Loading...
2002-7516 G CITY OF ENCINITAS APPLICANT SECURITY DEPUSIT RELEASE Depositor Name: Vendor No. P Q� Address: hone No. State Zip DEPOSIT DESCRIPTION: 1. MEMO PROJECT NUMBER 2. RELEASED AMOUNT: 3. D POSIT BALANCE: $ Ad /z >1 �3• Notes: AUTHORIZATION TO RELEASE: Project Coordina o Date A 3 /� Supervisor / Date ) 2A 0? 0) Department Head Date DEPOSIT BALANCE CONFIRMED: Finance Dept Date GENERAL PROD. # BRIEF DESCRIPTION AMOUNT LEDGER # (25 Characters limit) 101- 0000 - 218.00 -00 ------ Security Deposit - _ _ _ _ _ _ TOTAL $ I HEREBY CERTIFY THAT THIS CLAIM REPRESENTS A APPROVED FOR PAYMENT JUST CHARGE AGAINST THE CITY OF ENCINITAS PROCESSED BY DEPARTMENTAL APPROVAL FINANCE DATE OF REQUEST DATE DATE CHECK REQUIRED Next Warrant CITY OF ENCINITAS APPLICAN SECURITY DEPOSIT RELEASE l Vendor No. DepositorName: Phone No_ Address: State Zip DEPOSIT DESCRIPTION: �— 1. MEMO PROJECT NUMBER �✓/ �� 2. RELEASED AMOUNT: 3. DEPOSIT BALANCE: Notes: AUTHORIZATION TO RELEASE: Project Coordinator - ate Supervisor Date Department Head Date DEPOSIT BALANCE CONFIRMED: Finance Dept Date GENERAL PROJ. # BRIEF DESCRIPTION AMOUNT LEDGER # (25 Characters limit) 101 -0000- 218.00 -00 ------ Security Deposit - TOTALS I HEREBY CERTIFY THAT THIS CLAIM REPRESENTS A APPROVED FOR PAYMENT JUST CHARGE AGAINST THE CITY OF ENCINITAS PROCESSED BY FINANCE DEPARTMENTAL APPROVAL DATE OF REQUEST DATE DATE CHECK REQUIRED Next Warrant don 2 ENGI EERING SER CES Cl Y OF ENCINIT c)FF ` Slo l E-=r'ARED UNDE.F:TfiE ` >Uf "EE�VIS!ON OF: p \l J , M 1� C). 3 474 rn u J 4 - -- -- -- - — Exp.3l31 10i �� -- - - - - - -- �� Dru J. Pr,a; �, < P.C.E. 3847 Exp. 3/ /0'r f. 1,.. Lc. nu c:tvn-`�_ r ................................................................ ............................... ................................ ............................... 2 F''. Met hodology ..................................................................... .............................. V. S`E°UD ARI !> u.. .............................>.,.....,...............,.......,... ............................,.. .... P D oscrifAion ... ............................... H. E xishng E)ruir age E= ciiAns ..................... @ =i: ...... ....... ........ ............... ............. - ............................................................................. ............................... 4 B. Elation,, Miiethod Hydrology A alysi :............................ ..............................J iv. r "RO POS €; ) f +6`v.IAlFSAGE: I- ;,G A f',` ...1 ................. ......................... y Wd` I'E..R QU L 11 y f >f'e , E1 ¢ ............................... . ...... ...., ......... .............................. >�. Cif' e tc' 1 .............................................................................. .............................. ;. ........................................................................ . ............................. 7 AuaIaySalt1 .............. .......... ........ ...... »_,..,...'a A . Hydrology /tea &........................................................... ............................... C . Hyorol'ogy Plea ............................................................ ............................1'. I . . . . .................. 'i�, C��''� � �I� T BASIN, ��EF�...['0�`��s`° t � e , r_.be W,� ?(��r.��. ����" ,�.�. §� .�.k I���i�; . .1. L I t ! (7 1 It P LOP Dm ThC: PLUI)OS( of this ropm! R.; to plovkh c ll)/c�rt_7lc } ^ ;: \' an�-flysis for the kanch located VAS the City COUl"Ity. I StUdy 0111 calumate the "1 00 p = i &A m d6whayes to SuppN tho processilig of We pvelcisC (jifadinr-j E impi 1 0" devdopn ske. V Vio6`olor He rnabadohgy used to deteimiw-� th'c" is based upon the c:ontLiiw in iffi,-: S, n Di" go coi-ini(y 1-:ydrology K4anL,ja,.1 doted Pyril 1993. A hydrology anatlysis was f C, i to, both the xis in,, - d developnd conditioris of th(-,- project 'L Thc- follovving work [Ami and in the prcq) . of thi�� drain,, /01 avabble infonnahm and irrli lei lj vvevc, A field revie"vv of the pr(.)jE;,ci sito }c.mrFormc-cl. The drainago weas vjR& and thc site vv re defined. A hydi C()F1, \vas paparec c the clxisting a.rld propt [)�Aierns- The results of the study and We cakidadions for " hYdrological - ire presented in this reporl. SAM IN" ARKA ThE" pr0i?(,SCCj' Raw to lzncwli(;-"s I is \Ivcst of I-A iino Rep! and 1 of Leucadi�i i iri ,he Cky Of C0L),) Of Diego, Thc i� hot u i 1• vvcsi by undc�velopcd natural land, io the east by E rudural course arld F-I Can F-Zeal, to the north by the consbucdon W A development and to the souW by Leucadk BOLMard and the EmAnitas Am Caraer retail comp!ex. Ito goposed dovolopnonq SH WAY constmction of We (3) mrimarcial knictums, retwining wadis, Vie extension Of Ganion Vievv R.opd arid a ol, th. pur6or, to FlEircclona. A vvilcdfilc corridor and undercro, paddrij C ,Ssociat d sitc; improvery'ients are also included in US projoc.1 The sitf.." Consists of Ppproxirn�: 15 &C"rcs The rwQorA si'L(, dr , Jrjs ir, iioithWsteriy directio.n. A ierr'lporary dic's,iltinq hasin, loo atc-, -3- in the rm%ast corner OF the constru, site, k - I' Thi, 'jil .1 into , accepts drahiage from We a '3 Mnoff is o C a pen voratel qu,7 bEi, at the bottorn of ih( si-ope. ThF: nriajority of t'he site irito Us SOL whidi (Ascharges into EnciriKas Drat ('s IC" A N I I, I The hy(h studie,,; prepared in this loporl utilized the r,-,iJonal n'icthod in Gcx with the Sin D' . C.ounlv Mail(.Ml, dated 199' [-Iydro!clgy Galculation vvere prepared using the I" ethOd Hydrology Coniptitc Pruc ji Package by Advance6 Lngineering. Softwa; based or thc 1P hydrology l ie I y mat , - it. rior . The mAiorml method cornputes the peal, rUH01f as a function of area, t _'_ [ ER11a in hC rairifali irlt( ' - I JISity, arld �,' GOCIffiCient o nul"loh. I le basic fOrFI Ffic.Ahod is as fol"mims: V RAUIC)'i iCl CAlbiC, ftOt P F-CGOnd (Cf Coefficien C" RMOi L _j1 Average r,-jtjfalj it I incl ies 1pev hour correspondinq to tine time of Con ;entration A Drainac g c- in an'e.s 'his f0tinuia CompuLe's thc, peal flow rale at all points of concentrati L L 1J hydrology analysi, it provid(_ in this vepor(. I and US(' in the study ai'ea is, iI- in the development of th'a, hydrology Study iri that coefficient of Wl'!Oftf Used. io the rational method arc- partially deperident upon the type of surface dewelopment is within the area. - I - he: land use rased in this: Study WaS hased UP011 the development proposed for the Pima @ Encinitas Ranch. The rnajor factor affectinc) infiltration is thc: nature of the soil. Hydrologic Soil types within the sd ("y area ware determined from the Hydrologic Clas-,ilication of Soils may) contained in the ,__;an Diego Comity Hydrology Manual. The soil classilication is based on the Soil Consem-.Aion Servi criteria as follows S " C)­ G-oiqo 1" 1 i i , Low runoff potential, consisting mainly of dee. well- defined sands or gravel. C"iroup R Soil havinc rnoderatc-.,� Infiltration rates, consisting of rnoderately v✓ell drained sandy-barn soils, with fine to moderate coarse texture". o 0 - , f ' 1 VC, U 1 C s oos. having slow A hM an rates, consistit i q O i si!ly- !oarn suils, with n filIC S, 0 i 1 G i ou D High rung fli poic'rltial with S!C)\!V infiltration conskting mainly of clay soils with Li pormancrit hiUh vvat(r t or shallow Soils. ovu 1lious r Rainfall intensity is m1wessed in inche- of rainfall per hour and is developed by statistical meHods from historical raiiifall re cord'4;- 11 VGA intensity date Used in this , ',tudy was obtained from the curves for mean pm6piiation intensMes AlUded in the Diego County Hydrology Manual. U. Method 141MYcApIr Amdysic.� Approxii 15 acres, of the U&I thibut ry area, are being dc=ve foi cornrnerCica! LIS('. The '-:JU. �;fte'r (-`,( will c.ontairi flivee (3) b uildings and parking arca,. Uporl compk-,Aion of the 1m y y j s it e , R ljc<turaj dre)irjaqe patterns will be ARM Drainage Area aher Melopment, will con'tain appro'ximatelY 1.29 acres and produu- E pproxij ,i / cf,.; jr, t'flc 100-year storrn, A -7, T" will contairi apr Dr�- /i proximately 1116 am es Stour, respectivelly. WId �)MdLICC.' approxin 411a.(93 c1s in the 100-yeat Drainage Avea "C" will contain approknately M acres and produce apV.')'-oYh riaiely 1.53 cts in j[- 1 00 y (c�n- stoi rn, rospectively. The hydrology map for the developed condition analysis ME, all perfinemt infon and is presented in this report. he projcct site:; pre ently dt in a nor easiorly direction. A ternporw ! vv�-Jet quality basin;, located A the northeast mrier of ille construction site, presently Hccepis drairlag(-; foi thce Upon of the project to penvanent Aut flush" water quality Will be constmcled in the maheaS ca ; E to , iccept "first Hush" drainagic. only. majohQ of the stonn water run.-off for '(!to site vAl docimpe into Encinitas Week. The noiihurly por of the project site will into an (,, a I " charmed, flowing easterly and eventually (dischargitig into Encinitas Greek. D i F th, ,�;Jerjy [), riio Oill Of I)rOjCG Si t W i! I [ "A.", located ill th-! 11, - itc , e (,�x ihc a n ri c te cICCept SUrface iu 'arid 6i, it i Jstinq ee� -m ch, 1 lo c a C noid'I of thr. -. Proposec, o'evelopt Th caahen channel tows in m easterly Motion and eve=Hy d4sk ink: The rflajovity of the-; pro Si4-, � , i2 [. Cz [)y Ar - -z This storm AM systenn 6rain : in c.i nokhaaskily dKoctiol, accepting sUrrcSCe ILHI-off Rum tho pruking lots: and evenhiaHy into the pumnanent Vv'atev C),uality I asl i. /WWRling So= RS COPWAY Of aGOeMance will ennplky direm.ly into EncMas Cheek