................................... 9 State ` CRR Parameter ....................... 7 . ................ ..qy��ki�.R��istance Ratio .............................................................................. .................................... ........................ ........................................................................... EGG - - , . . . 66»��� >s » s 2 « . - ��� - � - �m�� - , - , - - ���/ • . \/ r \ - � � CPT Interpretations Table 2 References No. Reference 1 Robertson,P.K and Campanella,R.G.,1986,"Guidelines for Use,Interpretation and Application of the CPT and CPTU",UBC,Soil Mechanics Series No.105,Civil Eng.Dept.,Vancouver,B.C., Canada 2 Robertson,P.K.,Campanella,R.G.,Gillespie,D.and Greig,J.,1986,"Use of Piezometer Cone Data", Proceedings of InSitu 86,ASCE Specialty Conference,Blacksburg,Virginia. _ .............. ..........................................................................................................................................................I.............. .. 3 Robertson,P.K and Campanella,R.G.,1989,"Guidelines for Geotechnical Design Using CPT and CPTU",UBC,Soil Mechanics Series No.120,Civil Eng.Dept.,Vancouver,B.C.,Canada 4 Robertson,P.K.,1990,"Soil Classification Using the Cone Penetration Test",Canadian Geotechnical Journal,Volume 27. ............................................................................................................................................................................................... ........... 5 Robertson,P.K and Fear,C.E.,1995,"Liquefaction of Sands and its Evaluation",Keynote Lecture,First International Conference on Earthquake Geotechnical Engineering,Tokyo,Japan. .................................................................................................................................................................... 6 Gregg In Situ Intemal Report i .......................................................................................................................................................................................... ................ 7 Robertson,P.K and Wride,C.E.,1997,"Cyclic Liquefaction and its Evaluation Based on SPT and CPT", -- NCEER Workshop Paper,January 22,1997 .................................................................................... .......... .......... ............._..................................................................... .... 8 I Wride,C.E.and Robertson,P.K.,1997,"Phase II Data Review Report(Massey and Kidd Sites,Fraser River Delta)", Volume 1 -Data Report(June_1997) University of Alberta. c.... ........ ................................ 9 Plewes,H.D.,Davies,M.P.and Jefferies,M.G.,1992, "CPT Based Screening Procedure for Evaluating Liquefaction Susceptibility",45th Canadian Geotechnical Conference,Toronto,Ontario, October 1992. i i i i EGG co Z co co p H o CA O W N ~ - - Y CD ti O o W d Ld A z O z (D R4 Wo ------------ -------------------------------- ------------------ .1 ------ -------------- ----------------------- — 5 _ ed 0 0 LO C•J Ii. - ------------------------------------ ---------------------- ----------------------------%--------------- - > a � N U I 0—� W `----------- - ------------ ---------------------------------------------------- 0 U 0 CD T� ---------------------------- ---------------------------- V 1 L.L QO ...... O O W -J 7 v u C� r� ------ ------ -------------------- ------------------------------------------------------------------- --- ------------------------------- - ..._.--._._..-_ O .:. -.---. -- O .......... ... . Q a� a a 00 0 0 0 0 O 0 N V (O Co O C•J V I Z CO co C 0 rn N i5 a m . . -tail I - M 0 Z j T, 111111, 1111:5 , Z 0 lit 11411;5 1 1! Ati!I I lai I I ul I I lkiitZ4 h k 0 0 ---------------------------- ha ------------ cn cy ti 0 Ld Z 0— Z LLJ 0 ---------------------- ----------------------------- - ----------- ------------------ ------- ----------------------------- 0 0 -------------------------------------------------------------- -------------------------------------------- -------------------------------- a N u ............... 0— U ....................------- ---------------------------------------------------------------------------------------- ------------------------------------------------------------------- 0 W u 0 0 Cf) -i ------ ------ ----------------------------------------------------------------------------------------------------------------------------------- ------------------------ U) LL- 0 F 0 0 0— o .... ---- ---- ....... -------------------------------------------------------------- . .....---------------------I---------------------------------------------------------------------- 02 o U 9:4 ci 0 CD 0 0 0 O 0 CD 'KT 00 0 CA CIJ Q I I (1j) L41doCI i i m CD =a _ as a � a 9 a 1111.III I �I�illIIIII ICI �III!iIlii llllli��l limilllli�ll a Z o IIII�I � �Idw W.ll il��li�l� �Illlll�lllillm� � o o LLJ Cf) sm, Ow .. o m W W .. o Z n. O 0 Z .. W ❑ ------------- - - - ----- ... .. --- 0 o P:l cn ` CJ m ------------- ---------...... ---------------------------------- --------------------------------- ---------------------------------------------------------------------------- ----------------- a CQ N u ca- CD u •• O W ----------------- - 0 Ym W T U 0 O (n J LL. W Q O O O _.. O co �yy 4 ICJ w Q -- --------------------- --- - -------------- - - ------------ ---- - --------------- ----- FA x -� a A OD o C'..j dap Iz y s z o N Co D O U WN --- -------------- - b CD _.. •• o ry O ' W Z O ag Z r0 �ppr F ---W ❑ O\ -------- ------------------------------- -------i 0-- - LO CJ 1 -- °° -- ---------------------------- d Q N U O U •• W ----------------------------------------------------------------.------------------------------- ................................---- --------------------- ------ - Ym W 'V U r-i O O ------------------------------- ------------- -- - - - - - ---------------------------- ---------------- ---------------- U� LL W Q� O L) O O V' v r� o do W ------------------------------------------------------ ....: ------------------------------------------------------------- ----------------------------------- - - o W U Ga ........ ....... ........ ...... °O 1 . ........... O O O O O O O CJ V c0 c0 O ui co Z b rn co O --------- ------------------------------------------- cn INo O W W . o z O z m W O ----------------------- --- ------------------- ----------------------------- - o O _ H W Ln _ CJ LO ------------------------ - ------------ - --------------------------- a C/3 N u Q O WC ----------L---------------------------------------------------------------------------------------------- - - ------------------------ U .� O O 4- (/7 ---------- ----- ------------------------------------- -------- - - �..i ----------- ------- - i i U) LL W ` Q O O O O w y O � � C-i ---- ----- --- ....................................................... - o -•- xr - o, • o a O A 0. .w O p p O O O O O v CJ V c0 00 O CJ V W (jd) glda0 Z M <I: 0 =A I I 0 m{III Alilll Ld co 0 f-Y LLJ LLI 0 Co LLJ ❑ gypp` ----------------- .... - ---------------- ---- -------- ------------------ 0 ed ...........; rn 0 CQ rn ---------------------------------- ------------------------ -7--------------------------------------------------------------------------------------------------------------------------- ............. (N u a 0- U ----------------------------------------------------------------- ------------ -------------------- --------------------------------------------------------------------------------- 0 u 0 0 f) -i --------------------------------------------------------------- ---------- ----------------�7------------- --------------------7------ --------------------------7-------------------- ------- C/D tl 0- C) cn 0 0 ` Z 0 � to to ------------------------------ ---------------- -------------------- --------------------------------........ --------------------------------- 4- --------------------------------- ------------ Ul C; C3 °o 0 0 CD CD 0 (D co 0 '1 LU (1j) qTdoo �-c Z 0 <E CY m 11.Hill Am Y T- CO 0 0 - 0 LLJ LLI CD Z LLJ ------------ ----- - .......... .........- - V oa 0-- LO .. .. ----------- --------------------------------------------------- - .. ----- . . ... . ------------------------------------------------------------------------------------------------------------- a (N u 0- U LLJ C ------------------------------- ...............------------------------ -------------- ...... ----------------------------------- -------------- ........ 0 IF----------------------- u r � 0 0— Cf) -------------------------- ---------------------------------------------------- ------------------ --------- ------------------------------------------------------------------------- LL- 0 O cn 0 0- CO O kn to -- -----------------......----------------------------------- --------------------------------....... -------------------- ----------- -------------------- ----------- ---------------------- E4-- 0-4 U g fn 0 ...... . . ............ 0 CD 0 0 0 o ci 0 OD CD CJ W (1j) LAjda a zo cc } .. Z o Illllllllillll�lll O O v WN ~ ----------------------------- -- - O W W z o a° CD V z M W 0 --------------------- --------------------....... --------------- ............... ------------------------------------------------------- 5 o rl U-) w CJ ------------------------- --------------------- -------------------------------------- ------------------I r. -- ----------------------------------- ---------------------------------- a a N u IO .......... W CO - - - - --------- ------------------------- ------------------ -- ----------- ---------------...... ------------ U O O Cf) J 1 W Q LL- CD O O O Q Z 1-Li - -"------------- ------------------------ '----------------.._._------ ---------------------------- - M (O �� O ►v-1 .� Q. q rr—�r O Q Q /n O O O O O O O O V CJ V c0 co O C.J Q ul _ <1 _ zi �!i O CJ O WN ~ -------------------------------------------------------.............. - --------- ----------------------------------- Y .. co o O � W ~ � W Z O CD Z LLJ �. ----------------------- ---- o 0 U) H m m CJ O •-------------------------------- -- ------------ -------- ---------------------- a N U Q- 1 O u F W C - O -- N � O O (n J � ------------------------ ------------------- ----------- _ LL- W Q� O O O O V [—� - ---------------------------------------------- F-�1 � O V � N..� c F CJ O 55 � A O O O O O O O O C'J c l0 co O CJ W z � co MO E t�iJ failr�lJ 19 O d A N " A N W O �— v N -- - - : - b y co Z • °O L CD r� Z (u 0 WO --- ------------- - ----------- --------------------------------------------- x � co co o Lr) F CA --------------------- ----------------------------- -------------------------- - ----------------------------------------------- - - ~ Vl a a I O WC ----------------------------------------------......--------------------- ------ O tli � U O O \ i --------------- - - -- --------------------- -------------------------------------------------------- '-- Q O O O O --- ------------ -Q w v .•-,,. - -----'-------------------- i...-------.....-----------------------------..._..--------�---- --------------------_.------------ 0 A a a ° O o 0 0 0 0 0 C.-i V (D c0 O C.-i jw ] (1j) Ujdaa Z CO a M k P, (J) Al 00 01. A a=1. 11- m W Z 0 0 0 " --- ------------------- --------------------- cn r- 0 --- Aw ill 0 0 LLJ Ld z CD 0- C!) Z (u CD W o (D 0 ------------- --- ----- -- ---- ----------------------------------------------------------------- ----------------------------------- --------------------------------- --------------------- ----------- W LL 0 In CA --------------------- --------- --------------------------------------------------------------------- ---------- --------------------------------------------------------I (N u a . ... . .......... I U W C ---------------- ------------------------------------------------------------------- ---------------------------------------------------------------------- ---------- 0 F------------------------- u 0 CD co - ------------------------ ------------------------......... ------------- ----- -------------------------------- L w ------------------- ------ --------------7---------------- 0 0 0- O ------ ---- -- ---- --- -- -------------------------------------------------------------------------------------------------------------- ------------------------------------------------ --- O CD 0. 0 .......... O 0 0 0 0 0 0 C-i (D co 0 CJ I LU MUJ L Z 9 m c 9 rn A� Z Q C.J IIIJII IiN llA"illwi.m 11141I5 I!II III lllllll !I�!IIlil�l! N - 0 � Q i U L YN m (n O W W .. o Z 00 a AMI" Q � O D `-� ----------------------- ------------------------------- ------------------- ------------°----------- -- c M Lcn .� 0 O � O CJ ('7 -------- -°------------------------------------------------- a a N u O L --------------- W -------------------------------------- -------------------- - .. 0 U ., 0 O .� - -------------------- ----------- c L w d, O t-� L U O O o v ------------------------------------ --- = - - - - ---- co -' o Or /17 O O O O O O O V CA V (O OD O CJ Q V (1j) ulda0 L LO LO7y AgA A k GA A ;~ W O F v L N . b co O vi L W LLI Z pO �° `i Z CU 0 w ❑ co a. w o 0 s~ CA I- OL ul a N U I O u W ------------------------------------------------------------------------------------------------ O .. Ymm 'V U O O U -- ----------- -----------------------------.---- ..__._.._..----- ---------- - cy- cr^ 1 O L ° 0 W W O ` x u A 0 a a /17 0 O o O O O O o V C-i V c0 co O CJ to w I I I I I um I (;j) uldaQ z co c � W Ul m inW A p to m M Z 0 CA O CA W ° U N ❑ Y m id d' 0 0- it Wpp O z a CD z Co 0 LJ ❑ V ------------------------ --------------------- ------ ---------------.-.- ----------------------------- ------ - - o 'S x � as cn O E-+ m CJ Lo 1 -------------------------------------------------F--------------------------- - -- '-------- -----°------------------------------------------------� N U Q 1 O U •• O WCO ------------------------------------------------ ------------------------------------ N � U O O (n J ------------------ .... . . .. ..... --------------------------- - -- ---- - - - ------ ----°-------------------------------------- ------ W Q O O O O Q O O � i^. i i ------------.-.---------------- ----------------------------- 1�1 -------- ------------------- ------- ----------------- . .--� h-4 � ------ -- O C3 ....... ......... ...... a °O4�............. i , F o O O O o o V C.J V c0 c0 O CJ W (1j) Uldao L L lci� Z <I: 0 L }y } �yy __ co M N Z 0 4 :D O 0 LLJ ----------- Y 00 0 z 0 0 CD z ru 0 W C) (D - --------------------------1—----------------------- ------- 0 ---------------------------------------------------------------------I------------- ---------------------------- ------- ----- -- It co 0 E:4 LO CJ \0 ----------------------------------- -------- --------------------------------- --------------------------------------------------------------------- ----------------------------------- -----------...... CN u 1 0— L U LLJ0 F---------------------------------- ----------------------------------------------------------------—---------------------------------- -------------- --- -------------------------- L U 0 M L ------------ ------ ........ ------------------- ------- - ----------------.......... -------- ly 0 O 0 0 'IT L � v --------------------- ------------------------------------------------------------------ ------------------------------------------------------------------ ------------------------------- --------- cn U C) 0 0 0 0 0 0 CD C.-i V (D co 0 C.-i ` /17 I I I I � � LU (1j) qldea CC) 53 rn m m Z 0 till 111 lk ------------- Cf) llfi� f-Y 0 0— LLJ z 0 r a) D z fu 0 W ID ....... --- -------- - ....... ......------------------------------------------------------------------------- ---------------------------------------------------- ------------------------ --- z cd F- a_ LO CJ --------------------------------- ----------------------------- ----------- - -- ---------- - -------- ---------------------------------- -------------------- --------------------- U) N u O LLJ ----------------------------------- ------------------------------------------------------------------ 0 ---------------------- ------------------------ ------------------.............-------- u 0 CD co I -- ----------- ---------:7--------- -------- ---------------------- 0 ...... O 0 0 en ------------------------------ ------------ -------------- ------- ----- ---------- --- ----------------------------------------------------------- ----- -------- --------- u Of 0 ... ........ 0 0 0 0 0 0 CD (D CO 0 CJ q I W jda a c Z Z o IIIiI�!IIIIIIII�III x a W O F N ------- - Y CO - q Cn W Z 00 CG 0 CD Z LLj CD 0 cD 0 cn � 0 O rn H m to CJ -------------- ----------- ...... ------- ----------------------------------- o_ N u O U ., W CO ------------- ------------- ---------- ---- ------------------------ u U 0 O (n J o ------------------.............------------------ ----------------------------------- 4- cz 6 w Q{ O Q O O kn CD 4 w CD rr '----------------------------------------------.......---------------- -----------.--------------------L----- G U Q O Q Q /R O O O O O O O O V CJ V (D co O C°J I I I 1 W (1j) ulda0 co co (E M a Z O c� O v O -------------------------- -'- ----- ------------------ wN Pic m o L w z 00 a CD z 0 o i w ------------------------------------------------------- ---------- F - O 0 io O iLO N ----------------- - -- -' -y -- - .-..- Q Q N U I O U •• w C - - O N � U O O i------------------------------ =------------------... ----------------------------7------- c+- c w Q' O O O O Q w � M O M O x _. U C7 5� n A O O O V (O co O O V I W (IA) ujda0 CPT Classification Chart (after Robertson and Campanella, 1988) 1000 1 C3 n 100 8 cu rn cu a� m �j 10 1 0 1 2 3 4 5 6 7 8 Friction Ratio (%), Rf It YQ Z" �k ib ' r9,c. R �sz ,�✓7 z ,, < y„RZ� F r T J Xt f J' EGG creM In sim,inc. 0 C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cr, O O o 0 0 0 0 0 0 0 0 0 0 CD C 0 0 0 0 0 0 0 . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (D 0 0 4- 4- 4-4-4--4- 4- 4- 4- 4- 4- IF- If 4- 4- 4- 10 N N Ln m LO Z3 4- N 4) d 0) N O N W N N N N 0) (D N a) W .--4 Ln Ln d' LO to V) C] m Cl C]C] C] C] C] O C)M m O O O in . C C C C C C C C C C C C C C 1-1 r, kO CO LO W v S S S = S S S S S S S O O S S O l0 N m w w co N N O w r- M M M O O m LD l0 4� r) N N M l0 00, "O O m �--* OmmMn4wOOLA o .--�4- 1 .--� N Ln Ln w w d' Ln t0 L0 W d -t r-I w M M aY Cl) M v 3 O � t\ M LO w w M M n Ln n w Ln O N Ln Ln 1p V w O v lD O LO N r- n rt d- r-r N m co, O .--) M LO O L.0 A m M M m F- Z N �] t0 t\ N � M (") Cl) M L[) w � � � n Ln M MZT M M CO v i CL i 0 0 0 0 m LO N LO co LO w N n Cl) w Ln N m 0) Cr N m � i U � O O O O m n w LO �Y M N N .-� �--) O O O m m m m w N N N N r1 �•-� �--� ri .--1 �--/ .-� �""� •"� �") „'� r1 O O O O O m f6 L- S L O) . 4..) O O O O O O O O O O O O O O O O O O O O O O ro d"4- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E N =3� 4) I O O O O O O O O O O O O O O O O O O O O O O t L , O N Mm Lo r, ML.nr-1n MMLn .-Lr, Mw �' mLn 4- N 4- O O .-1 N N M M Tt LO w w n n w m m O O O) u 'p L Y O O O O O O O O O O O O O O O O O .-') .-1 .--r .--� .•--� 41 u V) N to W > i . 4' ut .--. M m Lo r-I n O V) O O N N M M �' L.O l0 LO n n w m m O O L Y 0 0 0 0 0 0 0 0 0 0 0 0 C) 0 C) 0 0 .-� .-� �--I -4 N 4..) v L N ■ o F- wo mmmwwwwmwmmmwmmwl0 l0 l0 DLO l0 41 3 U oOor- r- r- r- OnooOr- oon �t .4 4 .--144 .-4 --1 .-I -4 r-1 -4 -4 LO Lo N L r O l0 C 4-> .. Lo E F -- ' wwwnnr- r- 00r- ww00r� wwr� LOLOLnMLnLn �o Lo m d r L N ro U VI L U n w V- N O M w O O w n O l0 m N N 'i' .--I O M N O S O N O N M N M N N N M (V N O CV N •-4 O O C 3 N v ¢ •J o O O r 4-) 0 V)Y C r-1 M O O 4) 0 0 - N �--) LO Cl) L O N N L 4- r� m .--1 N .-•� N Ln m r-I l0 m m Cl) LO l0 N M O L--1 O r4 0) - - O_ of Ln mm mr, -�T n r� w w O W LO w M Ln n Ln .-I --) NOS E O m . . . . ' tY 41 0) > .-. C) .-i N•--) �--) .--1 r1 r-1 �'-)�-') .--1 N r .-4 N M M M Ln M 0) m H Cl) V 0 0 0 16 O O O L 4 � � � O O O _ m O V) i-. m 00 w M L.O O w M V LO w m N w co w cr LO .� m n Q 0 0 0 E C] O Z vl 1>11 V) w m w w w m m n r- N m N O r-1 LO w .-) O Ln w -q 1 o0 r C Q L i Q 4o O M Ln •-4 N �--) r4 �--) N c') Cl)* co, M LO cCJ M N N M cl,m •• O .. .. U 4�n O m .--) V 0) f v) O O r4 Z \ r� r-1 N L t m i--i O r-1 O S N N H �: N U E L O) m W F � .. 00 .. .. .. u .. .. 1 O LO r1 �' t0 N m m m M w m w m .--1 V n O w LO w N O O n W f--- d W O w d- 4..) O m J W W U Y O O Ln E E E N � �-1 E 3 �"� m V) l0 Ln 01 N LO w w N .-4 Ln C) f-4 N O m w O N Ln m M _ N -0-0 LO > 4-.) w Cl) LO � 00 � O M O LO N .--) LO w 0) .-4 d- m CC) d' l0 w N .. -. .. .. •.•v v _a V) m O O L 4� 4- Q v N N N ri .-•4 ri N e-i N N r♦ .--1 .--1 N •-'4 4> C ro C .0 Lo - O C 0) N OJ m O F- •F) 41 0- L - - 4--) O 41 E � m•r- 4-) � 0) O S VI Q O O 41 U - Lo - - 4--) L -'.e ro E E N 0) m L Z Z C (D •• 4) cm H Li t R 0) Z L 4 = S m w LD M -) O O O m n O n O V N m 00 LD R N O 4-) Y > 41 0) p N r Y It It M N 1 1 4 N N N N N N .--1 r r 1 (V 4-) C � -r O 4- U F- I-- F- L VI 0) M 7 > .C: L 4) V) !p d 41 . L C � O L - ) fl_ OL d O fo r 3 V) Q 2 O N S N 4- O �--� N M V LO L0 r- W m O ti N M Ln LO f� w m O r1 Or 7 C..) Cl- L" J U V U Z W W 1 Q ' — — '-i .-1 .-1 .-I r-I r1 r-I .--1 N N .. ; O W 0 0 0 0 0 0 0 O O O O 0 0 0 0 0 W .--1 O Lo O O O O M O O m O LO 0 0 0 0 0 0 0 0 0 0 of L o M o 0 o O o o O o 0 0 0 o d o O o 0 o Cl) It o d o 0 0 o H O o N o d o 0 0 0 0 0 o O o 0 . . v o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O o 0 0 0 W OM OO 4- O W4- 1- 4-4- W LO 01 4- 00 CO 0 LO4- N 004-4-4- 01 4-- r, 01M4- 4- r, Lo d T014- 4) 4-4-4- M4- MOdOn 4) 010 4) 4) 4) (1) Lo 01d 4) 4) 4)4) 01 0) LOO 4) 4) 4) M a) a' C) 4) 4) d Lf) rr t0 Nk0 N N d CD N +� Lo .--� M O � 00 �---p � - cr- C) r- cMd c c cM cHHr+ M c cd " cli V) cd c c c ` O LO 0)L.[) L0010 t� r, CD, LO '-+ N O co CD C) ko r+ 00 Lo Lo LD 0101 d M M Lo d Lo OI LO LnMM .-. 4..) M O LO N .--� W M H M O LO d 4) -4 N f\ O M O LO n L.n CO 01 N Lo M L0 W l0 n N d Cl) f\ O n LO W �t I4 LO O M i H 4- � N N r1 .-� �' � M d O n W n co L"1 N N M d M L"1 e--1 .--I N N H .•-4 N C'7 r1 LO I- 1- Z v 3 . O W d LO M co Lt') 4) t .'--. Lp t\ d M .LS') t- n Lo O LO W 01 LO t` O N l0 O co d N W H n M W 01 N Ln Ln d d Ln N v LD d OD Lo H O M Cl)P- d 00d L001no d LO d LO N 001 LO 01.-1 LO NONOdH W LO W nn 0001 Lo 01 In i Z i N Ln LD d Ln CO 01 d '� r+ d LO d N N N CV N Cl) M N N r 4 N N d LO N ON .H-I " N L W IDdNHOI W t` L17dMN0001 W t- nnLO LO LO LO LO � ddMMMNNNN .--1 .--I �--� 000O1010101 c W W W W W n n LD Lo Lo LO LD Lo LO Lo LO Lfl Lo ko Lo LO Lo LO.fl LD Lo LD LO Lo Lo to Ln Ln LO 4) U O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O II) D_ O O O 0 0 0 0 0 0 0 0 0 0 0 0 r1 d t\ O d t` O M Lo 01 N Lo W H n O-:I t\ O M l0 01 N LO W �•'� d o NO O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �--. ..--I N N N N M Cl) co d d LO Ln Ln LO LO LO LO n W W co .yam O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O LD N n M 01 d O LO M 01 Ln n M n O N LO 1` O M LO co H M l0 01 .--i d L0 O1 N d n O N L.n h O M LD 01 N Ln 4- MMdd LO Lo LD nn W 00 M O OHrt N N N N M M M Mdddd Lo LO LO Lo LO to LO n n n n co W W co 01 N N N N N N N N LV N N (\j N NNNN N N N N N N N N N N N N N N N }7 v V) W L v1 L H LD N n M 0) d O W co 01 Lo H n co W d O Lo H n N W d O LO r• 1\ M 00 d O Ln .--L 1\ N 00 M 01 LO H n N O1 Ln 4- MMdd LO LO LO �n 00000100 .--1 �--1 NMMddLn LO L01- 1- 0D0001010 .-- , NNMM '�dLOLOL,01- 1- L- '--1 H,� r1 r+ H .---1 .--L H H r1 N N N N N N N N N N N N N N N N N N Cl) Cl) Cl) Cl) Cl) Cl) Cl) M Cl) co M M M M 41 � N H ko LO d ko LO W tD 1.0 Lo LO Ln LO LO LO LO W t0 lD LO LO co LO LO 0000 W t0 W LO LO LO LOW W LO LOd LOd Lo LO Ln Lo Lo 3 V dot rld d ^ dd d 00 d n � n d r- C> rM-I rM-1 .M-i rl "~H r•-1 H �--I .-/ H .--1 .-/ .--1 ri H H �--� .--I r-1 H ri --1 .--1 rl rl M-/ N LM-I .M-1 Cl) L � LO LD Cl) LD LO 1, LO LO .r1-1 .�-1 LO LO LD 1l LO LO LD LD I, Lo LO I_, r� I,Ln t, LO d' d Lo I� 1, LO Ln M d M ,�-1 'o ­4 � 4 Ln _ ddi-- W 01 LO M01 LOd Cl) Lo M 0) I'D LO LO W Nd LO d M L0 a) CD rl 1-1 r� LO �Y LO LO LD O N O L00) C 0. . r-. )U 41 O O M Ln W Lp Lp r1 LO In LO W Ln n O M d N •--1 LO M O H r1 N d d LO l0 LO LO d d LO O .--1 N M M N n L^-1 N Cl.)Lo ' > tF L H rl .--1 r-1 r-1 .--I r--1 .-1 "'� •--� L L L L i L i i i L Q v i 4- L r_ Mr_ WLn W L_4)Lo LO W LO DMN W ML--+ tO I- L001- W M M L0 :tr• rL x100 1�O N LO Hm ,Md 01 Lo x--10 Lo M 01M Lo 4)01 Lo (3) N W r• m dLOO W r, W -4 lO M Ol LD Lo > v d N d N m M M Mdd M d d M N N M M M M .--I M N N N N co' N N M M M r-1 .--1 M M Ln d LD d M d LO Lp Ol M LS) d !n M LO 01 r1 CO W 00 C�}} W O 01 O LO W t\ Lo LO co co t\ Ln f D LO W 01 M d n W LD W M O LO Lo LO LO O LO rL Ln 01 W d Cl 01 01 W d •--1 d W O o LO.--1 O LO l0 L-'1 O LO LO LO Ol l0 n t` t` n LO LO co d .--) O Cl) LO O.-i o .--1 d Cl) M LOO i >}] L N H O O d Ln M d LO d d Ln d H L"1 M M Lo d 4)'--1 L-1 H H N N-1 r1 O O O .--I.-1 H N r• H N M M N d n 00 U L O c ICU H H H r .O(j i 41 O W Cl) O M d O1 N r1 co O1 O W LO n lfl Cl) N d N 01 W l0 O L0 W N d W M N LO LO O N .--. .-1 LO lO O Cl) LO W W ._ NOd 014) LOM61OLo01NOMW M01LOr♦ Ln, nM W t, d(Drl NLn .-� LOL001MLoW01LoON01Hr10) dO r O LO > +� L.17 LQ •--1 d M W H d d 01 N O 01 Lo d 4) Ol lfl H LD W d Lo Ol O d W N LD Ln M Mdd lfl LD Ol .4)-i to i Q v ri e-1 H rl r'1 H H ri rl r/ c 4) H � ' 0)Z LL L L L Ln M r1 O W n LO d N 0 M n M d N M 01 00 LO M M M O W 1` LO d N 0 O1 � LO d c.o .-1 01 co LO LO M N N N O .... � L }J � L ri H H H O O O O O O Ol 01 d1 01 01 Ol W W W W W W M ^ ^ ^ � r � LO lD l0 lD LO LO Ln to Ln Ln LO Ln d M M O d 4) w N M d LO LO r- W Ol 6 H r1 N co d Ln to 1\ W 01 O H N M Ln Lfl n W 0) O H N co d Ln LO n W Ol O ri N co d N N N N N N N N co Cl) co M M M co M co M co d d d d d d d d d LO Ln LO L.O LO LO Lo LO Ln LO LO LD LO LO LO L L L L O o 0 0 0 ` 00000 � U i O O O O O N 4- ) � X 0 0 0 D O O O M co m +� Ln N .--4 Lo o Ln co co DO aD� � Z � v 3 c:o 0 O O O 1-4 co Lp M Ln M N co, r-1 r-I ri M M co co n n C Ln Ln Ln Ln Ln N U O O O O O 01 d OM1.0 m (n N Ol Ol O N Ol 0 0 0 0 M co 4J v t%1 W N� M 0101 O .-� L y M co M V 41 v ul F- ' Ln "I In Lo Ln O o 0 0 0 u d � M M co M M N 'p 110 Ln Lo N N ' Ql}-� N � l0 > 4- NMLn .N--iN Q i y- O LO 01 O1 of Nd' Ln m . > r- LD Lp LO ro v Ot Ln to O1 r--1 O1 I� 01 U- 4- 01 Zd' n M N O O) Ln • .�-I � ¢ v LD 1p l0 O. Ol r-1 U O -O U +) M --� 7 i C7 }.) O CF r t 1� Ol 01 > N � O 711 O Ln > i� Q1 O1 Ln O1 Z LL L 01 1� lD rY N L 2 R ' 41 4- L17 �D 1D M Ol C7 2 Im LO l0 LD 4- O M 01 01 It m l0 M l0 t- 4- 01 N 4- t- 1.0 ' O .--I p p O X00 010101 cli LO NNNO0101 O DD �O C C c LO C Lo TT d' LO n t0 to LP) LO co C� LO C LO L0 Z O O 4- 4- 4- l0 4- I-, .--I t, LO LO O 01 O M '14' 4- OD N 4- .--I O 0 0 0 0 N O N .--I M N N M Lo M M m M LO r1 O E M C.--I N C N N v O O O O O a) O .-I lO l0 W N LO V N 1,0 O M In M N O N lD 4- 4- 4- 4- a) E MLOd' LOM MMMC) d' MMMMd' dM a) a) a) W +� Io . 0000 L O O O O O O O O O O O O O O O O O O C c C C In d O O O O O O O O O O O O O O O O O O O O O O af . , (, , r-I r-1 r-I r-1.-1 r1 r•-1 r-1 .--1 rl r-1 r-1 r-1 r-1 r-i .-1 O O O I'D' O O 0 0 0 .--1 N Ol t\ M O O 01 O 'It M L0 .-'I M 4- 4- 4- 4- • a) N m a) tn O LO LO LO LO r t N l0 t- M LO M L0 n I- O c0 M O O O m 0) 01 01 OD 01 co co n co 01 0) co OD co 0) t-I l0 C C C = O O O r � a a O O O O LO M � kO l0 l0 c0 l0 k.D l0 LO 1.0 N 4- 4- 4- 4- Lo LO ,n Ln It d d- V �t �t V � d � a) a) u) a) rn 0 0 0 0 ro a o c c c c r m . . two 0 0 0 0 co O t` M co �--I OO co CO co 0 0 0 LO E Li ae O O O O t- O t\ ko 01 n N I-- O M c6 .--I O .4 1.0 O .--1 co O co N 41 r L . . . O t` 4- 4- 4- O 4- .--i .•� n 00 cY N M .--I OD V- lD L0 4- � .--I 4- Z D O D LO D LO S O N OD M l0 N M d O t0 oo O .--I LO �-I l0 C C = n C O0 0 lD N 01 n ti N N n C n M C .-I Ol U •--I O O � .--I� .-i N r-I N N N N N N N E.--I � O N ti Or 16 r , O 1 .-I O a) -- -- a) � OOW ID to O 10 d- n �� aD � COM C V O m m O M m M n Ol LD lD O r O N Ol m Ol M � OD N 41 pt ? _ = .--I = '-I r1 .--1 .--I N M N N C}' c co O = 7-4 .N-I L J-) to a) r M 41 - WMM ra OOj .Z-1 t\ 00 t- OD N LO '-I OD O Op n ON L0 OO OD 01 N Op l0 M U L0 O l0 �-I %0 N t` �--I l0 r-I N LD .-I VI Or l0 LO 01 LO LO LO n O1 � O ao L0 OD O O N 00 n d' �D n LO tU '"') d' r-I N e-i .--I r-1 N N N r-I N N N .--I l0 r C 41 M C N E r ^ m Ia ' C ; O N N N Ol N Ol 01 O Ol (7l Ol m m 0) Ol N Il l0 ••-I LO LO CL L- t0 Q d m N a) O n 01 .--I - N N rl O N tl O O cD l0 tD M L0 Lo lD � n Ol C 4- C L0 M LO V' Ol 01 )l LO n n Ol Ol O lO LO LO M LO n LD N CO r � O 3 N N OL' O .-i r-I N .-) .--I 1-4 .-I ,--I ,--I N .-I .-1 N M M M LO � M p O O +1 N ,Y C M O O 42 0 0 .... N �--1 LO M L p N N L O O O O OD M M N L17 l0 M O 40 n Lo M n M O ,..C) lO N 1W-- r-1 N O -0 E O , +� O O O O 01 01 -4 LD M ap LO N O .-4 O1 O Lfl LO 01 tl LO O m 41 a) O' O O O O c) LO co O O tb l0 �--I N M N M L0 co r` M LO LO r a) 0) �--, d' 7 L O O O O M N M N N cM M N N N N �--I M C) O O U 0 0 0 N of ON O O O _ C 4- _rn a) Q o 0 o E O O o 0 0 o p o 0 0 0 0 0 0 0 o p o o p o 0 0 O Z ...i N C O O O O O O O O O O O O O O O O O O O O O O 3 Lr) C T Y Q 00 O O O O O O O O O O O O O O O O O O O O O O r Q Z •• O .. ..n L +-) U In O I-I O O N (D cD .- O I (D , — N U E i N II)W co M M ct V -qt V' co cD M M M V cM M IT CD L0 I'D W LD LD 1- �� OO •' •• '' `-� ^ O O O O O O O O O O O O O O O O O O O O O O O O M W H F--' Cl- W O OD Ln H '' •' B O O Y W W W W W W W W W W W W W W W W W W W W W W orn -j W W c.) cD CD Ev E N 'D E3 a) V v R E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 to .. .. •• .. .. .. i N p O O L +J 4- ' .U. f0 kn O L, O � LO LO In LC)� LO LO LO LO Ln LO LO LO LO LO L()LO Lo, LO LC) LD d C a) E a) O) O tj N CL C t•-I L +� O +� E C IS 4' +e O a) a) O vI O_ O O 1� U - L }� L Y ro a) a) iT L Z Z C a) -• Y O H LrL.� a) z k- 41 .N 3 S 01 l0 M .--1 O O O Q7 N LO '7 �-I n kD ct• N .--I Dl OO LO a) a) 'n a) Io +� +) > a) �a a) .- 4� ^ O � � M N .-•I r-I r-I .-I N N N N N N L C 7 0 L O OL a_ 0- O m 3 to Q d O In O a) 4- O ri N M 4 Lo l0 n o0 01 O N M V Lo lD n M 01 0 (_7 H 2''7 U d N J U U U Z W W O •"i •-1 .--i .-I "', r--I ") ti N N r � „ Ln 01 01 4- M M Ln LO LD d• 01 00 M .--I � O I� M � u-1 1D k0 0 00 1- 1- N 0) - �X 01 r-1 0 4 � N 4) N CU - 0) N O LD p Ln N M N 01 l0 M �]- N n O O LO N N OO O l0 r-I LD 00 p 0) LO p p Ln t� Ln p p p p p d' N p p 1p M= N L0 LD LO L!') l0 M V 4 1 N N 1.0 LO u7 M N M N M M M C N .--� C C N N N co C C C C C M C C "o rl r-1 1-1 Q O Q Q rl Z O Ln 01 4- lD 01 �--� CO �' r1 Ln n O .--1 .--� N l0 M LO O V LO 4- O) .-1 10 Cl)4-4- 4-4- 4- Ln L.n Y- 4- - 4) 4) 4) N 4) N 4) 4) 4) 4) ' L M M p N O In OO M M M 00 M r•I M N M O N N l0 �--� LO M N V M M CO CO Cl M N N r-/ n M p p p M n lD p p .-1 N r-I C .__I N ID l0 LO LO co .--� .--� �--� co N v Q p Q Q p Q O p p Q p p 4- CO 4- V M CO 10 Ol 4- LO N M 4- M 01 Ol Ln 4- L.n n r-I O'� LO 4- 4- 4- 4- N O 4-4- 4- 4-4- n 4- f--1 In n 4) E 4) N 47 r1 M M M M<i' M CM M Q r-I 04 Q (") (V .-•+•--I 00 -4 r-I N N 4) ' 4) 4) 4) 4) -4 r1 4) N 4) 4) 4) N 4) Cl) LO l0 41 Lo L p p p •pppp • ppppp p - C O O 0 0 0 0 0 0 0 C O 0 0 C 0 0 0 0 COO O O C O C C C C O O C C C C C O C 0 0 0 N d O O O O O O O O O O O O O O O O O O O O O O O O O O O O O LO O O O o O O O O O O O O O O L [C � v0 � LO l0 LD l0 O ti O O.--1 .--I � '--1 LO LD l0 .-i LO O OLD .-f LO LD .--1 .--I .-I � .--I Cl) •--I M LO r1 e-i l0 M M l0 LO r-1 lD L 4- CO 4- Ol N M O n CO t- I\ Ln 4- N� LO 4- r1 .D N LO 4- Lf) N n CO 4- n 4- 4-4- 4-- M n 4- 4-4- 4-4- CO 4- LO co O N d 4) 4) N . 4) 4) 4) 4) • 4) 4) 4) 4/ 4) N pdE 0010 't 0lM C6 CD MnM01p nM C'; MID O1 N 00 p ko- NLO 0l CD npppp4 --I p p p p p , p � 1- O1 C M LO t� LO LD LO Ln LO Lo C M M LD j n LO d' �t = CO LO Ln LO C C C C C V V C C C G C M C L.O LO Ln N O O p O p O p O = O p p n 4- M 4- V N N O N N O O O 4- O 4- O 00 L.O LD 4- d' 00 M 00 4- LD 4- 4- 4- 4- LO � 4- 4- 4-4-4- c}' 4- l0 O 00 N 00 M O Cl) 4) M M �' 4) V M M M 4) M M Cl) M 4) CO 4) 4) 4) a M M 4) () 4) 4) 4) M 4) M M M p p p p p C) C) p p p p Cl- d p = = O OC C) C C C C C C C C C C C p p O p Q p p Q p p p p p ,� 01 O M ID I'D L.O LO n Ln N LD �-I M N V M t� Ln N .--I Ln LO O t-I .--1 O O 01 M O1 LD O O O O O cr O O O i L.t_ JE LO 00 - LO Ol l0 M n M O) M c{ .--1.-1 LO Ln O Ol Ol n N co- 4D Ln O r-I r-/ O O 01 .--I N LO O O O O O LD r'I O O M N O M N .