located ec,; sii.. - I"he; "itorrn dtr:Jn located W fat ilo"the'a":,ieFly portion ofule Proje."'t sitc, i, refemed to as Lire i na "C". ) propn,-� draimige facility will includc pcmynaneri INS", fiU:�JC V,21CT qualioy Inasin to accept KIM AWN only. (Plua4se; refer to i!he. Hydii klksp located' in :Icuction Vill for deta&) lonwa.incler of the runoU wM he Meicevdcd 1)y catch hasins, ioca.led 1.;Irough,uti!t project site. V. A porrom iarii wpter ql_!r ih',y vvili he cc)i i5tructed K Fleforence Vie lqd;dogy study entilied 'T)rainage Study for Encinitas Ranch Phase 11" dated August 20, 1998 and revised September 25, 1998, that was prepared by O'Day Consultants, Inc. is made a part hereto. Rev. -Sept. 25, 1 9S0 J.x .: 4 ;. V D CfL g tf' y Lo I E *Xp. 0/31/00 n - cpal u; by-, O'Dvy Collsullt- ur -ts, 1rnc. 5900 Past.cirr Cou i Sui 100 Carlsbad, CA 92008 (760) 431 -7700 t C Vicinity may) 0 Narrative 0 Rational Method Inscription 0 Program Process C Isopluvial maps 0 Intensity Duration Chart. Curve G "As Graded" Rational Study 0 "Puture Developed` Rational Study 0 Mfsite Drainage! o B»o'a Ditches D(:-'s'j.qj2 Direct, 220of2 Chart o Desilt Basin Design, Desilt Basin Capacity Table Standpipe Chart spillway Design Dewatering Calc's. o Hydrology Maps repon contaAP3 430rologir EM of relatrel support,in,-. calrolaLjors necesuDvy i.o proppyly design 1.: he vEyious cMinagc- faciJitins, both inwrim. and AiLure, for EnKnAav Ranch Phase !T mass grading. This relv)rt includes serMons covering the future and intcrim runoff, the permanent pollution contyul basin, and the temporary desilt basin. The project site is located alcmq mucadia Blvd, in the northern portion of the My of :.. Unitas at the southerly houndaiy of the: City of Carlsbad just west of El Camino Real. Mis site is (alit- norLh of the recently Town canLer. The site area is oppxinimately 15 ac.)' cs and ovei 950 of the site is previously graded. The site wan used as a horrow pit: and is now being brought to grade for a fuKure shopping cenLer. A small area of native veget,Mon flows onto the site, being intercepted. by brow ditches. Runoff for this project to C-- - J-ze both the interim drainage requirewents for Lhc mass graded condition, and for any future dra neechs Lhe site. is improved. It: was assumed the SiLe vx)ul6' he (3.c- per t:he approved master Ea.ari aiul which calls foi thc: usage to be commercial. v' . 111 aAo hN used to Pelf arm PernmucM Y&D"Got) control tail t:. }1 .• sim VIN it IX)rAcm of. Town Center drainage }ail. in, as WHown in Uhn Urniinat, SLudy fox Encinitas Ranch. Uri to 1 anO 3. 7his study looks into the requirements fca a pollution canural basing designed w accept the f j rst f lush which is taken to he a hal f inch raintall T h i half inch rainfall will carry Ube pollutants from the streets and. parking lots is -o proposed pollution control 1)c t7.(.) allov them to settle out betore the drainage is Ji-rito the environment. Systeim; 100 arm! 700 of the Drainage Study for Units 2 and 3 shows 65 acres contributing to this basin. Out of. Lhose 65 oftsite acimr, 2G M thn acx•s are and don't- require any form of pollution coWynl. IU can also be argued that the dense vegetation and noil condition of this native land viould retain al.l of thc precipMation Nont the first flush, therefor not affecting the design M thin basin. r� i i f i P i vc C �r� e� __..