--I N N N MNM ['� d' N MNM M N d' N N N O co l0 0 0 co M 'r 0 0 0 0 0 �Y O O N I\ O 4- d' LO �--I O 00 N O W M N O M O 00 N r-I V LO Co .--I O Co LO V' LD N r-i LD M "') Z O100p �--1 � r-I N I` M �--I co � O Ln co d I\ •--L 00n M .-) O1 M O)p Ln N C:l in l (� MMppp CO CO pp .-I co C L.D N O O LO O N .-1 �Ln t-- O d O d Ln n Lo n tD C n M C C M LO L.n n C C C C C n p C C U .--I '� Q Ln N •"I Ln O 01 l0 t\ V Ln Cl LO O LD N M lb Ln t\ LD O1 O l0 Lp 4) 4) 4) n a0 O) t\ 4) 4) 4) 4) 4) ^ 4) 4) 01 n d L!1 N N of O L.n M O N Ol lD O n LO Ln N LD O O N p p p LO LO co .--I p p O p p N O p p O .N-I �-I M N l0 l0 m cn O ..-I- 01= .N-I l0 = ? O� .�-I -4 O O O p Q � 4) ' p i Z L O) LO of M O .-� .--I N LO LO N M n O n CO LO V LO n N n N O .--i O N LO Ln C> r- n O1 d' O1 O1 N N n n n 01 O1 U t\ M Ln N n t� Ln L.n r1 00 LD L0 Ln O d I.D O LD �N O co 01 O r co Ln L,D O .--1 LD Ln O M O n LO 01 LO Ln LO .--I V � Q � � LO .--'1 M O V co M O O � M n LD co M W l0 .�-I n �' Ln co co Ln LO � N Ln .-I .--I .--I N V' d M N'.--I N N co co LO � /-_ lD L"I LD t- n l0 n LO l0 LD lD 1.0 LO ID t- 1.0 I\ to LD n lD n n �--I lD r-I .-1 lD LD r-I r-1 r-1 r-I r-1 lD 1.0 .--1 r-1 CD .. I� O .--I LD CO CO CO �--� t� � �-/ I\ CO 01 CO CO N N O) Ln N M Ln O1 N CO O LD 01 t� M '-I M 00 t-, Ol 00 O M 00 01 t- C N co co r- .-1 t N co Ln O l0 N LD O LO co O LD O .-I LO N r1 N N N co O n l0 N n '--I co N n l0 O L17 ' CC N N M M M co 't V co N N M M M N M co N N N N M d' d' M .--I .--i M LO Ln LD Ln co cf LD LD O) M L.O N ct M LD � M r/ LD co O O)LO 00 � LD �--I N .-I d I\ O cT M N t0 Ln co M LD t-- Lo 0) co 00 co LO LO �t LO O LO C L r-I LO N I'D n co t\ .--I O M f` M O n .--I •c} .--i n V- 01 r-I co 01 n �--I Ol Ln LO Ln I� O .-� 01 ID O O Cl) r•I M L Cr L �' r-1 N CO •'-I L.O CO 00 LO LO LO IT N N Ln n Ln N M .--� N M V "1 co •--I N N N .-� r-1 N N M V' V Ol co Ln O O L--I O O O O O O O O 0 0 0 0 .--L O O O co N .-•I .--I r-I N N N r-I r-I .-I O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Ln m O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Ckf U O C n U H r/ lD LO W Ln Ln � Ln Ln Ln In Ln LD LD Ln Ln tT ,o L21 a.O Ln O Ln ^ ^ LO mt �.O LD W n Mtn l0 Ln In LO .O U 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O --I O r1 r1 r-I 7 L M N }] O Ln �L W W LU W W CD W W W W W W W W W W CD W W W W CD W C) =- LJ LJ W W W W W LL) C) W W W W 41 W W 4J W W r 0 Ln E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D. C. C. C. C. C. D.C. C. C. D. C. C. C. C. 0 C. C. 0 N .. L `-� Lo LD LO Ln Ln Ln Ln Ln r1 r. r-1 r"I Ln Ln Ln Ln Ln Ll') Ln Ln Ln Ln Ln Ln Ln In Ln Ln In Ln Ln In LO Ln Ln Ln Ln Ln Ln Ln O O Z LL L Ln C0 ^"I O 00 ^ LO V N O M n l0 � N �--I O) M LO LO CO r+ O 00 n Ln� N O O n LO � M .-i M O LO Ln CO N N N O O a..) �. r-I.-I .--1 .--I O O O O O O M O) 0) 01 01 01 Co 00 co QJ 00 co 00 t- n I\I\ t� n Lo LO LO LO LD LD Ln Ln Ln Ln Ln LO V M M L O_ M .4 Ln l0 , 00 01 O .-, r_; , , , LO L.0 f� M 0) O .--I N M Ln LO t- Co 0l O �--1 N M -4 to L,D n M 01 O .--I N M 4 () U p N N N N N N N N M M M M M M M M M M M <t d d �Y Ln LO Ln Ln Ln Ln LO LO Ln Ln l0 LO l0 O l0 ' N W 4) t0 Y- 4- O p M p M C C t0 C C Z O 4-- 4- M 4- 4- L t0 ppNpp 40 C C p t0 N 1� Ol M 47 E Ot tD M O� t0 rho L 0 0 0 0 0 N 2 O O O O O daf O M 1-- M O L i p v O O N N N Lo In 1.0 l0 l0 M M co co co M `- 4) D d p O O d O O Li O O LO O O CD L en 4 4 4- Z p p O p p C N i- C U 0 0 O O Or 1 J 1 41 41 c 47 4) U p t0 p G? Or C C C Cl) C C O O M O O p Z M N •--i --i l0 V LO t0 ct Cl) Cl) i CJ i to t!1 00 40 OD L "o C r 1 r N O M, O t0 ' - i t1] 1, t CO 0 .-7 W tO O, MM C 1 1 4 co n n � � �-- co Cl) O O O N C d O O O O O O U LO 0 0 0 0 0 4 m ' U O LO LO Lf) H n U -I to �..� O -,G E W W W W W to E - O . . . . . H � Z li t al I—t0 N . 4. N N 4) C CL ` L w 2 O 4- ' t0 a Oo C7 D U t0 t0 t0 t0 o t0 0 o 0 0 0 o 0 0 o Cr o 0 0 0 o O o O o o O o d' O O O O O O O O O M O O O O O O O O O O O O � . Lc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O1 co M N 4- 4- 4- 4-4-4- 4- 4- 4-4- 4-4- 4- M Cl, L0 I- 3 4- M Cr 0) r1 N 4) N (D 4) O) N N N O) 0) N N 4) N r-L r-i LO Ln V) .ODD C3 In O C) M O � M O M IM . {-� LO co Ln D1 C S= C C C C C C C C C c C 01 M O 'A O OO M N I- 01 1- 01 O Ln M M O M 01 01 M Ln m N t\ O It l � .--� .-i r-1 f\ OD Ln LO -4 LD co, OD 01 01 O 4 LD.4 1� M 01 Ln O 1-1 Y- n O n M N 01 n CO I, M Ln l0 Ln LO LO LO t\ LO 't LO �t Ln Z v 3 , O � O1 l0 LD t- O LO 00 n CD O O1 1- O Ln M N 01 l0 Ol LO .� M LO LO O Ln M LO M LO 4N CO 4 Ln OM O1Mdt W MO- LO m Z M CT M V L0 LO Ct Ln LO N LO LO LO LO LO LD lO LO d' LO N v ' r1 >1 , , O O OOM Old LO Ln n O CtO C O1 LO N OI LO CF NO = O O O O 01 1- 1p Lf') M co N .--. .-L . . . 01 d1 Ol 01 Ol Y U , N N N N r-I H .-1 �-..� �--� „-i �'.'� „'� ""� �"� "'� .�H O O O O O L6 � CL L N O O O O O O O O O O O O O O O O O O O O O O Y LO 0-4-- . . . . . . . . . . . . . . . . 0 0 0 C> 0 0 E .In � y-1 O O O O O O O O O O O O O O O O O O O O O O 41 v L L O MMCYOLn .--+ 1- NaOMatLn � nCYOLON00 V O1Ln 4- ut 4- O CD. .--1 N N M M CY L2') lO 1� n DD 00 Ol O O .--1 N }-]) � L O O O O O O O O O O O O O O O O O }1 v N fa W ' > ' 4� u! , M 47 O Ln .� 1� N O0 M M Ln .� n CY M Ln N M � 01 LO C N to OOH--� NNMMCY man LO lO 1, t\ W OD O100 .--IAN L .N O O O O O O O O O O O O O O O O O .--I N 4� v L Ln O k--- OMO Leo 1.0 LO LO LD CD w OO W M OD m OD OO w M M Ln LO Lfl LO LO LO d d 41 n O n n n n n O O 1-1 1-I .-1 N -q .-I ri M M V) .--1 H L--1 .-i .-1 r-I r-1 .--1 r-I .-i N H .-L .--1 r-1 H H H e-i H .--I .-•i CD t0 V) L r U O) a• r t + N ) ` C N E F- LO LD LO n n r\ r\ r\OO n n n 14. q LO L0 LO LO m 0 CD O r L In E M rO Q d vt L -0 CO lD OD LO . i OD LO 01 .-L 01 O0 f-1 O 14 O LO M V lO M M O M L+- a)4� O N , , , , O N N O N �--� O O O, W N Q CD 3 a) O O O r + v1�[ r ry OD O O }1 O O N O LO Cl) L O N to L , 4- N O1 O LD d d a0 H N O LO LO M n Ln M t` Ln LO O LO �--I O) d , LO Cr O t` M O W O O W f- O M n O t\ LD M OD N N LO 01 N O -0 E �--I O Ol a: r-L O . 41 N >� M Cl) � M N N � N N �--I.-i N L--) N N N V L.O M M M M Q) W v) rp Q D_' M L Q O)L27 H U O O O N O O O O O) O)I 0 0 0 K n V) Ln O O L N n 01 r- r-1 1-0 Ln O0 O1 O1 � O V•--I M N r- l0 Q o 0 o E o O 1� n 01 N h � n M LO N LO 01 LO O0 Ln OD LO M r1 H CIO -• L QO (n CO o Mn NMNLn, N LO a Z O N O U 41 n O H3 m \ U E L L 01 CD.-/ O = N N N Z 00 N Cl) N O)W C C . 13 U F- � � � W -- .. .. v .. .. � o 41 ' O � M H'-0 Ln n N d OO LO LD l0 n O %0 O L0 N C::' .--I 3 O O t- W F-- d W O 0) , H 01 N LO LD Ct M i� l0 .--1 Ln i�n LO Ln LO M .� I- LO O0 I- 4..1 �0O1J W W CJY OO LO E E E a) � L-+ E3 N V L6 > +� 1� O n .--1 O LO d- n LO 00 O0 I� Ln LO OO LD 1- n .--/ lO N N I6 •'v•-• VI 01 O O L 3•� 4- Q v e-1 .-�N r-I 41 L ra 3 CSt Lc - O C O O) 01 O F- 4� 4� 0_ C H L - 41 O 41 E O•r it O1 W 4) N Q O O +� U Lo - c a--1 L �[ Lo N N LO O) Z L 4- � 3 t 01 OO lO M �--I O O O Ol I� LO � .--I I- LO Cr N I M W LD N Lo +-1 +) > 4� N Lo N r 4� d M N H.-L .--I rL N N N N N N N }J L .n •r O +-> U 1-- H L VI O) t0 > L L 1-1 Vl LO O_Y - - L C 3 O r L r O - d [>_ O Lo 3 N Q n-O Ln O O)4- O N co LO tO r, OD 01 O L--L N M LO l0 n OO 01 O --I (.3 H a' "J U Cl- V7 J U U U Z W W r+ .-L r-) r-I N N O O O O CO �--� O O O O O IIl O O LO Lo I� Ol m CD Ol Ol O I� LO N LO O N Lo O O O O r1 � m O p p O p 0 CL' i O O O O N N N O O O O .--'1 co M �--� •-'� �-"1 .--I M �--� �--� N O r-1 �"'� M M O M N 0 0 0 0 .--. . . . . . . L Of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . U O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O IF 1-l0 01 4-- O IQ LO 4- M H-- IF 4-IF N 4- IF G1' M O LD M LD r1 V- M kD W .--'1 W .--I IF- -4 4- �4- N lO cn W N N N N 01 .--1 01 N N N v0 N N N N N N M 01 N N N . " Co .-i 0O CD l0 N V LO N N N NCO N 01 N fn .1.] c CO 1- 1- >` O d' .--1 O C C C N C c C C C c N N C C C co co .--1 co N .-1 N C d- M N M.--1 c d c a v => : za O _ f� 00 %D 1.0 -4 010 M 0101 LO 1� 0011 LD 01MMN01 Lo 1-' N --I I� tO � •-+ N ko M 110 .--101 co --I U3 co 01 lD O .•-1 1-4 1-_ 1- M r-1 O1 O Lf1 00 O LO N d' 01 M co, O M O O .--1 N O O1 l0 r1 M �Y�-'1 01 .--1 LO LO LO �--i LP) O1 .•-1 LF- 1� M co co N .--I ri r--1 N .---I .--1 rl r1 r-1 �-1 .--1 .-1 r-1 .--1 e--1 r--1 .--I '-i r-I .--I N .--1.--1 r•d r-1 .--I .--I r-I r-1 r•1 r-1 Z � v 3 , 0 i O w co M lD .--1 1�Ln r1 M CO r1 O V O l0 D7 !- LO O r-i e--1 In Lo I� 1-1 M M M e--1 LO 00 CO N LD "Y l0 1- Ol N p v Z 0000 1- m co N N N N M .-1 .--1 �--i N .--1 N .--1 N .--1 N .--i .--1 N --1 a�D N N N N aO tD V N �--1 01 CO 1� Lo I V M CO N N .--1 .-� 0 0 M M ap W CO r- r-, 1.0 tO to Ln LO 10 1- V V M M M N N N r1 r•-1 C w M CO m CO 1� 1� 1-_ n 1\ � 1-1 n r, 1\ n 1` 1\ 1\ 1`LD l0 l0 LD LO lD 1.D LO l0 LD ID l0 LO 1.0 ko LD w l0 1.0 L0 LD LD LO LO N U O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 10 0_ i O O O O O O O O .--I d- 1� O CO L0 01 N LO M .-1 �} 0O r-1 1- O M kD 01 N Ln Co r-1 - co � I� O co LO 61 N CO O O O O O O O O.O O O .-1 r-1 .-i e-i N N N M M M � � �Y LO LO LO L.n 'O LO l0 n � t\ CO O O ON Ol Ol 01 O O O N N O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' v1 1-1 lD N Co co 01 LO .--1 4.0 W .-1 co k0 01 .--1 'T n O co LO CO 1-1 co �.0 01 N 1� 01 N 1- m N LO 1� O N LO M O co Lo co to 4- CO CO" 'd- n co M O OO 01 01 01 O O O O 1 .-a .-1 .•-1 N NNN co co co co d d V Ln LO LO to LO LD LD LO L Y , . , . ,_... -4 r-1 .--1 .--1 .--1 .--1 N N N N N N N N N N N N N N N N N N N N N N N N N N N Ul N W L � W CO CO Ol LO r1 NCOM Lo NCO "'tO r CO O N CO CO O NCO Ln O Lo N N-- co M d d Lo Ln I'D i-,I\ CO CO Ol 01 O .---I r-1 N N M GY V LO �O l0 LO 1" CO CO 01 M O O .-i N N M CO 1 f Lo Lo LD I-, 1-- N N N . N N N N N N N N N N N N N co M co, M M M M M M M M M M M N ` O1 'D LD w CO M T LD LD -,t CO CO CO w CO m m al co CO ko L0 CO 01 ON l0 LD 'T ko ko ,T ko co -.0 co ko co kD Co 1 i 3 U 1:3, O O O 1\r- �Y I- O O d' d' �--1 cT �"'1 1� d' CY d 1� <Y 1� Cl � r-1 r-I ri .--1 .-i .--I .-i r-1 r-1 •-i r-1 .� .-� r--1 r-i .-i .--1 r-I .--I r--1.--1 r-1 r--1 .--1 r--1 r-1.--1 .-1 .--1 .--1 e-i .-i r-i .--1 r-1 .--1 ri � .--1 e--1 r-I .-i .-1 .-i ' m ' rN-1 lD t0 tD n n aO W LO co M 1-I 1\ n to 1\ M 00 CO 1--1-_ LD LO 1� CD W lD l0 M LO lD M Lo I� l0 lD LO 1p LO 1� l0 n l0 n N 1 M 1� O Lo O 1r N �Y M LD r-1 LO LO M V LO O c} Co n LO CO O M O .-1 O O O N d- LO M O O N LO - w -o •--• - , l M r-"1 M n 01 .-1 .--1 O O Ol 1p 1� M ` ,- ' 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 I N N N � i i 1 ? 1 1 1 4- -1 �-IN C> ,T N01 CO n01 UON OI LO Cl) COO ON 01N CO -4 O W rl- CO 101- 01N O100 MLO 1010101 co LO (n NM CL .-. : � M N N O r- N M N LO 01 O n O Co .--1 N LO N Co N 01 Ol O 01 01 V LO r-1 co LD O O co .-1 r- r1 co O ct t0 > ... co M M M N .--1 .--i co,co Ln LO O N 4 M N N M NNN N n Ln _ 01 N LO co I-- 01 N d' Lo O1 Lo 1- n O t` CO N O M LO 10 V N LO - 1- M t\ N .-1 2- -z4- Cl N W M U- 4 lD l0(--1 N n 1- .--1 M 1\ 00 I- L.C) l0 1-- LD CO O LO n LO CO 0, Co n 00 00 Oo , Co r'1 co co Lo 01 O Lo t0 Lo N LO CO O O N . > t �o CO CO CO '-1 �-1 -4 r1 N O O O O O O O O O r-1 O O 0 0 0 0 0 0 O O .---1 O .-i e--1 .--1 .--1 r-1 O .--1 O .--I r-1 r-I r-I O Lo U t\ O - p C-" }.1 r. M Co V' r1 CO 0o M .--1 co 1\ !T V N �D LO lD O 01 Lo M I-I Lo M 1l I\ Ln O O N LO Co co Ct O co O L.n r-1 1- LO n Ln O 1 > O m co CD O CMO t0 O L l0 .�-1 �M-1 <t LD M co tD 00 n co d' LD co M LO lD V' �t co N co l�D Ln V co �t I� LO O LO C N 1-1 O Q1 Z W i -r- +1 O co t` LO N O O1 I� l0 �Y N .-� O CO LD L11 M �--1 O CO n Ln N O O1 1� Ci- M •-1 01 aO 1p Lo M N N N O .... QI , O O M 01 01 Ol Ol O M 00 00 CO 00 M CO 1\ n n r- f\ n LD W l0 LO lD W Lo LO In LO to LO co M • L LL N � N M 4 LO LO 1-I Co 01 O r1 .-1 N M L1-/ LO 1� O Ol O .-1 N M V L1') LD I� M 01 O .--1 N co V Lt'7 .D i- CO Ol O 'D N M CD Q' U O - ' N N N N N N N N M co co M co co M M M co M :t V V' cf V V �t �t 't 114- LO Lo LO LO LO LO LO LO 111 L21 w LO LO LO LO C:, 0 0 l0 0 0 0 LO O O O O O N O O O O O O O O O O O O O O O O of: rl O M V' 0 0 0 0 �t r•/ O O (.,::o r.L 0 0 0 0 0 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L d' i U ' O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O r, Cl) LD 4- 0000 LO Ln O LO N 4-4- 0 O LD LO M "tt- Ot M4- LO t- C) Ln oC\jCl) r- 110 � 4- NLn CO aO W 0) M in 0101 M OQQV' t-- Ln LD 0) M 01 MI� Q 'o MN LD to C-) -t ppp N N p r-1 C C N rl .--1 .--I '-1 N N N .--L C .--t .--� r1 .--1 �--� .-i .-i -4 N O1 C C C M ��--t O M N N N w m Ln aO lO Ln to M aO W ONO01 ISO �O NCI a. . . l0 00M it� 0 �0 �Y 0101MNOM 0004 n V � pnt- 00 LO W 01010 n aD aO aD Ln t- LO LO LO M d M 0D .-A ri 4- H .--1 r-I r-I �--1 r,.L .--1 .--1 .--I .--1 N N N N Gt Z � v !n 3 - O p M O M O M M O1 M co M O N M O M LO .--L M --� n LO N n �--� CD LD O co V LO LO LD 00 M co O v LD LO LO . O n M M n LO O M M aO A M N LO N 4 * * O1 LO . Ln 4 O M N N O n LO M 6l N -4 .-i -4 ri N N '--4 N M r-1 rJ .--1 r-I .-1 N rl r-t N LO .-1 r-1 ri '--� N .--I .-1 .--� rl d' LO t- f0 ('7 O O O 01 01 01 01 00 a0 a0 M t-n t- t- LD LD lO LO Ln Ln Ln Ln Ln � � �t V d- MMMMM N C LD LD l0 LD k.0 LO LO Lo Ln LD LO LO LO Ln LO Ln LO Lo LO Ln Ln Ln Ln Ln Ln Ln Ln Ln LO LO LO Ln Ln Ln Ln Ln Ln U O O o O O O O O O O O O O O O O O O O O o O o O O O O O O O O O O O O o O O _. 0I f0 d O M LD o� N LO w N LO CDC V' r- CD, M LD O1 N Ln OD --L LO aO � t-- O M LD 01 N LO 00 -•L . 0-4- ' r•+ '--1 r+ NNNNMMM "t Ln Ln Ln LO ID tO LD I, t� I, 00 00 00 ON (1010 C> C> C> aN N Ln Y .--I r-i.-1 .-t .-i r-I .-i .--1.-1 .-i .-� .-I '-t N rJ r-1 �-I .-1 .--/ .--I r-1 .--1 .� .-. .-i .--. .--. r. .-. N N N N N N N N en oMLD 00 'i M LD 0) .-L d- LD (m .--� V-nmNd- nONLO r- C> lDM MLp aD .-�Ln LO 01 N7 n t\ n � OD co M 00 m m m m O O O O 1-L .--L �--' N N N N M M M M d- � � d' Ln LO L1') LO lfl lD L 4, N N N N N N N (V N N N N M M M f7 co M Cl) M co M Cl) M M Cl) CO M co M co M Cl) Cl) M M M Y Ln LLJ I- N W * O Ln .-L LD " a0 M m LO .--I LO N ac) M O» O IO N co M M Ln O 10 .--I I-M aO 'd- O l0 Ln 4- ' OD OD 0) M C> -4 r+ NNMM 't V' Ln LD 'O t- t- a WMCD 0 .-L .-ANNM 'T Ln Ln LD I'D tl CIO co L Y M Cl) Cl) Cl) 4 Lt d' d" LO LO Ln Ln LO LO Ln LO LO LO LO LO LO Ln LO LO Y N 1-- }�..J�. LD LD LO LD 00 LD LO L.D LO LD LO LD 00 oo LD LO LD LD LD LD LD LO ct Ln LD LO LD LO LO l0 LD LD LO LD 00 00 01 ' 3 U t� � o CL � •--1 �--� .-i .� � .--� .--� .--1 .-� .--� '-i .--� .--� .--�ri .-i .--1 �--� .--1 .--1 �--� .-1 �--1 .--1 ' m ' LO V Ln LD n LO LO LO LD L.D LD LO t� n LD Ln L.O LO LO l0 LO co 'ct � Ln d LO L.n LO LO lD n n N N M M O LD N LO 01�t LO 01000 -,:t M 01 LD GO M LO LD 00 O O LO 'zt 0001 ':t CO LO N � O Y rJ 0 0 0 0 0 Ol lfl V' co* M d M M LO n co, 01 O N N N LD LD n O N L`M Ln t- 00 01 O LO n > 4- i L .--L N N N N N N N M Q v 4- L 61 LO .--L M t\ O O Ln 't 0101 LD 0101 LO Lo C) M LO Ln 0101 LO M M N a0 t, t-, L LD co LO LO LO co Lo .. L D' ' 0100 M LO LD N O �t LO LO LO 00 M n LO M t- �t '--L 0) t-- N M Ol 0 M t- dt V MO LV OO NIt Mt- O)c1�° N M M N -, M M M N N N N .--L r-L N M M M M N N C) C) M M M M M L") M C`) N N M Q Ln N t� Lf1 Ln Lp O rL n O N n Ln M 00 CO 01 O o 00 O o t- V .-L t-- LO LD r"L 01 M LO n - LO 01 - t- LO M .--L .. U- 4- p 01 LO M m m W N �.D M w t M 01 w m 01 W m O .--L M LD 01 m w r- n co t- t- d- 00 't M N O 0) to LO > Y O O .--L r-L O O O .-i -4 ri O O .--1 �--t O O O O O .--1 H .--1 r-L N O 0 C) C) 0 C) 0 0 '-L Cl) M L") LO O H rL N L L � L O LO l0 N N M Ol .--I'--i .--L 01 N V LO LD O N M LYj N O .--L LD d- O n N N M Lb 01 at L.O 01 d' at LO O Cl) ' � N .L . N 4 M a0 LD LO M M f� O lD 4 n V LO Ol ct N LD N d M M N O LO L.L) r-L LD M O LD LO Y O � M N O LO > Y M N V LO Ln N N M ID LO M 01 O M N N N N M It cV Ln N N N . N N N N co -4 Q LO LO N Q � .--1 O O)Z li L t L /71 t� LD N .--L Ol M LD Ln M .-L O OD n LO C) N O 01 n LO (M M 0) 01 M l0 LO M N O M t, Ln r- N -. 01 Y .-. N N N N N N ."L .--1 '-'L .-"J r-L 0 0 C=> 0 0 0 Ol Ol 01 Ol d1 01 co a0 M co co 00 00 n t\ n n n N F- CL+) L � D_ 0) 4- Ln U n M 01 O r-L N Cl) LO l0 t\ M 01 O .--L N M M V LO LO t, 00 01 O .--L N'Co Ct LO LD n M 0) O C.7 U D ..� LO LD LD LD LD n r- t� n t- t� n t- t- 00 M co t'D M O w w c0 O a0 01 01 01 01 01 01 O1 01 01 O1 O i i i r r 4- 4- 4- 4- 4- 4- N ' zt O1 tD V Ln 4- M to �'4- 4- 4-- (") ) i O ' D0D40D 01r ON Oct O .--1 tD r-10m O .--ral t0 >` C _ _ _ = n 1p M �t to t- to = >` l0 D r O r V-4- 4- 4- 4-4- M .--1 01 tD M M M 4- 4- O • N U7 N N m O fn I n <Y N L n LO O t o 0 01 0 0 0 1.0 0 O 0 w m 4- tD M Lo O N O O r- m r-1 Ln 0 t0 N O 1- O O E NtD N to LP) M M M -4 MM Lo M � ro L I C O C O O O O O O O O O O O ' O O O O O O O Nd O r O r r r r r r r r r 1 r r r r r r r r 1 O O O O O O O O O O O O O O O O O O O O O O - - - r ; O O --1 -1 r O- O O- O O F- 4- Cl 4- r- O O 01 'Y r- M N oD N O of M M to ' 0 �° O Ln O M M Ln 01 V '--1 r1 N M 00 Ln 1� N Co' tD O Oi .--1 t- v ' = Ol = 01 0 Ol O O11- 01 QO QO OD M M Ln Ln 1- t\ f\ t\ d ' 4-1 r 4- O 4- O O O w m -'r to tD to tD to S O O N N N N i p Ln 0 L0 rn Ln V a' V d' d V r6 0 C C d L v i ro 0 0 0 0 0 0 I-- 1-1 01 N V QO O M lD 0 0 0 0 0 E 0 0 0 0 0 0 t0 n n --I-I n 0) O1 O O N 431 O O O N O N v t r L 4- U OJ N N N N O1 N O O t0 t0 Ln � t0 M 01 N N O N Z 0000001� r° Lo .--1M 0) OOONO1N00000 C C C C C C " Ln � Ln M O C M N -4 = C C O C U O O S S� N N N N N N O N N N O O O N p r .Z-1-1 r N N U) N O N LO 1.0 r-+ N O r-o I- W W - d N N U 000000 '--� 1.!J O� V' 1n dO �DOMtO O�000r..n � Or O C c C C C .--1 .--1 N -4 N N = M Ln M = _ = O N ro ZD tli M +� 0 ' OM1 � = ' t0 N M to O M M Ln 1n Ln 't Ln m rl 0� Ln .-I �Y � L0 01 m U M co N o0 O M Ln n V 1- CO � '-1 to co N co 01 O N w N O d' O .--1 m 01 M Lo M . M � M M 0 n 1` t0 �--1 Lo tp ro N r-1 N co N N N N -1 N N r-•i .--1 .-� .-1 .--1 r--1 r-1 .-1 N c Ln E 1 -- ro i ' ' N N N N N N O1 O 01 01 01 01 m cNi (71 1\ w cq cf j-1 n .N-1 M Q 0- ' Ln ♦, U -o d O N (D L C 4-- C tD Lo O r- W O M O O M 1- O Mr- O r- r M N N Lo '-1 N -p C') M � M N N -4 N N r-1 f-1 N N N d Ln co, M M M o 0 0 u1 O o O + VI Y C r--1 M O O -1-1 0 0 - O O �-1 M r--1 r1 Ol N O M N 1� w O M �' V M w N LD w In O to M L O N N L - 01N0ID E� O 0- 00 W n 01 Lo d- Cl) W M Lo t00) tD -4 Ln Ln On Ln tOW ra Q r--1 O r6 +1 O O O O N rl 01 M 0) O d' tD �I'D r1 �--� N M n tD O O .--1 N rn n 0' 7 L O O rn Ln rl Ln M V M r-1 M N N N N U O O O 'D O O O O N N O O O >` O O O O O O O O O O O O O O O O O O O O O O - i Q o 0 o E Cl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o z to c . . . . . . . . . . . . . . . . . . . . . N Q y Q 1n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O Of U .. L U 41 I� O ' .- N S v7 O ' H � r•1 O f U E L L M pr-1OS NNNZ WN L N 1TW t0 Lo t0 Ln V Md' � � d VLn Ln LC') Ln Ln Lt7 O V O t--) i-. O O O O O O O O O O O O O O O O O O � 0- U U > M O 7 O O r� W F- F- tl W O 0) � .. .. .. +1 O 0 J w w U ]C o o Lo E E E c) w W w w LL1 LU cD w W W w w W w W cD W w w w v '� v v R 3 E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 to ro -0 o M O o L 41 4- .U.+ -. -• ' m = c � = m - O ' Lo Lo Ln Lo Ln Lo Lo Ln Lo Lo Ln Lo Ln Lo L) Ln -1-1 Lo Ln Ln In HO C N N N O O +1 4? d C L 41 O 4� E L Y r0 S N 0 0 01 L Z Z C N 4--1 0 F- L.L.- L M U1 Z L }-.1 -O 7 S 01 co t0 � M r-1 O O O m 1- Lo IT r'1 n ID � N .--1 O M t0 0) d N 'rte Ul ro +1 Y > +-1 4/ 10 N r- Y i-. V � �t �'V' � M N .--1 .4 .--1 .-i N N N N N N 1-1 r1 Ql 4 1 >_ 'r O +� U F- F- � L N N ro 0 > L L +1 N ry a a--1 . L C � O L O Cl_ s n- O ro 3 V) Q a 0 N O 7 0 `� O .--1 N M �Y Ln tD t� a0 01 O .--i N M u7 t0 t` M 01 0 r--1 L]' H ti 1 J U U U Z w w �--1 N ' U ' - Nn Lo N tO r- -A d Lo .-1 LOW MON -q M t- t0 t0 V W r-1 Lo V N � .--IM co N- MN .--1 to O O Cl)t0 M .•-L LO N .--1 tD D m N n O C\j OD 00 O OD.-� to O N co LO N O -4 M C>m t0 01 M M N O CD O M O M tp c Lo t M N N M� _ = N N �--1 N N r-1 r-t N r1 N -4 N N .--1 r-1 N N = N = c N N N N c N M N Cl) L-F Z ' O ' 4- N n O to Lo O M O 4- 4- l0 n n t co O Ln Lo 'r M M M N M t0 t- N - n to N N t0 O1 tO r1 4-- t0 .--1 LO M M O n to n � W LO LO M Cl O O kD CD O tD V LO LO rn OD O .--1 'd' LnO r1000tOOM �t x101 r1pMLO .--I LOO i --� C N c c N m M O O D ID Lo O 4- 4- 4- .--1 O l0 n M M .--1 N t- 01 LO O1 O O W OD M 4) .-1 n 4-4-• M V 4- 01 4- M �--1 CO n N E M M M N •-1 -4 N Q) W N -4 -4 O O O O .-'1 .--1 O O O O .-� .--t O O O Q .•-1 O O Q � .-� .--1 Q O Q .--1 .--1 .--1 .--1 O 44 fq • M fL0 O O O O O O O O ? _ = O O O O O O O O O O O O O O O O O c O O == O O O = O = O O O O O N [1 L L i L L i L L L L L L L L L L 0 0 0 0 o O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O o o O o 0 0 o O o O o 0 0 o O o O o 0 0 0 C3 .--1 ri e-1 lD .--1 H .--1 r-1 r-1 H LD Lo .-+ .-i rl %0 tD M <D to M ID -4 to Lo co lD M .-i tD .-i to .•-� U CD LO W N V 4- 4- 4- O M O O .••� M Lo d' n W O O t- O .•i N 4- -4 O 4-4- M 01 N 4- .--1 4- tD O LO .--1 ... L N o N . N N N N M .--1 LO OD n �--1 p O O lO LO O O LO " aD N -i N O O tD .-1 M 0 .-1 p O O O 0 •--1 M M O �--4 0 Ln O t- O M L n tO Ln Lo Ln �t LO d' = c = M � M Cl) � Ll7 V LO M d• M Cl) M LO nt M M ? MM ?? � MM cMc � � Mnt M N NOOOM 0104-4- 4- d 1.0 N N tD co M co N tO NNE OD LO N N 4- NN4-4- t -�tN4- N4- to <t V' �TN O 01 "t M It M N N N M M M M M M M M M M M M M co co C'M rM Q CO M Q Q M CO M Q CO Q CO co C"M M M d d 0 OO m CD v C C c c O M d O dt a0 tD LO O O LO o t-I 1-4 n tY .-t LO N t� M OD LO LD n M O O .--1 O O N M O IT co O .--1 .--1 V LO n W a•P O tD l0 M OD n LO O O �' M LO CD M CO M '-7 LO O LO N LO O LO O O t0 LO O O LO O1 t0 t0 co O M co co co co v N N N N N W- M M O O M N co co N �--1 N N M N � �- M N N Ct V' O T O O co M 1* LO � O M M M M co ... r=- h 4- .--1 O O 01 Co "r-, Co 4- Ln 1' CO Ln C> cO --1 LO CO .--1 t� O �t �N CD N to tO�� N 61 Ln t0 t\� � .--1 O tO LO Z O O M M M .--1 O N LO CD O n -4 M N N 01 O to O to r-1 N n tD t\ N O tO N O c l N LO N W .•-1 p co- Co- n Lo r1 cMICONr1 .--loco c 0LO01MMat W O o OOMr- MMMct ccn c co CD LO01d ccoMt� rnLO () .•� r-1 r-1 .-1 r-1 N N •--� ri.--� .-� r-i r-1.--1 .-i r-1 r-1 H r--1 "'1 r•1 N "'1 r•i .1 r1 r^I M LO O i � .--1 M '� t-- N 01 �--1M�� 0161OO 0101 LO I-- tO M 01 M LO tO M Co N � C? �-! Co 1� OM � � Ln tO LAN U C.l co N N M 01 M N M m O M M n l0 LO .--1 CD lD LO a0 Ln n O co' 01 CJ 41 co O[J �--1 a0 N a0 M O .--1 �t L A t0 r1 O c Ol O O to LO co tD co C c N d O O nt co -t � '-1 L.O a0 O M d LO O .-L c O M c C LD LO LO N r-1 1-1 1-1 r-1 _ . MIU O n t0 N t0 M LO.--1 LO LO L.n Co LO .-'1 N O1 Ln O LO N M -:t r- I CY 110 -�t M LO CO tp V' N LO r- M O O l0 .--1 M U N N tD o tO N O O K .-� O co t-I t0 l0 t0 n 01 co N �--1 t0 V Lo M n CO N l0 N O ^ O ON Co N f� CO LO 01 O O Ln M t� co to In t� �t .--1 2 co d N N d Ln LO LO N� N N M LO "t N N -4 N N '-1 N V* co M - N� � M M M co L � t0 .-1 .-1 t0 n t0 tD n n t-_ t-_ tD n t0 t0 tD t-_ n to t0 tD .--1 .-i ID 110 to * t0 r1 1.0 t0 t0 to Lo M r � fY1 ... - t0 n LO co tD r1 co t0 co N .--1 N co M N M co -It M n d' t0 O M N O n O1 .--1 n CO � .--1 N Cl) t,O1 CO O1 N n t0 L t-I MNNOt-I MN� 01 V' cD LnQW .--IODNNLONO (") 001 .--i.--1 .--1Na0M01ONODNNMMN � Ntnn CY co, co* M co* N .--1 r1 Co-M LO t0 N r1 .-�.--1 e--1 0 .-i .-1 r-1 r-I N N N O �t N N Lo N N E d' N N co M N co N N N N .--1 Ln LI7 c0 c0 tD t0 M t-I M 00 tD M LO co Ln t- LO t:t in I:t 01 r-_ N t-I O M Lo 14 r1 co Lo N O Ln r CT co t0 -+ 01 N to c,` ■■ T Lo Ol �' tD Co -4 d- O LO n t0 " V CD W N O LO -4 01 CO CO t-- N CO M t� aD t� t� LO 01 M LO M CD t0 t0 OD M O M t-, ' O ' co t_ IO t0 LO � LO M co N M .--1 r-1 M M .-i N e•-1 r-1 N M N.-1 .--1 r-1 r-1 '•-t N N .--1 N N N N Lf1 f� S1 O O O O O O O O O O o CD 0 0 -1 O O .-1 O ri O C> N C) r-1 CD N N LO N M V co N N 1= V co co N N N N M O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ' LO [D O O O O O O O O O O O O O O O O O O O O O o O O O U O H n U I LO Lo Lo Ln dam' MLn LD co aD11* a' lzrLn -�TMMM -T LO Ln V' MMLO LO co Ln Ln co LO DLO Lo t0 L1]tp LO TLO � •O U O o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O i DD N •t--� O LO Y E W W W W W W W W W W W W (D W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W • o LO E o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v r1 LL) Lo- Lo Lt] Lt) Ln Ln Ln Ln Ln LO Ln LC)l Ln Ln LO Ln Ln Ln Ln Ln Ln LO LO LO LO Ln LO- LO LO LO LO LO Ln LO LO LO LO LO Ln Ln LO LO 01 Z W L t Ln M O M n Lo mt N O O1 n LO N r1 O1 0c) t0 Lo M '-+ O M t-Lo ct N O M r- t0 � M �-9 O1 co to Lo M N N N O . 0t L 41 .� r+ .--1 .� O O O O O O M 01 01 01 01 O CD co 00 CD c0 co W r- t- t-t- t- r- t.o tp tD LD to t0 Li) LO LO LO Lo Ln V M co L 7 d N 4- L N M 4 LO LD * OD 01 O L--1 .-1 N Cl) �-LO l0 n CD 0l O .-I N M to t0 r- M 01 O .-i N Cl) V LO t0 n co 01 O .� N M V (_7 CL' U CJ �.. N N N N N N N N M M co co Cl) M M co M M M zt 't V d' �t LO Ln LO Ln LO LO Ln Ln Ln Ln t0 t0 LD lfl to N ID 4- C 4- LO rt-1 4- 4- 4- 4-4- 11,1 4- 4- 4- 4- 4-4- 4-4- 4-4- M d CO LD O a00LOd O O 0 O01 CO Ln O O N LO O O 000 n 0 O O 0000 O 0000 CD '--t 0 N N N C C C N N H C M M H C C C C C H C C C C C C C C C C C C d d co 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H Z_ O M 4- 4--4- 1 CO 01 Ln 4- O l0 tp 4- 4- 4-4- 4-O 4- 4- 4- 4- 4- 4-4- 4- 4- 4- 4- 4- 00 H LD a) - a1 a) a7 a) N a) a) a) m a) a) N Q) a) a) a) a) N a) m a) . O. O M N 0 0 0 0 d -- n 0 d N f-, 0 0 0 0 0 O l 0 0 0 0 0 0 O O 0 0 0 0 d 1- k O al a) 4- 4-4- H 14- 4-4- M .-1 Lo 4- M d Ln 4- 4- 4- 4- 4- t-4- 4- N4- 4- 4- 4-14- 4- 4- 4- N O1O M N E ' a) a) Q) •'-� O a) a) (D�-•+ H O a) .-) H O O) a) Q) a) a)O Q! a) N a) m a) a) a) a) a) N a) N .-i N N 0 - 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 rC L C C C O O C C C O O O C O O O C C C C C O C C O C C C C C C C C C 0 0 0 0 N d 0 0 0 = 0 0 i i 0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Ln 0 0 0 0 0 0 0 0 0 0 0 0 Ln Ln LO Ln Ln Ln LO Ln 0 0 0 0 0 U Or M M M M lD LD M r++--� �--� M M M M M M M M M .� �--� �--� r+ �'--� �--� "'' '--� ^'� M O 4- 4-4- d CO 4-4- 4-Ln r-t Cl 4- (D1 LO O 4- 4- 4- 4-4- 0 4- 4- 0 4- 4-4-4- 4- 4- 4- 4- 4.- 1- LO L m a) a) a) AV) N () a) a) a) a) a) a) m N a) m a) a) a) a) a) N - . 000 M d 0001 M 00 r- N 000000000 �-•) 000000000M CO NN v C C C M M C C C M M (") C d Lo M C C C C C M C C M C C C C C C C C C Ln Ln 1D LD M = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �... a) 4- 4- 4-d N O 4- LD LO O 4- 4- 4-4- 4- O 4- 4- N 4- 4-4- 4- 4- 4- 4- 4-4- LO OD CD CO m a) a) M M a) a) a) M M M a) M M M aI Q) a) a) a) M a) a) M a) N a) () a) a) a) a) () M M M M (p i t a) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 d CL 0 C C C C C C C C C C C C C C C C C C C C C C C 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 d O O d 1p O O O CD H N O d Ln Ln O O O O O 01 O O O O O O O O O O O O .--4 LO Ln O i Ol O N Ln CD O O O O LD M,O N w w O O O O O LO 0 0 0 0 0 0 0 0 0 0 0 0 ^ O n d - Ln O L.n d M 0 0 0 d It Ln O M N LO O O O O O Ln O O O O O O O O O O O O co M N M Ln co 4-4- 4--LO LO d `� N LO n 4- 4- 4- 4- Y- LD 4- 4- 4- 4- a)4- Y- 4-4-W 4-4- M Ol lfl M D a) a) a) a) m a) m a) a) a) a) a) a) a) m a) CD w a) a) Z Ln OdMC00 0 0O1 .--I LD Cl Ol O LD O 0 O 00 d Ca M r- 00000Oa0Oldt- H M C A Ln Ln C C C M Lo Ol C CA LO 01 C C C C C H C C C C C C C C C C C C O N .--�t� U �rl .--� rl � •--1 rl rl �--� � M � M rl S� � � CO N N M 0 ' Z , .•-)4-Ln Lo n 4- 4- 4-t, M .�4- N M d 4-4- 4- 4- 4- t�4- 4-4-4-4-4- 4- 4-4- 4-4-4- n d 00 d a) a) a) a) N a) a) a) a) a) (D a) . U 00OH -4 r- 0 a0 O t� 0O00O Lo CON O th C O N N C C C Ln N r- C M O t, C C C C C Ol C C C C C C C C C C C C d Ln N 61 v ' 0 Z 001 Oh LD t- COnCD 01MMnOlnMOdOdt- 01 M d NNtDMaO nLD LD Loo nLn Ol 01 H U OMLOOr+ LDLDOt� OOlO) O01O1LOMdLDMNNd CDMNN .-4OMM �--ldt �•-� NLnd Or --1 -4 N M M r1 r-t N M Cl) Ln Ln N — H .-i LD n CO CC) d •--�d LO LD .--t H H LO LD d •--� LD t- M O O N Ln O CO O H N N w Lo O n LO Ln O N n n d 00 M Cl)O n N d O1 M n H L.O .•� M = d LD LD CA M t- Ln 01 t� CO 01 M H M M O LD N r- V 1-4 n Cl) LO �-1 O 01 Lo n N M M Ln d Lo d M of ' Q' M d M N r) M M M N N N M N �N d d d Cl) co Ln LS) LO d d d d Cl) d d Cl) N N Cl) d N H M 0) n n H N LD O M L) Lo CD N co Lo M N Lo .-t LO M co Ln M 0) d Ol CO t� n CO Ln Ln O's C c>' r-, t-, LO ^ ^ aD ap OdN0n O t� O LO .4 Ln* Ln Lo, dLn LndMM M d-+ N � M Lo N t` LD i d LD M N N Ln d M N M d O N H Ln LD n n CD Ln d d ID M C) C)CD t> CD LD LD n d CD C l rt H d 0 0 0 0 0 0 0 0 0 0 0 H 0 0 0 0 0 0 C. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 tr) m 0 0 0 0 0 0 C7 O C7 O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 C7 O H U O C n U H rl .r N LD -LO Ln d LD LD LD Ln Ln Ln LD d d Ln LD t\ LD Lp Lp Ln LD aD Ln n t\t- LD t\ LD Lp LD ID Ln d d Ln - 8 1 O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H O O O 0 0 0 0 0 0 0 0 0 rl 7 00 ;..) CD d Y W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W r O In E o CD C7 O C) C7 C7 O C7 o o C7 O C7 O O O O O O O Q O O O O Q O O Q C QC O o (17 .. .. v Ln Ln Ln L.n Lo Ln Ln Ln In Ln Ln In Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln '•') In Ln Ln Lo Ln Ln Ln Ln Ln L.n Ln Ln H C a) H O Z L.L_ L O1 n LD d N �--t 0) M LD Lo M •••L O W t- Ln d N O M t- LD d M H O1 M LD Lo M N O M n Lr) d N _- 0l }-) N N N N O O O O O O M 01 M M 01 M 00 00 co CD CO CO CO n n t- r- r- a) c r 0_+� . . . L [L a) LD n CD O 0 H N co d Ln lD t- M M CD H N M M d Ln LD t� M Ol O rt N M d LO ID n M O O CJ U 0 ... LD LD LO LD LO n n t\ r- t� n t- n n n CO M M M CO a0 CD CO co M M 0) 0) Ol 01 Ol at at O1 M M O O O O O O O O O O O O O O O O N O O O O O O d' O O O O O O O O O O O O O O O CY 0 0 0 0 0 0 LY U o 0 0 0 0 0 0 0 0 0 C. 0 0 0 0 0 0 0 0 0 0 0 4- LO 4- .--� M 1.0 4- 4- 4-4- 4- 4-1- M O N l0 --i 7 4- 4) W O 4) M () 00 .--r a) (L) 4) 4) O 4) j: .--1 O LO kO ON to Ln p - p p .ppp � 0e 1.0 Lo c � cLOaO c c c c c cM V Ln I'D L[) LO S S 0 2 2 0 2 2 1 ' O W d ^ '-+ '--1 r-1 LO �r t l0 LO M M Lo N O r- d L0 M r- N •V LO n Ln W Ol O 01 Ln t\ M a1 N .--I r-- M-.--I M O1 i-- r-1 O .-�4- M t\ Ln V' Ln M ct n Ln LO LO LO Lf) M N M N M M M 3 o . . . . M .--� � M m M n co V d � O N l0 V Lo L.O l00... a0 W � V 0� M O Ol N M M N r- LO N n.•-� M o O M m LV N N 1- Cl) �t M M Lo 'r M 1- Ln M N Cl) Cl) V Cl) Cl) m N v O_ O O O O W W M M LO O " W d' Ol \O N O n It N O c O O O O 01 t . l0 LO Cl) Cl) N . . . . . . al Ol Ol 0. 41 U . N N N O O O O f6 d L a) . 4. O O O O O O O O O O O O O O O O O O O O O O m U 4- O O O O O O O O O O O O O O O O O O O O O O E a) p +� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 N .. L L O N M m V O t0 N W M W 1- (3) LO W O Ln .--) n 4- N 4- Cl O -A N N M M <Y V Lf1 Ln LO t\ n W 01 Ql O O N N N � L �.) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .--I r--1 .--I .-i r1 }] v rp W N 41 ' Ln ' M Ot �' O W N W M W "d- M Ln r1 W H O Ln r-1 r- N W d 0 O O r1 N N M M E LC) LO LO n 1\ W m m O O 14 N L +� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .-1 -4 .--1 Q) 41 u L Ln ra F ' M N ' co ra W � l0 LO LO Ln LO W .D LD 01 m W W W W L0 l0 LO L0 LO LO O n O O t\ t\ f� n aL O_ Cl) rl r-1 r-1 rl N N rl r--1 -4 r1-4 r1 r-1 .-L r-L -4 In � H •--I r-1 .-i r--1 r-i r-1 N N .--I r-1 H H rl .--1 r-I ri ri r-1 r-1 r-i r-1 O 0 N L r U 4) Ll7 r c +1 Cl) C Ln E r - Ln LO LO Lo -4 I'D r- L,0 L0 W W r- 1- 1- 1-LO V Ln Ln Ln t0 m d r L Ln N rQ OL i '0 O r1 M LD W O 01 1- m N M r- Ln M t0 L0 LO N �t O M N N v C C 4- =Ol Y O O O O N O O r-1 .--I N •--1 M .--i O O M M N N N �Y o Y O >4- r i r r i i L r r i 1 r i i i i r 0 c 3 N 0 0 o r +1 V) Y c � LOO Cl) L O N V) L. 4- n CO d' LO ON O 01 1l l0 0) rl �t -Cl- LO M LO LO 1l 1-1 l0 LO N 4) - a r oc LO o �t t`M L0 �1 LO V m ON W N L[) M co� � N r--1 LO voi F- o N o-0 E --1 O 0)a•e . . . . . . . . . . m 4. E > v .-a N N �' �t M N M N.--1 r-1 N N N .•-1 M V Cl)* M (� U O O O O O O C 4- w O N O O O _ O a) _ r CD Q 0 Cl 0 E p � LO Lfl 1\ LM r- LO M N n n '--) LO N � M L!) n C) W Ol N co O Z v Ln c LL 4- � N t\ t- n L() L() .--1 Ol O V N 1p LO co �--1 Lp M LO -,*- LO n Vl 0) N d Z Q Q L Q> O Cl) �--1 .--1 N M N 4 N Cl) Cl) N M M N r-1 N N M N N U 41 1' O m .--1 U 4) E N O O S N N M Z \ Ot M O L -c Oh (0-5) E L a) O)W _ .. .. .. U 4- O N l0 O, 1- co�t M M W W Ln .� W 1 .--1 O W M LO 1.0 W O t0 7 O O n W d W O O et •• c •• •• N 4) O4- {.� O Ol W W W C-)]L O .--1 L(7 v E E 4) -0 r--r E 3 �--1 0) o n O N N N LO 01 LO N V' LO n N Zo LL) 4 N CO co N n ..i v a) -0-0 r0 > +� Ln W n LO t0 r-_ n LO W O N t\ LO --1 V' LL7 t0 W f- co In .. '- .. .. .. .. -0 N 0) O O L 41 4- Q... r--1 r-I N e--1 .-� r-1 ri c N c 4) 4) 4) O) O F- +1 41 a c Lti L - +� O +� E c 0)•r 41 M CL O O 4' U ro c +; L Y t0 41)` N O) L Z Z c 4) •• +1 p H Li t r0 4) Z L T � 7 L Ol W l0 M --1 O O O m n Ln cf r1 n LO� N �--1 Ol W LD Ol a) 4) 'n 4) m 4- 41 > r � 4) m 4) r 4� ^ r �' �' d' d M N .--1.-1 �-i N N N N N N Q) 41 c -0 •r I--' {- L V) 4) M 7 >L L 4--L (/1 M d N - . L c 7 0 r L O d d rl O M 3 Ln Q L1 O v) p 4) 4- O .-1 N M �Y LO lfl r- Co d1 O .--1 N M LO LO � Co 01 O .--1 Cl- Ln W U U U Z W W "'1 N N i O O O O O O O Ln O .--� Ol l0 lfl 01 01 LO co O O O Ln O N 0 0 0 0 0 LD O O O r o i O O O O O CD O O C) �--1 �--� N-4 �--� N O M N .•-1 �t O ("') O O O N N N M O O O O O 0 0 0 V- (, O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O r t O 4- co 01 O 4- tD 4- 4- '� 4- 4-4- 4- 01 M 4- 4-4- d Ln 4- 4- •-1 4- 01 .-y 4-4-- 4-4- 4- M N ID .-1 CO 4- 4- 4- 4-4- 4- td t0 0) LO � 0) M 4) 0) 0) 0) 4) 0) O C7 I` N 0) 0) Ln 00 0) 0) C-3 U) m N N w N 4) a) tD M l0 ON M N U) N d 4) V) to , O 0 0 0 0 0 0 0 O O O M O •O - O O O O O . . 0 0 0 0 0 v l0 01 c I- N d' l0 >` _ C C C C N .--1 c M co C C N C co C C .--1 .--I Cl) CO LO C C C C O d 0 01 01 Ol O LO ^ Ln OD co N M M M LD N 01 zt O '.0 co CO to lD o I, V M M --I tD tD N co NIt C}• N � C N Cl) N '�-1 r�-i .N-1 r--1 OD ^ .N•1 -4 rN-1 r-1 -4 - ^ 1-1 -4-4 rM•1 -4-I .�-1 r�-1 .�-1 r�-I .lt]-1�O tD Co N N Z � v N r O M L.D l0 N 00 LD M .-1 01 M O Ln n n L0 61 M �-1 t0 r--1 O1 � N OD .--1 '.D N M O1 M OD N O t0 O LO O O I\ 00 O t0 � O t0 N l0 LC) O O N M M t0 LO .-1 � O !, N OD N .--1 DD 01 01 i� O1 N � N I4 O .--1 � Ln 01 M I N Ot M LO t0 l0 O t0 LO M " Z M V L.n M N N M d N N N �-1 N r-1 N r-1 r-1 .-1 r-I .-�.--1 .--1 .•-1 N N r-I�-1 N N N N .--i N .•�-I N r--1 N N N N M N M � r . N r co lD� M r--1 O OD C_ tD Q M N �--1 O O 01 01 OD a0 n n n � LD LO LO Ln �t M M M N N N .--1 r-1 r-1 .-I O O O 01 co co 00 OD co M r- r- I\ L- I- r- t-- I\ r- � LO t0 ko t0 tD LO LO td '.0 l0 LD LO lD tD l0 tD t0 t0 t0 t0 iD tD t0 tD LD LO tD LO 0) U O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O td d O O O O O O O O O O O O O O M LD M N LO aD r-'-1 t o I` O M tD M N LO W r1 n O '�t n O M tD OD .-•1 O N r O O O O O O O O O O O O O O O O O r--1 .--) .-1 N N N M (") M d' Z � LO LD LO tD tD t0 n I\n OD O 00 co O1 �..� O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O r N 0) Ln .-1 t0 N co M 01 LO O tD N 00 Zr to 0) N Ln rl O M tD co V LO 01 N ZT I\ O N Ln co .--1 M LD CO � Cl) k.D M V) 4- N M d- LD LO l0 4.0 n 00 O M m O O O .•-1 .--1 .-1 N N N N M M M CO r LO Ln Ln LD '.0 4.0 t0 LO I\ n I\ I\ 00 00 y N N N N N N N N N N N N N N N N N N N N N N N N N N N N N (Ii N N W ' In O1 Ln .-1 �o N OD M 0) Ln O tD N 00 It (1 Ln .--1 I- N OD d' O LD '-1 I` M m -It O LO N OD M 0) Ln O l0 N 1- M m C al LO V)4- N M Vt LO LO LD LD n OD 00 01 M O O .--1 N N M M Ln LO LO t0 I� I- 00 Ol O, O O .•y .--1 N M M ct V LO LO l0 LO I- L- t .--1 ,--1 .-1 -4 .--1 .--1 r1 .-1 .--1 .--1 .--I N NNNN N N N N N N N N N N N N M M M M M M CO M M M M M M M 4� N H r tD t0 00 1.0 10 1-0 ID CO tD 00 00 00 W M W M t0 '.D W M 01 tD tD W M '.000 tD to M M O1 W W -1 d l0 to LO M W 00 W 01 } 4 3 CU r V I- * 1�V 1- f- 14 I- 1- 1- O V -4 1- O O �t V 1- O 1- C' I- O O I- 1- 1-4 r--1 � �Ct f- f- 1- 1- O CL .--1 .-1 r--1 .-i .--I r-1 .-1 .--1 rl r1 N .-i .--1 r-1 N N r'1 r-1 .-i N rl .-1 r-I r-1 .--1 N N.'1 "-'1 r-I r--1 r-1 .-1 .-I r-I .--1.-1 r-1 r-I r--i 1 m r tD LO n tD �t lO LD I\Ln I\ I\ n I\ I\ I\ a0 LD LO n M m tD w n aD '.0 n 1.0 '.0 n aD a0 n n M co LO LO l0 I, n n h co ML/) LO t0 00 OD M N O n t0 r1 Ct M M tD LO I� r-1 N O LO CO n 01 .--1 N O1 t0 N N co C I\ LD O .--1 I\ O1 I,n O r, M OO LD > �t M Ln LD tD Ln Ln '.D t0 Lp lfl Lp tD '.O t` r\ td t\ I\ n 00 M OO OD O) 01 . 01 O1 01 O O O1 0O 00 00 01 00 O1 OD OD v r r r r r r i r i i r r r r r r r r r r r r r r r i r r r r ' r r r r r r 4- r Ln M tD ,zr --1 W O1 N 01 n tD �t n M O Ln N r-1 I_ r_ O1 N O1 L1-) M '.D Lo n <t n N 1-I M O .•-1 M CO O CO O N M C . nM 01 co O1w O W N .--I t0 Cl) at) r" tD MO 0) O t0 O Lo 00 NtD V N .-1 LO 00 O1 LO O to Ot 00 O OO .-iN 61 d N N r-1 M N O M r-I Cl)N N > M M N N .-1 d O Cl) n Oi to N n Ln M O � L0 O I- ct to t0 t0 d' N I- LO r-1 In N M M N CO Ol N rI dD aD M L- t � n t0 O tD Ol Ln M .•-1 Ol .--1 LO LL 4- 00 '.0 I\ LO Ct I` M LO O tD ON n n 0) 01 l0 LO a0 01 r1 00 0) O -4 O 00 CD r1 �' .--1 M C 1 .-i al r--1 Ol Ol co O Ln O d- M N O O) v) LO > }) N Cl) Cl) N r--1 ri N N N .--1 0 0 0 0 0 0 0 0 6 '-1 O O O .--1 O r-I O .--i .-1 N .-1 N N N - g, 0 Q ^ O O O O- M C') .-1 LO LO 01 I\ CD N d' 01 r1 O1 M n �--1 r'1 O1 I\ I\ 01 ^ n ^ t, N n LO O1 OO tD tD .-'1 '.D OD �--1 M LO t0 LO 41 - a--) O 00 m en d- .-1 <t N DD .--1 LO tD 01 Ln .-1 V' Ln O Ql N M tD •-1 O1 lD O O1 M .--1 Ln N Ln t\ I\ N N CO M 01 01 N O CO tD r- O Ln > .1--L Co N n Ol M LD CO M LO I� l0 t0 <0 L[')n t` M N LO 0D t- V Ln t0 O M LO LO Ln n O aD n LO N r1 LO t\ W 61 40 .--1 CO N .. O C 0) r� rT Z L.L. L Ln M.--1 O M n Ln �t N O O1 t\ tD V N .--1 Ol 00 LD LO M 00 O a0 n Ln rt N O O) w t0 t M w 01 OO LO Ln M N N N O O) r y r r7 e--1 .--1 r-1 O O O O O O O1 O1 0) 0) O) Ol CO M 00 00 00 M O L� n t\t� f� n tD lD LO t0 t0 LD Ln LO Ln 0) Ln LO d. M co L 3 R r Vim-- r N M V' Ln tD t\ 00 01 O -+ r-1 N co, 4 Lo' w n OD 01 O .-1 N M L) w I\ co 01 O .-1 N M Lo LO t0 n co O1 O N M C) t)f (� i CD - ; N N N N N N N N M M M co Cl) co Cl) M M Cl) M r!- d V' d d- LO LO Ln Ln Ln Ln Ln LD LO Ln LD lD lD lD l0 Lo d o O C> 0 01 0 0 w O tO d m O lO 01 O O O to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r ne r M N N N N O O O '4") O .-'� d O O N O M M N O M N O O d N O O O O O O O O O O O O d O O O O r U O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O r 4-4-4- '� 4-'� M �--r 4- 4- 4- 01 4- tO 4- � h 4- 4- 4-4- 4- 4- tD N 4-4-- h 4- 4- 4- L.n 4-4- 4-4- %D tD N 4- 4- d 01 h 4- 47 UJ N O1 N 0) M L2) N N tO d N N d t0 N N N N N N N h w W Ln O/ N N d N N N 0 h a0 h w N 01 M O +� C C C C C C N d C C C N C lD C M Ln C C C C C C Ln l0 C C Ln C C C t0 C C C C N .--r co C C O N d u =3 = ZD =D r O r .-D LO Lr) LnNMN �-+ tD NMr-'ct O1dOM. ' r' 'tr"� N ONOM dW O1 .--�d ht000 Ol � hodtM O. r y r rld r00 h M O1 M O1 OO (3100 h Ln O Ln W Cr, tO 00 Old a0 a00Ma�in �nhh 0O O1N M O1 ON 0 .-4 d tOM 4- r N .--1 -4 r-i .--4 ri H .--1 .-i .--1 H N H H r-1 .--1 rl .--1 H r-1 r-1 r-1 r-1 r-I N --1 •-,--r N .-1 .--1 -4.--r .--r N Z v N O . . .fl M t0 M M 00 d O N h 01 a0 N M h OD M 01 h M H Ln Ln M 01 N d Ln O1 d .--1 M o tD N O O d tO .--I w h lO 00 d o � tp Loddm O1 M t0 MME 00 tD �h00 MMdOM tD tD Md O d Ln OD O d M M OO � hdt Win O1 M a0Mh Z M N N M N N ••-4 N CO Cl) .-L M M N •--� N M CO M M M N M M M N M d M M M M co N •-•, H N N r+ N r . Cl) r 01 Ol co 00 M OD h h h h tO tO tO tO LO Ln Ln Lo Ln d d d d M M M C) M N N N CV N LO LO LO L--L Lf) LC) LO Ln O O O C Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln to Ln to Ln Ln Ln Ln Ln Ln In Ln Ln In Ln Ln Ln In Ln U] Ln Ln Ln Ln Ln 11'] Ln Ln Ln In Ln Ln to Ln 4) U O O O CDC) O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 01 t0 D_ Ln co .-1d r_ c> 0O1 N Lo OO Ln M .--r r_ c) MtO O1 N L1) a0 .--'rd OD .--r dhoM tD O NLO DD h .--rdh U 4- r M M O O O N N N CO M M d d rn Lo Lo Lo lD tO tO h h h CV W OO M Ol Ol 01 O O O .--r .--r .--f N N N N N a..>. i O o .--i . .--� .--r N N N N N N.--� �--r .--r .--r .--I .--1 .-L r--r .-� .--f .--r N N N r N hoNLn M --rd tD (71NdhON Lo OO O M LD M Ln hOMLnW --f d tO Ol N d h O M Ln 00 O M t0 OD d v) co M O1 O1 (71 (D O C> CD H N N N N M M CO M ddd Ln Ln Ln LO tO tO tO tO h h h 00 O 00 OD M 0) <71 O100 L Y I N N N N N M M M C) M Cl) M M co M M M Cl) M M Cl) Cl) Cl) M M M M M M M M C")M M M M M M M M M OM d d y N W r r r-1 h M (71 Ln .--r h N OO d 0 LO .-L h M OD d 0 t0 N M d 0 LO .--1 h M Ol O to N h Cl) 01 Ln O t0 N h M ON Ln O r to 4- r M00 O1 O1 C) -4 + NNM 'It 'tL1 to tO to f- 00 OD O1 O10 � -4 N N M M � rn in tO tO t- I- OD O1 (71 CD C> -4 .--1 NM M M M M d d d d d d d d d d d d d d d d dLIO LO LO LO Lo Ln Ln 'o Ln Lo Ln Ln 'n Lo LD Ln Ln tD tO tD tO tD tO y N f- O1 O1 O1 M O1 O) tO tD 00 O1 OO tD co to M tD tO 01 00 O1 61 tO tO M Ol tO CO OD 00 tD 00 00 M OD tD tD tO OD CO tD tD 4 v o 0 o h o o d d h o h d h d h d d d d o h o o d d o o d r � H .--1 H .--I e--1 r-I r-1 r-1 r-i rN-1 eNi rN-1 r--1 N rN-i r-I rl rN-1 rN-I N .--1 e-i N r--1 rl H 1--4 r F- DD OO 00 h 00 M Ln tD h W h Lo h tD h tO l0 M M M h OO OD Ln tD W OO Ln h h h tO h h h h L.n d Lo h h Ln l0 L1) N Mr--rd d Ln Ol Ln O O h co C\j OD d OD LntD NOhM t0 O MtO r, r, ha0NNOl OIh d M d h OD LO O1 y O. 0 0 0 0 0 0 0 0 01 01 O O O .--r r-1 0 01 01 DD lfl tO h N d L.n O d N O O d Lo M O �--� .--� �--�.-i �--� O Ol 00 h r > 4- i i r-1 i r r r i r i r r i r r r r H H Q v r 4- r d O1 h h O w 01 01 Ln OD 00 h M OD O CO h 00 d O H t0 O1 01 h O Cn O O1 O tD OO N 00 t0 N ('7 w N CD .-1 In m h d OO O N O 0) %0 O N N Lo O 01 N CO N .--r tD LD M O 00 Cl O 0) N d t0 CC) 01 '7 CO to O OD r--I tD M > .--. M N N N �--r O �--r .--r H �--/ co, M .-�.--� M r--� N r--f M N N -4 �--r co co M N " co N Cl) r > .� rl H r-1 .-1 r-1 H Cl) N N '--� N N Q O M h Oi to o M N Cl) h tO t0 Lo t0 O t0 CO 10 Ln N h d O .--1 r-f O M co .--f 00 d Ln N 00 o M O .-i tD N 01 CO Lo Lo M tD tO d Lo I L 4 h d N h M r h h N . 4 OD Ln (71 0 01 Ol h Lo 0) 01 M tO r r 00 O OD 00 h N In 1.0 M CO N co Ln 01 Ot O + H - .N M N N M Ln > N N 1 -1 N N N Cl) N O O r-1 ti CD Q V O H h U Cl) O ; ; d h t0 H Ln OD M tD Ln M O ."� h 01 N 00 1p h OO Ln O1 lD 00 ao N h L1) O lO d t0 N Lo Ln 01 to Ln N to .-L . 01 r1 N y O d r Or H r Ol N Cl) OO d h M O L1) M 01 M M N h h Ln Lo .-� Ln d N •-+ O 01 d N Lo .--1 d h tO�--� 01 h d O 01 N N d h tO h O L.n r > J-� ' d o O Ol N Ol M t0 O M O M .--1 00 fD d h h 40 N O Ln .--1 h M t0 O h Ln 01 O 00.--r H M M d N Ln tO h .•-L M Ln Q, g3 C:> C\l C) H -4 c> m C 41 H 0 O1Z L.L r � r O1htOdN .-r O1 Mt0 Ln M .--IO MhLOdNOOIh tDd M .--r O1M t0 LOMNOaDhL21d NOOIh tD dM .--r p1 r y .� NNNNNN .-i H '-L .-r .� .-i .--r 00000001 O1 O1 O1 O1 O1 OD OOMMMMaDhhhhhhtO tO lO tp tD tO N C M- d+� s_ Cl- tli 4- r Ln LD h M 01 O H M d Ln tp h M Ol O N M M d Lo tO h a0 01 O �--r N M d Ln LD h M 01 O N M d Ln tO f� D_' U ' O `� ' lD lfl lD In tO h h Cr h h h h h h h co CD W OO M m OD W CA M a0 CT CT 01 Cl 01 (71 CT 01 Ol 01 O O O O O O O O 0 0 0 0 0 0 � ° 0 0 0 0 0 ° 00000 LO N LO 1 4- 4-- 7 4- O LO .--1 Ln N w N 4n D D v M io lD ,-1 h r1 M i0 }1 O CO cY N O cli i rl 4- N N Z h v N i 3 . 0 L] Cl) N M rl l0 N M - Z N N N ci' i � O O O O O O !` LO LO Ln Ln Ln LO U 0) � O O O O O O ro O_ iOML0 OI NLO 0-4- M M M cM V t0 01 . N 4- O O L 41 d }1 v N W i v14- Md �tLOLO l0 k.0 t0 tO N l0 �-Df 0001 h O i Ln d 't LO h 00 N _ LO N LO h d h Q v 4- O LO 1.0 It W N cr-, ^ 01 h LO '' LO Ol aE zx: M M et M O Q M h Oi N .--I O 00 M l0 V Ln LL 4- LO O .--1 00 h O O1 V i Ln ' > �-> 1 .--i ri N .--1 M N U rl Q' Q v O 1-(ai h U -OU 41 � CO1M MLO ... i M Cl 4- 41 O d' QI VI Ln Ln O h O r C:, LO > +1 N Ln N OD C rN 1--1 0)Z l.l_ 4 ^ LO Ln LO LO Ln Ln L a a) 4- M m O iC7 olf U ' Im ' O O 1-4 r1 r1 rl VI 4- 4- 4- 4- 4-4-4- 4-4-4- M LOS V MLO M N r� Ol C) �f U a) a) a) 4) N 4) a) N a) a) . O O I:n O m CD 00 m cl Cl NLO .--I O LO LO .�LO cli CV) LD C C C C C C C C C r�Lo LO LO Lo d r LO LO LO Ln -Cd- O 4- 4- 4- 4- 4-4- 4- 4-4- 4- r-N --1 O) �T LO w N O M N Oppp0000oON Cl) 1- OO CO LO O M Ln -4-4 m N Cj C\j v 0 0 0 0 0 0 0 0 0 0 a) O W 4- W lD 4-Ln LO r\ LO N O lO 'zt M LO 00 4-4- 4-4- 4- (D 4) E w 4- 4)LO� --t �� �M M M M N 4) w 4) a) NM 1� m p p . . . . pppcm cl m L O C O O C O O O O O O O O O O O C C C C C O N [1 , , , , , , , , , , , , , , i O O O O O O O O O O O O O O O O O O O O O O 0~0 L Cl It LO - IT O M CO M O I O d- �t N N N N 4-- 00 (n p LO O LO LO O Ln (31 N LO Ln O) L0 O M N O D D D O Lo v v O) C CO n C r- r� 01 t\ r- d1 00 r- CO W r- C c C C C Ln O O O O O O O 4) d � T , , O 4- w Lo 4- Lo Lo w 00 �t C �t 4-4-4- 4- O O 0) , LO a) -I- � a It Ct � �Y �t V w w 4) N 4J t 0) m L 4) O 0 OOMOO m [L O C C C C C C C N M OOOOOOOOOOMd' ("� OD � LnMN � NO .--� E U 0 0 0 0 0 0 O O O O r- co M CJ N MME ,--) CO OI Ln - . O N 4- 4- 4- 4- 4-4- 4- 4-4-4- CO Lo In CO r- CO M. 4 LO OD 01 O 4 u a) a) a) v a) a) m v a) a) Z O OCIO OOOONct Lo OD LONN C> CM O LO .0 C C C C C C C C C C O co M t\ O .--1 Ln OO Cl) O O a0 lO U =3 CO N N m > ' ' O Z 4-4- 4-4- 4-4-4- 4- 4-4- �f r- OD V V .-1 O W It Nt O M .) a) a) o a) a) v v m a) v C U c c c 0 0 0 O O O c co.--I M W M LO M O M Lo Lo OD or C C C C C C C C C C �--�N M -F M M a0 V N .-) 00 v m O O O O O O O O p O L y m N M _= ' 0 ' OMl L Z M O) M �Y LO O LD N N 01 -Y O) t\ Ot M r- N N 1' O) •--) r-1 U O It 61 O O) M Lo �--� �--� lD M Ln r� LO O) N O' '--1 LO M N .--) co N M N co o0 �--� M LO n LO LO t` LO r- O m VI L , .--1 �--� r-i �--) �--�.--I r N .-) .--) N N �--) v a) LO r C 41 C Ln E m m C N N N N N (7) O) n r, m r\ 1.0 LO Lo Lo Lo r, m Q a Co v U i a) L N 4) 0 n M LO .--)N O M 00 m w Ln OD LO w W Lo Ol O) C C 4- C LO O � r\ �to N LO d O O) [O N LO [") C0 OO Ln .--i N N N cM M M N N N M V M M N [Y O O vO) � r C .--I N Lo L.O M 1- O N V) d C O OD N M M M O O lO OI r- N N N LO N LO.--) LO t\ o M ti ONO -0 E �--) O 4--) or� Oil MOOO r' � Ln O) M N t7 OD Ln M O O) O m 41 a) O' O co O .--I �� .-i tO r- 00 r—Lo Lo co 41 N �Ln LO n Lo LO of r7 L O O7 Ln Cl) N N N Cl) -4 M co U O'0 0 I m a) r- p OOO a) or O N CD 0 C) C 4- rn v LO O O O E O O O O O O O O O O O O O O O O O O O O O O O Z V C O O O O O O O o O O O O O O o 0 o O O O O o 7 4--) Q M O O O O O o O O O O O O O O o O O o O O O o U 11 t\ O O m.--) .. N to O OD M i ,--) O 2 N N CO Z Ol M o .-) C7 �-+� �-+ U E i aii rn w � to Ln Ln Lo Ln Ln d' Ln Ln CO CO V V V � Lo r` Lo LO L0 Ln C , , �-, U U � OD .. •• .. U 4� o o o o o O - o o o o 0 0 0 0 0 C? C 0 C? 0 ._.. C> r- wHF- a wooer .. C .. .. N , , , , , , , , , , , , , , 4y o (l J w wUY C:> in E E E v � - E3 � Y � W w W w w w w w W w w w w w w w w w W www � v .� N O)O O L +� 4- E C) O O O O O O O O O O O O CJ 0 0 0 o o o 00 N m 1.) C m , C t t m - O LO LO LO LO LO Ln LO LO LO LO LO LO LO LO LO LO LO LO LO Ln LO C a) C 0) a) � m o H 41 41 d C r i .` +� 0 4� E C Cn— 4 rn a) O = V) 0.O O 41 U - m C }� L Y m M � a) a) O) L Z Z C a) •• }� � F- w L m N.` Z i 41 -0 7 L , O) W LO �Y M�--) O O O M r-LO t -4 r- LO d N ,--) M M lO CT a) a) '''I 4) m 4� 1> > , 41 a) m a) r , }) d' V' V M .-1 �--) N N N N N N --1 --) --) a) 11 C O 1� U f- F- L VI N m 7 > L L 1 N m d+ L C 7 0 r L O d CL d O m ,- 3 V) Q d p N Z (D 4- o .--) N M Cr L.n lD r� 00 O) CD ,-� N Cl) Ln LO r� OD O) CD -i C7 H CY ,'D U 0- N J V U U Z W W i O •� '-1— .-� �"') "") "') �") "') �--i r-) N N } N 01 01 t.n Ln� H LO f� n d lO Ln O M r, Lo cN� LD (D H UD r� H 10 m w cD N Ln n l0 •-'L `� 0) N N LL�D d O O r� O O In lD d' O d O N O a, M �--r N N M r� t.D p N D1 co M Ln Ln �--� Ln N LD r— Ln N co Ln �--� O O O O N OD N w d N LO d Ln Ln d' c M d d d N N N N N N r--� c N �--r �--i N N N N �--�N N N N N r--r N N = ? ? M M N M N M M H Z O Lo CD n ID -- N O Ln d Ln N Lo M Ol O d Lo M d M 01 O1 Ln M 0,d O (D (D d r-r LD (D M M N Lo d Ln N . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Lo Oid O LD (D O1O0 (A r� r� 0l aD a' a0OOlD LOHNOLn Ilr--rMM 01 �p LDOOOOOLn IONMNMkD H N H = _ _ u 41 O H M O LD 4- r-L d d 00 N O S r-r H 00 Ln '- O N D1 01 O N N n O H d H M cD (D (D w 4D CO LD N n ID 0) E r M M M CV N N N N Q H �--� H O H H O O Q �--� r-L O O .--� H r-1 O .•-� H ri H H O "� O O O O O.--. . . .--. ry r. Y to p M L O O O O = O O O= O O O O O O O O ? O O O O O O O O O O O O O O O O = _ ? ?O O O O O O Nd r L r r r L L r i r L r i L r r L r L L L L r r r L r L L r L L r r r r L O O O O O O o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O i Q r O O O .--r O LD LD ID H LD H .-� H .--� .-� H H LD M H H H (D tD M ry tD (p co M lD lD tD _ r-r a,r- �o4- OMr- 4- LD OD NLn LO M Cl) O � M LD r- NdN Ln OHn OLD r` M004-4- 4- 4- N HHO 00 p � r aOnr � U C6 * 0' -L L. M O•LD O1 OO O1 Ol ODM � dLn OI� LD t� LD Ln t� LnOpOON1� �--� �D Ln W Lo LD n Ln = d Ln LD = Lo d d M d d M M d d M M Lo M M M M d Ln d M p = O =d d L!') d Ln (D N O N N O 4- LD CO N'� OD LD �D LO d lD W N 4- d W W N LD M O d d d LD M LD (O N 4- 4- 4- 4- d LD (D LD M O pl O d' ddd ) MMdQMMMM rM MMm 4) MMMM MMMMMMMMMMMQOOQMMMMMd ra t N C C L C L Oc) OMr- MOd W M W I.DN H LO O N LO Ln M LDH n n W d Or W Co M O O O O N O W NID Mn r L.L a•F r r� N Ln d O M CO ao Q• LO Ln Lo d H Ln O M O N d N 00 O Ol N L.n O1 .--� n H d 0 CO O O O Ol O O O H aD lD v N N H N O M N �--�M N N N N co N N d O M N N co M M H Lo M co d N N N M M 0 0 0 d d M co M H CO Ln t\ O 01 .--1 H N CO co co d Ln O N \D M N co d d co t\ O Ol O1 O f� al al N N N M�. . Lo n N . L Z L LD r-r- oO ao O r�aO Ln LD LD Lo, 4O. Op M N OON d Ln OrnodLpM N �-+ 1�LO r+ OOOID co OIMdNM r H r n a0 Ol lD C co n to O CO O Ol Ol M O CO O M .--� Ln LD M O O n LD N N O co lD C C O L!7 lD t\ t.n U Lo N CO Ln 'Z-i L Ln LIJ H O � n d N Ln co 01 t\ t` � LD n 01 a0 Ln f� .-� 1p OD CO H d N Ol d Ln � � � H n DD lD Ol H f\ U r co 1- LD r� 00MOMLD LD LD O O co LOHH O M O OI N OIddLDN d1000Lo lD OI ID ID � � Cr O ap Lo co C d O Lo lD r-- Lo Ln Ln m Ln M co C O Ln d N co Ol d' co M M M n Lo Ln Ol N C C G N lD O .� H O d r r--1'"r '"r 0) p i Z L tD N r- Ln 00 O LD r- LD OI cm -i O,N Ln LD O f- 01M V Ol rl Ol N CO Ln CO CO Lnd MO Ln Mr- I� r-rd H U r N N M lfl Ln LD N H H 'n n co Ln r\ co co H lD n co N O N d LD O d M d 00 LD Ln N N Ol ro-1* Ol CD t� Ln Ln i Cr r nO � t\ NdLOOdLodddMdLnNHMLO LOMM V LDNMMMdLD Ln M .-+ .•-� NMddLn dtDO C nr� .-LLD LD n LD r- r r- r- r- n r- LDH n r� r- tD lD r t\ dLD lD LOnnnnLO Hr-rHdtD nr� t\ nn co r— N O LD r- co co d Lo Ln O N O W H LD d OD Ln (D d H n O co L.D 00 d d (D O r-L .--r m Lo co O m LD Oi H n H n It d OH n Ln O O) OI co •--r Ln NNnM 00 co nn dcD -1 n 000 OlM W Ln M '--LLD O1 r- NODO OIH OIHN r r d' co co N N V co N ,-i M N H H H H H O H co, .--i H .--L N N H H N r-r N N H .-i H .-r .-•/ Lo L.n d M M .--L N H N H L N O co "o V' d r--L m N O d co co N N 00 H H H .--+n ko H m N N O1 n %D d O Ln N d CD M N N LD M n M d %D C i a...i r d N M O LD Ol M H co d O H LD co r.D d O Lo l0 d Ol H co co N r-r O .--I O N H t\ Ol t` n 40 d 01 co r co N r Cr LD co OD .N-L tD N M d r-- co d M M co N co co H H N M M H N N d '-r N N N M d co N M N M LD O M t\ O O O O O r•1 O O O O 0 0 0 0 0 0 0 H N H O H H ♦--r H H N H H .--1 H cD H H N c> LD N N N H H H ti H Cf O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O - Lo m O O O O O O O O O O O O O O O O O O o O O O O O O O O 1:? O O O O O O O O O O O O O O O O • H i r r r i r i r L i r r r i r L L i r r L i i r i r r U O C n U H H co Ln Ln dLo r-- Ln L1'I d Lpdddddd MLO I'D dMMLn Lod MLndLO LndMMddco co LLD LnddddM O - O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 co�--� O d Y W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W r- O Ln E O O O O O O O O O O O O O O O O O O O O O O O c:, O O O O O O O O O O O O O O O O O O O O Ln .. .. L Lo Ln Lo Ln Ln Ln Lo Ln Lo Lo Ln L.n Ln Ln Lo Lo Lo Ln Lo Ln Ln Ln Ln Ln Ln Ln Lo L.() Ln Lo Ln Lo Lo Ln Ln Lo Lo,Ln Ln Ln Ln Ln Ln Ln O Z I..L_ .-. Ln M .--r O co n Lo d N O O1 n lD d N H O1 M LD Ln M r•a O 00 r- Ln d N O O1 n LD d M r♦ Ol 00 L,D Lo co N N N O H .--i H .--L O O O O O O m Ol m 01 Ol 01 00 co co W co M M n n r- r- n r- lD LD lD LO LD LD Ln Ln Ln Lo Ln Ln d M M N L =3 L1 0) 4- N M d Lo lD n M 61 O H .--L N M Ln (D t` OD Ol O H N M Ln tD n M O� O H N M d Ln LD n CO Ol O r� N M d (.D of r Ov i N NN N N N N N M MM M MMM M M MMdd V V C' dd dd Ln LO Lo Lo Ln ro Lo Lo Lo Ln LD ID kD ',0 LD i i i N M O N LO t0 d'- LD M M O Ln M Q) N Ln Ln 1, W N Ol M LO M N N M W M r-1 W O W - N O r n N r1 0 M O O LQ M Ln O N LO O O -4 Co M M r-1 1- .--1 l0 "6 ,:6 0 0 0 .--I M LO dt t\ t\ p p p O M O p p l0 NNNMNN = NL") NMNMMMN MNNNMNN M M cli clj M (•MMMMN ? == NN ? = ? r-I Z O u) f- M M O) M O Ln Ln M W W M r- u) W N N N O d N l0 �l0 NLQ LQ p Md 1\ ONn Lf) O LO Ln 1� M1� t\ W co nnp Lf) Ln 1__ W 01rM pODO -4 ppp v N r p r N O M .--1 O 4- M Ln M W M M M O O cY W 1� N M 1� W W L!) O 4-4--4- 1- 110 4- N 4- -4 -4 N N N O O W O- p N N -1 -4 -I rQ -1 O r -- 41L M1=1 O b O O O• O _= O r Cr O O r O r O O O O O O O O r = r O = O O r O r O O O = N d O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Ln O O O O O O .-� M L0 .-1 r-1 -4 r-1 rl co r-4 1.0 LO \O .--1 .--I M '--1 M r--i .--1 M l0 U O .-1 N M LO co N 4- M O \0 I- 4- 1- u) W O Ln W 1\ O O M W.--1 N .--1 O LQ M 1- 1` W a) -- 4) CO N O N L N pd-E MNNOI� OpLON W NpM �t LnO .-'1.LO LQ Lo 0 .--1Np u) N 01p 0LO.0 M0NLD NOOpM W pOp ... LO Ln Ln Ln Ln Ln = M Ln Lo jLn M V W LO Ln Ln LD Lf) = , LOd = LO V Lo d Ln Ln Lo ct = == M f`-) = MM W LO 10 W W W 4- N LO Co LO 4- W V zt N r co O W W W l0 4- �t W LO 4- W <t LO 'zt lO W W I 4-4-4- N N 4- O 4- _. 0) M M M M c°) M M 0 M M M M a) M M M M M M It M M M M Q c•M f')!M Q M M co M cM M M M p p p co co p M 0) m C a) M p d CL O C C C C c C C C ZD zD � M r Ln (n .-I O co O W N O u) O co 01 Ln Ln co Ln W .--r 1_ N W O .--1 .--� 1� M O M I� O O O co �{ O O O r W Ln co O) �-1 Ln O Ln O N O W r- .-�Ln 01 O 1- LQ M O r--1 Ln 0) M �-'1 LO O 1\ Ln N ��}t u) u) co i_ O O O Ln O O O O N N N N N O M N M Ln N It M � V- .--1 .--1 N co N N V' � N N O N co co 4 M M N m 0 0 't 0 0 0 cn r co co W 0, N `� t co t- N LO 01 01 1� .--1 Ln O N N LO Ol �t N 0) �t LO 1� O N W al N d N N N N d r Z r 4 - LO co- 0 p OI N Ln W 4 N Ln LO 01 M �t O N a0 M 0 LO N 0� 0 01 r--i O) W N W ct �--r M p p co N O O p .--1 co M r--1 Ln N N C LO co co co O Ln N M N O M r- ct M co co Ln N c co O .--1 W O co .-i C C C LO W C C C ._. U r ri r-1 r-1 .-� .--� �--1 � r--1 .--1 ri .--I r-I .•--1 N N �--� N r-1 r-I ri.--1 r-1 e-1 r--1 N .-•�.-� � r--1 N N N N M O r Ln O LO LV LOO W r- r- r- W W NLO.--1 0101 � lO a00100) tO r--1 � � - 000- 4 4�. U r co r1 0 .--1 N LP) p LO .--1 LO M O O 01 M N 01 M Ln M M .--1 W Ln � .--1 p .--1 M ct LO LO O Ln 01 p O p N u) p p 0 r Q r d 1_ W O In W C M N W N co O) W co O LO d LO N LO d' W l0 1� c r-1 01 Lf) n N 't .--1 LQ >_ c C N V c C C "'1 r-/ r--1 .-1 r-1 .--1 L-i .--1 r-1 .--1 .-� r•'•1 H r-1 r-1 N N •--1 r1 =3 O b 41 a) 1 p r i Z r r-1 f'M dt tD N 1� 01 W O) N O) N N M W r� N O n Ln V 1\ O LO Ln O LD W M W 1_ It N N co N Ln O LD V' W l0 m L U r LO O1 Q) Lf) O Ln W M W M O O N Ln 1� LO O 0) 1� LQ Ln O W M W Ln M W r_ W LO M W O Ol LV O �lD O W W 1� t\ O' W Ln Ln u) � Ln �--1 M Ln 1_ W N LQ � �' N V' 01 01 LO Ln W Ln M V co LO co f\ � Ln ct W LO LD V' N .--I N M M •--1 N t, LO LO l0 LO 1� r, 1\ n 1\ 1\ Q' LD 1�n n W LO LO W W 1\ W -4.-i W %D H -4 1--1 co N 1l W N M co m O M N LQ LO O 1.0 N n -qt 1� Ln O .-1 LO co 01 �I'V Ol l0 N L0 .--i Ln N -Zt W N 1\W M LO Ln .--1 N W N Ol .--1 .-4 M M 1_ N M Ct 1\ .--1 O) N 0) M N Ol 1� M r•1 O O .--1 O LO LO W 0) O O co Ol N Ol n N W clf 4- co, M N .--1 N M .--1 M N N N --1 O .-1 r-1 .--1 .--1 co, M N N N M N N � N � -Izt M N .-1 V M M W .--1 .-1 01 .-y W 't W t M W N M �--L u) M 1- LQ N co 1� W W W�--1 M N M LQ 1- M N co LO O O 01 N N al LQ C r 4. i O V V c O r-1 01 co N .--1 M Ln M � LO N Ln 01 N O W M f` 01 O V 1- .--1 co. O O Ol W�--1 I_ N t\ N O Ln M M M M M �t M .--I co N N .--1 N Ln In M N M '-1 N N .--1 ct N N N N co fM N -4 .--i .--1 O M n -4 -4 ­1 N LO M .--1 1-1 r-i Lf) r--1 N N 't N .--1 r--1 r1 N -4 N M N r--1 N N N M N N N co r_ .--1 LP) V 't r--1 W Ln LO O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O .--I O O O N O O O o- LO m O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O • r-1 i r r r r i r r r i i i r r r r r r i r r i r r r r r i r i r i r r i i r r r i i i r r U O 1 U .-L M co M M co M L0 in -tt co LD V' LO Ln u) N N M L0 u) M M LQ Lo tt '}' ct "T W n W 'zt V ',0 Ln LQ - .V O r U O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W r O Ln E O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Ln .. v I L!) Ln Ln Lf) Ln Ln Ln Ln Ln Ln Ln u) L.n Ln Ln Ln L.n Ln Ln Ln Ln Ln Lf) Ln Ln Ln Ln Ln Ln Ln Ln Lo Ln Lo L.n Ln Ln Ln Ln Ln Ln Ln Ln Ln C �H t,` M W LO LO M r-1 O W 1� LO E N O Ol n LQ Nt M •-+ Ol W LD Ln M N O W 1l LO ,Zr N O 0) 1, W P M Q) T N N N N N N .--1 .--i r-1 .--I .--1 r-I 0 0 0 Cl 0 0 01 (3l (31 ON 0) 0) W CO W W W W W 1- 1\ n n n n W 1-0 l0 LQ LO LO S_ 73 d_ a) 4- LO W t` W Ol O .-� N M �' Lf) W n W Ol O .-1 N M M L1) W f\ W 01 O .-1 N M Ln W n W Ol O .-a N M �t W LD 1� CJ "L U p ..i l0 LO L0 L0 LD 1_ i_ 1\ r_ t\ n 1-1 r- t\ n W W co W W W co W W W W 01 O) O) O1 Ol 0) 0) 0) Ql O) O O O O O O O O H H .--I r-I i i i 4--4- 4- 4-- � � U N N O d " Z ' O 4-4-4-4- M W p p p m 0 1 C C C C N O 4- 4-1 4--ID t.[) N E U/ N N N ri •--I 4� fo to L C C C O O 4� R O N O_ O Ln 0 0 0 0 �4-4- 4- O L N N N N p TP DOOclMM C C 3 = LC) l0 4- 4-4- 4- 1.0 W Ol r O N N N N eM M a d o O in O d d O C C O O OOO 011-_ U . Ii O O O O M v O O O O M N Z O In M N r1 C C > O n Or Z 4- 4-4-4- m d r+ N N 4/ N U O D D O •--I LO C C C 00 IV N Z LO M r-� N r1 M I l0 CY N r+N N LO co 1.0 I� In F- N 1� O1 d Go r1 co C 01 i s ; M I LO N I 10OLn C Ol O co O 1= co CO Ln N LO O r-1 O O O CD O O � i Qf m� ° 00000 U O C t-_ U t-I M O U O O O O O O Z I ap N ' OO Lo Y E ° 0 0 0 0 0 to v LO, LO, u� Lo. LO � O 01Z LL_ L Lo M tO LO MN a' {J 4� L(I U)Ln In Lo In L 7 Cl- Q7 4- W 01 O .-1 N M U' K U O � ; O O i i i i i 0 0 0 0 o O 0 0 0 0 0 0 0 0 o Ln O O O O o 0 CL' O O O O O O O O O o O O O O O d O O O o o O U O O O O O O O O O O O o O O O O O O O o O O 4- NOM4- 4- W4- 4- 4-4-4- 4- 4- 4- dO ON MLf) Ln 4- N M LD W 0 W L N W W W W 0 N W M LO r- Ln 00 .-•+ n L ) v1 O 0 0 0 0 0 0 0 0 M Cl • +� cl0dd c cl0 c c c c c c c ctD LOd dLO LID. O n W -4 M d r- d co d co W O W LO Cl) L.O W n W d N l0 ... MLO4r� MLOdInLOl0Lf)r. dtN7NdNNed7N Z 3 1 v o M M O r- Ol Ol r- Ol d l0 L0 M dr-_ n r- O -4 l0 Ln d O O v LD Ol CD, r- Wr W 01 '.6 L6 C6 '.6 Wd M, C\1 t` 01r, W H Z � M N M LO M N M d d d M M Cl) d M N d N N M N m N � v .-1 N d O O O O LO n M Cl) 1.0 01 M W M O1 Ln N 01 n d N 0 >1 C O O O O Ol l0 Lo V M N N .-� �--. . . . Ol Ol 01 01 0. 41 U N N N N�--1 r-1 r-1 r-I .� .--1 �--1 .--1 .�-� � .•--I H .--i O O O O O O r r0 d L N O O O O O O O O O O O O O O O O O O O O O O N ra 0-4= 0000000000000000000000 E 4� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N v t 41 L ' . O v) M O d o l0 N W M W d 0 L0 N co d 0 LO '-•� n M W d 4-- Ln 4- O O r7 N N M M d d Ln LO LO rl n W OI OIOO .-I .--1N N v7 L �..1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L-v N ro W ' 41 ' V) 1 M Old OLD N W M W d O LO N W d O LO .-1 r- M W d 0 v - O O .-•' N N M M d d Ln l0 LO r, r- co Ol Ol O O .--1 r-1 N L {� O O O O O O O O O O O O O O O O O .--1 .--1 r-1 .-•� r-1 L L- Ln v N R F-- LO LO LO Ln W LO W O 01 W W W W W 1.0 t0 LO LO LO W l0 W 4- 3 U r- r- OOrl- r- r- r- r, ddddddd W 0 VI L r U O O1 c +� M N ro O cIn E H r, W Ln d �'-r r� l0 r� W Wnnnr� n WLn Ln Ln Ln Ln LO _ 10 r0 W d r L Ln M N d d N 01 01 O m d N m M M l0 N N Ln W 0) ...i C 4- tm O O N O .--r r-1 O M N r-1 N M N .--r M .--r yr N � Q � o c 3 p 0 o r +-+j u, r> oo +-+ o o • .. N C> LO . L - . L , Or! rlm W mOI Ln wODLO W n W dO Ln Ln CD W O a r � W d r� M d Ol d LD W W Ln W N �--1 N LO M Ln O N �-•r NNO-0 E � O 01 J� �--1 0 7 41 i > v i .--1 N d d Ln N N N .-1 . N N 1-1 N N f')d d d d d co IU W N �- Hl� Ql O1 Lp U O O O '0 ro O O O C 4 � � lV) 0OO _ Ln Q 0 0 0 E O N Old N Ln r- M O W W O N W d LO W O m d -4 r- O1 M O Z v N c i L. 4- W N M W n O M W M L0 O O .•-1 n O LO L0 r, 10 d N M V � p1 V Lr) 7 °� } � Q L Q> N O N N N M Cl) N N N M d M N N M N N M N N M N U 4R r� O m .--1 OU .. N Ln O ' rr pr•r O2 NNd: dLn U E NE L M -1 O1 W +� . O +�^ Nr dLO 01 Wl0 t0MMW0 MOI 1LO 01n LnO 7 0 0 t` W H H O_W O .--1 d .. C .. .. N N 4- y O Ol J W W U ]L O -1 Ln -1 O v) N Ol LO O O n Ln " O N O d 01 O W Ln n e 4 W M v-v rEa 3 > a-> LO r- Ln l0 1- W O1 d rl rl N M W LO w Ln LO r- r- 41 �� c 0 .. .. •• c N N N O O 7 c 41 41 CI- 41 c O +� E c O-� 41 01 O) O1 v7 OI L Z Z c Ul 4� O F- L.L. L ro N Z L 41 0 7 t Ol W l0 M .-1 O O O m t` 01 O 41 •r-� N r0 y I > 4--1 N 10 O r 4- .-. d d d d d d M N .-r.-1 �--r r-1 N N N N N N W }� c _0 .r O +� U F- L- L VI N ra 7 > .c L .1..� In t0 d-1--r . . L c O r L .- O d d a O ro r 3 N Q d O l!1 0) 4- O N M d Lf7 W r� W Ol O .-i N M d Ln L0 r, W m O .--L C7 t--1 K 7 U O_ N J U U U Z W W O .--1 r-I .-i r'q .-r .--r .--r r-I r-I N N i iP i f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M �--I O CNJ 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O O O O O O O O O O O O d M O N O O O O O O O O O O O O O O O O O O O - - - - O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O.O O O O O O O O O O O O O 00 dt N d LI-- O O LI-- LF L1-- 'F 4- 4-Lf-`� 4- 4- 4-4- C- 01 d N 0 000 co O h '�-1 d N d LO LUO 1� Q O Cl O 7 LF- N d 01 N O l0 O) N 0) O) N O) N N N N N O) N N O/ N I� N 0 .--1 .--L '-� N N N M M C N to - 00000O �00000O� � '-1 .--i �Lo co CMd N v N N Ln M LO co O O O c= r co O N .--1 Ll") 01 OD d>t0 LD I� 0 M 0 O l0 �--� f� M O .-4 N 00 O 01 N O r1 r-1 to 01 Ln N d 1l Lo LO M O d O M LO f� 0 +� Ln L,pOdN a1 M .--I� d MGM V'•--I � LOw dt� N LO LO O Lo LO � .M-i .N-� � .d�� N-1^--I �.N NNMMM Lo Ln N N M •-� Ln N N to 0 0 Ln Ln O OD� LO r 00 N-i IO d N Z� O0 M N O co 1- Ln LO m d n O ^"� N 00 d . N '� .'-"'. LD O O LO Ln D1 n d LO O O 0 0 co f� co 0 Ln 0 N M M l0 v OD O LD CO d l0 O O d .-1 M N �--� N ri O M O I� N Ln l0 '-i d 1� d Ln d> .--I O 0 d l0 O Ol N d LD n In M 0 M N .»- Z N M M rf l0 M M OD Cl) It n ^ � .--I cli � ON O LO d N 14 N N 1-I N N '-1 N 1-4 N N Cl) CO d d LO l0 l0 01 O 0 N ko ko w O O O O 01 Lo Ln 01 OD 0 00 Lo n i 00d M --A O0r-LOd M N O 01001- LO Lo Lod d M M M N NNN . c ao aD ao ao m m 1� n r LD LD LD Ln Lo LD LD La Lo LD LD LD LD LD Lo Lo Ln Ln Ln Ln Ln LO Ln Ln Ln o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 rn a L M 0 01 N LO O N Ln 0 ''-1 1� O M lO 01 N Ln 0 � d I� ' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r1 .--4 � '-1 N N N co M M d� d Ln Ln LS� Ln l0 LO LD � r- r-- O O O O O O O O O O O O O O O O O O O O O N O O O O O O O O O O O O O O O O o O O O O O O O O O O O O O O O O O O O O O O O O O O O i 01 Ln O LD N 0 d O LD M o1 Ln N o d •--1 I— M of N Lo 01 N d l0 01 r-1 d 1— M N d f— Ol OD d Lo W M d M O Cl) n 'LF N M d d LO LO LO 1`1\ 0 co o1 O O N N M co d d d Ln Ln LO LO LD LD LO LO n ^^ ^ 0 0 Co 0 O. 41 01 O O O L N N N N N N N N N N N N N N N N N N N N N N N N N N . N M M M 4. v In W N OILnOLONaDdOLDMOILONOOd � nMOLDN01LnOL0 '•11� NcodOILnO %O -rI� N00M01LONr� d N4- NMdd LO LO LO I-r- O co 0100 '-1 N N MddLn Ln LD 1� n OOO1 � O0 .--. . . . . . . .L!] 10 C- n 0 0) ,� ,� -4 N N N N N N N N N N N N N N N N N M M M Cl) M M M Cl) M Cl) Cl) M M Cl) Cl) 41 v N d d LD Ln LD LD Ln Ln In rn Ln Ln Lo Ln rn Lc-1 Ln Ln Ln Ln Ln d d d d LD LD Lp LD �--L '-L '-1 '-i '-i '-1 '-L o O O O o d- 4 0 CCD) 0 0 0 0 0 0 0 0 0 0 0 0 0 �--��--� '"'�d d d d d CCD) '--1 '-1 M M N M M M M N M co co Cl) Cl) M �--� �--1 r"'� `'� '� '-a.--L .--1 .--1.--1 .--i .--1 '-i co co co M M 11 •--I .--I �-i 'i .--i r--I '-/ '-/'-1 .--� r-1 .--� .--� .-1 --� .-i .--� .--1 r--1 ••--� .--� r1 �--� 'i '-i '-1� .--1 .--�.--+ .-1 .--� .--� '--1 .--� '•i .-1 --� .--� '-1 1-4 M Cl) In LO •-'i LO d �--��'-L N '--� '� N .-i `� .--i .--1`� .--L M Cl) Cl) Cl)LO LO Ln 0 LO M M M M M Cl) M M '-� •-4 -4 1-1 '-1 .--1 N 0 0 M 01 n LO O Ln O 61 Ln 0 LO Ln O '-� d 0 0 0 t` N O 01 0 O O N •--� Cl) O N LD LO Ln d d Cl) 1•-. . LO N _ - - - Cl) N O O O O O O O O O O O O O O O O O N .-� O '-i '-+ '-L N N N Ln LO l0 L.O d Cl) M d Q v r i 4- t` d d1� r MNdd 00 LO O LO 0100 r- NCO Ott MN al C>O O N 00 N LO Ln co ID .^A M r- LO dLn LO d' o1 Ln LD 011"-1 Ln �0 O .--� tO dln tn0 M •--� Ln t001 l� ct co MLDddLO Ln Ln C> 00 Odd CO 01 ae Ln LnMNdd d d d .4 co" Lnd d Ln' co, Lo Lo Lp Lo Lr) NMNMLO I� LD � t` LD � � LO LD � LD LD rn Qv d c\j ON •- .--1 N 01 Ln LnOOLO O '--LM t` t` O01NOlO Ml0 .M+ ON VD 01M O .M-�LOM � M �M-1nN� � � ddLD OIdMdN i LL_ 4- n t` r d N '-� 01 LD 00 .� Oi Lp 00 O .--1 r-1 N '-1 . . N M Ln LD Ln d Ln LO o r- d Ln LO O l0 Cl) N N N N Co CO CO d Ln l0 l0 rO1 CD Q v U ^ O 01 LD LO O •--1 0 00 N 01 1� O N d LO M 0 .--i In I� d n 0 O N L,O LO In 0 n 0 O LO M N d d> O LO N d d }1 O d 1 Q1 N Qt .•-1 Ln r r O n d O 1� d Ln lD f- O 01 00 Ln N r1 01 01 N t27 0 LO 1- Ln M n Ln i� .--1 O d m k.D 00 01 0 LD •--1 m LO O Ln Q 3-) N M I— d LD f� d CO d d to 1� N N O O '� N M O O LD d N '-� N LO Ln Ln M N N M M M d d Ln LD t\ 01 '-4 '-1 N N .-i '-1 '4 N '. C N L--i .