� L S _'�'.9 7 - L�3,.* T ', _ r � ,'. _ ° ?.FE�' 2 e . _F's^ .� • Y ... t Method ---- ---- ----- as, dmubcd lu Ou" - )tc LI ), , I ' ;o Co Flood IT! au is usccd to surf' CC RIVOff Nyj 'Ixe 01cf), use to sin bork T)" R'uipomry and desiftAbon - Ftic basic' equation: Q = CIA, C runoff coefficicrilk (VaTics wIIIII, solfact-) (v'a S Willt UMC: Of (�OhCCX.I'LI IU - u3 acres Th'-; desll-irl stomi for th'Jis Project is tlac 100 the Correspou-db,ig 6-11011.r� j)-j(c) 1 _ Ur is 6 hiches. A cr);nPutc.-T &Velom-d by C"I'vil CADIMCivildesici fl, Softv"'are (c) 1.993 Version 3.2, Nv?, I3 Sect to the tjrf.:tes of conc"c"'In and. corrc:sprmd.ing -u 111 uIcs and flows for va.6ous hyd uIc4,j(:,-d processes jyj tt r l Iis 1510 r�x1:i L.Iso dcle'nui.n-c's tt strcet. Rov✓ ay pipeflow chal a 0 te fist i,cs f0y each scgmcn modeled. Pro?, Proccss we prnim is des vIeie flac., user dcv(JoyJs a -C d h Ijijk roodel of thc�, v�aters ed, Tfi,c Lode lick, mc)(ItJ is m:a!,cCj by dcvclopifli�, rlocie Jiiik Ynodels of each iumrioT watc,rshcdll Llyad lial-,ing mesc sub-niodels to at couflue Points. pro�?-ram has the c of cah fol dcv(-al 64T'c`rc;i) hydrulogic. md processes: Thcsc pro; - -�-SsCs aj,.C. ))171ill-0 ji-I OW. uutput. - 1 - 1-i-y are as Im.d.al subarca rijll.)ut, top of strtari 2. Stxc'et flow dl - u subarea, illcludcs S1`11)al.t�a runoff. 3. Addition of runoff fro subarea tin wcuci. 4. Street ink.l. and paraflel street a-uJ pip-flow - Lud ax'ca. `ipu -;? , (pro, - i �,., - I low U vel t ic, gram estiyi. �ed I iu lipes - ). 6. Pip(r:flow travel miae. (I-Iscr. Specified pipesize')- I. Improvcd chpurief travel - Area add opoorl. 8. IrTcgular dhumd travel time - Axea add opiJon.. 9. User spccif entry of dzu-) at P'. poum I - t Lli cwrent stream. 10. Coi ou. at dcmustream Poi 1 Confluence of main steams. I / Y ' r / JJ 4 err•. � J ��� : / _ �.-.�• ` � •_\ h' . l A , CD t\-I ELI CIO con A w M, z .. ri qq s ' C GJ CD • � U " R..R if r. 5V , a Ll e f E e1`a ��,_ -,`� /.- Vim- i ':� �( ..._�` \...� ..� �•` t �.,�' , c.. F' n a \ ti o r i ( o v ° u =i C:F t,J C7 cn � a r C) e _. I'll Cl Cl C (rl 4 n CJ CO U C I -C--' CIO 10, 1 '� C:9 L A co CL C i CD 1 1� 1 ' CA 0 0 S %J r i C.!, C' .Y V71 Q;l ul cl ru (7) V. C:j 01 V') Am r Precipitation finches) V) Cj v LO 0" cv Or . X F z. � z >. F; �` ,.^ I 1 I ,� .. ., m... ._ � '� ,_ 1 1 f � I I t I t 1 � 1 � r 1 ! 1 _,, —. r - �o �,. - •-- n C`�, CI � ..::^ - . ' � � - .. E f 1 I / 1 F I s I ' I ! t ! - W I 1 1 I r _.•_ Z3 :17 7� W T _. � c.'• R,, r _m. E < l' . (�� Ar._ � `E� 1 I � I � I 1 E E I 1 1 I •� 0 1 1 ! � Wz=" - rz - - - --- E Y� _7 C-1 zqy- ...... 0 - 1 - 7* 7 F— � Y- -1 "OFF CURVE. NMEAS FOR Fi'tOi (iC.EG IC `_all.- CClVER i`Ci,i'LFXE. S (C M) TAhLF 1 ANC Cove UgtC. _... SG i C rquos Lail Use �tEc irllCti 11yt;ro aqi C C Water Surfaces (during floods) e; �i c;? 