-i o1 UO LD Ln M N N N O LOM ,� p00 ^ LO d N O O 1` LDdN '-� � 0 LD Ln M •-1O0n LO NO 01 n LO dM O Z V- '--i O O O O O O M 01 01 01 01 01 00 0 00 0 0 0 00 n n ^ ^ LD LO LO LD LD Ln Ln Ln Ln 0 Ln d M Cl) 0-41 L d d d d d Lo Lo LO LO Ln LO LO LO LO LO LD LD LD LD LD C" N N N N N ON N M Cl) Cl) M Cl) Ld"l Cl) co M co M d d d d L.O 0 t` 0 61 O •••� N M d Ln LD 1� 0 01 O '� N M d C7 0-' U ' O `-' 1 0 0 0 O o 0 0 0 0 0 U x0000 3 4- N N N N N --- to N C] C]D CD � v C C o C ' p 00 a0 -t .� -4 t.f)d rl 1.0 � 4- Z � u N 3 O p e-1 H� N •-I � 01 a0 01 (n O M - n ,D iD 'D LO f7� LO tl-I U O O O O O d OMlD 01N N N O O O O O N O CO r O M N 4- .-i N N L 41 M M M M M y " N W 1 N , O I\ M O lD L v co co d- N 'n LO U O O O O O f1 M CO M M CO m N a1 Y A N N M M � Q v � ..._ tf. n � N lD t2-) � .-. N N N N n > n n I'D tD �D cn co v �D M d- N C> W a� pl r1 co O O l2") O N O l0 l0 � � lD rt U O C t` U H � O O N m m � ON O O Q v N C N H fT I��O N w c mZ W . NNN,o Zo m .1 i 7 a N 4- lD r co fT i i i 4- 4- rD M M I- M '--IN N 4-- 10 dO 10 r ODnOOO � oMdin LM •-4 10 N21 Lo O 010 C C C C C C 01010 =LO d rn M drn? r.t) r.0 rnd .-1 Z 4- .--I Ln N n 1D 10 M 1.0 N M %D I- CO O O M O p p O p .--I N O M LO I� n M M C=' d N d LC) c r--i N N N N 1-4 N O r rn O 4- 4- .-I rn N M 01 M m m co Cl) d 4-4- 4) 4- w M N E dlD00MdddMMdMMMMMQOQO N Y ro m L O O = j O O O O O O Cr O C? C? O O ?_ ? _ =o " rrrrrr , rr ' _ O O O O O O O O O O O O O O O O O O O O O O r r-I O O O r-1 r-I p r1 r-1 r-1 '""� .-i "� 0 0 (=) C) 0 0 0 '-- 1 r--i r--1 r--1 O O O 4-4- N iO d Cn .--I M •--1 M N i� n M 4-4- 4-- 4-4- 1D N N N N N CO L 8 2 2 2 .4 N a° Ln r.t> O kO aD CO N d c'J d I� �n r.c) CO W 10 =_ _ = Lo CL � U ' .-. T Y 004- 4- -0 M1D lOM W ddddN4-4-4- 4-4) Q1 Ln N Nddddddd dd V d00000d N jp U O = C C C C C Cl- L U i Y 0000a0000MO� o � o � oo � �o . E 000000001D I- O ,M-I .N-IM-IM-i N f'MOMMMN U Y L r 4- 4-4-4-4-4-4- 4- N M N N M M M lO— �' Ol M r- 0 - - Z r p00 � 0O = = NOl00l -A 1001 M 0101� o riN D c C C C 10 " C M w w Ln N= N N N U _ __ = N N 0 Or 41 r 4-4- 4- '� 4-`� 4--4' �� MNMd01 f-I X10 N10d r1 N N N N U N N N p r..1 p Lo .-i O N .--I M u � DOODOn = r-, .c ddt"-0 CM dOi _. 'o N co O M e--I 1p .--I O M 1D I- W 0 r- r' d M d --/ w M Ln w - L Y r 01 M10MOMNr0NO co � WMMd LO r-N r C7 � r--I r1� O .--I M .--I N t� M � M� M M d M LO M r.0 r.0 I- l0 r l4 f� L 2 . 2 N•--I .-1 N N r N Qi O N M to C r N N N N N N O1 Ol .N�n 01 n r n t0 .�-I 1D M EtO Q d ' CO U N L 4- r d Cc',) 1� N M 01 1� Cl 'O O N M 01 01 01 M Cn ct w O N CV ._ O 40 4 d I- M d Ol �n l0 O� M In M N O It- r-1 Ndd NNr NN t') d M N MNNN O 0 0 Z Y O �_ O ,--i pMM L ON tN a O O10OMMM1- OnM Nl� dld OlO .-11� 011000 N N ' - OnrnMN01dMM011D O1� ddMO M NCl) rnM w •--' O Y Or-1010I� nOM � d M Mi01010M10 CC) LO rr l0 � < N-I p O t3 " L O m M M NMNNMMN ''-' •--I '-' •--' 10 Q d' '7 .-1 Nw ''" OOO V `° r 1D U o o p U � ON 0 0 0 ~ O N O O O O O O O O O O O p O 0 0 0 0 0 0 0 0 0 r M Q o 0 o E O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �� � T �' � Q L m O O O O O O O O O O O O O O O O O O O O O O CL ' Z M I O .. .. .. N N O ' U Y h O E a-'1 � � 0 � ,nd Ltrn rn 10n 11) d LO 't Mdddd dl.n to lO 101010 Ln r� p -4 0 2 N N d LO U E L N 01 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Oi H U U � M _ _ a) r r r r r r r i r r r i r r r r r r 7 O o I- W H e n- W C .' rdn E v E U'D r-r E 3 �"'' � -E 4J W c5 W LU LU LU w w w w . CD =- CL.I w w w w w w w +, p 01 J W w U Y N Ip E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 01 O O L Y 4- v rn i17 r.0 LO .-I LO M M M M Ln rn Ln Ln to tD r..() M t['1 t0 t0 rS1 N .. .. .. .. DO Y O_ O 41 F � d 0 O Y U L r6 E E U = U 61 co 1D co .-I O O O n rn d •--I I� l0 d N .--I Ol M 1D Ol L Z Z U - Y O ll-. _ U Z L Y ' d d d d d d M N N N N N N N -' •-'� NO Y U i tY/1 U rY0 > S L Y N fo d Y r-i N M d 10 1D I� M 01 O . N M d r.f) w n M m O r-f L C O r L Q d d d 0 f6 3 vn Q a o In = �l Q v p r--1 .-i r-1 .-i .-r r-r rl r-r .--I .--1 N N In J U U U Z W 1 N N CO N r aO l0 01 r r O •--� M OD r-1 4-4- 4- 4- '� 4- 4- .--� M (") �--� a0 N N N N N N N N N N N N N N N N N N N ,� O p00000000000 O 00M 01d LOOMO LO . LM C') � � *"1 x00000000 N d LO LO I , ' 0 0 0 0 0 0 0 C C Ln N O Lo ? Cj LD LO M .'�.-1 O 01 d to C C C C C C M N N N N C C C C C C C C C C 73 " Z LO a� Ol O M 0 d M d L0 .A Co 4-4- 4- 4- 4- 4- 4- O r+ .-1 LO 01 N N N N N N N N N N N N N O N N N N N N N Lp N N 0) O� .--� x00000000 �0 Ma.[) O O O OOOOI�O � � NiO �� � � � � �� � � � 0 � Cl O M d N r O 0 0 0 ::3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O rL C C N .-a LC'1 N C lb Lo LO N = LO r = N LO r r C C C C C C C N .-� r+ r 4- 4- 4-4- d •-+ `+- •--�4-- L1-•4- 4-4- 4-4-4-- r l0 LO LO N O 4-4-4- r Y- `� xD O .-� r M .--� r+LO d xO O r-1 N N N N N N N N N LO LP) O LD "0 N E N N Nr1M N Nc'�ddMdddln MM Md '-o � M � OO �� � O • 000000000 . y Lo O O O O O > > O> > > > > >O N L C C C p p = = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O = = 0 0 C O C C C C C C C C C 0 0 O O A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O Lo 0 0 O O O O O LO 0 0 0 0 0 0 0 0 0 0 0 LO LD O L. r1 t0 t0 . --� '-i .--� .--1 .--1 LO M •--� M LD LO LO Lp LO C-) r4 M M M M lD LO .-•1 .-1 .-1 r+ O 0101M NLD lDr OM .--IdN N N Nrr4- r4- 4- 4-`w4- LOd NOS CD d° O O O � OI O O d O 01 m O M M LO LO 01 r+ N d LO M 0 0 Cl 0 � M O d O O O O O O O O O Lo 0 -•T Lo . O O = O 0 =3 ::D 0 0 0 0 0 0 ... C C CMd = _ 'n tO LO LOdt0 t0r rLn � � r Lod = C CdM M C = C � M MdLnd N = O � 4...4- LO OD 4- Co NN - Co dddd eM7 ddd M MOOOOMM QM pC m m m M l D �OLMMCdOMM N NMMQOMddd _ L N O O O C C O O O O O O O O � O O 7D O CL O C C C CL � � � O O I� Ol C0 .--I O LO O r-1 Ln O LD ,...�O r r1 xD r O O 0 0 0 0 0 0 CO 00 r M O O O O O O O O O O O O O O O O Ln r d 0 LO r O •--� N O N M M M 0 0 0 0 0 0 0 r M LD N d 0 0 0 0 0 0 0 0 0 0 0 0 0 v OOM MMMO MNNNOMM NCl) MM OOOOOOMdLn dLo0000000000000 rl ri .--i .--I '-i .--I r-1 .--1 r-1 e-i r-i '-i .-i.--1 .--1 r•i r-1 r-1 r--1 4-4- 0 NN xO N "'Ln � xO ��4- �� 4- 4- 4- rOMM 'n N N N N N N N N N N N N N i N N N N N N N ,...� 0 0 0 0 0 0 0 0 0 0 0 0 0 N N '..� ,.--� N p .--1 d 0 N W 01• 0 0 0 0 O O O O d 'n d 0 C C C C C C Z 00010 X0100LO � MOOOOO � ONr7 � .-- -4 =) 0 = 00 »0000 » N N M N N N O M M O N M M C C C C C O L.o M LO 4- 4-lDN ON N •--14- xDM� N01rd4-4-4-4-4- LI--4-x0OdN N N N N N N N N N N N N N N ON ON tONMrONrdM Odr .4, , LOOOOO � O OMdrx0010000000000000 � C C C ,� .�-1 .M-1 O N N Z5 N N N X0000 0 =� '--1 O 0 0 = :D 0 0 0 0 0 O 0 0 0 N O O ri r-1 N N O N Y OL O 01 LO 0 .-4 � 01N cod Or LD " dd '--1 01001 .--IM aOdr _ i Z ' rrdONLo ' ) MOIrr r-1 �p r-4 lONNdCD xO O .--1 r xD Mr OdM V LD Lp N x0 M 61 LD M M LD 0l N r LO M CO LO O d -0 xD M LO ,.� d M N M N •L �--1 r•+ .-1 N N N M CO d In N N LO M LO Ln M LD O O O L!] CO CO .M-i r a0 M LD d N Or LO W LD 'D •--1 LO LO W LO r+ LO LO .�-i r LO LO LO i N d 01 O LO xD NxOdrnr M M Lo LD r O xO LONrnrrnLnWr 1.0 01 aD Mr NLOr 01N01 co co r-- 4- NrrOWNLDrO .--1rL.f) Ln Lo dddMdd N r MrrrrLO r-- 1-0 LO Lo M rLo Lo r LC11,0dM N M rO MMd Ln '•-1d NLO O1 co L1-1 '� rdLn ''i r-1 CO Nr dt O x0 O x0 x0d r CA r O N LD x001 Lo LD m Lo NLo 01N Ln co C N N N '•"1 M r x0 M O 01 O r .--1 O N d •-1 N d N M lO t0 W LD co d CO co co<n tO Ol --1 .�-1.�-1 N N M M N NLnMddNdr r CO M 1D 1.00101 L17 Lo � .--1 r-1 rL r-1 0 0 0 0 0 0 0 0 0 0 '"1 ''-' .--1 N M M N N N .-1 .--1 O .--� O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O L[") O O O O O O O O O O O O O O O O O O O - - - O O O CD m O O O O O o O O O O O O O O O O O O O O 0 O O O O O O O O O O O O O O O O O O O O i U O C r U a0 M a0 Ln u'� LD L1') t0 a0 a0 aD a0 aD o a0 aD Lt) LO LO LO Ln H r'•"1 Ln LO 'n Ln In Ln Lo Ln Ln LD LO 1n LD Lo LO xD d 0 0 0 0 0 0 �,..1 p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i ' ' ' ' . . . W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W O O O O O O O O O O O O O O O O O O O O O O O 4 O� Y LL W W W W W O O O O O O O O O O O O . - p LO U 0 0 0 0 0 0 0 0 0 .--1 ''"1 Ln Ln Ln Ln .4 LO Ln '"1 .-1 r-/ .-1 e--1 '"1.� •--1 r-L r) .-� .-. Ln Ln Lo LO Ln Ln LO In Ln Ln LO Ln LO LO LO l.0 1.0 C r .--1 O 00 r Ln d N 0 01 r <D d co r+ 01 00 l0 LO M N N N O '-' rL 00 O LD Lo M O Z W L Ln M .--1 O CO r Ln d N O O r LO d N - . ^ i .--1 '•-1 0 0 0 0 0 0 Ol OL Ol Ol 01 01 xD x0 m co x0 xp aO r r r r r r N M d to LO r M 01 O •--1 N M d kD N C F-- CL 41 .-I .•-1 N M d Ln LO r [O T O �-I N M r xD 01 O L 7 CL , LO l0 r x0 01 O O � NNN N N NNM MMMMMM MM MMMdddd dddddLn LO Ln Ln LO LO Ln Ln Ln to tD Lp tO LO p 4-4-4- 4- 4- N N N N N O p p p p v O O p O p CD a0 N Ln V L N E (3 OM Ln Ln d 41 . L O O (:?. t0 O O N d O O O O O U O O Lo Lo qT LO CD 00 LO LO l0 Q1 M co c7 CO CO CO Lp L N d d p v O O O O O li dE 0 0 0 0 0 v O O O O O N 4- 4-4-4- 4- V N N N N N Z p p p p p r-1 C C C C C C! 4- 4-4- � N N 41 N N V p p p p p C C C C C � O O7 Z 01 CO-4 LO Lp .--1 N l0 l0 N n � Ln Ln Ln Ln H Ln _ 0000 V W - ti7 l0'� Ol � n Ln co m co -,T -P C 1 Ln O OO --� N N co N CO O O O O O Ln a O O O O O Ln i m i i �d V O � � U Ln Ln Ln In 1 [O n p y W W W W C:, O CD L V 0 0 0 0 0 N .. 1 C � Q1 r- l0 N Ol Z W N N N N N I- Q 41 L :3d Nt Ln n O a1 ... LO LO LO LO LO 1 ■ mm0 L000000oorn 000 CD (DC 00 Cv M M N O O O O O O O Co 0 0 0 0 0 0 0 0 C) 0 U O O O O O O o o O O O O O O O O O O O O O O ) Q) Q) N Q1 N Q) QI p p - p Cl N N p p p p p p p p p p p p }1 C C C C C C C C C C co C C U .�-� .N-I ? co ._,.. v = OOO �p0000 00 W N C O I- M to W O F- 00 N-4 W Lo O y N i� Ln W W � ^ m M M M Ln ko to to l^0 M M L0 e Z� v N O d Lo r, N Lo O W O lO .4 N M LO W aD d 01 0 1.6 cli W v A -4 N �d LD LD M M E Ln Lo Lo t0 It M M 2 W m Z �. m --� O O O O O Ln LDNN M LD OI M co M0I LDN Or d' Nm 0- 1 O O O O 01 n O L1-) 0 0 0 o O1 01 01 00 y , U N N N N •-i •--1 .--1 rl '--I r-1 '-I '-i ri r•i.--1 rl O O O O Q) T L71 t0 � L m Q) O O O O O O O O O O O O O O O o O O O O O O O . _ . . E (D v) O O O o 0 0 D c 0 0 C> 0 0 0 0 C) 0 0 0 0 C) 0 � v L M 01 Ln .-i LD N0D M01 d' O lON W OLn .-i hN W Lo N O O �--� N N M M C' �. W LD W ^ ^ W 01 01 O O N i 1 , _0 () V)L y O O O O O O O O O O O O O O O O O .--4 •--1 �--'4 �"4 "-� 41 v io W M M Lo ri W N W M m T O lD N W V O Lo rl n N W LO p N zz- O O .--L N N M M V' d Ln LD LD n n W 01 O1 O O rl -4 N a) v O O O O O 0 0 0 0 0 0 0 0 0 0 0 C) -4 -4 -4 -4 L N � m co O) m W W W co 00 00 W co LD co W l0 l0 lD 00 LO 00 LD Ln Ln co t v- 4--� () O O n n f` n n n n n o n d- O O .-4 .--� '-I .--� .-� �--� .-•� r1 .--� .-� .-� �--1 �--�.-4 r-1 �--� r1 M M to � •-'L rl r-I e--I.-i r-1 .--1 r-1 .--1 r-1 r-1 r-1 rl .-i r-1 r-1.-�r1 .--I ri r•1 r-1 01 t0 N L N M N W co n n t` F\ 1\ n 1\ n LD n t\ tD l0 LD n LD r W �--� •--� c N E '4 m c cL r L N f0 d Q i O Ln M •--f O l0 L.n tS) Q) O � . O O O O N O 0 0 0 0 �--� �".� �'"� N N M W LO LD M ID W 01 3 N o Q „ O 0 0 r C p N�L N LnM L O N N L W M WLnOdM .-i M .--D LO r-10061 ��' Ol 01 LnMM _ O_ m W .--� LD 00 O w O m O m M LD W N Lo N m Q) LLu .-1 N O -0 E •"1 O o dV o . N co N M N M d �Y NI .--� .--1 O m Y L Q Q 7 O O U o C) 0 Q1 O O O O O C 4- LD N o 0 o E O p to M .-1 o d Lo LD . 4 M aWD o -4 N QWi 0W0 N r- Ln N Lo .--1� N N O Lo L.n O O O ; C LL'F M I O _ O Z � W Q Q = > y O O M <Y M N Ln M r1 N Ln d- Ln LP) M N M tD M af Qom; Z cx: '- O E v1 O Q.. C 1 .-1 O C' L L 0, �--� O .i O = N N Ln rZ-i cY U v Q) p }� lD LD r/ r-L W d Ol N '7 Ol M N N O 01 r1 N Ol n M i� O O H U V F- .. W -. .. .. .. .- N Q) W ^ '-1 O w lD M N M N W LD 01 W Ln C) d N W N 7 0 0 1� W I- F- 2 W O M y • O 01 J W W U Y O .-i Ln E E E Q) �-'� W tEo 3 > ID I- n LO N O M 0 0 0 01 M , t!-)O O N d1 M t\ v v v h O1 O O L +� 4- > --1 N N .--1 r-i .--1 e-i N .--1 e--I e-1 to � .. .. .. .. C �O 7 C L 1 `a - O . a1 O E ~ +-> rnN 0a V, O O +� U t0 - C +� L �L t0 N N .--1 o O O O1 I� LD d '-'L lD N r-i a1 W LO O) i Z Z C Q) p F- LL.. L t6 Q) Z L Y �-. V 0' Co W 4 d' �Y M N '•'L r-1 r1 N N N N N N r-. 41 }� 0 - O +) U F- F- F- L In Q) f0 > � L Y N 10 �-'+'� r-L N M C Ln LD n W Ol O .--1 N M V Ln l0 t` W Ol O L C O r L p CL CL d O to 3 v) Q d O v) O > D o N N N J U U U Z W W 1 1 1 o000000000oaoOOOOao r, LOLo00000oQ10000CD0C) 00000000 o . . . O O O O O O O O O O O O N O O O N M N N M N O O O O O M O O O O O O M N O 0 0 0 0 0 - - - O O O O O O O O O C', O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O U r-1 N LO CO O 4- 014- mot •--�� a0 `�`_" 4-4- M ,t O� N ^ N N N N O) OMiMrNi l� �� a) CD O ko %'o O00 CC') r� 1� V O) L-r Q) OLD O) W N N N 41 O1 0O � DDOpOp CD . O� rn to C' ^ MGM � � � � LON [O j 'N--1O � � � MdMd' tM =d Nd' = NM NNM �NM �' .-a O Ln M O .--1 O LO M l0 DO N LO •--I LO n Lo 01 d O n 01 r- Ol O Ol LO Ln OD t\ O co N LO O O N N Ol OD d1 LO i OM OO LO MLO. N C>- NI�d • co Lo n � MNMI�d' M � '' <t �--i '70 .--� .--iO Inc d' O� M1� �'-� -4 4- LO LO t0 N M M d' CO 00 --4 N N 0) d" N r..1 r--1 .--1.--� .--� r•i.--� .-1 .--1.--4 �--� r1 ri r-1 .--1 r-1 r-1 r-1 .--� .--� rl r•i r-1 r--1 e-i � .-1 Z � O - - �--� r-1 to Ln r- Ol O LO O1 co 0) N LO LO N a0 nr�tOnMM01 O1 r- r- d' 00 . . . O1 LO LOd . ,p Lp Q1dM M ,--1 LO LO W M LO d �"'� 01 r1 LD M O MMMCON r\ 00 M -4 � '-IMNMOO � �--' C-3, cc; O1MMa0 O1n .--� NNNNNNN � N �-'4 �--4 �"4 '"� NNNMNMN Z lO L0 � L.0 14 O Lo CO �L M M LO M N N NNN N T N .-� .--r .--1 O O O O LO Ol LO 01 OO i n LO N O al W LO LO N r4 O 0) CO n r� r, LO LO LO LO L17 �t d M M M N N N . LO LD LD LO LO LO LO LO LD %0 LO LO LO LO LO t0 LD LO LO LO LO LO LO LO LO LO 11") Ln LO U O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Cl- O O O O O O O O O O O O O O O O M LO a, "LO OD " LD 00 m n 0 LO O1 (V LO co � LO OD .--1 V" r- O N 00 . �F d LD LO tl) LD LD t\ n n M M OD U 4- O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .-.�--. �". N . N . .M CY y O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O r1 'C3 M Ol <t O ID N O Lr) •--� n Cl) a0 d O M LD .-�'r rl O N LO r� O CO LO OD O co LO m .--� M LO r0 w w LO GO at Cl) L�i14- M 't D LO LD IO I- I- co O1 O, C5 C) � NNNNMMCw,) � LO Lo L) �O IO lO lO 1' rl . .O0 aD tO 00 O1 O1 . . . . . N NN N N N N N N N N N N N N N N NNNN N NNNNNNN N N 41 W C') (7% d' o LO N00 LO .--� t� MaO 'r --4 �O NOD � LD .--� I� M W O1 �D � �O .N--� a�D NNM � � Ln LD �O V)4- MMid LO lO LD n r- M OOH-•. NNM M .dLl) L,D lOnn MO1OO . L ,--i ,-r r1 '--1 N N N N N N CV N LV N N N N N N N N C') M M M N) M Cl) M M M M c7 CO L'7 <") 41-1 v LO LO 01 LD r � LO 00 Ln LO LO LO LD LO t1) LO a0 M co co co co 01 LD LD LO LO LO LO a0 LO LO LO M LO LO LO LO LO LO LO LO O cr O .--1 O d"d C'f d' n �- i� V Gf -f d' -4 -"1 d' d" •"'� 4 3 d � M .--1 N •--� •--� M .-� .--I M M M '--� e-1 .--I M •--� '--� .--1 .--1 .--�.--� r-1 N •--� .--1 �.-� r/ .•-I .-i r-1 .--1 ri rl r-I � �--1 � .--� .--� --1 •--� •--� "'r C\j .--� .--� rl r-i ri r-1 r-I '•i .•-� .--� �--�.--� ri .--� e-I L-I ri.--� rl ri .� .--1 .-�r--I ri .--� f-i �--� .--��--4 �- .--� 0 N LO M LO r� .--i .--� .-A LO LO LO � � r� M LO � � LO LO Lo (- LD LO LO t\ � tD Lo d � LD M LS) � M m r1 r � N N d' N O O O OO co l0 O LO 0) O O r— 01 co O r-'1 LO �Y Q1 n N O co O LO r-1 -1 LO O M LO LO LD N LO r, •"'� N � - O O O O '-r LO O M n n Ol O M LO OO O <* NN � LDO --1 'd-/ M--1 � OmlO OI- 1DMMNN Q .r O O1 LO O1 LO r r� 00 LO O1 O LD O1 O1 O LO a1 0) LO M n n Lr) OD r,D O M O1 M •--1 M M � M N M � fir. MdONNd LO nO L--r NNNMm O11.0 LDMr1 O1 O1NNO1 LP 00 O10M O1 aD 61 .--1d Oln r-I .--1O0 01 LO M r M LD LD M N . . co M M co co .-1 �--r L--1 N N N N M M co N -4 C) N M d Cl) N LO V d' LO a _ O O .---1 d Lt) N an n Ol N co d' GO �--1 V CO lO lD LO V7 1 lO LD ON co n d" r-N LO 00 O Cl) l0 LO M r- O .^--1 N M O LO lO LD^c-) .o nM O1 '4 MO .--r .--r t\t\ nt` OLOO LO N M Ol M e--1 O N n O 01 N �' r� L•) N Cl) lO - . co LO LO N N Cl) LO d' n N r-1 M LO l.D N r-1 •� r1 .--1 r-1 .--1.-1 L--1 ri r1'-1 .--� .--1 r-1 .-i r-1 �--� r-1 .--1 N N t` O . M M m N r--i p U 1 OD OD LO Lr'I d M n LO LO M O LO N LD LD n LO QO LO OD n N lO 01 Ln LO �Y LD M O 00 r VI LO 0 r� 01 Ln o0 N '-'1 Lr) 4 Ln 00 r` M d LO N O1 M •--1 LD 01 � LC) �-1 LO OD N N 01 Ol 10 co Ol LO Ol LO N M O1 M .\J O L.O > +� LO c �-I M 'o co � Ol 00 Cl) O '--L LO CO aD O n CO n CO LID LO l0 LO d n LO M LO LO N d M M LO CO d LO N N i Q v C N ti .--1 O1 M LD LO M N N N O O1 Z 11 LSD M.-1 O co n Lo N O m n LD N .--1 01 OO LO w M m O O r- LO r- N O %D n lO � M . � r-1 r1 r+ 000O0001 O) O1O) O1 O1 OD MMMMMMr� nr�r� r� r� LO Lp LO LO LO Lp LC') Ln Lt) LO LO LO V MM �-+� ri ri N co � LO lO n co 01 O r-1 N M 4 LO LO Lo�7 V LC) LS'I LO LO f LO LO LO Ln L2) l0 LO LO LO LD L 7 4- N 4- N M . . . n OD 41 O (fir 1 U CD .... N N N N N N N N co M Cl) M M M M M co M Cl) d' i r i �.._. 0 0 o O o 0 o 0 0 0 o O o o O O C 0 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 = ' C 0 0 0 0 o 0 o O o o . . . . . . . U o 0 0 0 0 0 0 C .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �pd4- LO LD Ln W LONNI- d4-� 00 NOIDM� N N 0) N 7 d' N LO LO L,O M O O) W N O Q Q d. . C3 � p p M .--1 M M N C •--1 N N M N N M = v � O W C') W tD W \O d LD O .-1 O d NC7% N e-i LO LD M M Ln O LO LO M N d•--� •--� .-- L N O) 0• -4 4-- N r-I e-1 N M LO M Z v N 0 1� d M N co LO N 0) LD O O) n M O .-1 W Ln Ln O 1- N M W O e--1 o v M 1� 01 r-1 .-1 LD N n LO 1-' d d lD tD O W O) M N N co LO co W W -.--- Z H N N N LV (V N N M d M M d W OH W n i M 00 W W ^ ^ ^ ^ LOW LD L,p L,D LO LOWLndddddMMMM 1n Ln l.n In In Ln I.f) ll) LD In LD Ln L.O L.O Ln LO LD LO 12) LO LD In Ln Ln L.O U 0 0 0 0 0 0 . 0 0 C. C. 0 0 C. C. C. C. C. C. C. C. C. 0 C. C. 1 ' O) N L.C7 O M LO M N LD O) N LO M rl 1\ O M LD O) N W O)" 0, O O Or-1.-�1 - - - NNMM Md � d LO Ln LO W LD In `"'1 •--1 '--� H •--� •--� •--� '"� .--� r-i --� r-1 r-7 r-1 r-1 rf r-1 .--1 -1 � y) O O O O W L.O W Lj) M O M t) co O N LO n O O Ol O)O O O O — •--1•-'1 '-1 N N N M M M M d d d d LO LP) LO LD L }L i N N M M M M M M M M Lh Co C) M M l") M M M L'7 M M M L") M Y �. N W Ln dOLD rl I� (V W do, LO 'D N0I OLO � LD NIA MOLOM L/) 4- COO MC1 C:) -+ •--1 NNMddLO Ln 1� naD W O)01O .-1HN Lv MMMddddddd' d' d' dddddddddtn WL.DLn Y N F u dd � d � .lddddd .-1 "' dddWn L L LD ID 00 W. dd L0 LO LD W LDd LO 10ddid d . . " � 0000 C> CD 1-1 -4 4--11 CL � rH-1 .H-1 rH-1.H-1 rH-1 � rH-1 .Mi rM-I .H-� .H-1 rH-1 'H-1 .H-1 ��i eH-1 .M-1 rM-1 rM-1 rM-1 F- i LO d I� Ln M M LO LD LO LO d M - M M M M M M M H N m _-. O O) O .-1 LO O m N W M LO 110 CD 1\ O) 1l Ln 1-4 O N LO LO O L p)y L d tO LO 10 W n n rLH O LD W n W W O-) -1 W O O r1 H -1 H H -4 H H N N d d Q � LF Ln M O LO N N LO W LO 'ct M OW) M O) LO"N LC) H d M W d N � .. L LO M N M M O) O n LD > L MMc'j C'iMddLndddLnLDLntn .oLaLDLnLnLD Q O O L N a n d Ln 1- LO W M M LD LO 0) N l0 N N r1 O M LO Ln 1.D H LO co ,n li N N O) W O H 00 N O .-1 O r- LO M LO O LO O 1 O l0 W 1� W O O) N � H'...LN ,--� � .--1MHNNL-1dd .--1 '"1NNNNMd LOd d -4 L Q .�.i L ^ OU .--L M O d -4 M M M d %,D N C") N LO W d CC)y o d 0) N�♦ d �'"L W H d M LO n CO N Ln O L0 1\W O N M 1- d m W " n r O W > T Cl) M co LD N N d N Ln d M 0 O) N M M d M M d LO .H-L co t` C 4) L H O Z W ^ W d N rl at W LD Ln M --L O W n Ln d W d M H N N N N N N 0 0 0 0 0 0 O) O) O) i LL (1) LF LO l0 W LD W t` t\ n n n W W W CO W W W W W W yt 01 .-i d to 4--4 4- 4- 4-M O 4-4-4- w 4- lD O In W 41 N a) a1 () - () a1 (D - a) O N t-, to O in n cn cV 0 m d n m O m l0 0 ^ O O �D MC") dd c C c c c cd �n = = = ^ = dZ � 2= O Z .�.. p O O O .A 4-4- 4-n 4-4-- 4- lO O a1 a1 a1 - a1 . ^d a0 a/ N N a1 a1 a) OOON OONOOOLn '.O p� 001D 01 lD co c C O O 2 O v O O O O O N O Mao mt� t� OO wNID •--t O M ID .--� d- CT�- O �Dn a1 E MC'7M M '� dd d d m C') ddd M NM c'Md w EF • O (p O O O O O O O O O O O O O O O = O O O O O O O O O O O O O O O O O O O O O O O O O O r-I r-1 r-1 .--I O �--I .--1 O O O r-1 O .--1 O `--1 r•1 iO r-1 .--1•--1 •--I .--I r•1 O O N n lO O M .--1 O O �D .--1 rl n d O 01- r-1 r- N "� ~ L -. m 01 r, M d1 CA CA d1 01 r' t\ ao Co 00 m 0 t- lO t\ In v r ^ _ 41 O O w 1.0 w O m w d �D 4- N N N O rn �n �Oddd�cldddd' �td �tddo d ddd `a 'L O_ 4) 41 O O O N O 0 0 k.O Cl) O O O �D O M O O N U •--• - E w 2� p p d CO O O O t` O O O N .-4 0 0 0 0 l0 N O M � .-1 r1 41 O to d tD .--� d 4-4- '� O 4- 4- 4-t- 014-4- 4- 01 4- Ln D7 M CL)4- U - N N d - a) .-1 a0 k.O Ln o 0 o M,-O c 0 cD t� p t> O t` D 01 N D l0 --� co d M N C C C N C C C , " _ = O N = N U •--� �•--� .--1 .-1 N O 41 DOOM 4-4- `� � 4- 4- (L) a1 a7 NN Nth NN a) a1 a1 N N N Oc U O O O O O � OM O O O O � pOO NO •--� nOM ' O. C C c co M C C C In C LO 01 C N ra => => N M 00 .--� Ln -4 MM O 01 dnNNN -4 2 Z d �D .-� N l0 �--i t� N ' •-� . r+ �ONd d CD 01 co %D Low rC Ln (31 w LO U C6 �o LO M d M It u-1 .--1 r+ w t- N 1--4 iD kD u-1 01 �o In L N M N N N N 1--4 14 r-1 r-1 .-1 r-1 N --1 .--1 41 Cl) C t!) rE6 OOO1 a> NNN 01NNN 01 OINNN t-- n •-'� � ro Q O_ i In +� v a L +.• `� � O M co d Z8 M N t� M C> N rD M LO M m O1 " N � .� X 40- d 1 l d o. . . zO aO O � O 01 O d O CO LO OI M LO N . cl:� O O .-4 •--� N N N r-1 N N CO+--t N Cl) M M N M N M d LO O O O Z c , - . O LO O O H O O 'i O m N O d �O .--� CO C70 N .--I t` Ln N N M n1 d> r1 d . N w .-i N O E �--� O a--1 O n 61 '-i 61 O .•--� N �n M (T CO n O In M d-i CO .d-I LO CWa Q �--� •-t +1 a) O O tD n 01 tr d �n M •--i n co 01 -4-i-i .�-i N •--t --� OMdNd �O MMdM 0 0 U 0 0 0 O p O O 01 O O O O O O O O O O O O O O O O O O O O O O O `�^ O O O v 'N = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O p Z to � tS - 41 C> C Q � � Q m O O O O O O O O O O O O C:) O O O O O O O O O 7 1• L CS O_ Z m N In O O \ E .. .. :3 CD, - a1 L � 0) en d d 'n Lrl Lo d iD d Lcl Ln 'n --� O .-iO2N NL1'1H � � v L- a) - wo MMdddddddd O U O 7 \ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .--� •--t 41-- 7 0 o t i 1 E E E N v r_+ E 3 w w w w w w w w w w w w w w w w w w w w w w �._1 o rn _1 w w (i C> ,o E o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +> L Vl 6l O O L 41 4- v u7 X3-1 iO i11 Ln Ln Ln LI1 tS'1 LSl LO tS) r-1 •-i V) fo c `o C L L m O '- .. .. .. .. I +-� +l d C i 0 41 E r1 O O vl `� M 4-4- i27 t27 d •--� 4- W t` •--I N LD t\ 4- 01 t- W 0 N N d N d N N - N 0) r-- - 'I) M � OJ IS M � i� O� � 10 10 61 � I-, 0 01 10 0� �0 61 0 1� � O C\j c C'i c p O W O Ln O O M O N N C N N N N N = N N = N N ? N lD Cd C C1n � .d-1 W MNNNNN r-I Z N4- � .--� 01 �O �� I� lO 1� O � Nr•1 lO O� �ON O� I� OI W01I �OOaO co � d � N NN N N N 0) � � '-1000101 � LDNMOdMd Nd odOO .--1000dOOOO a0 O C_ O O O M W O O 6 N O M .--i .--i .-1 C .--1 '--1 .-1 .--i r-I = •--� � _ � � __ ''� � � �� i LD C -4 C C N •'-1 12) LD ? rl �--i N LD N •--� _. p r1 r-1 N 4) .--1 O U) .--f 4) N W rl W N N N W 01 0) 4- N co M i, C- M W 4- 1� C� Nd-1 N-t r•1 r-1 .d-1 .�-�Q N d Q N ID O N 01 Q N O O D O D D D N E d M N W d M M M M d N Q N M M 1p L O O O O C O O O O O O O C 0 0 c:> 0 0 0 0 0 0 0 0 O C O O C O O C O O C O C C C O C C C C i 4- N D O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Cl O O O O O O O O O O O O O LD c r1 . .--. . . r+ (Z> tD �D ri O -4 .--1 r-1 .--1 r-1 r+ .-1 �D LD �D�D ♦D lD .--I LD �D �D .-1 M t0 M lD lD LD Cl) tD �D � O O d LD C_ LO LO I� W LD •--1 N O M d lD W 1� M O r1 LD 4-f, W N O LO N t` n 4- 01 4- 4-4) N 4- 4- 4-4- L ^ N NnN �--i � M O IT 'D 0, O, Oil� CO �D � Lnrl cm u, D Oi Om t.[) cC, c 0O (A000 a pv .-add n0 »� O » � ! LD ^^ _ � t` W LO ^ = W 1p �p LD d LD d d d LO M M =M M ? CO M Cl) C M C C C M C C C Lo N O 4- W O N O O N W 4- W O O W W W lD �D tD W d d 4- d d 4- lD d W d C)O N Q Q Q d O Q Cl Q O O M d d d M d d d d d M Q M d d M M M M M M M M M Q M M Q M M Q M M C M C M C C C C C:l 16 N C � 7) O O O d O C O 1 LO N O W O O LO r- W ^ O O M ^ O d I� O LD LD kD 0 01 0l M 0 m W co N �--. O d W 0 1p N O O N 0 0 0 . . .--1 O C� 0 0 C� co 01 0 0 '� co 0 01 LD M ^ iD co LD O N M N 0 lD co Ol N N O Ol W O Itt lD O O N O O O O O O N co N co co d co N N N N N N N M N d d �M d d M d � co M O d 1n O O d 0 0 0 0 d O`� O 4-4- M LD W W O� 01 .--� n W M rl W l0 LD d t` 01 01 W 01 W LO `� N O M LD N 4J d N N O. W iD OLD I� OD � DDDO_ Z co �p p CM 0 co LD O N � co co M co M O 01 LD LD M co W N LD D O LD W r^1 >1-4 .--1 N LO lD C �"� .N-1 N N N r1 'N-1 rM-I .N-1 .--1 O.-i .^-1-1 6.-11 rd-1 lD _ l�D =� O =?OO C C C Cl Z I� t04- MY- 4- 01 WN W� •--. x+ 0161 . . COMMMM W N1.[) �I� dNd � QNN� tO UD OO Lf') 0000 C\j U W ^ O .--1 p O C� N �D 01 D 1� M M .---1 n Ln LD W 0) .-1 lD .-1 O '-/ O N M 01 1� r-a CO C C d C C C C N Ol C C C N W lD I� C LO O LO I� N Cn t� C� f�1� Ol W .M-1 .d-1 = .W-1 --1 .W-1 � ..-1 r1 �=D N O r-1 LD W d O N d W d dt W LD N N •-+ LO O LD M LD d d.r-. ' Z M M W W O N d f� LD 01 M N . � Cl) W W d1 W LD N r-1 W co W r"1 W LD LO N d N , .•-1 W O w LD LD M 1- C- N W lD N W LD W M ON 1� co tl') M .^-I N N N N M --1 N U Lo N N C� M d W �W W LO N f� 0) O n W iO d u7 d LD M M N M CO N Cl) N Cl) M C tD n to N lD W,--1 r-1 �D C�tD tD .�-i LD c m N .^ 1 Co 1n d N M lt7 d co LD M N LD r N 1n LD o d d LD 01 M o LD d LD C7 d .-1M M01 M 01 011-4M OD LD m r- W 01 1 C 1 d d O CO d LD �D C� r-1 N M co d d O M 0 t\ CO t0 W 01 N �"'1 r-1 W M '"1 W 01 N Old O M �•-. . .N 01 n d . 0 i LD Cl) d M LD LD Cl) N d d d Cl) M M d M N �--1 .--1 '� co M d N M M r•1 M M N N d M M d d N W d d LD cxl_ .-1 N I� d rl W m M M O W LD M 01 r-1 W W N LD d t� W 1D W LD m LD O O O d lD I� N r 01 C- 01 LD lD - - C 01 rl Ol Ol W LD LO O M O LD M 1- W �D N O LO W O M O lD O N .--1 N N .^-1 N N rM-1 N 01 01 l0 .N-1 ed-1 N rW-1 N W 41 1.0 ^ LO M M M M M M N N 01 O O O O O O O O O O O O C> --4 O O O O O O O O O O O O LO O O O O O O O O O O O O O Cl O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O L27 m i 1 i 1 1 1 i i i i 1 1 1 1 1 1 U O C t� U LO tD LD d t� LO *-D 1�W LO co LD �D W '--1 •--� Ln �Ln LO W LD LD d1n LD LD 1.D � i271n Ln d dd d d d M LO C) C)LD Ln �Od LO r-1 O � 0 0 '-'1 O C) rl rl X 0 0 0.--1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -O U ^ 1 i 1 1 1 1 i 1 i 1 i 1 i 1 i 1 7 W 1 . 1 1 W W W W W W W W W W W W W W W W W W W W W W W W W C>W W W W W C5 W W W y p d Y W W W W W W W W W O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O LO U O O O O O O O O O O O O O - N LD r"1 LD LD .--1 LD LO ri .-� .--1 LO LO LD r-1 LO LD LD LD LO LD LD LD LD LD LD LD LD LD LD LD 1.D 127 LD LD LD LD LD LD LO LD LD LD C �-+ r-1 O N 0 01 n �D d M '--1 0) W LD Ln CO N N N O O i LD M r1 O co W n LO d N 0 O n �D d N .--1 01 W lD LO M Z �- ' , ,� r-1 .--1 O o p 01 01 01 01 01 01 W W co W W W W W r` ^ iD W i6 W LD W Ln W LO LD d CO M fl-+� r-1 '-1 N M d L.D l0 I� W 01 O .-1 N co LO lD t` W O O "'1 N M d LD l0 LO W 01 O r1 N M d N M d LO 'D I- W 01 O d d d d d LO W LO LO 1.D LO U7 u7 W W lD �D LD U. U p N N N N N N N N M M Cl) Cl) M M co c`7 M c c") d d d d O) -- Cl) N O) N O) N p7 4) N O) m N O) N N N N d N N 01 p 0 0 0 0 N O O O O O 0 0 0 0 0 0 0 L D C C M C C C C d ? O = = r 1 O O 0 0 0 0 0 0 0 0 0 0 v p 4-O 4- `� 4- 4- 00 4- 4- `� 4- N N N O) O) W d N N N N O) 00000000 k0000000000000 C C C N C C C C Ln C C C C C C C C C C C C C Z3 ZD 0 4- LF�j 4- 4- 4- 4- O 4- 4-4- 4- O) N 4- N E O) O)-4 N N N � N N O) N NNM0000000 � MM � 00 . 0000 .0000 J L C C O 0 0 _ 0 0 0 0 41 M O O O O O O O O p p p p O O O O O O C) O O O O O O i U M Cl) � LD M CO LO LD M LO LD M �4 1-4 Cl) M C') M M Co) LD r+ ••--�••�"") O 4- 4- 4-4- 4- M-- N N � ^N N N N 4-- N(D r- 1+- Lo Cp 0 0 0 0 0 0 0 r- p v 0 m - 0 0 0 0 <Y 0 0 0 0 L„) C C� C C C.co0700� � 0 » » » Mend .-. 4- 4- 4- 4- co 4- 4- 4- 4- LO LD 4- 4- 4- 4-4- 4-4- N LD d d M N O) O) d M co O Q m � C D m m M L Q1 O 0 0 0 0 0 0 Cl Cl 0 C C C C C C C CL p C C C C C C C C C C = 0 0 0 0 0 0 Cl- =3 =) = =) O O 1- 0 0 0 0 t-_ O O O O m O O O O O O O O O O O O U ^ O O co O O O O N O O O O O O O O O O O O O O O O L.L u O O Cl) O O O O M O O O O d O O O O O O O O O O O O rl r-1 .--1 .-i .'-1 .--1 r-/ r--1 r-1.--1 r1 r/ •-") r-1 e--1 r-I .--1 r--I rl v) 4- 4- n 4- 4- 4- 4- N 4- 4-4- 4- N 4-4-- 4-4- 4- 4- 4-4- 4-4- 4- 4- ' ' n om 0 0 0 0 W 0 0 0 0 0 0 0 0 0 0 0 0 Z 0 0 4 0 0 0 0 OQ C C C C C C C C C C C r-1 C C C C C C C C C C OD U N N N _ (nr m 4)4- 44,4- d 4-4- 4-4- LD 4-4-4-4- 4-4- 4-4- `� 4-4- '�w (D 0 0 d 0 0 0 0 M 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 LC C LD C C C C co C C C C M C C C C C C C C C C C C t0 0 0 0 0 0 0 0 0 0 0 N 0 0 0 0 0 0 0 0 = 0 0 0 N 0 1 Z co 0) N O) r1 n W LD lD I- M LD M N LD Lo O O) 0 O1 r. L . LO O.Lx) Lo co Ln Lo r Or cd7 .Mi rM-I N Lo m--1 co N Ln Ln .�-, .^-) N 14 N M LO d M lD •--) '-i e-1 e-1 lD .-1 rl r-1 r-1 .--/ .--) .--) r-1 rl r-1 .--) V) m � N d O LD LO r- lD lD O N N M M LD 1- M m .•--) LD 1� O 1D L.[) M LO O) d OO M Ln O O Ln m .-) .-) V N M�D d' I� �D N d Ln Ln N d d Ln r, LD Ln t.0 r� m ID r� m n LO m t-0 LO cr .-) a0 OD M LD r1 m O n 01 N O r1 m M M I'D Ln CO O d .--1 O �... C O Ol N OD t0 O C) I.D n Ln N I' '4 CO n n OD .-I MW " OD O M O IQ .--1 M N .--I �--) M N N O) O O ri O r1 Ln r1 N .-1 a) LV M C> C- M � N M O CD M M M N L') C') N - LO O O O O O O O O O O O O O O O O O O O O O O O O O O U O O O O O O O O O O O O O O O O O O O O O O O O O U O t� U ,--) LD � d LD a0 a0 LO LD LO LD � aD L.n L[7 a0 a0 m a0 aO m ao Ln Ln Ln Ln .--I Lf) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .--) .� � -1 O U ^ N W W W W W W W W W p �[ W W W W W W W W W W O O O O O O O O O O O O O O O p L{) V 0 0 0 0 0 0 0 0 0 0 N v LD L.C)m Ln Ln Ln Ln Ln Ln LO Ln Ln ri rl Ln LO Ln Ln LD Ln Ln t OZLL L O) t,tD ,t N .--) O) m m Ln M � O m tl LD d N O m 1' LOAM '") `4 -4 '� r1 0 0 0 0 0 0 0 0 m m 01 � N C H d+) L 3 CL N LO LD LO m n n r,r, OD 00 CO 00 00 OD OD 00 00 OD C:, o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CC o 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000000000000000000000 ' MLD N4__4__ LOd ONOON .--InLD 4- cc) Ol � 004- 4-4- �4- i NLOM 00NLO r1 LO dt0 Ln 0700 NNLC) MOO N N N Cl Q N � NMd jc LO d M co LD OO Nt- c0 c M C') O O d 010 •--1NM M 001 (30001 M r� 00 C\l Ln LO '-I LO ^ .•--� M �--I pOpp popp Ln LO CO N LOO n d CO CO d LC) O M n M NdLO d' ! u1 d co LO dLnMLOdd MddL000 -4 V1) v O .n n000ML0 O CD 00 LO LD LD t- n n 0010 .-i MM1-D �^.. o Z v O d LO M LO M M OO O LO N M N 0�) L�D 1- N n n M N Nd M M MddMd dLO m m O) O O O O d Ln kO LO d LO 01 d 01 d 0 LD M O 1, Ln N O a , � 000001n LO Ln MNNr+ �--� �"� 0 0 0 01 (71 01 01 T U � � N N N N rl r-/ ."� "."� "� '�'•� '-i '� .--1 r-1 O O O O r O) 0 C6 L O O O O O O O O O O O O O O O O O O O O O O O O U W Cl O O O O O O O O O O O O O O O O O O O O O E O o 0 0 0 0 CC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N v 441 LO M M d O I� M (3O M (3D d O LO �"-� n M M d O LO •--� (3O d 4- ' V)4- ' O O �--� N N M M d d Ln LO LO 1� r M M Ol O O .•-. •--. N Zt O O O O O C. C. 0 C. C. 0 0 0 0 0 0 0 �--� �"� 41 t N _ 0 W 41 N M Md 01- MMMO0d 0 LO .--i t- M Old OLo -4Md O V1 4- O O .-� N N M CM d d LO LO L0 1- n W W M 0 0 .--� '•'� N L 41 O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 .--� �"� L- V v Cl) 41 tD LO LD Ln LO w t0 LO d LD LO d LO LO M tp d d %0 Ln LO M M L i a..i dddOOddd �--, dd �--� d' dnd '"'� r-+ d 000 CL N O 'D d %_- 41 Cl) a) E W LO Ln �r1 Ln Ln d M LO LD M LD LO r LO M M lD In f0 E Q Cl. i � U vl L i -o O d , LD LD 01 Ln M LD n o Ln Ln LD M LO W ID M W N Opt y O N 0 0 0 0 0 0 N 0 0 0 0 0 O N M d LO It O ' O O r � O VI�L LO M L O N CD N L 4- O Lo O MOO M LD LD I- LD c) r1 M LV OO d LO 1� ri d M Ol Q p[ .-. 01 .-1 OO 1-d Ln Ln '-i M N O N n �--� M Ol I� M M co Q7 O .� W O '� O 01 r1 Cl) co d d d M d d M co LO co c") N M LO LO M d d d u! H- Ny O O tEa 4� L > (o Q 0 r7 r-) O O O -O m 1 - . OD N Q O O O c� w LO O O O O1 Q N ^ M LO I� 01 M CO M LD 1- r LD Ln LD M d O f- M OO (3O Ln O O O � O W 4- Ln O W LO m O LD N W O LO LO Ln N LD lD M M LO Ol (3O VI :!D Ol Vl .--1 N N M -4 M M M N N N Ln Ln In In �� L av O T .--iNMMNN Z m O .. .. .. N 4J O U +1 i� O � LLJ��i O •--1 O S N N LD rZ-+ d O U E O O O +-) O (.7 01 01 N M 1� O d N 1- M M O d Ln O M 0) W O d o 7 O O I� W F- F- O_ W O d d Q)-0 ti .. .. E 3 .--� Opl VI r\ Ln d I�Ol LD OO LO 10 O N Ln m LO LO N N d •--I co }1 Cl Ol J W W U ]L O ri LO E v.E.i N "O'D �6 > a--� N d LO 1�n LO Ln CO M d co O M 61 .�-I .M-1 l0 41 v) O O O L 4� 4-- Q " .. 0 O II.O O A-� U �o C +� L �C t0 S f N O Ol OO LO M .-1 O O O Ol r� d r-/ n l0 d N .--I 01 (3D l0 Q) LZZ C N � t O Z L �� O d �' d dd d MN �-+ r+ �"� "'� N N N N N N — --� .--� N O) 'r7 N r6 +� +> > +� O) ro N rl-� ^ - N M d Ln LO 1� M d> O .--1 M 41 LC O r 0 � O O_ d CL O f6 �i N Q d.O N �/ Q O .--I N M d Ln LO f' aD 01 O .--1 .--I r-1 .--1 .