99 59 C)r Cc1amert. ir-rdun r a ! � apt c;(x u High density reside"tial 75 82 88 Med derlA by r e, i c'e.ri t i b 1 T 80 86 8Ell ',ergs t e:r1r, i t:y res i do of i X11 70 ; Da r rer, 78 86 91 A11rr Straight roe., 6 r'.rY:a e:D +{rrrk.?' }arils, We c;l oypan,°in; l n "ime description) 3t9'611..al qra or f'oov 65 78 85 8 1 f3t`.reri n cover, ff C Fe ir so EE ? 3 `e9 0 (,1 d 1 61 74 80 Roads 5 (hard surface) 74 84 99 92. (di Row crop Straight rov: Poor 72 81 88 91 Cac;ci t - ;1 1 8 8 ) Carrtourec: r`oor C? 79 84 8 G ood 6 5 75 82 8 Narrowleaf chaparral � Poo 71 82 88 91 72 81 86 !-A a San DiP90 County hatinnal Hydrology pro granj C Engi nee ring Software, (c) 1993 Version 3.2 Ratiogal method hydroloqv program based oi:j San D_ County Plood CAtrol Division 198" hydrology manual, Rational Bydrology swoy DaQ 06/19/gfj ------------------ 1 ----------------------------------------------------- US GRADED" CONDITION FOR DESILT PANIN DESIGN V:\ACCTS\ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - **I** **** Hydrology Study control information - --------------- -- ----- ---- --- - ----------------------------------------- O'Day Consultants, San Deig% California - SIN 10125 - ----------------------------------- -- - - ------------------------------ Rational hydrology study storm event year is 100.0 --- Map data precipi.UaLion ent G hour, preyip'itation(iAches) 2.60(� 24 hour prec)"Pitatiop(l.nches) 1.10o Adjusted 6 hour (inches) - 2.G00 San Diego hK9'rYogy manuu! IC U I values used Runoff CO lcienG by rational method ++++41+ffffffffff ffffffffff+ 4 +++Afffflfffffffffffffffffffffffffffff f +1 - Process from Point/Station 100.000 to Point/ Station 102.000 INITTAI, 17, ��) 11 - U - 47 _Vdly&my sus initial Kbirea flow distance - 125.00(Ftj Highest elevation == I62.50(Ft) JOWst elevation 157.00(Ft.) Bl•vation difference = 5.50(Ft.) Time of concentration calculated by the urban areas overland flow method (Amp X-N - 7.37 min TC 5 40 ; n_40 (1/3)] = Rainfall intensity (1) 5 f-0- 300.0 year st'D. Effec runoff cOefficinnt used tor area (Q-KCIA) is C 0,50o Subarea runoff = 0.531 (CFS) Total initial stream area - 0.200W.) fffiffff+4+ffff++++++ f+!Offfffffffffff+4+fffffffffffffdffftffffff fff f - I . Process fro P t 1 t oint/SLaion 02.000 o Poi nt /Stat n 1K io0000 STREET m FLOW T'RAVT%L 7'IM1 -;- SUBhREA FLOW ADDITION of street segment elevation 136. 000 M.) length of str t ee segment - 175.000(Ft) Height of curb above ut Ler flow line - -- G.Q(ln.) Width of half street 7curb to crown) = 42.000(FtJ Distance from crown to cross tall irade break - 21.000(Ft,) Sjope from gutter to grade. break vJ = hz) __ 0.020 S )C f rom &radF C br to cr K own 1) 0.020 Street flow on [21 side (s) of t j e street Distance from curb to property line :1.0.000 (Ft,. Slope from curb to pro 1 (v 2 /hz) = 0,00 Cutter width � 1.- . 500(107 Ile Gutter hike from flowlin L 1 Manninys N in gu " O.OAOO Manning's N from gutter t Uya b = 0.0300 MaOning's N from grade break to c = 0 Estimated mean flow rated of street _= 2.134(CPS) Depth of flo = 0.228( t. , Averacre velocity = 2.0?7(Ft/s) SLreetflow hydraulics at midpoint A street travel: HalfsLreet flow width = Q651=1 Plow velocity = 2.0s(ptls) Travel Lime 3.01 min. TC 10.35 min. Adding area flow to street User specified C1 value 0Y K500 iven for subareE Rainfall intensity = 