--1'-1 r--I e-1 r-I N N C:3 Inc -3 U d In J U U U Z W W , i I i i i O O M M Ln O O t0 w O N O O O O w O O N co 'A n O t0 O lD O N O c0 ~LL O O r-I tD 01 d d n O O O Lo 01 d r1 N M 0 �--I N O d M 0 0 0 M O O d N N M O N O N O M O N O O c') r"1 �"� r"1 r! cV 0 0 0 M N M O O N U O O O O O O O O O O O O O O O O O O c:, O O O O O O O O O O O O O O O O O O O O O O O O O 4- CO 00 c0 M 4- r1 Ln t0 4- 4- O Ln 4- 4- n Lo N t0 rl Lo c0 4- 01 O 4- M Lo N 4- '� Cl) 4- Ln 4- Y-4- ' O N (� Lo U) N n N l0 N U) U) _ D 0 N NM N N N N Nna0� O NO � Ln Q ONn OlQ � a001 Ln OtT O .4Oc �D NNM = =1.n = d � _ � • 0 0 0 0 0 .--1 Lrj M M M ? = N N = = N .--1 M M O N Ln C C C C O O I- Ln '.0 O I— O X0(71 O oO Lc) a, , r-1 M O OO N O t0 N j Ln N M t0 01 OD d-1 .d-1 —4-1 .1.i)-1..d-1 OD CO a0 M O L--� O M N .--1 01 C0 01 0 ri 0 r1 N N M N 01 O 1 r1 � t0 M N rl rl ri rl rl rl ri r-1 rt .•--I r-1 .--1 .--I r-/e--1 Z � v 3 r -� f\ O .--1 N O O r1 M O M c0 N O N OD 01 d d co O n 01 r- m 01 n Ln N O 41 M M O co l0 r� 40 M r� 1-0 N O O v 1 N l0 co lD Lf) N r1 N M Ln Lo L.n f� 01 co, M Ln l0 01 d N n Lo Ln co d M Ol O Ln d co N N t0 tp d M O O Zt\ d N co r1 rl rl .-1 N r! N N •--1 N N r--1 r1 N N N N N N M M M 0 N r1 .--1 O O 01 Ol O tD M ^ ^tO tO tp In In In d d d M M M N N N r1 . 4 rt co tO d N r• 01 M n Lo d d M M N N - r ' cA c0 [7D GO c0 r, n n t` n t- n n n n n n t0 t0 tD t0 t0 t0 t0 l0 t0 t0 l0 l0 tD t0 t0 l0 t0 t0 tD t0 t0 t0 t4 U O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O N 01 a 0_ ,� ,r O .--� d t` O M t0 01 N of c0 r1 d O O O O O O O O CC M t0 01 N Ln M nr Lo W '� d ^ O M ltpp O N Ln 0 r , 0 0 0 0 0 0 0 0 0 0 0 0 0 r1 —4 .-1 N N N M M M Lo 2 Lj? � � �n ^ ^ M M cD M 01 01 01 O O yl cc 0 0 0 0 CC 0 O O O O O O O O O O O O D c O O O O 0 0 0 0 0 0 = c 0 0 0 0 0 0 0 O t0 N n co d• Lo r1 t0 N d n O N Lo n O M Ln cc)r1 M t0 01 r1 d t0 O m d c) O)N Ln t\ Ln Lf) Ln Lo l0 t0 t0 t0 n M M d d Lo Lo t 0 r-n co co O 01 01 O 61 0 0 0 O �--� N N N N M M M M d d d L v N N N N N N N N N N N N N N N N. N N N N N N N N N N N .}1 N i LO r1 n M O d Ol Ln O tD N n M 01 Ln r1 tD N M 01 c, O t0 N r, M 01 O t0 N n r)01 d O Ln c:> � M OD d O 1-n - M (")d- d Ln Ln lfl t�n co co 01 01 O r1 r1 N N M M Lo Ln lfl t0 n t\ CO O 01 O O r1 rl N M M d d to to t0 t0 r) L 41 .--1 N N N N N N N N N N N N N N N N N M M M M M co M M M M co M M M 4 v V) cD t0 t0 CO co 01 c0 aOd dt0 tD 00 tp t0 t0 OD OJ t0 t0 aD 01 1010 t0 � .--1dd � dd� dddW Wd kD O 't � r- O 3 V r� ddr� r� or� r� r- odddd . rl rl rl r♦ r-1 rl rl .--i rl .-i .--1 rl ri rl r/ N r1 rl rl r--1 r/ rl .--I r-1 rl rl rl ri rl rl ri rl rl N rl rl rl N .-i rl rl Q -1 l . r .1 .--1 rl •--I rl rl rl .-� r--I L--I rl rl rl rl rl rl.-1 .--1 rl rl rl rl rl e--1 e--1 rl rl rl N ntD t0 t` nOnt` MMdt0 nt0 tD t0 r� t` t0 t0 r, Ln t0 tD co nt0 t0 n t0 t0 LO n rl a0 l0nnGO r DO N i r1 r1 Ln co O n N O d ri n r1 O O N L0 d r1 d t0 t0 CO N t\ O l0 M l0 M 01 co d Lo 01 Lo c`•) N N r. O M Lo . [0 01 01 01 01 Ol O 01 O W n f� l.n t0 00 O 01 01 T 01 01 O O O O O rn+> r- M o M rz rr r� Ln d d t0 t` ,� 4- n 01 N O O t0 O t0 N 1p 61 Ln co N r1 O Lo O Ln t0 O c0 Ln O r- d t0 t0 t0 cA d t0 N Ln r1 rf t0 Lo r- r- d ra Ln M n d d r 01 N Ln N N r� 1n N Ln rl r1 N O N co N Ln� N N N N M rl N ra N N r'1 O c) M N rr .--1 O .--1 r1 d Ln M N � N N N a v_ rn co n .--1 t` t0 M n d Ln 01 M at d c0 t0 O o O O a0 0 M O O 01 t0 n c J 01 LO .--1 co Ln 0, 01 Ln 1 O Ln Ln CO O d r- O 01 c0 N , O .--, 01 n 01 t` O n 01 c0 N O d d d M M Ln t0 01 Ln co r� CO d t0 L1') 01 Ln . to O d to Lo 01 t0 Lo tO d t0 m O � . . Ln LI.. L1- - —4 O `..1 rl rl r-I r/ rl rl O O rl rl rl rl rl rl rl rl rl O > ^ d .--1 0 0 0 0 0 0 0 0 0 r1.--1 rl 0 0 0 0 0 0 0 0 n O , - - n Lo N co M N O d t0 Ln O l0 O n Ln n 1p t0 r1 N N M In O n O t0 Ln n f, M O M M Ln M Ln d O O n t0 LO d rl 1p N d O M LTJ r- Lo r- rl N Ln M r1 Ln d 01 Np d 001 N n t\ M r'1 M r t\ W .--1 N M d M d d t0 Lo M M Ln c0 M N d d N N lD n Ln LO n M M d n O O l0 Ol cNj O Lo > v N .--1 lfl d Ln t0 d M N .. ' N � N rl 01 ap t0 Lo M N N N O .--1 61 OD t0 Lo M r1 O c0 t` Lo d N O O t` t0 d M Lo C'7 r1 0 co n Ln d N O (m n t0 d N _ .�.. Z l.l. � -. , r1 r-1 ri 'A O O O O O O 01 01 01 01 01 01 c0 CO co OD OO co c0 r� t` n . ro6 t` l0 t0 l0 t0 LD t0 Ln Ln Ln Ln Ln Ln d c'7 M N F- 0-+� �--i r1 N M d Ln tD n tp 01 O .--i c\; co Lo t0 t` c0 01 Ln Ln LLI Ln Ldn Ln Lin 1f LMn LO1n t0 tD t0 t0 td0 L. O_ 1 N 4- N M d Ln t0 t\ M 01 O UL cif N c,4 N N N N N M co ('7 M M M co M M ('7 M d d d d d d d d d O N O LD O O O N �--� 1D O O O N O op 0 0 6 O O O O N N O O d 0 0 0 0 0 0 0 0 Ln Ln M O M 0 0 . N "(L)M ",a:,)"a)O o O d O d O O O d d d M O M d M U O O o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 4- 4-r 4- 4- O 1 � 0) N 41 N N � d N N N M N N N M N n N Id')01 N d Ln N N L,D N 10 � W 74- N d IDN C3 pp p . p pp pp p -p L3 p p p p p p p p p p p 0pM00 .--LM t� C .--i C C t= t= t= - C c c c C Cdlnpp�� OM pMN » dOpN OL,pd � N v ZD =3 =D ZD p 10 co L•p co d Ln 001M O1D t� d10 LfI .--I Ol 1� N�ONNr-INMNLC� 01M �--I �O IO Nr+t!') d Ol� l� d 0001 Ln M O L!] N l0 , N 01 n 01 O N Ln ri O Ln M N M Ln Ln N Ln _4 N co F_ Ln M N 01 fb N Owl � N 01 c:> .^-1 l0 61 n r7 N N N N N N �--� N r"'� "..� -I N N Z v N L 1 O - 1] I� O '-L M 01 Ln N Ol N 10 01 co ^ L9 L--L M M co UJ N I- d 1p O M to 1D 1- 01 O1 N M d to O n Ln OD M L--L d O LD Ln N M D O r1 Ln d N N Ln 01 .6 D M O N W N n Ol L M N 61 d N p D N 10 d rL N OD O d •' Ol Ln O v �--�L--L d M N M d d M M �--� N N �-L N N c\1 M M rL M M C•') M M �"� d M N N N N M d M M N N N M 000001 O101M co MM ^ r- r- r O1O Ln Ln Lt7 Lo dddd0") M MC7MNNNNNN C to lD Ln Ln Ln In Ln Ln Ln Ln Ln Ln Ln Ln LO Ln a) Ln Ln Ln Ln Ln LS) Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln Ln I.C) Ln Ln 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 o O o o O o 0 0 o O o 0 o O o o O o 0 0 0 0 0 0 0 rn 0 cD d c\j d o M LD 01 n O M 10 ch Ln LT N Ln w .--L T O co 1p O1 N Ln 01 N L17 Lb 1-'4 t` O M L0 01 N Ln OD N Ln Lb . 0 � � .--� .--iNNNMMMd dLn Ln Ln Ln lO 1D � � � ^ M �� OO1010100 . �"'. . . . . . M ' N N N N N N N N N N N N N N d t� 01 N Ln n O M Ln OD .--L M L,D 0) N Ln n O M 1D 61 N d n O N Ln LD O M lD CO r.1 M 10 01 N d n O N Lo t` O ' NL� nn m co M M 610101010000 .--L � � NNNNMMc-) Ln Ln Ln Ln 1010 L910 n r. . . . fY) O0. L N N N N N N N N N N CM c) M M M M M L") M M M M (') M M M c,3 M M M M M M M M (") M M M M M M M M a `1 N W rL t� N ood cD rL f� M co c' '.0 N co d co O ,I, M OIL N N M M d d Ln 1O 101- r- co cc) 01 cD c=) NN Lo N 'ct Ln Ln ID 1D I- 00 00 01 01 0 0 N N-- L M M 01 Ol O L--1 r-1 N N M M L L MMMMdddddddddd ddddddd Ln Ln Ln Ln Ln Ln L1l Ln Ln Ln Lfl Ln Ln Ln L17 Ln Ln 10 10 10 10 10 10 4--1 v Ln m 0110 co 0) L.0101D ON '.D co 0100 OD MLT 61014) 61 01 01 10 10 W OD co LD co l0 O0 1D LD CD 0p 1D O. aO ID OO l010101D i `t- L OdnOnntl000nOcDcD � l� dndnddrnd ot- d � dddd O O rd-I '^-i N d d d N .--1 .--1 `-1 N N N -4 N N N L--I '-L r-i r-1.--1 .--1 .-L .--L r-1 .-i .-j -4 '-1 .-1 N r--1 .-i '-i r-1 r1 Q ' N N r-I '--1 r-1 N r-1 •--� '"L L--1 rL .--1 . j r-1 .--1 r1 rl .-1 r-1 .-1 .--1 .-i •-I .--1 .-� r-1 rl ri .--� Ln Ln 1D W Ln n w n t- r- a0 M OD n co co co 10 1D n t-n 1D n Ln n 1D LD t-- n 1D 00 n Ln t` 1D Ln d Ln M to '._ O co 01 Ln Ln 1D 10 r-L Ol O O 01 O t\ N M d O Ln Ln � N M 10 N 10 00 10 00 0) O Lo .--1 O N O Ln n Lo O Ln O M Ln . r-. O O01O00 nLn Ln 00 t\L 07 fA Qt O O O LnM N N O O i1 r-1 -1 O L L L L L i O w .^-1-1 C7 01 O1 1D O 0) 1D 01 OD 'DD d M .-L 00 Ln N N 10 1D Ln O t� O l0 O O 1D 0^O LO 1� Lin O 01 Ln 1D L LY N M a0 co - - - > 3E .-{ ,-i N r-i -A M C`) N .--I M L� � r-L r•1 .--I '-� `-L --L � '-L ^� ^� N N ''-L N N N N M N M N .--4 rl N r'L N d .--I M M d M > v L Q 67 co n � dNr+ Ln Ln r•'L N Ln N 61 d Ln N 01 d N 0) 1D O d 10 M M 01 00 p O 01 Ln f�O M Ln 01 OD M ' Kt ' ^ 0 ( d Ln Ot d dt _._ Ln li 4- co N M Ln O r` n n Co t` LA Ln co Ln 0) N d l0 M Ln OD d N M O N N M tT O N N '-L N N L� N M . e-1 •--L LO O > en -4 ,-1 r7 -4 O r'L N N O .--i N N -4 -4 -4 -4 -4 N M N N > i n O � .--L a0 LD d L--L M d co L� O O 10 d 10 � OD � N M d d o � t� L,D Ln O N N N M n W N O 10 M l .d Ln t� N t� - ... 7 0 10 � M N 1D M 01 d 01 01 .--i 1p '-'L t` n t\ Ln OD N N 01 Ln Ln M N '-L n N N d N N M C l 1D 01 Ln 01 N OLn > +� L r1 Ln MdNM .--� .--L Ln nNNO 00 O1 Ln r- clI .M-1rM-LM � a01DNM 1--L O d CT N L n N t` N n d _ O O d OD M N 01 d N O d N M `-'i r1 r•1 r-1 e-i .-L r--1 N rl .--1 O X01 a0 LD LnM rL Ot)D r` Lo NO 0)t) 10d M .--L 010010 Ln co N O OD tlLndN O LT t� 10d M •--L D1 Z LL L L L 61 �1D d N .-H r--1 ri r1 '--1 .--1 .--� O O O O O O Ol 01 01 01 dl 01 OD co O OD M q0 M t` n t` LD Ln L9 1D 10 10 ^° N N N N N N l N co d Ln 1D n fl-+1 - .--i N M d Ln LD n OD 01 co:,) .--L N M M d Ln 1D n CO M Cl .--L N M d Ln 1D t� co OD LT O L n d N 4- Ln 1D n OD to O r-L c> C) cD c1 Ur U p v 1D 1D lD lD LD n t` t� n n n n t� t\ M Lb Lb M M M M Lp co L1D M M Ol Ol 01 61 01 01 01 O1 01 O1 O O O O O O O O «.--- p 0 0 0 0 0 0 0 D 0 � oa000 Od 1\ � 4 LO Ln wOO .•.-- N v N ' O •--� M c 4� O) nl0 ^-� M Z � v �n O O r1 L. M n OD .. Z O O O O O C> CD LC) Ln CD Lo U O O O O O d i N LO CU r-I LC) N � y N N N N N N .-. M Ln co O M O) (3)O) OO L co co co 7 4. N W i LC) O .O N a0 vNiw M �etLr> Ln v �O i0 l0 i0 Y _ V) ' l0 l0 lD O 00 co LC) LO m Lo W � 'D 1'- > M M N N N v_ O) M n Ln y l0 l0 N n Ol LL 4 N O t` LC) O S Dl O N LL) r _ 1= C� U H O � U l0 •-i •--� t` W (7 4 }t O �' O) N n M l0 0) L() p > }1 co N N O N N H r O - Q)Z LL Ln M y 4 LC) LC) In LC) L{ a . O = F— M M O r1 N L d N i O O •--I .--1 �.. N 4- 4- 4- 4- 4-4-4- 4- 4- 4- 4- 01 M Cl) U) N N O N N U d N N N v N N N O N N N N t o 0 0 o Cl m m 0 0 0 0 0 r pC pC Leo M Cl m m C=l O O >> > O O S O S O O O O O S Z_ 1 4-4-4-4- 4- 4-- 4- 4- M 4- 4- M N N Q7 4) N N D0000000 � 001� � 0Q00D0 � 000 r-r C C C C C C C C C C M C N = _ = O = O v O O O O O S O O O N O O 4- 4- Lo 10 4- 4- 4- 4- N 4- 4- O LO 4-4-4- N M to 10 Q) E LO Q) U) F- W 4) d N (D W CUdMDOOO� in L. . p p p M M 0 Cl to L O S= 000 C S= C 000 = = 00 O C 00000 r r r I N d O O O O O O O O O O O O O O O O O O O O O O O O O .--I .--r 0 0 0 0 0 0 10 O O 14' O ko 10 O O ` M 4- 4- M N4-. 4-- 4- 4- 1-- M 4-4- 10 M4-4-4- 1-- 0) 0101 ... m L � -1 ppN 010000 -4 'r 00 M w 00001 a0 OlM .�.i 0 v C C CQ 1- C C C C n n C C n n C C C n l0 tD 1� => O O � N O_ r T Q) r 01 r 0to 4d-4 d- 0d 1d 0 4-4- 4- 4- N N N N .N � � � 41 N 4) a) C2 m 5 r 0) 12 � O d d 73 ::D :::D B O Cl- N 41 0 0 0 0 0 0 0 0 0 0 0 LO 0 0 M V 0 0 0 0 0 0 0 E ap 0 0 0 0 C. D. 0 0 0 0 0 r, Ca M t- O o 0 0 0 0 N O O _ 41 4- V-4- 4- 4-4--4- � 4- 4- 4-00 4- 4- 10 10 4-4-4- 4- 4- 4- 0 N O U) U) N N N 4) N d N U) N - d d 4) N U) N Or �. � 4- 4- 4- 4--4--)4)4- 4- a)4- 4- �--I 4- 4- LO C 4- 4-4- 4-4-4- Z.t d N 4) N N N N N 47 N N N N N N d N d N U 00000000000Lo00LoM000000 Or C C c L C C C C C C Lo C O ct 0 = _ L 3� M � LO O to N O r 0 L I Z I Lo 01 O .--1 d.--I LO N N 01 t\ M O1 4' I U I M1� Mo0 .--I M Nc0 � 101�OO OLD N � L[) 01 to r 0 I to w O � to.-i 01 LO LD f�-I C\i M .--r .N-1 10 r�-1 O O I O 0 3 N r L N r Cl)M C In O I N N N r1 N r1 N '•i .--t N N 1D N N i� to .--r•--r N d m Ln V) U L N O O LO rr r' O LO LO .•-I N OO 10 .--I l0 .--1 01 ON 00 O co Ol I7 M � aF � 0 .--1 CO l- LO LO LO N01N0M1- NM01MLoM0 (71 � cn 3 N � MM ' cl), LOMMNMLnLocv)- O O O C u• O y .--1 Ln O O O N N L M to r-I M Lo 0) M LO O O I, O co co to 01 r" V' O LO ..... W r d Lo M N .--1 O I I O M Cl) 01 01 Cl) .--i 00 [O M M tOn � 01 N-� O O R +� L I O 101 't M 0010 Ln CO 611010� M 1.01� � � �-I Co CDC m Q d' 7 0) Lo M M N N r--r 41 co U O O O N ra 0) I� O O O O 4- c to N O O O _ 01 N O O O O O O O O O O O O O O O O O O O O O O Ln o 0 o E 'V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D. LO z Vt > v 41 Q � ¢ m 0 0 0 0 0 0 0 0 0 0 0 C. 0 0 0 0 0 0 0 0 0 0 o L rl .. O O .. . Z m U .. .. .. O S to O I I V +1 t� O � E +-) � .-I O I- lD v L N 01 W Lo LO 10 LO LO 10 10 n a0 LO LO 00 kD LO d lfl co co to LO LO Lo r� 0 C1 O S N N 10 fZ.a 0 U .--. O O O O O O O O O O O O O O O O �--� O _ o LLJ U U I- W\ .. a0 .. -- .. N N en I I I I I r I r r r I I I I I I I I I I r Oo � wwwawo � , E E E N O •, E3 4JwwwwC) (D CD wwwwwwwwwwww . � . o rn J w w O Y o � -O v m E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +> 1] vl 01 O .Ui .-/ '-/LO Lo LO LO Lo Lo Lo LO LO Lo to LO to Lo .--r .--I .-I N m C to � I L t to O to Ln Lo L 4� 0 41 O � Er C = ~ 4� 01 d N O VI r-1n 10 � N .--r 01 x010 fl_ 0 0 d--t U t6 L �C 10 S E 41 N .--I O O O O1 n LO Ot L Z Z C N -• +� O I- W L to N Z L 4' L d d. d d <Y M r-. .--. N N N N N N r-. r. Ol O N 'r7 N f6 11 i� > > . L � N M Q+� L 3 0 r L O Cl- a Cl- 0 tO T 3 cn Q a o N 0 w 4- O r-I N M d LO 10 r OD ON O .--r - � � � � .^-r � � N N Ur r_y rJ U d N J U U U Z W W I I ..,_ 4- MIE Mco 01 Lo Lo aDOMaD OlN OMOMM1� Lo c) co MN Lo '-oM r1 OIONaDOOd �--' pp �--� 1"nl6 C0 aO 1� cc) �0 � N01M .-1 � Q ' Cd"J co N10 M aD 0 C, O� NNNNNNN �--' NN 1-1 NNNN= ? M NNNN � r1NNNMNNNMN p � p _ Z O 4- 1- r- M d •--1 01 M 4- 4- `- .--1 Lo O co 1, .--1 .-1 c0 d d l0 O 4- O Lo N 4) a.Ln L. .--1 01 .--1 c0 M r+ aD 61 O l0 CS 61 N t` co d LD co cl MM '' 61 .--1N NM aD 01Or-1dOpNOpp '-o •--' NM� � ao � .Ni 01� ^ O� .M-1 � ^ .-1 C •--1 C c c .--I ri �--1 v p � 73 => p -i r-1 r-1 -4•-i O O N .--1 r-1 rl r--1 .--1 .--1 e-i r--1 .-1 a0 r1 H M O a0 aD 4- 4- '� .N-I o Co�N-1 .M-1 .�-1 O .�-1 CO o r~-1 O �O .N-1 o Q 0 d d CO N r} t0 aD Q N �-1 lD M d M LD d N E d M N c> -4 c7 0 0 0 N o 0 0 0 0 0 0 coo c c o 0 0 0 0 0 o c o 0 0 0 0 0 0 0 M L- ° 0 0 0 0 0 0 0 s S � 0 0 0 0 0 0 N a .._.. O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 Lo Ln O O O O O O O O O O - .--1 .--I l0 � l0 � r--1 O LD •--' '-'' .--1.--I .--1 M lD .-1 lD LD cD r1 r-1 L0 lD .--1 ri lD M LD to M M LD O d 01 I� M d Lo r 4-4- 4- M M W N .-1 d 1- '=' O d Lo O Ln O N .--1 lD O O O O N aD 1- Ol CD O d Ol aD �... p o lD O Lo N aD M .--I p MIL) p .--1 � O Lo Lo N c) cD 0 1- O O p M O p p r1 l0 d lD f� O O p co 1� d Lo M Ln O 01 i ac) tD Lo f') ddMM ? = = MMMc') MddMM c'M LoM = MM = jddMMdMM = dddLO MLO LO �o N r. N a0 c0 c0 00 cD d 4- `F-4- d <t N d d l0 �0 N N d o0 N 4- `� d �O d' d l0 N N 4- iD kO t0 00 d m m aD _.._ O d M M M M M M Q p M M CM M M co M M M M M M O M M Q Q M co M M M M M O co co M M co M M M 0 m 7D ._. O N O �--1 1� Lo '-' 01 O O O Lo 01 N d N O r1 O m co O LD O co O O r-1 d d lD d 01 O Lo d d Lo aD Lo aD 01 N cl)li O Lo n 01 t\ 01 1� M O O O , N a0 n 01 d O tl-J O N ••-1 O O LD O N O O ct N co N 1��o M O l0 O� O N N N N 0' N c- O O O d M M M N N d M C'M N d O d d O O M M d d M Ln d M N M N d N N N N 4- d 01 .-1 01 O aD M N N N M Ln _4 O t, to LD N r1.--1 .--1 O 4- 1� O 4- 4- 1� d •--1 a0 t` aD d LO 01 d a0 d M �D d 1� Z pdLOM �D io i� t` pOpN O O MNLOM co M M co aD OMdpp •--1 a0 O1� M10O �D MLo OD Ln l0 raO Ol M 01 O co M N d M d l0 LO '-+ O N M 01 N Lo M O d LD cD �o .-4 ri d c0 N N N a0 M cD N U = N .--1 .--1� '2 '2 c-1 r-1 r1'o ri l-1 '-1 .--1 .--I N f-1 r-1 r-1 r-1 .-i rl �--I r1 r-1 N �--1 .--1 e--1 _ Or 4- 0100 a001Ond 4-4- 4- 61 (D OLo Lna0Md4- ON4- 4- MLD 6 . . . M M W 00010 NO11- ' - - 0) ,.1 O M d d M co n 01 Lo M N 0) O U p Lo 01 d co, •--1 M p p p M n N O O d d a0 lD f� t\ N O M C>p p .--1 .-� 1- M LD d c0 .--1 Lo ..-�1� l0 M Ln 01 c C C ''-' 01 '-1 M M r- c0 01 O M M O C N-1 O = _ . O N M O 01 OD ' Or 2D '--'' r-1 r--I e1 Z3 .--1 r-i r-1 .--�ri 1 y N p •--. . .-. Lo OD Lo co d Lo . Loo MO C) 01 Lo M ID In d o �D Lo o LD iO CDNa0 Lp 011� aOMdMaO OCDMd . ap Lp co N N LD Co Co 01 Lo a0 M co N N N 61 d LD Lo Lo '-f1 M N^"' d d M co d N N N �t Lo d LD M Lo Lo I- U p1 Lo M d Ln M N .--1 N co N M M d M N N M Lo N U .--1 N LD f� n n t\ n LD •--� 1D �D LD LD 1D 1� r` lD � n LD LD tD •--1 iD 1� LD tD m N _,. 01 Mt� tpLn a0dM01M � MOaON N .-+ Ln d a00) �--' MdN co r- 01 M 10 �--1 ,� O N aD to cD Lo 01 N O 1.0 M cD = O co d d I� co N l0 01 M Ln tD f� O M �D l0 M M 01 Ol 01 n '� n O co N d 01 co to O O Ol Lo 41 Lo Lo d a0 l0 .-1 N N co N N Lo d N r-1 N NNNN M -' "1 N - N rN -4 -1 N N M co,N O --' l0 co r-1 O r- .--I n LO Lo .-/ 1- N M lD aD lD N M d f . lD D. LD '-1 D7 '--1 Lo N a0 n O 6.r. . . l0 O O d0 N .'-1 l0 01 . M Lo I� n M �--. 1� Lo �D O O M a1 N N 01 n tD f�M 1� cD r--1 d1 n O .--1 Lo O O O d M 1� t\ .--1 n aD N d M lD 41 cD N M ""' '-' '-A -4 '~ ' 1 N M N N co M .-1 i CV ('7 N M N co M d CY Ol co n r-I .--1 N co N "M co �-'1 •"'' N N � M M N N ••-'1 N r-1 N .--1 r-1 r-1 Ln O O O O O O O O N �--1 - - .--1 -� N N --` Ln O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O m O O O O O O O O O O O O O O O O O O O O O O O O O O c O O O O O O O O O O O O O O O O O O C) U C n U '� dLo LnddMddaO CO r� LndLn Ln LOddLo Lnd MLn cD � Ln aD F-- In din Ln dLn LO COddLo MLnddM `� O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O M LLJ L j W W W W W W LLJ W W C) W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Uio Lo Lo Lo Lo Lo Lo Lo Lo Ln Lo L[7 Ln Lo Lo Lo Lo Lo Lo io Lo Lo Lo Lo Lo Ln Ln Lo Lo Ln Lo 1-O M Lo Lo Ln Lo Lo Lo Lo Lo Lo Lo Lo 1 1-' O a0 1, Lo d N O M r_ tD d M �-1 01 M LD Lo M N N N O O i Lo M,� O M n Ln d N O 01 r LD d N �--' Ol a0 oD Lo M Ol Z 11 t _ .--1 r-,1.--1 ,� O O O O O O 01 0\ M 01 01 01 M aD 00 aD aD a0 co OD ^ ^ ^ Lo Lo Lo Lo Lo Lo d M M C F- ' 0-4� - .--I .--I N co d Lo LD 1, aD 01 O r-1 N M Lo lD r� M 01 O .-1 N M d Lo cD Lo aD Ol O ID N M d L i d ' N t N M d Lo lD 1- c0 01 O (.7 0_' U p v i NNN N N N N N M M M M M M M M M M co d d d d d d d d d Lo Lo Lf) Lo Lo Lo Lo LD Lo L.o O ID LD LD __... N M d 1� Lo r1 O M 4- Lo M 01 O Ln M l0 I� Ln 01 .--1 a0 .--t n O n 4- M N N 01 O O Lo 1� 01 a) N U NOS--I W a1 C� ONa00 •--I OI � GOM OO Ni.c� t.[) � dN '70 c; C3 .--10d011� 1� Mt.[) IO ODO � d Oo0 ' 1 0 ? M (V M M c) N M N M N N N N M M d M M �"> = N ^'� c'7 M N N M = M M O rl --- Z a0 01 a0 4- 4- O d Ln 1� N n O O N a0 .--I M O i- N .--I n Ln �--I l0 l0 M a0 �O Ln N O d a) N a) l0 1� O N �O O O •--1 a0 � N co M N N a0 1- l0 .M•i l0 01 I- r^-1'�-i .^•.1 r-1 .d--1 .d-I rN-I l0 d .�-I .^--I 0 '1 •--� •--I N 73 ...' .-A 01 M d a'd �n M 4- O 01 LO Lo M .--i M LO 4- d O1 4- 4-4- O 014-4- 01 �D `� dI� IO I� dq tO NOD NM N •--' O O O ri ri a) •--� '•-1 .--� .--i rl .-� .--I .--4 r•1 .-i.-1 e--1 O .--. .--. .-1 r-. r•. e--. Q .--. . . r1 .--. ••--. •--f c- Q .••1 ri 0 fp i O O O O O = ? p p ? 0 0 0 0 0 0 0 0 0 0 c:? 0 0 0 0 0 0 0 0 = 0 0 0 0 0 0 0 0 ? 0 0 N d i i i i 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O O O O 0 0 0 0 0 U O d N r_ - d co 4- r- M a0 .--1 d r-1 O 01 01 Co M lD 01 O1 N 01 O 4) a)CD C3 i •-• r•1 p � N L6 O Ln N M 01 LO c0 d M M 01 d �0 O V -o m O O LO N d �0 LO c c) p dP d 01 O t0 a• W Lo d c-) d d ? = d L0 = Ln LO Ln LD �n i0 Lp Ln Lo Ln Ln W M co M LO Lo Ln d ? M co M Ln Ln M Ln Ln ? Ln 0 0 M W �0 N t0 t0 4- 4- LO oD 4- l0 CO aD Co Co Co O a0 a0 a0 v0 LO N d a0 a0 l0 O O Co j0 N LO LO 4- LO d `w w 4- -- Q1 , M co M co M Q Q M M O co M M M M M d M M M M M M M M M M M M 0 M M M M M M M M Q M M O � � 01 � m d O c � V- O d. e =) = .-1 O I� .--1 .--1 O O N M O CO O1 e-i O M 01 M aD 01 Lo 01 r1 1- d Ln LO Ln M O l0 00.--. . .--. t0 O n O N Ln O O . I0 a0 N LO O O ID N O aD N r� in LO -4 00 N dNMMdM Od �� NMd NMOMdOOO N O O M N O N N N N N N r-/ to ONM � •--� 4- 4- N1� � OnO d00dMd •--� LOMNMNl0Ot0M �--�4- a0LnaDrlatnO .--I� aOLO aJ a) a) U NMaO M �O � DaOdOOpQ1 �OMN01M t- NMd � N .-� d -4 M M O LO N O1 N N01M OMi NO � � N N M 1� •--� Lo LO i0 LO Ln Lo M t0 M Ln M Lo 01 LO M .•-1 N d a0 N O (A 61 Lo �0 r1 N O O O V i .-i .-I ri .-i -4 r1 r-1 r-1 r-1 '--� .-� .--� r1 r-1 '-1 '-i N N N N •--� r•i r-1 r-1 .-i N _.. O' Z M r-- Lo 4- 4- Lod - M r_ r) n �O aO aD N LO CO aD � OaD l0 LO 01 LO .n 1- OODONa0 Ol l0� M �--� a/ d N r-+ 1 47 N .--� � 01 c0 I� a0 LO �6 . . . NL. MLO Lo in oC) a0 co I MN01d� M000 � � u 01 01 O W O D d M D �--i .--i .-i O -4 —4 .--i �-•i .--�O •--4 LnLp 1NLo z, .4m � O � 01a0a0LO � 'nQ• � a01� NLn01i0Ln � Ol � d01a0 10 -4 r--4 N r--1 41 N O Md (n d 1- rl0 .--1N LoO Ol dW Ln CO a0N ' Z C)r 1 01 i0 01 Lo LO M 01 r N LO Ln N M n O1 M �t N d t0 '-+ .-�d aDd 011� LOM N1� 01dMN ,--� cOdcO� ddaO 1� I� dNtO aO �t M d .M-t N LO a0 Ln M O n t0 n � l0 M M k0 t0 d d N M N N t0 �n M t0 l0 .--1 LO MD Ln N .-� I- I- L0 I- r- ID r•i •--� co 00 N cj Lo co.. M c^o O Ol N 01MO� t0 a^Dn 01 CO M LMO Lna .OO cdo da0 l� LO� 01NONdO0101O �0N� Oa0 � NLO cj c\i co Ln 4- i . r-. . .-. .--1 M d M •--1 M --� .-i .-I .--i.--i --i .-� .-i .-1 N N -4 N N N N d N M c") f1 M cr, 0101 Lo a0 01d a0 a0 ,--� I- a01� M '00 �OM M0101 t0 M k01- N01 aOdO0a01- I- M cO i 1� �Ln1 01 QOM OLO 1� NnO1 M 1.0101 N a0 OdMLO 01 10 O1NLn Mao -4 -4 0l Lndda0 c-) caLn tO �O p' MMLnr- NMd MdMIr It dMdMMme •'+ MNNN •--� '•-� �"��"'� M N �-+ MM MN �--� O aD n d N •--� n N ^� '� N `� "� N N N N d M NNN M co Ln d L0 �0 N N d N N 1� N M d 0 O Lo O O O O O O O O O Cl O c:,, O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O c- O O 0- O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Lo _ n O ip MML.nd MAD �D Ln M � dMddd M M M d M M M Ln Ln d d d Ln d cO d Cn u'� d dLnMd �Od �O � � � -O Lo O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O . 1n W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W C7 Y W W W W W W W W W W W W W _ . O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O In V N LO Lo to to Lo Ln Lo Lo Lo Lo Lo Lo Lo L!] Ln Lo Ln lO Ln Lo In LA Lo Lo Lo Lo L!'1 to LO Ln Lo Ln to Ln Ln Ln to Lo Lo Ln to LO Lo O 011�tOd N '•-� 01 a0 LO LnMA O aO C) Ln d N O 010, M0) W co W w co N O co r— �ndc� o 0l � LOdM •-+ O Z W N N N N N N '"'� �"� — — — '--� '-'� O O O O O O 61 D7 01 O 01 01 aD M 00 W W ap aD 1- n n � � ^� � � � � � N F-- �-1� N M d Lo LO I, a0 01 O. N M d Lo to I, i 7 GL a) 4- LC] t0 1� a0 of O r1 N M d L(1 kO r� a0 O O .--� N M co 4 Lo LO 10 a0 01 O .--� .-� .-{ O. m LO l0 w 1- n n n n n n n n n M W a0 a0 co a0 CO 00 a0 a0 M 01 01 01 01 01 Qt Ol 61 Ol Ol 0 0 0 0 0 0 0 0 N 4- 4-4- co i0 U w p 4- 4-4- d CO 1 O O O I- Co 4- 4-4- d N N E U1 a) N +� ra O D D . � i C l C O O U to N a O to t.o O O U O 4 4-4- M d .-. 4- 4-4- d co ...__ m N N N M M d = v O O O d co O O O O O O m M N ._. •--1 r-1 r-1 CO LO d N N Z pp in oo c M 0) C C c i0 u U N N O 4- 4- V OOCD Cl) O� Or c c c .--i M m O N P N O Z l0 Ln M d M U CO d N Cl) O C)r LO O l/7 _... lO dZo Zo OLo � O l0 Lf] In d d co, N N ._. poorn �-od c oo Lrn d N d 01 M n Oo O N N --� -. LO O .--1 r-I O O O c O O O O O LO U O � r U H •--� l0 o .o d d 0 0 0 0 0 p �[ W L'i W L'i W p Ln U O O O O O H r Z 0) LL 41 LSD C7 Of U N 4- O O i i i o O o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 o d o 0 s o O o O o 0 o O o 0 o d o 0 0 0 0 o o o 0 of C = > C c C 6 0 0 0 0 0 0 0 U 4- d00 M4- �-1 � NMMO cn U1 � � � NVM-I a�D L0 O LO C L0 co LO rl M CO LS) M H �--� LO M O O O H N d co 01 co d M M m L0 N O n N M M M 1l t0 to- LO M tD Co- Co- A N tO m N M M d O (n `LO N co d .--1 M n m w d w I� d N N N I� M d v N 3 0 O tO LD N N 00 O co L0 N LO CO.--1 M N 1� L[) l!7 O v M I� t0 M O d r1 1� N LO M M p1 lfl l0 N 01 01 LO LO M N 10 d co d co 10 N d d M M M N �--� N w co M H �--� N co LO Z ro O LD co O LO co O 1.0.--1 � ' ' OO OO 'mn co M tDOd -4 -4H OOO m mOlm = i 0 0 0 0 Ol I� tO L0 co co N 41 , U N N N N r--1 rl rl rl ri rl ri rl rl ri rl .--I rl r--I O O O O L D N O O O O O O O O O O O O O O O O O O O O O . m 41 ff t4- O O O O O O O O O O O O O O O O O O O O O O E N to p p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v C 41 p M 01 d O tD N 00 M 00 d 0M LO O r M Ot LO O to H n N W N O O r• N N M M d d LO L0 to n n M M Ol O O .--. r7 N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4 1 � L v N W M NNMMdd tp rm m0100 .-I � IN p y 4- O O . L v O O O O O O O O O O Cl O O O O O O 01 N M 4� DD tD tO l0 LD tD LO m w w w d w t0 LO LO d d d tD d to co o 3 u a r- i � oddt� dd d � dd od M 4 -4 r1 •--4 1-4 r C E --i LO M M M t0 M t0 N N N ^ w LO LO .H-I t0 tO I_ LO d d M LO d H .. E L N ID RQ d ' H6� Oid +1 U 00 O0 Op L1').--1 O I_ O H O M O N '--. N N . 0 Q LO }1 O N O O .-� O N LO L.0 Cl) O > O 0 ; N O N Q 1 O O O - O rl In M L0 M L_ O N In L 4- LO LO 00 w O i_ m M t0 CO r N Cl) 1� O O d 0) d LO tO N H O D_ ^ d Ol d 00 N LD d m n r- n O L0 d L.D m 01 I� N p. Q co M N Cl) d d d d d Li) d L0 lD L0 N tO N OD ""' O O O 0 N ko O O O 'CE" tF- � O N O O p� N .--1 f� O 01 LO 1__ r- t0 00 ^ O M d r 01 1 i i N ^ ,r O i r` rl CD (� Ol N .--1 co lD l!'1 lD d LD d 0 0 0 _ W 4- n Cl) m 0 0 . � � Q Y Q = jy.� Cl) M M M MN Cl) co N .Nr� r'� •"� M MNHO --iNd L Q v p.'� Z w H O N f N O U +1 n Cl m o v ; .. E o 0 C 7 •--I O \ n N L L 01 H O.--1 0 2 N N i� H O U E L N 01 WO n O d d d1 n n d O d CO W f_ L0 LO OO _.. _ M _. .. .. v C .. .-i O .--1 Ol 00 c.' 1- T O n Oor` wF- F- o_WO � LdO E E E a� vH E3 .-i rnu dao � OiNd � a7 � L0 }L O 01 J W W U ]G N N '� �p > +� M 01 O tD w w O t0 LO LO N d d tD t0 tD d _ L +2 N _0_0 C m C t L N - O Y .. .. .. C N N N OL O D_ C C d O 4- E C 01•r +� Oi N N O H L - L �C t0 N Q1 M ID M H LD - -1.0 d N — O- M to 0 +c U m 1--- W +� Z i a--L d d d d d d M N •--�'"� �"� "'� N N N N N N r� �"I ,.. m �ZZ � N m N ra d N 4) y C -r O i-L U F- F- F- L N O) t0 7 > L L N f0 O .---1 N co d LD lO f� M O1 O .--1 N M �' LL) Ot O H L C O O r i p CL D_ D- O to 3 In Q D- O V) 7 O v N N In J U U U Z W W ' 1 0 0 0 0 0 0 0 0 LD O O LD Ln O Lo LSD 0 0 0 0 0 0 0 0 N O 0 0 0 M M CO O N M N N O M CD C) C> CD C> C) CD <D w CD. C:> CD C) �D 10 C>r- ko Cl) 00 O O O O O O O O O O O O M O O H r1 O M ' � O O O O O O O O O O O O O O O O O O O O O O O U O O O O O O O O O O O O O O O O O O O O O O O O O r-INONIO 4/ 00 Lo dO�O tO IO r/ M 1O O1 M .--I N NNO LO N N U7 N a) N N NCf N 4- 4-4-4-- `� M C-) C-) uO Lo Cl) �`� 40 D 4_ kO 00 d 00 � .O N� WdQ 4 400X17QQQQQQ00 � 0 n 4J 4) 4) Ln I, p p p . Ln Ln 0m0n � 0 » » � » C C C C LO c Cl) M M N Cl) = r1 '-L = N.--I .--L r--L .--� N co d d ? _ �- M N C C C C C In C v ZD 7) =D O O1NdLO LO NLO LOOOLO IS M LD NID .--Id O LOM Cl) CO C OI LO CO CO O1 O� �D N I, m CO N CO IO wt %0 cli 1414 C) LD M .--1 LD lD 1p aD LD a1L 4dM LD .--� OMN r' r' '7''D Lo 1- -LN .-1Md M � Nd' NO � Ln � H� LnM r- C) H L�F LO 01 N O M N N M N H r-1 e-1 •-L H H .--I .--1 r-1 r-1.--1 r-1 L-i N i Z \ •--I H rd 4 , v N 0 - - HM N 010000 LO N r�LO O0 LD 00 Nt 40 O1 CO M r, LD O Lo LD O lD N Cl) co N N 1� N N LO al d LO Ln O .-, LD Lb n Ol N O LO 61 '--� m lD n M co w N V •-� N r- N r1 co 0) r-L 4 00 LD 01 L o V co n 01 O LD M " N i Z LD N�' N W N co M Ln � M N .•-L *-� �"� '"� H ri '� N '~ '� '� N N N •--� N'--� '""� N N N N L"i •--� r-L 0 N - - OO LD N -4 01 M LD L0 LO Lo V <Y M Cl) N N rl ri O O O1 O1 01 00 00 n n n LD lD Ln LD LO M CO Cl) N N N r-L CIO M co 00 00 t- t- r-� r- n r- n r- n r- r- n r- r- r- LD LO LD LO LD LD LD i0 LD LO LO LO to LD lD LD LO LO LD LD LD LD U O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 000 d i O O O O O O O O M LD 01 N L.D 0, N Lo OO -4 A co O 'r LD O1 Ln Ln Lo cV Lo C0 ."-L r-t- O M LO 01 N m al O O 4- O O O 0 0 0 0 0 0 0 0 �--� �--� H N N N M M M Ct d •� �' n ^I� CO aO CO O0 01 01 Ol 0 0 0 H O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 �•-� '"'� ^'� co ko U] ri n M O l0 r•i� n O N LO n O M Ln Lb O M lD M .�-1 .M-1 N N N N M M M M V LO Lo Lo LD LD LD LO LNiI 4- N M cY Lo LD LD 1- n n M M M M O O• O Ol O O O O - ,� N N N N N N N -4 N N N (V N N N N N N N N N N N N N 41 u _... Ln W Ln CD to eq OD to LD cr •---� 1� M C:) .D --� W M O1 LO O LO Nt� M Olm t LD Lo In N co CO O1 u70 LO N W ' -1NMM V� Lo LO Io i� � Lo LD LD I- n M 00 Ol O O H ri N N M �' LO tf7 lD LD 1�n tb O 01 O O -4 �„� ,� � .•.L r-L .--L .--L N N N N N N N N N N N N N N N N N N CO Cl) Cl) Cl) M �"� M Cl) co M CO M M M 41 v In M Lo Ln Lo Lo Lo .D LD Lo t LD LD LD Lp LD co LO LO aD LO LO LO LD LD LD LD CO LD t0 Lp LD co LD M M M co 61 at to 01' +� 4- r-1 O r-L O r-"1 O e-i O r-I O •.--� 4H H r--1 r-1 r•"'1 .-� .-i r--1 1 H r""L 1 r.--1 '.r--1 1•.----L V. d.•-1 Q H d d n n n O O d ri O -1 H 1 N N a M M M M M r1 Co -1 -i H N H H H .--� H .--� .--1 rl H H r--1 L•-I .-I e-1 Ln V M L0 LO LO LO LD n l0 Ln r� Ln LD CO Ln Cl) M LO to LO L0 f, n LD LD LO OD co LD to � N L N r-L m M LD LD c0 O r-L 01 M N M O M Ln d ko N r- of M CO O r" co Lo In Ol M � O1 Cl) V al Cl) �--L M O1 LD M LD M ... L - . r1 O 00 Il LO Ln to d d- ^ O M .0 n M O M r' I� t0 00 I� lO LO V M M Ln LD Ln V Ln I� i L i L i L L L 01 4- 4- i� •-� N .--� n m Lo O M ap m Lo t0 .-i O d LD LD w d- O C M LO t- L•"-1 N d a, LO zo m M rl 61 C>co .-L O LO m Ol K ^ r1 Ln N H O '^-L Lo 1- Ln O 00 Q1 LO N N LD N LD , H co O �t lO l0 Ln 1� i� LO Ol L--1 t0 Ol 00 l0 LD O 1� M V M N O1�P N d; L17 �. LO LO �Y d LO L.D M N Cl) N �-+ �--� Cl) .--L M N V' M V V M N N N .--I H N M M '-L H N.--L .-L N Q M LD rL Ol N \0 Ol N Lo N Lb r Ol O M L1'1 N Cl) L1-) 0) N LD O en L r M O d •-L M L o lD M O 1� n O Ol M LO '-L .--L r-L O H N M LO ,� N M LD N N .-L O M •--L M t- n � Ln ID n N M L--L LD Ln M O O LD t 1-- a0 co LD H t\ n OI N M LO C't co O N O 0 "F"1 O 00 LD 0) LD M N M N M L--L O f-L ."-L 0 0 0 0 0 0 .--L O O O .--L K Qi U L O L _ U H l0 61 n In LO tD t- N O lfl l0 '--L Ln LD m Lo LD H a0 V N O ,p U L .L-L L O N N n LD LD LD co LO N l0 N H O LO M M DD n N� 4- L .-L r-L LO, c{ 01 01 H O LD 1� M LO O O I� d' LO .--1 M OO M M M LO O LD .--I r\ O O lfl O LD LO d" N r .--1 OO M Lo N CO yO L N O LD � Q M LD M M N n LO LO �Y O Ln � M �Y Ln N N � N N N N rL r-L M LO Lo to M LO LO d M tb � n tf) 1� n M O1 n � N H H .-1 e--1 4) H O Z W tS) Cl) �--L O Up 1, Lo d N O 01 n LD d" N (n 01 00 LD Lo M H O LA 1- LO r- N O ON n LD d M ko Lo 01 M LD LO CO N N N O �-L .-L.� H O O O O O O O1 Ol Ol D7 Ol Ol Lb M OD M O co f]O n t` n t\ t` LD lD L1-) LO L!'.LO Ln LD V' M M L 0-+1 L r•1 r"1 N M tL7 lD f� OD Dl O —* N M LO LO n co 0) O H N M d' Ln LD r- 00 0) O r-I N M L 7 CL L 41 4- L N C`M� LD LO n M 01 O Ur N N N N N N N N M co M M M CO M M M M M W d It � Lo Lo Lo Lo Lo LD LO L o Lo Lo LD LD LO L0 LD L C) 0 0 0 0 0 0 0 - O O O O O O O M O O O O O O O O M CV O r-I O O O O O O O O O O O O O O d O O O O O d O O N O O O O O O O d O O O O O O O O M Inc M p d O O O O O O O O O O O O O O C 0 0 0 0 0 0 0 U I O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 1 BUJ 4- O1d4- V- 4-4- 4-4- 4- 4- 4-4- 04- 4- d4-4- LD Ln CO 4- 01 N 0) 4- O4- d 4- 00 -3 W �NMNM MN N O Q) LD r 4) O) N O) O) N OI N N (D LI) Q ) n! D O M O O Q (n Lo N Q O Q O Q O M Q N LO N OO 01 N d 01 C3 ca• - 0 0 0 ..._. /n � � rnLn � O �O � � OOOO � � Or �O (`) �.nd ? rMr = �0 = �0 = �Od = NMddin r0) c7 O I rLO 0) Lf) r .--1d N 01 N LO Lo Ln O co O Ln d LD L0 co ddMr1dMOm LO Ln l0Nr '-1r LD 01 LO LD co OLD co I r-L .--1 l N r•1 .--1 r OOO - H N.-� .-a .--1 LV • • OO M 006 Lr 4 � N 00001 Mr r - � - M �00MN N N H .-I N H N N N N N N N Cl) N N -1 H N O Z � v N H O O Ln r�--) co Cl) 0 00 N 01 LD 61 LD co r N 01 N d r M co LO Ln d LO LD Lo N d O .-i r"L d Ol O r CO d O co d M H Co r r H p v M O N r LO co LD N Ol M O N O N OD M "-I '--� '� '� r OO r O O M co d M N d LD d Ln LD d CO N N M d d M LD d N N N c`) M H M d M cV M co M N N a Cl) . ri r--1 O O O O 01 Ot 01 a0 OO OD co r r r r LO LO LO LD LO LD LD LD d d d d d Cl) M M Cl) co LV N N N N Ln Lo � lfl LD lfl l0 LO LO Ln Ln LC) Lo Lo LD Ln LD Lo LO LC) Ln Ln Lo Lo Lo LD LD Ln LD LI) Ln Ln Ln LC) Lo Lo LD 121 L.0 I.C) LD Lf) L() l.[] Ln Ln LD U - O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C3- M LD 01M L001N LD a0 '-'L rOML001 N . 01 NL.[) . . d rOM 1001 N LD Dt N LD -4 � dr OM LD 01 N Lo MCl) LD Ln Lo Ln LD LD LOrrrO0 OD O0010101 OlOOO .--. . . . . . . . . . N N N N N N N N N NNN N N to 01Hdr m N Ln rO Cl) LD OOHd r01N Ln OD O Cl) LO 00 -4 ML001H 1D 01 NdrONLDrOMLD co C) . Ln 4- l0 r r r r CD CD M 01 01 01 01 O O O O H r--1 �--1 N N N N Cl) co co c d � d d LD LD Lf) Lp LD LO LD r r r r <D M y N N N N N N N N N N N N co M M co M Cl) L". Cl) Cl) co Cl) Cl) M Cl) Cl) Cl) co M M co M M (") M L") M Cl) M M M M Cl) y v _._ N W N 00-It 01101--L L0 NOO d OLD .--Ir M01 Ln OLD N 00 M 0) LD CD %.0 N r M 01 L0 O LDNrM01d C> Hr CO co N 4- I OD M Q1 O .--1 H N N Cl) d d to 11.1 LO LO r aD M 07 01 O O H N N M M d d Ln l0 l0 r r co OD 01 O (=) '� `� N N y I M M M M d d d d d d d d d d d d d d d d d LD Ln LD Ln Ln Ln Ln Ln LD LD LD Ln Ln LD Ln Ln Ln 4.0 LO klo LD k.0 Lo y v N H 01 L LO 01 Lo LD M w M w W w 01 w to OO LD at 01 LO 00 O LO lD LD OD LD L,6 L.6 OO LO O0 LO OO LO LI) 00 LO lD D LD LO LO LO LO r-1 r rH-I rH-1 .--1 1-1 r-1 rH-1.H-i .-1 r-1 I-1 H.-1 .H-1 H•--1 d ei r.-L d r-1 r d I r d d r d d d d d `- r N Nd Ho o o o d d r d d HHH C\j N N d d d OD LD CO L0 Ln r r r r r r 00 r r r LD OD OD LD r r LD L0 LD r LO LD LD r LD r LO r Ln LD r Ln LD LD Ln LD LD LO L0 m . LD L'b r tD N N d N N H N Cl) d d N 01 00 LD 1--)01 '� r op r r r Ln O .•-� O N a0 r LD O .-. .01 r In LD d L. _.... _ . H r--1 .--I .--1 .-1 O O H N d LD LD N NNN M c') M co M C') M M M M d d cc') C'7 C? M N d M M M M M M M M M N > LF I I I I I I I I I I I I I I L I I L I I I I I I I I Q v I LF 01 LD r N O d o .--1 LO 0) C") M Ln d d 01 co M r N 01 r 01 LD M C:) Cl) Lo N O) M N LD d d LD O N H N O N d ... dr d LD d .-L 61 0) r r LD O (n d �--L H O LD M r O .--L LD O N O lD O o0 Old N OD H r 01 M O LC) O LD M LD Ol Q v N '--� .--1 N N N N �--1 N N N Cl) .-L '"� N N N Cl) Cl) N N N Cl) N r•-1 N N N N M N N Cl) Cl)d d d Cl) N Cl)M co _ -1 d d H N CO Ln 01 01 H N M 01 LD co O co r LO c^ Ln O LO O L,6 00 d co Oi N MrOdHLn LD Ol LD d M co OO Ln N - - _.... � W LF W Ol co N r-L r r d N M N co M LD 01 LO 01 co M LO M O Ol O N O Lp � r d 01 l0 N N O r 01 O CO co O d d L0 r co co O m Ln H N d d d M M N �--1.--1 N N N N M Cl) �--I N H N M M --L Ln > +� CrCD ,--L r LO MLn mt Ln Lo Cl) LD d LO CD, co r O Lndlp r Ln HLOrM H r-1 p U I 4-3 1 r 01 Ln 0) co O OD W O Cl) O co O r d d I a L4-/1 .--) O7 r c') LD O d L. d r 01 LD LD O Ol r M M LD O tl1 d OD LO r r Ol LD r O M r .--L O w d LO LO L0 O m d LD O LL7 Q .d-1 r M-1 r 61 d LO lD �-L 01 r M M .r-1 r-1 01 L0 d-1 Ln LD LD 01 0) d 01 .N-I OO r O0 O a0 LD OJ M LD L21 LI) co O -4 LD CsJ N C O) H X01 OO LO LDMNOCO r- LO 1.0 :t Ml---1 Cr,Z LL I t I 01 r LD d N •'-L Ol OD lD Ln M -4 O OD r LI) d N O 01 r LD d M . I a-1 n N N N N N LN rl .--1.--I H H rl .--1 0 0 C) 0 0 0 61 01 01 01 01 01 co co co OO 00 OD ao r r r r r r 1p LO LD LD L0 Cl- - H N M d LD LO r W 01 O r-1 N M M d Ln L.6 r M 01 O H N M d Ln L0 r ap 01 O rL N M d LD Lo r L 3 d I O)4- I l.D l6 r M 01 O Ur U p v LO L0 LD LO LD r r r r r r r r r r OO L'b M M M!b M M M M OD Ol Ol 07 Ol 61 01 01 61 Ol T O O O O O O O ._�_. CD 0 0 0 0 0 0 0 0 0 0 0 0 0 U x000000 M a0`F- CD d D ) 4- OO t!') N v i0 l0 C .� O ' p ' 01 NID r- lD n n O M -4 N lD Z � v VI O . � r1 O O N CA O N O N � •--1 Oi M � M � M Cl) N � N N M C> CD C> m C N N Lo 'n N U 0 0 0 0 0 0 0 M d_ m N N O n U V N N N N t0 l0 N a0 -4 M N 4- 00 a0 01 (J, 61 01 O 4 M M M M M M -4 y N W vl 4- M d Ln Lo L2'I L v l0 i0 tD l0 �D t0 l0 N }.� t0 i0 a0 " V a0 a0 -,O 1- co co 1- n m Lo M lD 01 N n N N pl+� 00 01 O N l0 "D I� � r. .--I 01 O �--1 r. CO . > dE (o N N d' to •--i N Q _... ° co M 1.0 OO N N n a0 �p n W 01 N co co N d' lD O ri .--I N U O H n U m O co d' O LT N r1 W�D O co d' CO or 4- p N > CO .D �._ Z D1 OO N co N O N N u9 N N ~ Q p 'm O .-i N M d i 7 O.- N U' of U 4- 4-- 4- 4- 4- H N N 4- 01 4-4- 4- N N N N C) N y N N N N a) r..l t 6 O , ) O(U ID O CO N O O 0 D O Ol C C C C C C eT to ?Ln M ZD O O O X 0 0 0 5 0 0 =5 . 4 Z_ O 4-4- 4- 4-4-4- 4- 4- 4- Y- 4-Ln O Cl) N N N N N y dl N N N O) N O N N N 0 0 C2, 0 0 0 0 0 0 O 01 lb GO 0 1 H C C C C C C C C C C N = O v O � N O O 01 4_ 4- O Ln M 4 4- 4- 4-4-4- 4- Ol 4-- N E LO L9000 L.0d � � OO� L� tO� m O D ON OM +� Lo 0 0 = ? 0 0 O O O O O O O O O O O � O !) a_ L L - O O O O O O O O O O O O O O O O O O O O O O H O O O '•"�O r1 O O O O ..o O O H O L0 LO 1.0 O LA O U H H '--� ••--1 .--I O O 4- o M •--' 4- 4- _._.. m N N N N N N N N U) d N to O � LO Lf) OCM �n co lT � 00p= � 0 �� _ r— ... 73 0 O O O O O O O 1 d ^ d ' T 4-) O O 4-4- t0 lfl LO O 4- 4- 4-4- 4- 4- N 4- 4-4- 4- O 4- N O Ln Ln N "p N p N p d Q) 4� 0 0 0 0 0 0 O O O O O M H �"� O O O O O N O M E U ^ E lL JF 000000 C> 000001 .--Lt OO100oLn 001 co Cl? Cl? N O O O - 4-4- 4- 4- 4-4- 4- 4- 4- 4- (7) N n 4- d 4-4- 4a, d' 4- L" N N p aJ N N N N N 41 4) N N N LU 1 Z 0 0 0 0 0 0 O n 0 0 0 O t` l.n O f� 0 0 0 O O L9 H C C C C C C C C C C C Ln Ln O C Ol = _ = H = O O O O O O H H N O y 4- 4-4- 4- 4-% 4-4-4- 4- 4-L- W M LO O p O)n N N 4) N N N 4) N C V C2 -C 00 � � � ppOOLO CLOOOOLC') � Ln Of C C C G C C C C C C C O .Ln-1 .N-1 O O O N M yo l7 co Z i r-) CO LO GO O lD 61 t0 O 1�N LO 0. l0 O r-I N t\ M � H i ao n LO N O N .-� H d' LO O 1-- LO d .--L H Ol LD � m H V LO m m M N H f� N 61 t\ l0 M d' n n •--' •-� LD M N n ' O i O L � LV .-1 r-1 .-L .•-1.--I H N 49 N r C N C C N N N N �-•�N N N N '•-� '--1 l0 ID LO .H-I l0 •--i.-� .-y 1� .--I L� E r co 10 Q n- L L/) U N L _.. v ' Ln L� 01 I� N CO ko M LT M N 00 O L0 l0 Lo CO V N M .r M Lo N � 21) +O_ � f� � 61 CON LOdCOOCO OO r-+ IO � Ln � MHOD � O) 01 V) N d' N M M .4 V M M N M V �Y�Y �Y V Ln .Ln L� l0 N Ln N CD c 3 d o p p r +1 o _ O 41 Y O O O O O t` LO LO �t LO LO N N M CD k LD a0 .r•. . I� LO . ". .--I co LO M L O N Ln L _. Ln N ' O a OON - H H Ln LO co N LOnLON N Ln N 0) LO --� Mrl 41 yOj ON-4 0 O R N N Cr O O OD d• d-O W � Cl) O 00 Cl) Ln LO 00 r- r-1 H LO M H O O l0 M N N N M L0 Q LY '7 H H (D D () O O O D O O O O O O O _ Q 0 0 0 0 C.C. C. C. C. C. C.C. C.0 C. C. C.C:) O O O _.. Q o 0 o E 'n C O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O Z ...i v) O lb +, f Q Q L O O O O O O O O O O O O O CC O O O O O O O • z Clf .--L O F N O U 7, ^ p m o �? -' E .-. C D H O F- L .�C 01 H O O O � N N I� N 0) d- L27 L0 LO Ln LD LO d LO LD n co LO CD C) C)CO M Ln co Ln O O O O •-. 0 0 0 0 0 0 0 0 0 .-j O O O O O O O W O LO - . Ool� wl- h- a � ,� Ev E vim "'' E3 -'z 0000000000000000000000 Y O 01 J W W U Y N a) -o - q U 41 {/) Q) O O i 4- LO LO Ln LO ry LO LO LO Ln LO Ln Ln LO Ln �"' LO LO LO LO LO Ln LO In 1 .. .. .. C 1 to C t L O C N +� 419 C O +1 E O O ' ~ +) O) N - O Ln LO d N .--L O cA LO H Cl O O +-) U rD • C +� ' L Y LO X O N H O O O O) Ln d 01 L Z Z C N •• J� D 1- lL L t0 N Z tea +� �-• ' d' �f d-<Y M N '-'L .--. . '-1 N N N N N N r-L ...__ N O �--� V H' 1--_ L N N f6 > L i A-� N LO Cl.L1 - Ln Q CL O N O > d 4- C) H N M d' LO LO n M M O r-I N M d Ln LO n co Ol O H L C 0 r L O L1 LL a O l0 3 O .-i ri H H H •� .-i H H rl N N a' 7 U Cl- Ln J U U U Z W W ' 1 i i i en 14-4- 4- � `� NM�F 10 C*) aONM 0� .--I O) N N N 0) � .--1 O0Nppppp� � � ^ d COpp0l Ln Ln 10 o .--1d 10 U N N .--1NQIOC; p O ("J p Cl p p p Lrj 01 p p O .--I C N C C C C C N N N N N N ? = N N N N N N N N M N 10 10 C C C C C Ln Ln ? ? d M N =N N = = p p p p r--1 Z N4-4- 4- 4- 4- 1010 Y- 4- W 1� M 4- NLn .--� � O Ln M4- 4- 4-LF a� MOp 01 r10 N4- 4- d Ln 010 OlMM d •--110 O N N O) N 0) N N N m .--1 O r1 r-1 01 r1 10 1- t\ 10 10 N N N 0) N C C C> O OOppp 1001 pp01 � n � p001 lfl pOpppMdMONdpp ) C >= C C N N c = p p p p O p p .°. .--1 N 4- 4- d N N -O N .--1 M Ln Ln p N OJ .--I N O d 4- 4- r1 4- O OD 4- 01 4- M 4- 4- 4- 4- �- .�-1 .�-1 .M-I e--I N N •--1 r1 r1 H .--1 .--I .-4 Q) E MLn 1pdtO Ln N c(l) NMI--1 .-i N� oo - 0 � � 0000 � .C3 p p p p t- ice.. O O O O O O c ?O ? O O O ?O O O ? O = O = ? ? _ O O O O O O ? = 0 0 0 0 0 O O O O O i i i N 0 O O O O O O O O O O O O o O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O of r-+ .--� ..-- .--1 ,--1 r1 10 O lD O M M 10 M M M M M 10 10 10 10 r1 .--1 10 10 to '"1•-� ^'� •--� ^� 10 r+i O r-1 1- Ln dI� 01d 4- 4' d 4- M 010�NOO w .--1� C7 O) N 0) N � d co LOON X01 Ln 101-- w NI� 10 Ln Ln i pd•2 r11D4 01 OD I� � � Np01 .--1� p1000p 10 pOppOpp10011� OD O [Op001 WI" M10011M �-1 ... Ma0t- 101- 10 ? = d ? LndM ? MdM = M =M = = = = =MMMdd M = = dd MdddLndlO N ^ d �} NNNN4- - 104- 010 d4- 41004- d4- 04- 4- `�4- 4-ddd 1Dd d4- 4- 00101041010100010 a0 01 U) d d d d d d Q co '� M M O M M M Q M Q M p Opp p M M M M M M Q Q M M M M M M M M M M L _ ) C C C C p p D_ d p = _ = p p p p p p p p O C7 O O O M N O O O d M O O d 0 '� Ln 0 0 0 0 0 0 W N d N O O M d 10 N d1 M'10 c- oo W Li y.p M O O O o 0 1� �"� O o O LD n 0 10 ^ 1p O M Ln d O o 0 0 C, o M O n d I� 0 C, CO Ol O 1m 01 O W Ln 10 Ol v m Cl) d O O N M M O M N d O M Ln Ln 0 0 0 0 0 d M d N M M O O N N M L") N M N N M --1 Lo 'I- � O � N� r-1M N4- 011014-4- 4-'� 4- .-1 Ln .-1 r1 a0 O4- 4- 1010001 NLn MOON • 0) N N N O) .� p p d' d M w 10 LC) w W 1- LO U 0) N 0) N H O p O1 LD O p r-1 O 01 p p p O p O w OC) M O Ln d' Z Ln p p p p p N I� p p .-I O C tp 01 01 C d O n C C C C C .^-1 .N-1 p p •--1 .M-1 rd-1 .H-1 N •--1 ,...1 rl C C C C C 1� N C C ,_..1 �.. U N O p p p O N N p p N N r1 p p Z d4-4-4- 4- 4- 10004- 4- M Hd �Mf� N � NM01 N N N NOD Ln N �--100 40-) "q 10 d1� Md Ln M 10 1 O M Cl p � p r, H p p � O �H-1 C M L1 r, c O t` O p p p p .M-1 .�-1 .d-1 t` rM-f .d-1 0 Ol DD DO O^1 ld0 n L Or Ln C C C C C H M C C M O m 5 5 N rl => U) r 1.0 10 � Z � LV d- H 00 00 d d d 01 1� 10 O M d aD 10 O r-1 1� M O lO 01 M r-+ Ln O n 10 61 l0 NON d 1� M 10 r-1 01 .-1 aD r d 00 � 1p 01 N O d O Ln d d M 1� d N N M M � •-'1 M � '� '� "'1 "'i '-� N M M Ln M M Lo N N Ln d d M d Ln i Ln Ln aD aO OIOdW � d W 040 r-1MMMLnM Ol 10 Ln Ln rlMMd M i- Ln '-10010 Ln N Ln Ln Lndl� d l� M --1 H.--1 .-1 r1 r-1 10 10 .--1 .--1 10 10 lfl •--i 10 1� 1D 10 10 r1 r-1 t\ n n 10 n t\ 10 n Ca Ln CO M 1� LD .-1 LD Ln M .--I CO H d 01 N l0 10 Ln N d lfl M in Ln •-1 Ln co O .--1 00 d O r1 M n d O O Ln LO N L9 cl� M C .-1 LO N .-1 .--1 N 10 M r N LO 01 O 01 M N 1� 10 d d d N co 01 1� OD aD 1� O N 01 M 01 l0 N.--1 . N d Ln d In L. d d LO Ln M (V N M N H �--1 CO r-1 M N Ln CO Ln LO co N N N e-1 N N M d 1 Ln d O 10 N 10 01 O M L-1 CO 00 .-1 r, N 01 O 1� 'm O . Ln 01 00 r- O1 O1 d LO N r-1 n O N O N O n CO LO N d �-•L � 01 O d d 1� N 01 Cl) N O O O 10 1\ .�-I N N N CO N N �--1 .--I M N co N N N CO M N d d 1� O 01 N co d co co N LO '� r-1 rl ri '"'1 co 10 C3 H N e--1 .--1 e--I r-1 r-I ri CD r1 N N C> .--1 1= N r1 r1 CD CD O O O O O O O O O c:, O H •--� O .--1 r-1 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O o m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66 . . 0 o O o O o 6 6 0 o O o O o 0 0 0 0 0 0 0 Ln u O CnU 10 Ln Ln Lnd dLn lO lOd dddddMMLnM Ln Ln Ln Ln LO l0 n Ln oo LO Ln L.n 10 In d In lfl d 10 Ln oD 1p O 00 .--1 1- O .--1 ,� p 0 .--1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W 0 -O U ^ i i . . ' . . . . . W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W w W W W w W W W W W 7 M . O y E W 4J W _ O O O O O O O O O O O O O O O O o O O O O o O O O O O O O O O O O O O O O O O O O O O O N lJ I.n H'..� H �--I r-1 Ln LO '"1 LO LO Ln Ln Ln LO Ln Ln Ln Ln LO LO Ln LO LO LO Ln Ln Ln L.n Ln LO Ln LO LO LO 1.n Ln Ln Ln Ln Ln Ln Ln LO i v H .--i 01 00 10 Ln co N N N O LnM .--IOCO1-- LndNO011, MdN .--1O1 wWLnM W OMnLndNO 'o 10dM O Z LL .-1 .--1 H .�'4 O O O O O O d7 01 O1 01 dl � O LO f0 CO RJ a0 W f� n t\ t\ n t\ LD 1O 10 10 10 10 Ln I.L") L27 Ln Ln Ln d M M C �"'- 0-Y d d d d Ln Ln LO Ln Ln Ln Ln LO Ln Ln 10 l0 lO lfl l0 L C a 0 4- N N N cV N N N N M M M M M M co M M co M d d d d Ln 10 n M 01 p .--1 N M d Ln 10 n V0 01 O r1 LV M d i N C") N.--1 M Ln N 01 N N n O H N 01 d d 01 O Ol Lf) 4l O n M M Lo M m n N CU N N p � t\aDMMO01 aO LO � Mddln r-1 t` C, C, C, C, � NOOOlO M LnMd �--� dt\ pppppao Old LO NMN U'�d- M C7ddd' d MMNMMMC, NNm NdMMNMC") d NN ? = = = = MdN H .. Z r1 r- .--i t\4- Y-4- 4- O In CO r1 Ln O d Ln Ln l0n O.--� O01 Ln � MI, �dCAMdMOdLO Ln LD N CU N d d p LO lOM CA 1� Odd pdH M 0004 LO N LD L0 O NM pMMpp01d0 i lD l0 GO DD d M N n n O c"; 01 lD M Ln I p n N C'V•--� N r1 H .--I H.--� N H •-1 _ ".� N `"4 ^ H N N •--1 H H rl ri H .--1 H v O O1 4__ Ln M d 1`O r_ O M .-1 Ln d 4- .-4 N 4- ' p i Ln l0 1� n 4- d CT Ln d d O O n N d O O O t\ H O e--1 .--1 e-1 r1 r1 .--1 r-1 .--1 p p p p p N .--. N E Lo ko•-, N Q� 0- NNN N N �--t r-/ .--� H r-a .--1 N •--� - _ p R L O O O O S= O O O O 0 0 0 0 0 0 0 0 0 0 0 0 S= O O O O O O O O O O O C O O C 1= O O �._ Ln [1 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD 0 0 0 0 0 0 0 0 O O O (:D � O C> M M tD LO LO LO LD LD U .-1 O H LD LD •--� '-1 H r-I .--1 H e--I r-1 H LD r-i -4 O r-C .--I LD O O •--1 LD LO lD �--1 O O n 61MN� GOM OaOOdMdOd Lo O r, Lo LD � t\ OnO0001O a0 LO Ln it` d (U N NO Wd L C'i rC GOO GO NLD MLO d1� CT O DLO LD LO GO M O i MGO [0O pppp � d � dlo O Md :(DL) �Oco",O r Ln p LD dLp V2 dLO LD LD LD LO LOddddLO tD d LO I'D ddMgt ppppO _ M ^ M M C) Q M M M Cl)M Cl) CO Cl) M M M 0 M M C:) p p p p M M M CD Lp GO a0 4- LO M O CD O a0 C:> LD d LO LD O O LO co GO 4- N N LO tD N LD GO d d d LD 4- N d 4- 4-4- 4- 4- d LD N _ 0) MMMMQMMdMdC) C) Mdd c c p O p => d [1 p .--I Ln 1` 1` GO M H GO N d Ln LO 01 n O r-. O M 01.-1 N n O N M 01 M --I O O O O O O1 D1 M d M O co Lo O n ,--1 N M LD O O O O O O O M Ln Lo N N .--1 M �t` L1') M .--� GO M 01 .-a 01 LO d LO O Ln iD co LO B c) a0 01 dd M N N O '7 d co co L!') M N M d d M d Ln d 0 0 0 O O d co l.C) .-� M N Cl) M N N N N . N (h co co M co M N .-L an � dH � OMOLD Lnd � OC71 Ln t- M NL1) 1� MC) � NH OLn.--� LONnOd •--1 LD CA l04- 4-4- 4- 4- .--101M N N N d 41 C-i 00 ' U H O O1 H d �--� N GO N •--i LO .--1 n CD p d �--� d O H L!-) M •--1 '-'1 .--I M .-, d CT p p p O p -4 M M r- Ln co N t\ l0 H N .--1 W co 01 H d r- O LD Co O C co Ln H l0 M Ln co .--1 01 -4 N .-1 Ln O C C U H N Ln N N N N .-1 .--1 N H N N r-i H N '-/ .-1 O H H N N H N -4 N r-1 N N N •--1 � � � N M .--I C)r H (T CD tD LO OD O 01 DD t` 01 M a0 n 01 O C� d l0 r1 4- d Ol t` d p Ln O M d •--1 d MCA I� 4- 4-'�4- 01 Ln M l0 • N D N N N ' Z ' ,--1 CD d d LD Ql M 01 f� Ol M t\ p p p p p d O O ••-C co O.--1 O 1, CD Ln M Ln O 01 01 01 U Lo m n H n e--1 CD N M •--1 CT GO 01 L1')lD 01 lD N 01 O .N-1 O N O N fe--1-1 �D t0 lD .N--1 H rl H r1 CU ■ p N '-C N co d M W co o O 1 D M O 1 f` d O O f-, Z Lp In MOId LnO �LC') iO Ln NLD � O � Nt` MMNLn aONM r-1 NNMC dlco (�j d t` .--I N N d Lo M Ln O O M CT O GO LD LO N C, Ol m LD O N N O r'1 n N GO N to N H rl n O Ol co O DD N n Or a0 d CA I� Ln CA Ol O 61 Ol O Ln M d 01 01 Ln co C-- N co M Ln -N Ln l0 d M d Ln d M d t` 1` 'D LD LO 1-_ n LD 1-- n H LO LO t0 LO d LD n LO LO LO l0 d d LD r•-1 .--1 H .--1 H LD l0 d G~O N N 01 N co d d Lo GO d 0 01 0 0 0 LD �"'1 d N GO M O Ln N N M d 1- O d 01 GO d d d �O N O m co 1n I o w n d co Ln 1� LoM O O1 n a0 LD O OI LO MNNI� d co '-IN mMto .--1 GOM OO Ln CD Nlo 1� 01d 01 LO GO Ot . .--I N.--� M d N .•-1 N N N N N N N M •--� H N N N CO M N N N M co N N N M N d Cl)N CO M d d d Cl) co co M O I� M n Ln d N LO LD CO co O GO LO LO .--1 LO Lo lD Ln N N d n Lo O r M d d n co .--1 D1 co d M N 1% 01 N co .--1 GO GO M L1-) O O1 LD H Ln N n O H 1- LD d M co co M Ln 01 1.[) 1` n M LO Lo H O\ -4 co r-1 Ln O 1- N LO O1 M N o N d d N M d LO Ln Ln Ln Lo M N N N Lo LD N d d H 1 H N N�L N M N H N N N N i r 1 H N co M 1 co LO O .--1 N ri .-/ N N H .--1 .--1 r-1 H .--1 N N N N .--1 r1 N rC .-1 d co d N N Ln N N M CO CO N M d M GO LC')d d M N N I..C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O r�l [Y m U O Ln Ln d Lo d L[') d LO In d LD LO LD LD LD Ln Ln L!') Cl) LO Cl) L.0 tOdddd d dMdddLnMMLndd �0 � Lndln 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 i ' ' W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W Yp d Y E W W O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O L.n U O O O O O O O O O O O O Ln Ln Ln In Ln In LO LO Ln Ln O .n Ln L Ln O Lo Lo Ln Lo Ln Lo N v Ln Ln Ln Ln LO Ln Ln Ln LO Ln LO LO Ln Ln M Ln Ln Ln Ln Ln Ln Ln Lo r 1 H rC 01 O LD Lo M N O O n L.n d N O O1 r � � t � 01 n l0 d N H 01 Cp LO Ln M .-1 O a0 n Ln d N O O1 t` t0 d M Z W y> ^ N N N N N N H .--L r-1 .--1 .-1 r-1 '"� O O O O O O 01 01 CT 01 O1 01 OD CO aD GO O co GO t` n n ^ ^ ^O O O O O -1 N M d Ln LO 1� 00 m O CD N M d CS ♦0 1>1-4 L [1 N L Lo LO t` CA Ol O .--1 N M d Ln LO t` M 01 O H N M M d Ln LO t` co CD 01 O Ur U p LO LO LO lD LO t\ n t` n n t\ t` n t` n M GO CD GO CD CD GO GD OO CO CD CT 01 O 0) 01 01 O 01 O) 01 O O O O O O O co lr) M •--I N U �n d .-� o DOOM O '-i d. Z 01 N l0 Lb t0 v � N 1� In CA 4- 4- M LO -4 o N N o � o 0 � o 0 0 = o 0 O O O LO to 0 0 o M = ? M d 4- 4- N d p1 co M M Q Q M M C C to O 01 O O .--1 t17 co LL- v d d o o d M V1 ' L0 4- 4- N M U a00M u eq, d M Lo C)r 1 Z , N t.[) a, N CO d u N 10 O O O M M U CO I- M C C L0 O m , .--I .--1 r-1 •--1 N Lo N O Z � O l0 01 N d 01 cD U d M M Ln cn CJ C l0 �0 l0 r--1 r--1 l0 l0 N M d 01 01 L0 t0 M O 01 O I— c- ' M co, N N .-+ � Md N Or 5 � N N M l0 _ O co co 't l0 �--� M N ._. O O O �--� .--� O O O O O O O O O O U O H n U d QO co dd r O O O O O O O O �[ W W W W W W W �1 OO t U 0 0 0 0 0 0 0 N �1 � � Ln, Lo L0 H � 01 M t0 N O O Z LL M N i-. t0 to Lo Ln Ln O 0c�- I p O O O O O O O O O O O O O r- O O O 00 00 00 p -'' O O O O O O O O O O O O O O N O O O U O O O O O O O O O O O O O O O O O O O O O O 4- 4- 4- N v7 i � � �0 C m 25 Ln im �..1 C C C C C C C C O M 01 O N M a0 01 O rr d n N m W W O CO d' W C:)- C6 d- r-- W O1 C>- Co. o1M N N CV r� m l0 � d O 01N W r� M Ln �o W NW ON �--r -4 Cl) r•1 N N -4 rl ri M ''A v N 3 O M O r- N 01 O M N n r- Mr- m N O V W dt M W M r - r �0 co O1 O W O n l0 l0 01 l0 co N c} CD �n r� l0 O n t` N Cl) �t �n n M a!') � •--I m In ri N_ r�•1 O O O O O O O N Ln W co w O t0 N O1.n O O O o O1 co M N N U N N N N N N N N N r•1 ""� '--I .'-� r-I ''� r1 r-1 r-1 r1 r1 '-i '--r to L Ci 4J .-•i In GO r"r t` O M %0 _ Nn W n O M t0 01 N m W Ln Ln 'n t0 l0 l0 t6 4- O O O '-'�"'� �"� N N N N M M M �Y Lt . E a 0 0 . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C. L r-r C t� O M t\ O N Ln W n O M l0 00 42 V7 4- 0 0 0 2.--1 ri N N N N M M M V V � � � Lr lD l0 N O O O O O O O O O O O O O O O O O O O O O O L v In > r ^ Cl) O u. M01 LO I MO Ln O r, M OI W x400 Mme .--r .--rNM o Vr4 OO � N NMd � �n � � � n co OI OIO . 0 0 0 o C) O p p Cp p C� p o p O � L i v L N !0 F-- Cl) T W W Ln M Lo Ln M O1 W Ln M WLo W .0 w w W Ln Ln Ln L0 00 M O1 `~ 000000r- 00r- On � -t r- 0000 d � �-r M N M M VI 7D i ri e--1 �--1 r--1 .--1 '-•/ e-i r-1 e-1.--r .-I .--1 .--1 .--1 r-1 rl rl rl rl rl O 0 L (V O C a) C N E n n r- i l0 n N'-1 --� N W f� '�-1 .N-1 �0 l0 lO r� 4 -4 r1 .--� d r L In m R Q d W U i VI i -0 in r1 r M O W C M CO O O 01 N V 01 co CT t\ O N `-� _0 W 40._ ::D l0 l0 l0 n f� W M •--� �---� N M � co "--r -:I Ln M •--� N •--� `"r N r-r c 3 r y CD o o _ C Lo O O O 4- O o M W � N O w rl �' W r-1 O O W O1 O V '-r OLnM L ONN a [Y ^ MtOW 01w OLD OW OV m M Ui n t0 l0NNCD _... N W O N O E �-'� o 0 a1 d� Cl) N d M d' d' M N N Ln Cl) N d' N N N Cl) N C �0 M r-1 O M 41 i Q 10 Q d' 7 NCO U OOO ' .. � t6 1 Ln U O O O O O O _ O O ,� Ln M 00 0) .--r kD C:) O �t N -r n '-� co N Cl) N 1D LO 1� - __ i0 Q O O O E V1 li 4- Ln . i CO Cl W N O O l0 Ln l0 t� 00 LO Ln .l0 .--r Ln t, N . o W W lO�n �O �oLn �o W n1.0r- M � N� dn co CIO Ln +� > in Q � +� Q L Q `-� C ~ Z Vr O C � H 7 -4 O L 01 O 0 2 N N W Z '(103 E OJ Q1 W ' p i 4, i 00 0 n W O N t` N W LC) 01 01 N 01 n W N n O M .. !_ O .--rHUUF-7 - W .. C .. .. E3 '-'r � r4i1 nd- - nt� M � iO •--� o X21001 W t0 L0 ko in W SON O O O n W V--- ♦- CL W O l�0 v E v N In �..i O Ol J W W U Y O N H rp 7 Y to O t\ n N u1 n M n N M t\ M .n 01 .N-r -4 -4 -4 � O s- 41 .--I rl N N •--1 N N •--� •--I ■ V7 .. .. 0 to 7 C L t- O O +� E 01 N N O O i--a Ll O O +� U N N r O•r i Y ro N Ol co t0 4 M .--r O O O Ol t\ to .--1 t\ i0 N .-r 01 W t0 L Z Z C N •• +� O I--- W L O Z � N r Y ^ V d dt d- V M N '--r rr '--r '--r N N N N N N .--. V F-- F- F- L N f�0 7 > .� L 3-> VI !O 0-•r--' to Q CL D to 0 7 N 4- O .-i N M Q Ln � h W 01 O - N M - - t0 f- M Ol O .--I O CL CL D- O m 3 O.... .--� e--i .-� .-1 .-� .-� J U U U Z W W t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C:, 0 0 0 0 0 U O O O O O O O O O O O O �4- N N N N N N N N N N N N to N ODDp00 � � � � OD ' O M N I� LO �' r-1 O I- [o .--1 01 Ln ,-1 L M t�" M LD M M "o .--1 O M ID .0 1 Z \ .--1 r-� �--� r-1 r-1 e-i r1 r♦ .--1 ri r-1 .--1 v to O - ,p M aD co L0 r-1 I� �--� n •--� f\ M M � O 1 O N r�1 N N Lo r-I O M lD IC N N 01 LD r-I a1 f� Ln M r-1 O Go 0 0 0 0 0 0 � O1 O_ 0-4- LD I�n I-- M oD c0010101 0 0 0 0 0 0 0 0 0 0 o N d n .--1 I� .--1 In r-1 cD N 4- lD I� n n M M 00 0l 01 01 O O L v 0 0 0 0 0 0 0 0 0 0 .--1 4- �. N W ' o LO M01 LD NaD L11 � aD � c> � V1 0 o . . tO apo1 L v -4 r-1 e-1 r--1.--1 .--1 r-1 r-1 .--1 r-1 N N 1� ._ In I— ' Ln Ln L/] LP Ln Ln In 111 L1.7 1.D Ln LS1 u 0 0 0 0 0 0 0 0 0 0 0 0 d M M M M M M M M M M M M 1 I- 1 rl r-1.-1 e--I .--I ri .--1 ry'-1 r-1 .--1 r♦ In -- D• NONNO r- LD 01 ,o O,1� O O r-1 C,)4 N L V O N I- N N 21 N N N N 1 4- M n co n Lf) N O o1 M ....� n M O co M N O •-1 t\ QI dE L.D 'D Lo L11 lSJ to L" "o l0 lD r L� Ic lo Lo o1 O MlD CO d1� dO OO LD Lo N Ln OD N > v lD L.() w r- LD 1� M LD LD (A Ic LUDO .-1 4 y 00 LSD j .�-1 L.C) co N d- N M cj O M n N N ON I� Z 41 ,..-1 .--1,--� r-I 0 0 0 0 0 0 01 01 N H QN _ Up v N N N N N N N N M M M M 1 1 4-4-- 4- 4- 4- 4- 4-4- 4- 4- o ao -4 d V a) a) a) a) m a) m a) a) a) a) a) a) a, .-� N O O O O O 0 � 0 � 0 IO C C O O = ^ O S O O O O O O O O O O O Z 4- 4-4- 4- 4- 4- 4- 4-4-4- 4- C� d O L1--4-4- 4- 4-4- a) a) a) a) a) w a) a) a) a) a) a) a) a) a) a) a) a) a) a) en 0 0 0 0 0 C 0 a) O n Cn Ln lD M C� M N O O n M Ln IO O M M ��•• M 01 Ln O E IpLnO1C� 000_ IOLn Da, D, .nt- -: M . nd10oC� L . 41 m 1p L O O O O O O O O O O O O O O O O O O O '--� O O N d 1 O O O O O O O O O O O O O O O O O O O O O O .--1 O I O O r1 14 O 1 L ^ 0 0 0 0 0 0 O O O O O O O N Ln I- M -A '-1 CV r-- 01 m O A° 1 Ln Ln Ln Ln t.n L1] LO Ln Lo- L1') Ol N i0 M d N 00 IO tp v 1 M Ol Ol M Ol m Ol 01 01 01 01 M C, O(M Ol W co � a) O ^ T 0 0 0 0 0 0 0 0 0 0 0 0 It M IO M w rn Ln Ln Ln Lo Ln Lo Ln Ln Ln Ln Lo Lo 07 d O /a •i, v d N O O O O O O O O O O O O O O Ln 0 0 0 0 0 0 0 U ^ - - E UL. a,e o 0 0 0 0 0 0 0 0 0 0 0 0 o r` Cl) o 0 0 0 0 0 a) 0 N 4- 4- 4- 4- 4-4- 4- 4- 4- 4- 4-4-4- � 01 01 4-4- 4- 4- 4- 4- 4- V a) a) a) a) a) a) a) a) a) a) a) a) a) a) O) a) a) a) N () 1 p� p� � O �O O in D m O m in In N LO p p2 � O � � U O O > ] 0 => 0 0 0 0 0 =D .--1 .--, O O � a� 4- 4-4-4- 4- 4- 4- 4- 4-4- 4- '� co 01 N 0) a) a) m a) r m a) m a) a v a) a) a) m l a) v a) u 0 0 0 Cl O O O Cl O O O O O O N I� 0 0 0 0 0 0 C C C C C C C C C C C V M OS O O O O O O _. LM m Cl) 41 co ' Z-1 d- N 01 LO N'70110001 .--1100 1010 � .--1 r1 k0000N 41 ' r1 N M O M O .--1 Ln I� CO 01 4 � M O Ln 1� l0 C� O to C7 NMN � � OI N Cam .--1 O1 M 001 Mi�Ln M 1001 Ln M w M M N N M M M M O N L r � a) O C- C In N N N N N N N N N N N N N n N N N .-I .-1 rl e--1 rl.--1 -4 rl r-1 -4 -1 r1 r1 r-1 rl e--I •••i r-1 r-1 rl ^ E L 'a CL co V) U a) O M M 'CO co �C3 N C> O1 M O '--1 O LO OD M W Ln � N M O _ � 4- � MIO 01 IOOLn 000Od01 �t Ln W IO ION N .-INd Ol � M N d• co, �t M N N Ln M N �Y N N N M N d IO Ln d ,-1 � N N� C 30 r a O L O O O 4--1 r 0 0 O O O O IO N r. O . co n O IO M O M M O1 O Ln 01 r1 '-1 O Ln Cl) L O N In d i C C� N a) 0 0 0 0 0 0 0 01 LD Ol co O M 0) O IO O '� O 1 O O O O IO N f� O M O N M 0O ct N 0 IO l0 N Lf] Ln 01 Q OO 0 ''J 4- L O 0000010) W O 01 ID � IO CF M '"� N N M MNN �--1 •--1 •---1 r-1 '-i a) Lo U 0 0 0 0 (L) LC) O OOO � Lr a N O O O _ O O .--1 0 0 0 0 .--1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r•1 0 0 o E '� C O O O O o O O o O O O o O O o 0 0 0 0 0 0 0 O Z v = m . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 O O O O 7:1 •- o � �-1o � E N N M Z_ l0 M L L Ol Ln � Ln Ln Ln Ll') Ln M <Y Ln 11') d Ln Ln Ln (D Ln 1.n Ln L1') H O p U E L a) 0)WO o o .--1 rl rl.--1 r-1 0 o rl .--1 0 .--1 0 0 0 0 0 rl 41 O r'+ H CO v1 ...•.. p O t\ W w w �- W O IO 1 E E E N-0 H '' '' E 3 ,� , Y E 1 LJ W W W CL LL1 W W w W W W w w w W LLJ W w w w . J W W U Y O E 0 0 0 0 0 0 0 O O o O o 0 0 0 0 0 0 0 0 0 0 N U � L yY- .Ui l/l 0) O O r O � Ln Ln •"1 r-I .--1 r-1 e-1 Ln Ln .� •�Ln .� l.n Ln Ln Ln 11-I .� .--1 •--1 r-1 N .. .. -- .. .. .. .. C t0 7 L t l- . 41 ,D v a c O +� E r C O)� ~ � O) a) N O L Q7 a0 IO Cl) •--1 O O O 01 n Ln ct -4 r- 41 QO O +� V Lam[ i � f 4� r0 a) Q. d- d' �' C7 N ri r1 r..--1 N N N N N N . r. r. O i-� O L 1�/1 N r�0 > L i-> N ro 47 4- p r1 N co V Ln IO a0 01 O r1 N M d Ln l0 a0 Ol O r-1 H O d O_ d O t0 3 In Q D- N 7 G:J cr -3 U d 1n J U U U Z W W ' i t t i 4-4- N N Ul N N N � 41 U1 N N N O :2, O O 0 O Lp C C C C C C C C C Z 7D Z3 ZD M 4- 4- 4- 1 4- Lp N N d N N a) N UJ N N N N N E �'o r. O O N rho L 0 0 0 0 0 6 0 0 0 0 0 H t6 N o- CD O O O O O O O O O O O � C.J 0 H M co r- H r- V LO �--� aD p M (1 L L6 l6 N N Io " 0 .�.i I- O r- n OD 1_ n W LO N •__ Q� L � 2 � co ' O O O O O O O O O O O O U ^ O O O O O O O O O O O O � v i In 4- 4- 4- 4- 4- 4- 4- 4W 4- 4- 4- N N N N N N N N N n d d � � � 0 � 0 H C C C C C C C C C C D CY.... ) 4) 4- . H U o 0 0 0 0 0 0 0 Cl 0 0 0 0 M O O co M U CY M 1- In M LO M M LO N O M l0 m N M M Lo H O1 a0 Ln N Ln O LO r... c � •--i d' L1'1 � a0 t� d M � N CO 4- LL1 LO d' In LO d Ln Lh LC1 LO LO �O pp Op lfl N N O O CO OD N N d ••••• 1-> i 1- O co 't N N O 01 d w Ln to Cr M Ln LO r- N O M l0 t!7 co LA '~ ,--� p rl H CD 0 0 0 0 0 0 0 «_. 1O O O O O O O O O O O O O p O O O O O O O O O O O O OO U O C n U H H Ln Ln Ln Lo Ln LO Ln Ln Ln Ln LO in CO "0 O V ^ LU W W W W LU uj LU W Y E c> W 4J O O O O � � � U O O O O O O O O N H r Ln M �--� O CO CD Ln V N O 01 n m 4' �--� 0000000101 O 11141 L : Cl- 11 4- N M 4 O Ln l0 n M 01 N N N N N N N N M M M M O o p O p p p O O O O O o O O O O O O O O O CD 0 o O o o p O O p p p O o o 0 0 0 O O O O ._.._ O O O O O O O O O O O O O O O CJ O O O O O o v 4F- � 4-4- 4- 4- � v- v-� 4 4 `r- v u) a) a) a) d a) a) a) a) a) a) a a) w a) a) a) a) m a) a) L) O O m O O D O OO C2 C3 0 0 N i o --i 0) N M ct t- .--I .--i 1-0 M 01 a0 aD m r N 01 m k00110 X001 t- 01 M 1- f- M O aD d X00 r1 4�- 0 01 d •--�M CO w m r N M aD r•1 M m l0 'r M N 01 Z r-I N N�--� M �-g N N N .--i rl v N 3 0 � MMMaO.-a � �0MMa0 t� 0110NmMONCO 0IOM �v ') n d M m M aD m M M 01 01 l0 M r. . . M M r- to N O a0 01 01 M M N t0 m � �' m .--� 01 . m m m m � Z ro ao M Ol m m . V . .--1 O O o 0 o p 0 0 I� m M I� O Lo N CL T O O O O O O o 0 0 01 co n � �O m � �t (") c'7 c'7 N N U 41 v � R L CL (3) N m a0 o M i0 01 N M M .--� M M L.0 Lo n O co �o N y-- O O O .--.rte-. .^-. N N N N M M M d" m m m "0 l0 M E a) ut p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 � v N L O � � � OdnpM lo � 01N M 01NMON , 0 �� OOOr�� -4 NNNNMMM � ' MMM to �0 ID � i v O O O O O O O O O O O O O O O O O O O O O O r 41 N > W N�..� , M01 M rt a0 Ol0 -4 a0 `"'� n M O ID M 01M Na0 �t 4O N� O O r• N N M C d M m kO t, r� co p1 01 p o r• N N M _ ' a) N O O O O O 0 0 0 0 0 0 0 0 0 0 0 .-4 r• """� L v a) N to f .... M 4' aOW M M M m m m m m m m 0l O m m m m m m mM a0 M 0 n n O O O O O O O o O o O O O o O O o o O O 4"") ' a -4 co M M N co N co M co M N N C') c") M M N M M M p o L -o a) O � r 4� n n .--i rl .--I N .--1 N N n7 Q O_ N ,--i N �.(V a0 I- m �--� co l0 rt � M N c O1 V lD N ..... N C y-O M 01 01 O .Mi em--1 r^-1 N N N N M N cj N M N �o O 3 O r O O 4 O Y L cD .--� O CD CD m M L O N In L W Ol V .--I d Io rl f,) l0 t0 M 01 M r-1 Ln 01 M .--1 01 n a0 d N a) M ^ ^ m W M ^ �• Ol N M I- M 01 N N O 01 N LLj O .�.i N N M d' M (") M d M co d MMM d d m O .» !- o ° O rEo 41 aL1 Q> Lr)o Q a' O N U O O O O OO .. We a) � O _ ~ d N N O O O p1 00 W n N ^ ,� O M co N r- M M cl) OD M m O N M Q O o o E N D ll..y... O co �--� co 01 i0 [O I- M 01 a0 a0 I� n m N M m 1� M rt -. C:) Z v � = O) l0 i0Ml0 a0 t- l0 l01D Ian aD I- miDO0101 OO :3 ot) � m C d L Q O_ Z } .. O a) M: vi O u 1 r-� O �--� O 2 N N 01 H d' M Ol E L- a) 0)Wo ap �p p M M N N N N 1� N N O O co M O a0 n • r-1 m U U H W ". - O a) a) .--1 ' O ao O O -4 O 01 M aD 01 M O �O N f- LL, H H D_w o E 3 > o o d" N t� o M 01 m � 4. oa, -j wwc-) Yc . Lo E E E d vv �o r +1 1J In C71 O O L +� 4-- •--1 r-1 r-1 .-1 N N rl r-1.--1 N .. .. .. C ra 7 C t L ro O ' - - t -C - CL C C � E S, 01 O � 01 al a) O fa � � L N v � , M -t 4 c-) 0 01 1, M � r+ c j c\j • � 10 O O +1 U � � d- � � � � M N ri rl .-i r1 N N N N N •"'� 01 a)Z Z- a) 'r") a) r'�'o F- W L ra a) Z _.-.. N a) C •r O Y U F- F- F- i 1�,, a) 7 > t i +-� d O rt N M d' M l0 f_ M 01 O M �O 1� M 01 L C 7 0 L O LL O_ 2 0 m M J U U U 1 i i i i i _- O O O O O O O O O p O p o o p p i cx: 00000000 N N 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 p N CO N �0 OJ M co M 1� OlN ddd �O d v VI 3 o - - 'n O co O 61 � N l0 �) O � � M to O � O r-1 .o Lo co 1— n co l N �0d M 5 -5 2 01 N� co p co M p O O O 6 O O O u M n N X11 CO N X21 N O O O O O O O O _ 1 v N W � ndOI.DM 0110 to Y- d d lf1 l0 lD 1-- r M N Lo tC) Lo L0 0 0 0 0 0 0 0 0 Q- M co co co co M co co N --- -p co O w Lo Lo M N -4 M d n N d� M N > MM cnco T d' dd r-- co m Lo Lo 'n r— Lo O ID > Q � N d N N 10 L.� � co M m O1 N co 1.0 n O O M N r-. . nD . Q ru CD C 1� U .-. +> d N M l� r+ �O M d O U W Y p.� m 0 � d N tO M a0 �0 O Lo Q> v dl (10 Lo m r1 C � o' o= LL. L �0 M .--1 O OO 1— Lo d � �--� .-� O O O O a 41 . L a c) 3 N N M d �'1 Ol U O v N N N N N N N N N 4-- 4- 4- 4- 4--4-- 4 4-- 4- 4-4- 4- 4- 4- 4- 4-4- 4- 4- 4- 4' a, vW W (1) (3) Q) 11a) 1a) a) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 0 z 4-4-4- 4-4- 4- 4- 4- 4- 4-4- 4- 4- 4- 4-4-4- 4- 4- 4- 4- 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 M z c c c c c c c c c c z c c c I r- v O I to N N co lD -'t <Y N to M t0 <Y N n d- O LO to t0 N OD N E Lo tD 01 N 00 1- 00 n r- 00 00 I- t0 t0 . n M M t0 1 . M N two L O o h '•-1 ' O o 0 0 0 0 ' o C' 0 C 0 C 0 0 I c r4 ' Y R I I I I I I I I I I I I I I I I I I I N a- c:> O O O O O O O O O O O O O O O O O O O O O U O 1 O O O O N O 0 0 0 H H O O O N H N O O M �' F- ^ _ m N ML- dE 01 01 01 M 01 01 01 01 M 01 r M 01 01 Co � 01 1 Q ^ T � 4� � O O O O o O O o o CO CO M OD O M tD �,D 00 M M MID LO LO LD LO LO Ln LD Lo to LO V Cf N 01 d O r0 .L .� CL N O O O O O O O O O O O O O O O O O O O O O O E U ^ E li aE o 0 C7 o C7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Y L 4- 4- 4- 4-4-4- 4- 4- 4- 4- 4-4- 4- 4- 4- 4- 4-4- 4- 4- 4- 4- O O1 N O1 U1 d O) aI N 0) N N N O) OJ O) 0) Z o 0 0 0 O O O 0 0 0 O O O O 0 O O O 0 0 O O O 5 ZD O O ZD O O ro O 4.- 4-4-4- 4- 4- 4- 4- 4-4- 4- 4- 4- 4- 4-4-- 4-4- 4- 4- 4- rZi 0) O) 0) N N O) N N N N N N O) N O) 0) 0) N N 0) 4) 0) � Or C C C C C C C C C C C C C C C C 0) � ro � M m I o H 1� N O LD H M H r. M N LO 01 M d1 +' U ^ Q• H to M 01 M O to H M t0 LD N O t�t0 M 01 N u N 00 �--� LD M co n ' N M N n N LO L0 O co M 01 p T V L M N N N �--�M �"� M N N N N M M N rl �--�N M N N H 0) O r c � 0) ) N C N O I N N N -4 H N N N N H H N N N .--I .•i .�rl N H � � H H H H H H .-� H �p CO tEo Q I to 4- Ln L H LD Ol N 00 to M LD N 1n M N LO co 01 d . O M 1- OJ .� M 0, n n 00 00 M t� 01 M LD f- LD Ol N N 3 N N N <Y LO d M 4 M d- Lo M M LO LD Lo 'Y LO Ln lfl O Cl, O r Y 0 0 O +-1 0 0 0 0 0 0 O1 O CD -t tD O n M 01 01 M •--I Ln n n M CO LO H O LO M i._ O N N d C CU W N ri O I yt I C7 O O O 1, O O CO LO H Lo .--1 �'-4 Ol M V O M M 01 H 00 V) L I O H O O 0 O1 4' 1 0 0 0 0 00 O O OI d- M OI M M M M 0 "1-0 0 0 01 C)41 V) Q 0 7 O O O O Lo O O m Lo V M �Y LO LD M N N M d' co N N H O O O !O , , H H H H H H O N U O O O N O O O 4 N ON Ca D, O O O O O O O O O O O O O O O O O O O O O 1-D O O O v O O O O O O O O O O O O O O O O O O O O O O O N C . Z _ O O O O O O O O O O O O O O O O O O O O O O +� LD Q �. � Q m O N X: en O U ^ O m.--I U - E .. .. ^ L L 01 O H 0 2 N N 01 Z M 01 E L 0) 01 Wo V LO LO LO to LD LO to Lo Ln Lo LO LO LO In In Lo LD LO LD LO H M U _ � O � HUUF'- �� M .. v U � '� _. pOnwF- 1- o_ wot�D � E E a» I-�, E 3 � �[ � wwwwwwwwwwwwwwwwwwwwww C rn J w w U Y o v v v -6 -0 m E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C. D. D. C. C. C. C. C. +1 I - N M O O L +� 4- -!i N f0 �p C L S fo O LO LO H H H I-- N .. .. .. .. .. .. J.-1 J-1 d , o O E �'O ~ 1-1- Q1 Ol 0) r-I 1� lfl N H Ol M lD H Cl O O Y U �o C Y L �a O L 61 00 1-D M r-I o O O d1- n to d Cif L Z Z C O1 L - 10 47 Z d r �--� ^ d' CY d' M N N N N N H H H �_• }�.� C O !� U i- F- F- L N O) f0 > S L i-� N 10 d _ N Q d O N 7 O) 4- O H N M C Lo 1-0 n M M o H N M � Lo 1-D t` M 01 O L C 7 0 r L O LL CL Ct- O �0 3 O m N J U U U Z W W I � to 4-'N--4- 4-4-- 4-- 4-- 4- N N � N OJ U1 N N ' CD p p p p p p p p p p p p p p p p _ Z iO N N N Ul N d N N p p p p p p p p v p i p p p p p p p n 01 M lfl N N iD N E , M r1 N N M O N 4J M r-1 ri .--t r-1 N •--� m i N In O O O O O O O O O C) U r � l0 LO O LnM CO r- -0 � p v r co w I* co O lO � p � � p � p r N �O 'O "O �D kO rt N CD m t v d O p ' O O O O O O O O U ^ 0 0 0 0 0 0 0 0 Li v Z p p p p p O p p Cr �F- N N N N N N N 41 V p p p p p p 0 cx -C C N Cl ' Z I �n NOl t001nN � i O i O OD r1 01 00 M -4 m N CO (01 ,t .--iO Oi "O � a0 � •--1 I� t� a0 d' o �F- l0 t0 1� l0 l0 t\ l0 n r co �O M 'n co N c r.{ W t0 N t� 01 O � '� t N O i0 d N N N N N N •'""� '"'� r n N d' N O O O O O O O O C> CD. CD O O O O O m O O O O O O O O r� ID r U � ° U �--� l.n Ln In lf) I.n Ln Ln Ln _�O U .-. r-I .-i .-a r-1 .-� � W W W W uj +1 O -Zt Y� O 0 0 0 0 0 0 0 0 �n U t O � Mr+ OMn � d R Z LL � ^ .--I O O O O Cl- N M �o I- w � L' n' N N N N N N N N af i Estimation of Ground Water Table from CPT Dissipation Tests 1 Dissipation of Pore Pressure(u)in NC Ciey 1 U U ---------------------- e © O � U equilibrium re pressure C3 O time Ground Dissipation or Pare Pressure(u)in Send ' Surface u Ue Lie-equilibrium pore pressure -' - Water Table time pine Hwater Dissipation of Pore Pressure(u)in Dense Sand, Dilative Sin and Heavily OC aey u Ue Pore Pressure (u) measured here Dcone - Depth of Cone Ue-equilibrium pore pressure P Dwater- Depth to Water Table time Hwater - Head of water Water Table Calculation Dwater - D cone - H water where Hwater = Ue (depth units) Useful Conversion Factors: 1 psi = 0.704m = 2.31 feet (water) 1 tsf = 0.958 bar = 13.9 psi 1 m = 3.28 feet EGG Gregg In Situ, Inc. CD FOCI O.•I CIO CD �'�° z 0 aM.4r- IN .N .� b' f 41 C ,A .. 0 .. .. •F4 .-I .L �+ C X Q i'E 0 o LL Ono ` to 0 ---------: --- - - c ca ' -------------------- --- --- c -- -- .---------;--------- o CC O ` ' ' 0. U : --------•-------- o U C �0 �... p W � IN f•' U ~ Q CL _ --- •rd J -- - -.- - - --- ' ----- --:---------:--- - --:-------------------- - --- --- --- W O � W : H • --------- ---------r-------'-•- C1 W • -------- -------- a a � W � OQ. O C! O Q C! C? O p O r� (isd) ainssaad OJOd �yW�y��aa W i REFERENCES Robertson, P.K. and Campanella, R.G. and Wightman, A., 1983 "SPT-CPT '.._ Correlations", Journal of the Geotechnical Division, ASCE, Vol. 109, No. GT11, Nov., pp. 1449-1460. ' Robertson, P.K. and Wride C.E., 1998 "Evaluating Cyclic Liquefaction Potential Using The Cone Penetration Test", Journal of Geotechnical Division, Mar. 1998, pp. 442-459. Robertson, P.K. and Campanella, R.G., Gillespie, D. and Grieg, J., 1986,"Use of Piezometer Cone Data", Proceedings of In Situ 86, ASCE Specialty Conference, Blacksburg, Virginia. rRobertson, P.K. and Campanella, R.G., 1988, "Guidelines for Use, Interpretation - and Application of the CPT and CPTU", UBC, Soil Mechanics Series lso No. 105, Civil Eng. Dept., Vancouver,Co P.O. Box 385, Gaithersburg, aMD available from Hogentogler a 20877, 3rd Edition, 197 pp. Robertson, P.K., Campanella, R.G., Gillespie, D. and Rice, A., 1986, "Seismic CPT to Measure In Situ Shear Wave Velocity", of Geotechnical Engineering, ASCE, Vol. 112, No. 8, pp. CONE PENETRATION TESTING BY OTHERS INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE FRICTION RATIO (/o) SOIL DESCRIPTION (FEET) (tst) (feet) (tst) 4 6 6 2 Fill?:SILTY SAND(SM)dense 0 8 6 4 2 0 50 100 150 200 250 300 '.150 0 15 '.. s SAND medium) :........:....................... .... t tied 0 INTERBEDDED SIL dense, er ded clay AND CLAYEY SA a 1 5 dense to a in lenses 6.5 to 12 feet,dense to very dense 5 10 ....... : .......:........ ...... ....................... to 25 fee very dense ..;... 12 . .. .... 0 • @ feet, .... ... ... _ .... ... 00 s.:......_..... ... ... .... ... ......... _ ... ........ 5 ... ... EY SAND CLAY(CL)AND CLAY .... ........:........:........:... e 25 :. (SC)hard and dens . � ...'........<........................ ... ... Natural?:SAND(SP/SW)very 30 ................ interbedded sand y silt lens �� dense,inte nd s• s Refusal at 33 feet r _ ..:.. .. .. ..:.. . .:... ..... 40 5 ... .... ....... ... ... r _ 0 ... .... ....................... j . ................. ................. . . ...................................................................... 55 s ........ ...... ................... _ .... ..:... ...:.. ...... .. .. 60 ........:.........:........:...... 5 s ................<....... .... ... :.. 65 ......:........:.........i..... ... 70 5 75 ........:.........:........ :. ; _. 130 Date performed:10-25-00 PROJECT NO.:1680.1 This summary applies only at the location of this cone di penetration EXPO-ENCINITAS test and at the time of the explorati Subsurface at h s ocatioonn with thre y differ at other locations and maY LOG OF CPT NO. C- 1 ppaassage of time•The interpreted soil description c derived from the friction ratio and cone resistance and is a simplification of actual FIGURE A-2 conditions encountered. I INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE FRICTION RATIO (%) SOIL DESCRIPTION (FEET) (tsf) (feet) (tsf) 4 6 g 4 2 0 50 100 150 200 250 300 350 0 2 ?:SILTY SAND(SM)dense to 0 8 6 very dense _ .... 10 - CLAY(CL)AND CLAYEY SAND 05 ... ........ .......... sand lenses ............... interbedded s a ................. silty(SC)hard and medium dense, i it s 10 00 ....... 20 .......:................. :....... ....................... .... .. .... .... Terminated at 25 feet 25 ........:................... .... ... .... 30 ..................,........ .. ..... 35 40 0 45 ..................s............... ... 5 ................................. ........... r 55 ................................ . ........:........:...... 5 f0 ............................... .... .... ........_ .... .. 0 65 .... 5 70 ........ ........:........ ........:....... : ... ................ ........:........:........:....... 80 Date performed:10-26-00 PROJECT NO.1680.1 This summary applies only at the location of this cone penImay p(pO-ENCINITAS test and at the time of the exploration.a� Sat ih s�ccraU�ondwodiffer at other locations and may ggee LOG OF CPT NO. C- 2 sage of time.The interpreted soil descnptwn is derived rata and cone resistance and is a simpl'rf'icaUon of conditions encountered. FIGURE A 3 FRICTION INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE RATIO M SOIL DESCRIPTION (FEET) (feet) (tst) (tsf) -10 150 200 250 300 0 2 4 6 8 D(SC)very 8 6 4 2 0 50 Fill?: 0 dense 10 SILTY SAND(SM)dense to very ................... dense ........................ .......... 5 05 ................... . ...... ............................. 10 ................. 00 CLAY(CL)hard .................. ........ ........ medium ....... CLAYEY &ICI SC) i 15 ........ .......... 5 dense ID (Sh)AND CLAYEY SILTY ........ dense, ........... C)dense to very ......................... SAND IS ........... ........ ded claY lenses interbed ................. ............... 25 ........ ........ ........................ ........ e ural?:SILTY S ND(SM)dens N ........ ...... ................. ....... ........ ...................... i CLAYEY SAND(SC)VUFY uv` 0 . .............. ................. . . ....... ................................. CLAY(CL)hard . 5 . .......................... ....... .............. ....... ............ ..................... .......................... 40 ................ CLAYEY SAND SC)/CLAY(CL) 0 medium dense to very dense and ............... ........ ... ................................... hard ............ .............. ........... ...... ........ ........ 45 ................ ... .......... ...........i.......... Refusal at 50 feet ......................... 50 ....... .................................. . . . ................................ 55 ......................... . 5 ................. ......................... ... ................ 60 ........................ 0 ................ ........ ........ ........ ................... ...... ........................ ..... 65 ........ 5 ................. ................... 70 0 I.......... ....... ................ 75 ......................... 5 80 Date performed:10-26-00 PROJECT N0.1680-1 This summary applies only at the location of this cone penetration EXPO-ENCINITAS test and at the time of the exploration. Subsurface conditions maY may change at.th!s location with the differ at other locations and a im LOG OF CPT NO. C- 3 T%soil description is derived from the fa of time The interpret rl friction b e and is a s mpffication of actual riction ra o and cone resistance FIGURE A-4 cw4itions;encountered. DEPTH FRICTION CONE RESISTANCE FRICTION INTERPRETED ELEV. RATIO N SOIL DESCRIPTION (FEET) (feet) (tsf) (tsf) 0 8 6 42 0 50 100 150 200 250 300 350 0 2 4 s 8 Fill?:SILTY SAND(SM)dense to 15 very dense ( L)AND CLAYEY SAND 5 ......€...... t.. ium dense to ha rd and med 10 very dense,Interbedded silty sand ... ;.........;. lens ................ ........ '.........,....... 10 ry 05 SILTY SAND(SM)dense to ve - dense,interbedded clay lens .:........ ........:..... 15 00 CLAY(CL)AND CLAYEY SAND ; _ .... _.......................... .... ... ... • (SC)ha rd and dense to very dense . 25 ....... ............... ... erminated at 25 feet T 30 ............... ...... ........:........:........ ........ ....... ........:........:........_...... ..:......................... 40 5 ....... ........:........s........ ....... €....... 45 0 50 ... .... ... ... ..... 55 ................................. ........:........:...... ...:...... . ................. 60 .............. _ .... _ .... 5 ... ... 6.5 ........:.........s.............. 0 : ........:.............................. 75 ........:.........:................. . 0 80 Date performed:10-26-00 PROJECT N0.:1680.1 This summary applies only at the location of this cone penetration -ENCINITAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may change at this location with the passage of time.The interpreted soil description is derived from the friction ratio and cone resistance and Is a simplification of actual LOG OF CPT NO. C- 5 conditions encountered. FIGURE A-6 _ _ _ _ - _ - ' DEPTH FRICTION CONE RESISTANCE FRICTION INTERPRETED ELEV.' (feet) (tsf) (tsf) RATIO N SOIL DESCRIPTION (FEET) dense to dense CLAY(CL)hard ND(SM)dense to very SILTY SA dense,with clay lenses 90 25- B5 40 70 Date performed:10-26-00 PROJECT NO.1680-1 ary applies only at the 1�ocaTtion of this cone penetration EXPO-ENCINITAS This sumrru at � Sur onditions may test and at the time of the exploration. Subsurface c differ at other locations and rrAiiay change at.this location with the The Interpreted soil escription is derived from the ftaZSgemotifotaimned'cone resistance and Is a simplification of actual LOG OF CPT NO. C- 7 - conditions encountered. FIGURE A-8 _ _ � _ _ _ DEPTH FRICTION CONE RESISTANCE FRICTION INTERPRETED ELEV. 0A (tso RATIO M SOIL DESCRIPTION (FEET) 6 4 2 0 50 100 150 2W Fill?:SILTY SAND(SM)dense to very dense,interbedded clay lenses CLAYEY SAND(SC) (CL)medium dense to very dense 10 and hard 15- SILTY SAND(SM)medium dense to very dense,interbedded clay lens (CL)dense and hard � � -- _ _ _ _ _ - Date performed:10-26-00 PROJECT NO.1680.1 This summary applies only at the location of this cone penetrat EXPO-ENCINITAS test and at the time of the exploration. Subsurface conditions r:y differ at other locations and may change at.this location with,the of time.The interpreted soil escription is derived from the LOG OF CPT NO. C- 8 and cone resistance and is a simplification of actual IL _ conditions encountered. FIGURE A-9 FRICTION INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE RATIO (%) SOIL DESCRIPTION (FEET) (feet) (tsf) (tsf) 0 8 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill?:SILTY SAND(SM)dense INTERBEDDED SILTY SAND(SM), 115 CLAYEY SAND(SC),AND CLAY - ....... ... (CL)dense to very dense and hard ....... 10 . .. ... 10 :................ ........ ..................... ;.... 0 15 :...... 00 20 _......- ... . .... ..:... 5 ... .... 25 . .....:........................... ..... ; ...... s s ..:................. .. ...... .............................. ;...... 30 to 41 feet,medium dense to 30. ........,. dense .........:........ .... _ .... S ens 40 Natural?:SILTY SAN D( M)d e, with clay lens 75 s d • SANDY SILT(M L)very stiff 45 CLAY(CL)har 0 SAND(SP/SW)very dense 50 .................:................ ....................... Terminated at 50 feet .... .................. .... ... 55 :... so 60 ................ .............. _ .... .. ........:...... ...... 5 65 ........<.................:...... ... ....................................... .... .... ... ... .... 70 5 ........:.........:................. ........i........:........ ...... .... 75 0 80 Date performed:10-26-00 PROJECT N0.:1680.1 This summary applies only at the location of this cone penetration EXPO-ENCINITAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may change at this location with the passage of time.The interpreted soil description is derived from the pa LOG OF CPT NO. C- 9 friction ratio and cone resistance and is a simplification of actual conditions encountered. FIGURE A-10 _ _ _ _ _ _ _ _ _ _ _ - _ _ - _ _ _ FRICTION INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE RATIO M SOIL DESCRIPTION (FEET) 0 10 SAND(SC)loose to medium dense se medium de SILTY SAND CLAYEY S m dense to very stiff (CL)mediu CLAY(CL)hard y SAND(SC)medium lens CLAYEY SANUto-P-4— —1 medium dense to dense and hard CLAY(CL)medium dense to dense and hard ........ ....... .. .... ....... ............. ................. ........... SAND(SM)loose Natural?:SI . ................. .............. CLAY(C very stiff to hard, inte silty sand lens .............. ..... ....... ........................ SILTY S dense to very dense a ................. ........ .................. .............. ........ ... ........ ................ LLL Date performed:10-25-00 PROJECT NO.1680.1 Cf =q This summary applies only at the location of this cone tration EXPO-:ENCIN:ITAS pe no test and at the time of the exploration. Subsu.rface conditions my differ at other locations and may chan at this location with the 3 C_1 0 the -10 cr Fas he Interpreted soil ascription is derived from cation of actual LOG OF CPT NO. C rictVe of time.T ratio and cone resistance and is a simptil'ic - RESISTANCE FRICTION INTERPRETED ELEV. DEPTH FRICTION CONE R SI RATIO (%) SOIL DESCRIPTION (FEET) (feet) (tsf) p 8 6 4 2 p 50 100 150 200 250 app 350 0 2 4 6 8 Fill?:INTERBEDDED SILTY SAND (SM)AND CLAYEY SAND(SC) dense to very dense,interbedded 10 clay lenses 5 m dense :....... 5to tOf feet,medium• 05 ...............:.. .......;.. _.. 00 15 5 20 . -........- ... . ........:...... ...... ........[........<........ .. 25 Terminated at 26 feet 5 30 i........ ................:............... .. .. IBO _. ........:........:........:........ ... .... 35 5 ... _ .... ........ ........:........:........_........:...... ...... ...... 0 ................. ........:........ :....... 45 50 ........<................... 0 55 .........................:....... .. .... 5 60 ................ .............. _ .... s...... _.. 0 65 .................[........i....... ... _ 70 ........f......................... .... ............. ... 0 75 ....... ........:.......................... .... 80 Date performed:10-26-00 ■ PROJECT N0.:1680.1 This summary applies only at the location of this cone penetration °�■ APO-ENCINITAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may change at this location with the passage of time.The Interpreted soil description is derived from the friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C- conditions encountered. FIGURE A-13 _ _ _ _ _ ' _ FRICTION INTERPRETED ELEV. DEPTH FRICTION GONE RESISTANCE SOIL DESCRIPTION (FEET) 0 (SM)AND CLAYEY SAND(SC) medium dense to dense, interbedded clay lenses C 20 to 21.5 feet,very dense so ~~ � _ _ _ _ ' _ Date performed:10-26-00 PROJECT NO.:1680.1 This summary applies only at the location of this cone penetration EXPO-ENCINITAS test and at the time of the exploration. Subsurface conditions may GGM differ I other locations and may chan Cr at.this location with the e. f time.The interpret6d soil ascription Is derived from me LOG OF CPT NO. C-13 fralct:=bo and cone resistance and is a simplification of actual conditions encountered. FIGURE A-14 _ - _ _ � _ U� _ FRICTION INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE RATIO M SOIL DESCRIPTION (FEET) CLAY(CL)hard 420 INTERB (SC),AND CLAY 115 LAyEy SAND densethard (CL)dense to very Natural?:SILTY SAND(SM) w � _ _ _ _ _ _ _ _ _ Date performed:10-26-00 PROJECT NO.1680.1 This summary applies only atthe location of this cone penetration EXPO-ENCINITAS test and at the time of the explioration. Subsurface conditions may ---TrMpil h ocaji n of th s con 'I ge at th�s location with the 11 rip is derived from th 7a , . pas�age of time.The interpreted soil escnpWn friction ratio and cone resistance and is a simplification of ac FIGURE A-15 conditions encountered. _ _ FRICTION INTERPRETED ELEV. FEET DEPTH FRICTION CONE RESISTANCE RATIO N SOIL DESCRIPTION (FEET) (feet) (tsf) (tsf) 6 4 2 0 50 '100 150 250 300 350 0 2 4 6 8 SAND(SM)AND Fill?:SI 0 CLAYEY SAND(SC)dense to very 415 dense,interbedded clay lenses ........ ..... 5 ....... ................ 10 .................. .. ........ ............... ............... 10 ............... .............. 05 . ......................... 15 .............. 00 . ......... . ...... ............... ....................... ............................... 20 ............ ................ Na ral?:SAND(SP/S very 5 dense ................. ........ sal at 24 feet . ............... ........ ........ ........ Refu .......................... ......................... 25 ........i 90 ........ ..................... ........... ........ ... 30. ............. ......... ........................ ........ ........................ .... 3-5 .. ........................... ... . ........ .......................... ...... ....................... 40 .........:........................ 5 45 ....... ........................ 70 ......... .. ............................... ..........................:......... .................. ........... ........................... 50 ....... 5 ....... ................ ................ ....... ........ 55 ................ ........ ........ 60 ................ .................. ............. 60 ................................ ... 5 ..... ................. ...................... ....... ..................... .......... 65 ...... ................ ... 50 . ................................ .................................. .............. a . . .......... 70. ..... ................ 45 75. ................................. ........ 0 80 Date performed:10-25-00 PROJECT NO.1680-1 C:- .:N I N: This summary applies only at the location of this cone penetration EXPO-ENCINITAS test and at the time of the exploration. Subsurface conditions My differ at other locations and may change atthis location with the passage of time.The Interpreted S611 escrqAion Is derived from the C-15 simplification of actual LOG OF CPT NO friction ratio and cone resistance and is a s"if conditions encountered. FIGURE A-16 t INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE R O°/RATIO ( ) SOIL DESCRIPTION (FEET) (feet) (tsf) (tsf) i p 8 g 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill?:SILTY SAND(SM)AND CLAYEY SAND(SC)very dense, Interbedded clay lenses 05 5 .:........`........ ........s...... ... .... .... ium dense to very dense ®4 5 to 10 feet medium ve d 10 Terminated at 10 feet T . 5 15 ................',............... _ .... . .......:........:...... 20 ................ .............. _.................- .. ........:...... ... 25 ........:...................:....... .... . i ... ,........i......... - ..� 5 .......................... .......:........ .......... ... .. ... ... 35 ....... .......... :.. 0 ........ .......................... ........ 40 ........:........:........:........ 5 .................. .... .... ...... .° . ...... ....... ....... ........;.. .. ........ .......i. ..................i...... 50 i... 5 ........ ............... ................ .........:...... 55 ....... 0 60 ............................... _ .... 5 ... ... 0 _.. 70 ................ ........................< .......................;...... ..;... .. 5 75 :........ . ... 80 Date performed:10-26-00 PROJECT NO.:1680.1 This summary applies only at the location of this cone penetration EXPO-ENCINITAS test and at the time of the exploration. S atsth'salocat°niWOns�may differ at other Ic bons and may change passage of time.The interpreted so�1 description Is derived from the ric f conditions encountered.and cant cone resistance sistance and is a simplification of actual LOG OF CPT NO. �%� FIGURE A-17 ` INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE RATIO FRICTION) SOIL DESCRIPTION (FEET) (feet) 0.7.1 100 O 8 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill?:INTERBEDDED CLAY(CL) 00 AND SILTY SAND(SM)hard and medium dense . S ILTY SAN (SM)dense .. ...... .. • 5 .. S .... 9.5 to 10.5 feet,medium dense 10 ........:.........>........ ...... I 15 ........... ................ .............. CLAY(CL)very stiff to hard, ..... t interbedded silty sand lenses 20 .. .. . 5 25 EDDED CLAYEY SAND •• dense and hard ( )medium IN C)AND CLAY CL m ... Natural?:SAND(SP/SW)/SILTY ... .... ... interbedded silt lenses.... .. .. clay d It ='.�. • SAND(SM)medium dense, :: i added ay an 5 40 ....... 5 ........................ ....... . ....::.............. Terminated at 50 feet 0 ;.. 50 . T 55 ... ............... ................ ........ ... ..... 5 60 ................ .............. _ .... .. ........:...... 65 ............................... 70 ...................... ...... ................. . 75 .... .... .... ... .... .... ... 80 Date performed:10-26-00 PROJECT NO:1680.1 This summary applies only at the location of this cone penetration EXPO-ENCINITAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may change at this location with the Fa of time.The Interpreted soil description is derived from the fr'�ction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C-17 FIGURE A-18 conditions encountered. _ _ _ _ � � _ _ _ _ FRICTION INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE RATIO M SOIL DESCRIPTION (FEET) 00 150 200 SAND(SM)medium -T T- .- d dense,interbedded clay ense lenses � � _ _ _ _ _ - _ _ _ _ so Date performed:10-26-00 PROJECT NO.1680-1 This summary applies only at the location of this cone penetration EXPO-ENCINITAS test and at the time of the exploration. Subsurface conditions my at th s location with the erminate� ROJEOT differ at other locations and may chan =E El Cr otV is derived from the Fa actual LOG OF CPT NO. C ,=go of time.The interpreted sdill escnp ratio and cone resistance and is a simplification of FIGURE A-19 _ conditions encountered. _ -- _ _ _ - _ � � = _ � _ _ _ _ � � � � _ _ _ _ _ STANCE FRICTION INTERPRETED ELEV. DEPTH FRICTION CONE RESI SOIL DESCRIPTION (FEET) 0. dense interbedded sill SAND(SpISVV)dense CLAY pi-)stiff,interbedded silty BO CLAY(CQ very stiff 70 Natu I(Sm)medium dense, SANC interbedded clay and slit lenses AND(sp/SW)medium dense m ium dense,Interbedded day ed lens 0 rminated at 50 feet Date performed:10-26-00 PROJECT NO.1680-1 at the location of this cone penetrati n -ENCINITAS This summary applies only I Subsurface conditions nra an test d at the time of the exploration the PROJ' differ at other locations and MY change at this location with 1 0 of time.The Interpreted soil escription is derived from the passage 9 tual FLOG OF CPT NO. C-1 9 friction ratiol and cone resistance and Is a skTqgificatiOn Of actual conditions encountered. FIGURE A-20 - - __ I INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE RAT O (O°N SOIL DESCRIPTION (FEET) (feet) (tsf) (tsf) I 0 8 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill?:IPIlERBEDDEO SILTY SAND (SM)AND CLAY(CL)medium 10 dense and hard I _........ S ILTY SAN (SM)dense 5 . ...... 0 5...... .....;...... Terminated at 10 feet 10 .. T 00 15 ................ ....... ....... ... ... .... ... ... . ........:...... 5 20 ........i......................... .... ........ _ .... I � . ... 25 ....:........ :........ ........:.......... ... 30 :................ ........�....................... ... ... .... ... ... ................:........:........ ........: � 5 40 ..................:........:........ ................ ....... ........ ...:...... _. 0 ... ... 50 ................:........ ...............:............... ... ... 55 ................................ . . i so .... ..:... ..... . 5 60 '...................... _ .. .............. s...... _ .... .. ...... ...... . 0 ..:... ... ... .... 5 ;....... . ........: 70 .................:........:........ . 0 i .. . 80 Date performed:10-26-00 ' PROJECT NO.:1680.1 This summary applies only at the location of this cone penetration EXPO-ENCINITAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may change at this location with the passage of time.The interpreted soil iscnptwn is derived from the friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C-2�FIGURE A 21 conditions encountered. ' INTERPRETED ELEV. DEPTH FRICTION ION CONE RESISTANCE RAT O (O°N SOIL DESCRIPTION (FEET) (feet) ( ) 0 8 g q 2 0 50 100 150 200 250 300 350 0 2 4 6 8 FUI?:INTERBEDDED SILTY SAND (SM)AND CLAY(CL)loose to medium dense and stiff to hard i5 :... w. 5 ...............`........ .............. ................. i....... Terminated at 10 feet dense ' SILTY S e 10 15 ................ ......................... :...... 20 ................. .............. .... _ ....- .... 25 ....... '....... ........t........:........:........:....... .... , 5 30 ........................... ........:........i........„....... ............>.. ... .... 0 ......:........:........................ :........:........ .......... ............. ..:.......:...... _........ .......8........€........ :.........:...... so _. 5 50 .................................. . ........ ............................ 0 55 ................................ . ........:........:....... _....... ................._ ... 5 0 ................ .............. .... .... 65 ... ... ... ... ... ................... 0 75 ....... ........:........:....... ...... _ 125 80 Date performed:l0-26-00 PROJECT N0.:1680.1 ILL This summary applies only at the location of this cone penetration EXPO-ENCINITAS test and at the time of the exploration. Subsurface conditions n wth t may C-0— differ at other locations and may change at this location with the passage of time.The Interpreted soil description is derived from the tr'icti�on ratio and cone resistance and is a sunpl'rficatxm of actual LOG OF CPT NO. C-21 conditions encountered. FIGURE A-22 _ _ _ _ _ _ _ FRICTION INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE FEET (f eet) (tsf) (tsf) RATIO No) SOIL DESCRIPTION (FEET 0 dense sandlens SILTY SAND(SM)dense mm � _ _ _ _ _ _ _ _ _ _ _ ........ ................................... ................. . .................. ............... I......... L11 Date performed:10-26-00 PROJECT NO.:1680.1 the location of this cone penetration EXPO-ENCINITAS This summary applies only at I ray test and at the time of the exploration. Subsurface conditions n diff er at other locations and may chan at.th!s location with the re.- is derived from the Fas age of time.The interpreted soil escnpt*n ctuall LOG OF CPT NO. C-22 ictp .ratio and cone resistance and is a simplification of a conditions encountered. FIGURE A-23 _ _ I CONE RESISTANCE FRICTION INTERPRETED ELEV. DEPTH FRICTION (tsf) RATIO M SOIL DESCRIPTION (FEET) (feet) (tsf) 00 I 2 4 6 8 0 0 g 6 4 2 0 50 100 150 200 250 300 350 Fill?:INTERBEDDED SILTY SAND (SM),CLAYEY SAND(SC),AND r CLAY(CL)medium dense to dense/stiff to hard 5 5 ................`....... ...... 10 ........ ............ ........... ;.. 15 ................ ........ ....... ........ : .....:.... I 0 20 ' 5 _ 25 ........ .............. _ .... D '.. . Natural?•SAND(SP/SW)AN SILTY SAND(SM)loose to medium dense,interbedded 's � `: .. ......<....... ... and slit lenses erbedded clay r. .................. ... 30 `. ..:............ 40 ........:.................:.... . ... .............. ..:....... , 45 ................ ............... ..... ... _ .... 5 50 ................<................ .... ....................................... ... .... ............. ;........;....... Terminated at 60 feet .. . ...;.. .: :. . ._. 5 55 ................................ . ........:...... 60 ................ ........ ....... 65 ........ ........:........:........ ........:......... r ...... ......... .. . ...:.. ..:.. ...:.. . 70 ........ :......... :........:........ . �. ....... ........:........:........ ............... • 5 ........ ... .................75 0 80 Date performed:10-26-00 PROJECT N0.:1680.1 This summary applies only at the location of this cone penetration EXPO-ENCINITAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may change at this location with the passage of time.The Interpreted soil description is derived from the friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C-23FIGURE A 24 conditions encountered. 940028-027 APPENDIX C Laboratory Testing,Procedures and Test Results Atterberg Limits: The Atterberg Limits were determined in accordance with ASTM Test Method D423 for engineering classification of the fine-grained materials and presented in the table below: _ Atterberg Limits Plastic Plastic USCS Sample Location Liquid Limit(%) Limit(%) Index(%) Soil Classification M-1,31 Feet 27 19 8 SC M-1,34 Feet NP NP NP SM M-1,37 Feet NP NP NP SM M-1,40 Feet NP NP NP SM M-1,43 Feet NP NP NP SM M-1,55 Feet NP NP NP SM M-1,80 Feet 36 15 21 CL M-2,31 Feet NP NP NP SM M-2,37 Feet 26 20 6 SP-SC M-2,46 Feet NP NP NP SM M-3,40 Feet NP , NP NP SM M-4,49 Feet NP NP NP SM C-1 940028-027 APPENDIX C Laboratory Testing Procedures(Continued) Classification or Grain Size Tests: Typical materials were subjected to mechanical grain-size analysis by sieving from U.S. Standard brass screens(ASTM Test Method D422). Hydrometer analyses were performed where appreciable quantities of fines were encountered. The data were evaluated in determining the classification of the materials. The grain-size distribution curves are presented in the test data and the Unified Soil Classification(USCS)is presented in both the test data and the boring and/or trench logs. Grain-Size Analysis Sample Location Sample Description %Gravel %Sand %Fines M-1,28 Feet Clayey SAND 0 72 28 M-1,31 Feet Clayey SAND 0 70 30 M-1,34 Feet Silty,clayey SAND 0 76 24 M-1,37 Feet Silty SAND 0 84 16 M-1,40 Feet Silty SAND 0 81 19 M-1,43 Feet Silty SAND 0 81 19 M-1,46 Feet Clayey,silty SAND 0 75 29 M-1,49 Feet Silty,clayey SAND 0 67 33 M-1,55 Feet Silty SAND 0 74 26 M-1,60 Feet Silty SAND 0 78 22 M-1,65 Feet Sandy,silty CLAY to Silty SAND 0 71 29 M-1,70 Feet Clayey,silty SAND 0 57 43 M-1,75 Feet Clayey,silty SAND 0 75 25 M-1,80 Feet Silty,sandy CLAY 0 43 57 M-1,90 Feet Clayey,silty SAND 0 56 44 M-2,31 Feet Silty SAND 0 82 18 M-2,34 Feet Silty SAND 0 82 18 M-2,37 Feet Poorly-graded medium SAND with 0 73 27 silty clay -, M-2,40 Feet Silty SAND 5 82 13 M-2,43 Feet Silty SAND 0 84 16 M-2,46 Feet Clayey,silty SAND 0 73 27 M-2,49 Feet Silty SAND 0 85 15 C-2 940028-027 APPENDIX C Laboratory Testing Procedures(Continued) Grain Size Analysis Sample Location Sample Description %Gravel % Sand %Fines M-2,55 Feet Silty SAND 0 79 21 M-2,60 Feet Clayey,silty SAND 0 73 27 M-3,40 Feet Silty SAND 0 82 18 M-3,46 Feet Clayey,silty SAND 0 76 24 M-4,34 Feet Silty,clayey SAND 0 72 28 M-4,37 Feet Silty SAND 0 82 18 M-4,49 Feet Silty SAND to sandy CLAY 0 79 21 Grain Size Analysis Sample Location Sample Description %Passing#200 Sieve M-3,37 Feet Silty SAND 24 M-3,43 Feet Silty SAND 24 M-3,55 Feet Sandy,silty CLAY 75 M-3,56 Feet Clayey,silty SAND 33 M-4,40 Feet Silty SAND 19 M-4,43 Feet Silty SAND 20 M-4,46 Feet Clayey,silty SAND 21 C-3 r r _. 60 For classification of fine- 50 grained soils and fine- grained fraction of CH or OH a 40 coarse-grained soils "A"LINE x d T 30 CL or OL m 20 MH or OH a 10 ML or OL I I 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 60 UJ m 50 w z U- 40 z w ow 30 w n. 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M-1 2A 28.0 SC 0:72:28 N/A Project No.: 940028-027 Sample Description: Encinitas Ranch Olive clayey sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 02-00 _ 60 For classification of fine- / 50 grained soils and fine- grained fraction of a CH or OH x 40 coarse-grained soils "A"LINE W T 30 CL or OL H 20 .2 MH or OH 10 ��.,� ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND I FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 112" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 I— 60 w m 50 W w z �40 z w I NT I I I III I I of 30 w a 20. 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M-1 3 31.0 SC 0:70:30 27,19,8 TERkT SY:?L:irts, t,�c. Project No.: 940028-027 Sample Description: ` Encinitas Ranch ` Yellowish brown clayey sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318,D 422 03-00 i 60 For classification of fine- / 50 grained soils and fine- / grained fraction of CH or OH K coarse-grained soils /A"LINE 40 w Y30 ,2 CL or OL m 20 MH or OH a 10 _. ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 X:60 w m 50. W w z U_ 40 z w W 30 LLI 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) N M-1 4 34.0 SM 0:76:24 NP Project No.: 940028-027 Sample Description: r Encinitas Ranch Olive brown silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03-00 60 For classification of fine- ^ 50 grained soils and fine- j grained fraction of CH or OH I coarse-grained soils x qp „A.'LINE a T 30 CL or OL V; 20 MH or OH a 10 °`-W ML or OL p 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 314" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 F- 60 W m 50 W u-40 z z W W 30 d 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (g/o) M-1 5 37.0 SM 0:84:16 NP �" T£ri�i` rr:>/.:i_n.ti•,_lc. Project No.: 940028-027 Sample Description: Encinitas Ranch Olive brown silty sand (SM) ATTERBERG LIMITS, PARTICLE- SIZE CURVE ASTM D 4318,D 422 03-00 60 � For classification of fine- 50 grained soils and fine- j strained fraction of CH or OH coarse-grained soils "A"LINE T 30 CL or OL 5 20 MH or OH a 10 CL-W 4 ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 11/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 _ 100 90 80 70 60 w m 50 w z �40 z w w 30 a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI ` No. No. (ft.) N M-1 6 40.0 SM 0:81:19 N/A 7Fit Project No.: 940028-027 Sample Description: - r Encinitas Ranch Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318,D 422 03-00 60 / For classification of fine- 50 gr7CL-W id soils and fine- grained CH or OH a coils x 40 "A"LINE W T 30 CL or OL a 20 MH or OH a 10 ML or OL 0+ 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 10o ., 90 80 70 X: 60 w m 50 w z z 40 F z w Lr 30 w o_ 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. A) N M-1 7 43.0 SM 0:81:19 NP Project No.: 940028-027 Sample Description: r A Encinitas Ranch rOlive brown silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318,D 422 03-00 60 For classification of fine- 50 Grained soils and fine- / i grained fraction of / CH or OH / a / coarse grained soils "A"LINE d v T 30 CL or OL m 20 MH or OH o 10 ' " " ML or OL 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRS E MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER r- 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 i 70 H 60 i W m 50 W z i LL 40 F- z w C 30 i w a 20 i 10 1 1 LLL o lilt I i 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI iNo. No. (ft.) (%) M-1 8 46.0 SM 0:75:25 NP Project No.: 940028-027 Sample Description: - r Encinitas Ranch iOlive brown silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03-00 i 60 For classification of fine- j 50 grained soils and fine- grained fraction of CH or OH a coarse-grained soils x 40 "A"LINE a 'a T 30 zW '_'or OL Z 20 MH or OH CL 10 0 L or d", 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 L 90 80 70 I- X: 60 w C W w z LL 40 z W �30 d 1 20 10 i ° 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) i Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (g/o) M-1 9 49.0 SC 0:67:33 N/A i Project No.: 940028-027 /"C TFIF a J i Sample Description: Encinitas Ranch Olive brown clayey sand (SC) ATTERBERG LIMITS, PARTICLE- SIZE CURVE i ASTM D 4318,D 422 02-00 i 60 For classification of fine- - / I 50 grained soils and fine- grained fraction of CH or OH a coarse-grained soils x 40 "A"LINE w v I E 30 CL or OL V 20 MH or OH n. I 10 ' CL-W ML or OL 0 10 20 30 40 50 60 70 80 90 100 ILiquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY IU.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER - HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 I 90 I 80 I 70 60 Im 50 w _z I w 40 z w w30 I o_ 20 ' 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI ` No. No. (ft.) (%) I M-1 10 55.0 S 0:74:26 NP .. Project No.: 940028-027 Sample Description: - Encinitas Ranch Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318,D 422 m-nn ' 60 For classification of fine- ^ 50 grained soils and fine- % grained fraction of CH or OH a coarse-grained soils x 40 "A"LINE V 'v T 30 �+ CL or OL 20 MH or OH a 10 _.. < ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE_+--s CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 i 80 70 60 i UJ m 50 w z U_ 40 F- z W W 30 W L 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI ` No. No. (ft.) (%) M-1 11 60.0 SM 0:78:22 N/A Project No.: 940028-027 Sample Description: Encinitas Ranch Olive brown silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03-00 60 For classification of fine- � 50 grained soils and fine i' grained f_ raction of n coarse-grained soils CH or OH x 40 II "A"LINE T 30 v R 20 CL or OL CL 10 MH or OH «. 0 1,, ML or OL 0 10 20 30 40 50 60 70 Liquid Limit(LL) 80 90 100 GRAVEL SAND COARSE FINE CRSE MEDIUM FINES FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 HYDROMETER 100 80 70 �60 W m 50 w z 40 F- z w w30 CL 20 10 0 Y 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) _ Hole Sample Depth of No p Soil Type GR:SA:FI LL,PL,PI (ft.) (%) M-1 12 65.0 SC 0:71:29 N/A Sample Description: _..._. . A.. ., Project No.: 940028-027 Olive brown clayey sand (SC) Encinitas Ranch a ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 • - - — - - 0-100 60 For classification of fine- / i 50 grained soils and fine- grained fraction of CH or OH a coarse-grained soils x 40 "A" LINE v i T 30 CL or OL V 20 MH or OH a i 10 .L--L ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) -- GRAVEL I SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 60 w m 50 a! w z LL-40 z w of 30 w a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI ` No. No. (ft.) (%) M-1 13 70.0 SC 0:57:43 N/A Project No.: 940028-027 Sample Description: - Encinitas Ranch ` Olive clayey sand (SC) ATTERBERG LIMITS, PARTICLE- SIZE CURVE ASTM D 4318,D 422 02-00 60 For classification of fine- 50 7CL-W grained soils and fine- :7.— / CH or OH / - 40 "A"LINE CU v Y30 or OL V 20 R MH or OH a 10 IX ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE I MEDIUM FINE SILT CLAY ` U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 H — 60 w m 50 w z 140 f- z w n 30 w a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI ` No. No. (ft.) (%) M-1 14 75.0 SC 0:75:25 N/A TbI2J1"Cf' CT%»f..J.rf Project No.: 940028-027 Sample Description: V Encinitas Ranch Pale olive clayey sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318,D 422 n:'-nn 60 For classification of fine- 50 grained soils and fine- grained fraction of CH or OH a coarse-grained soils x 40 "A"LINE CU ' T 30 CL or OL U 20 MH or OH a 10 CL-,,,L ML or OL _._ 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) -- GRAVEL SAND I FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 _ 100 90 80 70 60 w � m50 w z_ LL 40 t— z w w 30 w a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(MM) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M-1 15 80.0 s(CL) 0:43:57 36,15,21 Project No.: 940028-027 Sample Description: - Encinitas Ranch Pale olive sandy lean clay s(CL) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318,D 422 03-00 60 ; For classification of fine- 50 . grained soils and fine- grained fraction of CH or OH a coarse-grained soils j x 40 "A"LINE V i I T 30 CL or OL 20 MH or OH a I 10 " "" ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 ILiquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY ' U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 H 60 - w � � m w z ' ri 40 z w ' w 30 a 20 ' 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (°fig) M-1 17 90.0 SC 0:56.44 N/A I'an--i resr>;1.:i n.ti, 1, . Project No.: 940028-027 Sample Description: Encinitas Ranch Gray clayey sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318,D 422 02-00 60 For classification of fine- i i 50 grained soils and fine- grained fraction of CH or OH iL 40 coarse-grained soils I NE v v I T 30 CL or OL A 20 MH or OH CL I 10 ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 I Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY I U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100. 90 80 70 60 w >-50 w z U.40 z w w 30 a -20 10 iL 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M-2 3 31.0 S 0:82:18 NP Project No.: 940028-027 Sample Description: Encinitas Ranch ` Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318,D 422 03-00 60 For classification of fine- 50 grained soils and fine- grained fraction of CH or OH 40 - coarse-grained soils "A"LINE v v T 30 CL or OL V 20 a MH or OH 10 t GL-ML ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE I MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 314" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 t— 60 m 50 w z LL 40 z z w w 30 o_ 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) N _ M-2 4 34.0 SM 0:82:18 N/A ZFRi S _:�.n.r, llrvc. Project No.: 940028-027 Sample Description: _.•-_. ,.� .-,___ Encinitas Ranch ` Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 �)2-00 60 For classification of fine- / ' 50 grained soils and fine- ' grained fraction of CH or OH d coarse-grained soils x 40 "A"LINE d v T 30 CL or OL 2 20 MH or OH n. 10 " "` ML or OL 0 ------ 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE I FINE CRS E MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 60 w >- 50 m W W z u-40 z W w 30 W o_ 20 10 Fill, 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M-2 5 37.0 SC-SM 0:73:27 26,20,6 >'> Project No.: 940028-027 Sample Description: - Encinitas Ranch ` Olive brown silty, clayey sand (SC-SM) ATTERBERG LIMITS, PARTICLE- SIZE CURVE ASTM D 4318,D 422 03-00 60 For classification of fine- 50 grained soils and fine- grained fraction of CH or OH a coarse-grained soils ' "A"LINE x 40 % 30 �i CL or OL 20 MH or OH a 10 ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRS E MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 1 90 80 70 60 W m 50 W Z U-40 f- Z W 0 of 30 W a 20 10 11 ITITI F[7� I' 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M-2 6 40.0 SM 5:82:13 N/A j as,-i. �.. Project No.: 940028-027 Sample Description: y ' " Encinitas Ranch Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE- SIZE CURVE ASTM D 4318,D 422 0'-00 60 For classification of fine- i 50 grained soils and fine- grained fraction of CH or OH ` 4 coarse-grained soils x 40 A"LINE d r30 J CL or OL m 20 a MH or OH 10 "'"" ML or OL .1 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY ` U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 � 60 w ca 50 Of w z M 40 w T1 I H W-30 w a 20. 10 0 100,000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI - LL,PL,PI No. No. (ft.) (%) M-2 7 43.0 SM 0:84:16 N/A ;:;.. Project No.: 940028-027 1 Sample Description: - - Encinitas Ranch ` Yellowish brown silty sand (SM) ATTERBERG LIMITS, PARTICLE- SIZE CURVE ASTM D 4318,D 422 03-00 60 For classification of fine- 50 7CL-W id soils and fine- CH or OH a x 40 "A"LINE CU v T 30 �+ or OL m 20 MH or OH n- 10 ML or OL .1 Z 0 0 10 20 30 40 50 60 70 80 90 100 Liqui d Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY I U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 111/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 I 90 I 80 70 60 UJ im 50 w Z 4° i- Z W W 30 L o_ 20 i 10 01111 - 1100.000 10.000 1,000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. M-2 8 46.0 SM 0:73:27 NP Project No.: 940028-027 IS— Sample Description: Encinitas Ranch Olive brown silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 o'�-no 60 For classification of fine- 50 grained soils and fine- grained fraction of / CH or OH / f a coarse-grained soils K 40 "A"LINE d v 2 30 CL or OL 20 MH or OH IL I 10 " "` ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY E U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 _ E 90 80 70 = 60 ui m 50 w z I—F- 40 z w LL W_ 30 w a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M-2 9 49.0 SM 0:85:15 N/A ' Project No.: 940028-027 Sample Description: Encinitas Ranch Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318,D 422 n3-nn i 60 For classification of fine- 50 grained soils and fine- grained fraction of CH or OH i a coarse-grained soils x 40 --,"A" LINE m 30 CL or OL H 20 R MH or OH a 10 ML or OL _. 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) - GRAVEL SAND FINES COARSE I FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 H - 60 w m m w z LL 40 z w a:30 w a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M-2 10 55.0 SM 0:79:21 N/A Project No.: 940028-027 Sample Description: -• _ --r__,..., p P Encinitas Ranch Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318. D 422 02-�)Ci 60 For classification of fine- i 50 grained soils and fine- grained fraction of CH or OH d coarse-grained soils x 40 "A"LINE v 30 .3 CL or OL m 20 MH or OH a 10 "-W ML or OL - 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRS I: FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 11/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 I -T. 80 70 H 60 w m� w z_ v_40 F- z _ w W 30 w CL 20 44' 1 10 0 1 - I I 100.000 1 p 000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M-2 11 60.0 SC 0:73:27 N/A Project No.: 940028-027 Sample Description: Encinitas Ranch iOlive brown clayey sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 02-00 60 For classification of fine- 5o grained soils and fine- arained fraction of CH or OH coarse-grained soils _. K 40 "A"LINE d c 30 Y CL or OL 20 MH or OH a 10 ' "-ML ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY I U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 I 90 I 80 t 70 I =60 I w m 50 W- I w z LL 40 H z w U w a_ 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 -- PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) N M-3 6 40 SM 0:82:18 N/A Proiect No.: 940028-027 TiaY:r?t.'I•'tir�>G..��s,Irc. Sample Description: Encinitas Ranch Brown Silty Sand(SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318,D 422 - 03-00 -------- --- 60 — For classification of fine- 50 grained soils and fine- grained traction of CH or OH a coarse--grained soils x 40 - "A"LINE v CL or OL 20 a MH or OH 10 7 CL-Ml ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 112" 3W 3/8" #4 #10 #20 #40 #60 #100 #200 100 - 90 70 =60 w m 50 X U1 z M 40 H z w of 30 w a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE;SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M-3 8 46 SM 0:76:24 N/A Proiect No.: 940028-027 Sample Description: --•.-- T_ ,�_.,_�, Encinitas Ranch Brown Silty Sand(SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03-00 i For classification of fine- ! 50 grained soils and fine- grained fraction of CH or OH I✓ coarse-grained soils K 40 "A"LINE V V 30 U CL or OL A 20 MH or OH I a 10 " "` ML or OL 0 10 20 30 40 50 60 70 80 90 100 ILiquid Limit(LL) - GRAVEL SAND FINES I COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 112" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 I i i 70 = 60 i W m50 cr W t Z 40 Z W U i W 30 W 0- _ 20 10 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) N M-4 4 34 SC 0:72:28 N/A .'�<zr>• Protect No.: 940028-027 Ti_. Y#' 'tiy=:; L..3t_ts•,Ltic. Sample Description: "� Encinitas Ranch Brown Clayey Sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 -- 03-00 i _ 60 For classification of fine- s 50 grained soils and fine- grained fraction of CH or OH K40 coarse-grained soils "A"LINE d iCL or OL y 20 16 MH or OH i a. 10 ° " ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES ' COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD.SIEVE OPENING U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/7' 314" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 = 60 2 W m 50 of w z LL 40 H _. z W U W W o_ _. 20 10 i ° 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No: No. (ft.) N M-4 5 37 SM 0:82:18 N/A Proiect No.: 940028-027 Ti: Yk�:Kti r>::;L.3trs.I.�c. Sample Description: ��"� ' •`"" `� o Encinitas Ranch Brown Silty Sand(SM) ATTERBERG LIMITS, PARTICLE- SIZE CURVE ASTM D 4318, D 422 — 03-00 60 i For classification of fine- r grained soils and fine- grained fraction of CH or OH coarse-g ined soils x 40 "A"LINE iC30 ZCLorOL a MH or OH 10 ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit(LL) GRAVEL SAND FINES COARSE I FINE CRSE I MEDIUM I FINE SILT CLAY -- U.S. STD.SIEVE OPENING -U.S.STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/7' 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 TM F"N ] H 80 70 = 60 2 w m 50 o- w z u-40 I- __ z w w 0- 20 _ 10 0 _ 100"000 10.000 1.000 0.100 0.010 0.001 PARTICLE-SIZE(mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M-4 9 49 SM 0:79:21 N/A Proiect No.: 940028-027 Sample Description: .�'_' AwK.-,- °° Encinitas Ranch Brown Silty Sand (SM) rATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318.D 422 03-00 ` Leighton and Associates,Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 1 of 6 LEIGHTON AND ASSOCIATES,INC. GENERAL EARTHWORK AND GRADING SPECIFICATIONS FOR ROUGH GRADING ■ 1.0 General 1.1 Intent: These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the _. earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s). 1.2 The Geotechnical Consultant of Record: Prior to commencement of work,the owner shall employ the Geotechnical Consultant of Record (Geotechnical Consultant). The Geotechnical Consultants shall be responsible for reviewing the approved geotechnical report(s)and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading. Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor(Contractor) and schedule sufficient personnel to perform the appropriate level of observation,mapping,and compaction testing. ` During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required. Subsurface areas to be geotechnically observed,mapped,elevations recorded,and/or tested include natural ground after it has been cleared for receiving fill but before fill is placed, bottoms of all "remedial removal' areas, all key bottoms,and benches made on sloping ground to receive fill. The Geotechnical Consultant shall observe the moisture-conditioning and processing of the subgrade and fill materials and perform relative compaction testing of fill to determine the attained level of compaction. The Geotechnical Consultant shall provide the test results to the owner and the Contractor on a routine and frequent basis. 3030.1094 Leighton and Associates,Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 2 of 6 1.3 The Earthwork Contractor: The Earthwork Contractor (Contractor) shall be qualified, experienced, and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moisture-conditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Specifications prior to commencement of grading. The Contractor shall be solely responsible for performing the grading in accordance with the plans and specifications. The Contractor shall prepare and submit to the owner and the Geotechnical Consultant a work plan that indicates the sequence of earthwork grading, the number of "spreads" of work and the estimated quantities of daily earthwork contemplated for the site prior to commencement of grading. The Contractor shall inform the owner and the Geotechnical Consultant of changes in work schedules and updates to the work plan at least 24 hours in advance of such changes so that appropriate observations and tests can be planned and accomplished. The Contractor shall not assume that the Geotechnical Consultant is aware of all grading operations. The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish the earthwork in accordance with the applicable grading codes and agency ordinances, these Specifications, and the recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of the Geotechnical Consultant,unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, insufficient buttress key size, adverse weather,etc., are resulting in _ a quality of work less than required in these specifications, the Geotechnical Consultant shall reject the work and may recommend to the owner that construction be stopped until ` the conditions are rectified. 2.0 Preparation of Areas to be Filled 2.1 Clearing and Grubbing: Vegetation, such as brush, grass, roots, and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner,governing agencies,and the Geotechnical Consultant. The Geotechnical Consultant shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 1 percent of organic materials (by volume). No fill lift shall contain more than 5 percent of organic matter. Nesting of the organic materials shall not be allowed. If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area. As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.)have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed. 3030.1094 ' Leighton and Associates,Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 3 of 6 2.2 Processing: Existing ground that has been declared satisfactory for support of fill by the Geotechnical Consultant shall be scarified to a minimum depth of 6 inches. Existing ground that is not satisfactory shall be overexcavated as specified in the following section. Scarification shall continue until soils are broken down and free of large clay lumps or clods and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction. 2.3 Overexcavation: In addition to removals and overexcavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organic-rich, highly fractured or otherwise unsuitable ground shall be overexcavated to competent ground as evaluated by the Geotechnical Consultant during grading. 2.4 Benching: Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), the ground shall be stepped or benched. Please see the Standard Details for a graphic illustration. The lowest bench or key shall be a minimum of 15 feet wide and at least 2 feet deep, into competent material as evaluated by the Geotechnical Consultant. Other benches shall be excavated a minimum height of 4 feet into competent material or as otherwise recommended by the Geotechnical Consultant. Fill placed on ground sloping flatter than 5:1 shall also be benched or otherwise overexcavated to provide a flat subgrade for the fill. 2.5 Evaluation/Acceptance of Fill Areas: All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations irecorded, and/or tested prior to being accepted by the Geotechnical Consultant as suitable to receive fill. The Contractor shall obtain a written acceptance from the Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas,keys,and benches. 3.0 Fill Material 3.1 General: Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by the Geotechnical Consultant prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to the Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material. 3.2 Oversize: Oversize material defined as rock,or other irreducible material with a maximum dimension greater than 8 inches, shall not be buried or placed in fill unless location, materials, and placement methods are specifically accepted by the Geotechnical Consultant. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 vertical feet of finish grade or within 2 feet of future utilities or underground construction. 3030.1094 ' Leighton and Associates,Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 4 of 6 3.3 Import: If importing of fill material is required for grading,proposed import material shall meet the requirements of Section 3.1. The potential import source shall be given to the Geotechnical Consultant at least 48 hours(2 working days)before importing begins so that its suitability can be determined and appropriate tests performed. 4.0 Fill Placement and Compaction 4.1 Fill Layers: Approved fill material shall be placed in areas prepared to receive fill (per Section 3.0) in near-horizontal layers not exceeding 8 inches in loose thickness. The Geotechnical Consultant may accept thicker layers if testing indicates the grading procedures can adequately compact the thicker layers. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout. 4.2 Fill Moisture Conditioning: Fill soils shall be watered, dried back, blended, and/or mixed, as necessary to attain a-relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM Test Method D1557-91). 4.3 Compaction of Fill: After each layer has been moisture-conditioned, mixed, and evenly - spread, it shall be uniformly compacted to not less than 90 percent of maximum dry density (ASTM Test Method D1557-91). Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity. ` 4.4 Compaction of Fill Slopes: In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods producing ` satisfactory results acceptable to the Geotechnical Consultant. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of maximum density per ASTM Test Method D1557-91. 4.5 Compaction Testing: Field tests for moisture content and relative compaction of the fill soils shall be performed by the Geotechnical Consultant. Location and frequency of tests shall be at the Consultant's discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction(such as close to slope faces and at the fill/bedrock benches). 3030.1094 ' Leighton and Associates,Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 5 of 6 4.6 Frequency of Compaction Testing: Tests shall be taken at intervals not exceeding 2 feet in L vertical rise and/or 1,000 cubic yards of compacted fill soils embankment. In addition, as a guideline, at least one test shall be taken on slope faces for each 5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The Contractor shall assure that fill construction is such that the testing schedule can be accomplished by the Geotechnical Consultant. The Contractor shall stop or slow down the earthwork construction if these minimum standards are not met. ` 4.7 Compaction Test Locations: The Geotechnical Consultant shall document the approximate elevation and horizontal coordinates of each test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that the Geotechnical Consultant can determine the test locations with sufficient accuracy. At a minimum,two grade stakes within a horizontal distance of 100 feet and vertically less than 5 feet apart from potential test locations shall be provided. 5.0 Subdrain Installation Subdrain systems shall be installed in accordance with the approved geotechnical report(s), the grading plan, and the Standard Details. The Geotechnical Consultant may recommend additional subdrains and/or changes in subdrain extent, location, grade, or material depending on conditions encountered during grading. All subdrains shall be surveyed by a land surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the ` Contractor for these surveys. 6.0 Excavation Excavations, as well as over-excavation for remedial purposes, shall be evaluated by the Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by the Geotechnical Consultant based on the field evaluation of exposed conditions during grading. Where fill-over-cut slopes are to be graded, the cut portion of the slope shall be made, evaluated, and accepted by the Geotechnical Consultant prior to placement of materials for construction of the fill portion of the slope,unless otherwise recommended by the Geotechnical Consultant. 1 f 3030.1094 I Leighton and Associates,Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 6 of 6 I 7.0 Trench Backfills I7.1 The Contractor shall follow all OHSA and Cal/OSHA requirements for safety of trench excavations. I7.2 All bedding and backfill of utility trenches shall be done in accordance with the applicable provisions of Standard Specifications of Public Works Construction. Bedding material ' shall have a Sand Equivalent greater than 30 (SE>30). The bedding shall be placed to 1 foot over the top of the conduit and densified by jetting. Backfill shall be placed and densified to a minimum of 90 percent of maximum from 1 foot above the top of the conduit to the surface. 7.3 The jetting of the bedding around the conduits shall be observed by the Geotechnical Consultant. 7.4 The Geotechnical Consultant shall test the trench backfill for relative compaction. At least one test should be made for every 300 feet of trench and 2 feet of fill. 7.5 Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can demonstrate to the iGeotechnical Consultant that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method. i i i i 3030.1094 BUTTRESS OR REPLACEMENT FILL SUBDRAINS 15' MIN. OUTLET PIPES I 4" 0 NONPERFORATED PIPE, _----- ----- - --_ _- BACK CUT 100' MAX. O.C. HORIZONTALLY, 1:1 OR FLATTER 30' MAX O.C. VERTICALLY (_ ___----- ------—_--l= BENCH SEE SUBDRAIN TRENCH ______- __---_ DETAIL __ --__ ------ OVERSIZE ROCK DISPOSAL DETAIL OVERSIZE WINDROW • OVERSIZE ROCK IS LARGER THAN kt 8 INCHES IN LARGEST DIMENSION. • EXCAVATE A TRENCH IN THE COMPACTED FILL DEEP ENOUGH TO BURY ALL THE GRANULAR MATERIAL TO BE ROCK. DENSIFIED IN PLACE BY DETAIL • BACKFILL WITH GRANULAR SOIL JETTED FLOODING OR JETTING. OR FLOODED IN PLACE TO FILL ALL THE • DO NOT BURY ROCK WITHIN 10 FEET OF FINISH GRADE. • WINDROW OF BURIED ROCK SHALL BE PARALLEL TO THE FINISHED SLOPE. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GRANULAR MATERIAL TYPICAL PROFILE ALONG WINDROW ` CANYON SUBDRAIN DETAILS EXISTING / iI \ GROUND SURFACE ____ ___________________________ - KEY AND BENCHING DETAILS PROJECTED PLANE - 1 TO 1 MAXIMUM FROM TOE OF SLOPE TO APPROVED GROUND REMOVE EXISTING --- UNSUITABLE GROUND SURFACE BENCH TBENCH HEIGHT MATERIAL (4- TYPICAL) 2 MIN LOWEST KEY BENCH DEPTH (KEY) EXISTING GROUND SURFACE TBENCH HEIGHT 15' MIN LOWESL T REMOVE 2' MIN. BENCH UNSUITABLE KEY (KEY) MATERIAL DEPTH CUT FACE SHALL BE CONSTRUCTED PRIOR TO FILL PLACEMENT TO ASSURE ADEQUATE GEOLOGIC CONDITIONS EXISTING LIT FACE SHALL BE GROUND CONSTRUCTED PRIOR Uff7OVER-FILL SLOPE SURFACE TO FILL PLACEMENT OVERBUILD AND TRIM BACK REMOVE UNSUITABLE DESIGN SLOPE MATERIAL it PROJECTED PLANE 1 TO 1 MAXIMUM iFROM TOE OF SLOPE FOR SURIBIDRAINS TO APPROVED GROUND ----- ---- SEE CANYON SUBDRAIN 15' MIN 2' MIN.j LOWES BENCHING SHALL BE DONE WHEN SLOPE'S KEY BENCH ANLGE IS EQUAL TO OR GREATER THAN 5:1. it DEPTH (KEY) MINIMUM BENCH HEIGHT SHALL BE 4 FEET AND MINIMUM FILL WIDTH SHALL BE 9 FEET. - - ----- -- 6 4940028-027 6 APPENDIX E STABILITY ANALYSIS FOR HOMOGENEOUS EARTH SLOPES Design Parameters and Assumptions ` Type of Slope: Fill slope to 30 feet in height Type of Soil Materials: Fill soils derived from onsite soils ` H=Height of Slope = 30 feet R =Angle of Slope =26 degrees yt=Total (wet)Unit Weight = 130 pcf =Angle of Internal Friction = 34 degrees C =Cohesion = 100 psf ` •No seepage forces • Total shear strength parameters are used in lieu of effective strength Analysis y • Dimensionless Parameters= Al = ` HA •tan 0 15 1 C ` Stability Number(from Figure 10 of Reference 2) = N�f=43 2 Minimum Factor of Safety=F.S.(mi..)= Nc• C =2.03(-2j.5 O.K.) rto H References 1. Bell, J.M., Dimensionless Parameters for Homogeneous Earth Slopes, Journal, Soil Mechanics and Foundation Division,American Society of Civil Engineers,No. SM5, September 1966. 2. Janbu, N., Discussion for (Reference - 1), Journal, Soil Mechanics and Foundation Division, American Society of Civil Engineers,No. SSM6,November 1967. 3. Leighton and Associates, Inc., 1995c, see Appendix A. E-1 4940028-027 APPENDIX E SURFICIAL SLOPE STABILITY ANALYSIS ASSUMED PARAMETERS Z = Depth of Saturation =4 ft. i = Slope Angle =26 degrees 7w = Unit Weight of Water =62.4 pcf Y� = Saturated Unit Weight of Soil = 130 pcf = Apparent Angle of Internal Friction = 34 degrees C = Apparent Cohesion = 150 pcf FS= C+6tano _ C+(Yt-Yw)Z cos'i tan T yt Z sin i cos i FS = 1.5 (>1.5; O.K.) Slope Configuration Fill Slope 2:1 (horizontal to vertical) ` E-2 _ o Q C � �D a 000 0 COO 0 a M N 0 O Lm C I I I I I I I I I O ' Lu W U to a C � f0 O Cn t O O —O �F II O _ LL —O i" _O 0 0 0 0 0 0 0 0 0 OD 0 CO 0 E (n O O O O O O O O O O O O O " CL M O M O 00000 Cl) 0 Cl) 0 —� O O - .,._ 0 0 0 0 0 0 0 0 0 O O U fl.Cli C�? 00 0MC) 0O0 MO C0D0 N E EwLnoLn00000OOOOO M U M LO M M M M M M M M M M M a r' O —C) -- LO VY r- M — N C 00 C cc CD (! lt) l? f0 N ft7 LU LL W O C ((D C(OL in M -p � 7 7 7 > 7 •C 7 C L� O 0 > O O M 000 Or (00 M M N O O