0.277(In/Kr) for a 100,0 vear storla "Off coefficient used fOl • sub area, RaKonal method,Q"KCIA, C 0.500 SW)area runoff 2.5GG(CFS) J_. (Ac. ) Total runoff = 3.100((IFS) Total area = 1.40(kc.) Street flow at end of street " 3.i0OWS) Half street flow at end of street = I.SSO(CFS) Depth of flow = 0.252 (Ft .), Ave velocity = 2.260(FL/s) Flow width (from curb towards r age owa s crown) 7.838 (Ft .) fffffffffffffffffffffffff+4+ffffff+4+fffffffffffffffffffffffffff Process from Point/SLation 101.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (Program esLimated size) Downstream point/station elevation = 115.00 (Ft .) Pipe length w 50.00 (Ft .) Mannino's N = 0.013 No of pipes = I Required pipe flow "-. 3.100(CFS) Nearest computed pip6 diameter 9.000n.) Calculated individuil pipe flow 3.100 (CF S) Normal flow depth i_n pipe 3. 63 (13a. ) Flow toy width inside pipe 8.83(in.) Critica depth could nbt be calcuiated. Pipc flow velocity = 10.50W/S) Travel time throu4h pipe = 0_0? min. Time of concentraQoh JTQ 10.42 min. Off fffffffffffffffffffff+ 4 ++++Offffffffffffffffffffffffffffffffff++ ff + Process from Point/Station 106.000 to Point/Station 108.000 PIPEFLOW TRhMEL TIME (Prograw estimated size) s­tTa - 0 ­ 1­0 ­ ki�,I'J:6yi L. -",- - I'l 57(Ry W Downstream point/otation elevation - S1.00 (Ft .) Pipe length 7 = 1.000.00 (Ft.) Manning's N - 0.01'3' No. of pipes = I Required pipe f low - " 3.100 (CF S) Nearest computed pip & diameter 12.000n.) Calculated individuil pipe flow i.10OWS) Normal flow depth in pive 5.800n.) Flow toy width inside Ape j1.990nd critica Depth 9 M.) )c flow velocity Travel time throuQ pipe .2. 02 min. Tina of concentration AQ 12.44 min. +++++++++++++++++++4 fffffffffffffffffffffffffff+ Process from Point/StaLion 108.000 to Point/Station 108.000 SUBAREA PLOW ADDITION Dyer S ec T ime op concentration min. Rainfall intensity = 3.804 (Tn/Hr) for a 100.0 y ear storra Runoff coefficient used for sub-aiea, Rational method,Q=KCIA, c = 0.500 Subarea runoff 27.392(CPS) for 14.400(Ac.) Total runoff = 30.492(CES) Total area = 15.80(Ac.) 4 ++++++++++++++++++++++++++4 +++++++++++++++++ . . . . . . . . . . . . . . . . . . . . . . . . . Process from Point/Station 108 - 0 00 to Point /Station 110.000 PIPEFLOW TRAVEL TIME (User specified size) Downstreak point/station elevation 78.00(Ft.) Pipe length = 73.00 (Ft .) Manning's N = 0.013 No. of pipes 1 Required pipe f low = 30.49'2. (CPS) Given pipe size = 36.00(in.) Calculated. individual pipe flow 30.492 (CPS) Normal flow depth in, pipe 1I.C30n.) Flow Lop width inside pipe 35.67(ln.) Critical Depth = 21.06( Ira .) O.oi�. (TC) 12 (Ac San Diego County Rational Hydrology Piogran, CIVILCADD/CIVILDESION Engineering Software, (c) 199i Version 1.2 Rational method hydrology program based on. San Diego Count Flood Control Division 1. h1drology manual Rationay Hydrology ;study Sate: 8/19/96 ----------------------------------------- -- ------------------------------ 1-_'NC1NITP,S 1"'ANCH PjjASL IT FUTURE DEVELOPED CONDITION F:\ACCTS\981O33\ONSITE.KSD - ------------------------ --------- --------------------- ------------------ *1*0***** Hydrology Study Control Information - ------------------------ ---------------------------------- --------------- O'Day Consultants, San Deigo, California - SIN 10125 ------------------------------------------------------------------------ Rational hydrology ydrology study storm event year is 100.0 MaE data precipitation entered: 6 our, plegipitation(inchey) = 2.600 24 hour precipitatiop(inches) 4.100 Adjusted 'G houinrecipitation (inches) 2.600 PG /h24 = 6 3 . -,; San Diego hydrology manuDl c values usecs. Runoff coefficient! by rational method fffffffffffffffffffffffffffffffffffffffffff ref fffffffffffffffffA ++++++-I- Process from Point/Station 100-000 to Point/Station 102.000 7v t INITIAL AREA EVALUATION Due z ST - e - cifieu va ue or ie DO gvn � t or s area IST A subarea flow distance = 125.00(Ft.) Highest elevation IG2.50(Ft.) Lowest elevation = ISV.00(Ft.) Elevation difference = 5.50 (pt .) Time of concentration calculated by the urban areas overland flow method.( P X-C) = 1.84 min. `I'(.'. = [1.8*0.1-C)"distance, ' 11(v lope" (03)) TC = 11.8*4-1-0-950OM12S (_1...1,S.00 .5) 4-40 (1/3))w 1 841. Setting timc of concentration to 5 minutes Rainfah intensity (1) = 6.850 for a 100.0 year storm, Effective runoff coefficient used for area (Q=KCIA) is C 0.950 Subarea runoff =. 1.302 (CPS) Total initial stream area " 0.200(Ac.) ++++++++++++++++++++4 ++1 fffflffffffffffffffffffffffffffffffffffffffff+ Process from Point/Station 102.000 to Point/Station 104.000 STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION e­ End of street segment elevation = 136.000(Ft.) Length of street segment = 375.000(FL.) Height of curb ahove utter flowline = 6.0(in.) Width of half street 7curb to crown) = 42.000(Ft.) Distance from crown to crossfal) ra 1 de break = 2.000M.) Slope from gutter to qrade break 100 := 0.020 Slope from glade break to crov ( Z) = 0.020 Street flow is an [2] 06e (s) of the street Distance from curb to property line = 30.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1..500 (Ft-. Gutter hike from flowline " 1.5000n.) Maianing's N in gutter = 0.0i5o Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown - 0.0150 Estimated mean floV rate at midpoint of street = 5.20G I CES) Depth of flow = 2 o = 0.40M.), Averaqe velocity � 4.344(Ft s) SLreetflow hTdraulics at midpoint of street travel: L f- Halfstreeow width - 7.266 (Pt .) Now velocity vwyth) time 1 1.44 min. TC - G.44 min. Wing area flow to street USQY specified 'C' value of 0.750 given fox subarea Rainfall intensity = 5.819(In2Hrj fir - a 100.0 ynar storm Runoff coefficient used for sub-area, Rational meth0d,NKCIA, C 0.750 Subarea runoff - 5.237(CFS) for 1.200(tc.) Total runoff = 6.539 (CF S) Total area 1.40W.) StZ flow at end of street : 6.539 (cps) Half sLreet flow at end of street = 3.269(CFS) Depth of flow = 0.255M.) Avera"a velocity = 4 577(rth) Plow w idth (from cur)- toward" ProOrx14 8.019(pta + ++++++++++++++++++++A ++Off+++ +++++4++4++++ +++++I f++++++++++++++ Process from Point/Station 104.000 to Point/Station 106.000 PIPEFLOW TRAVEL TIME (Program estimated size) Ups TWdm Downstream point/station elevation == 115.00(Ft.) Pipe length = 50.00(1•'t.) Manninuls N = 0.013 No. of pipes = I Required pipe flow 6.539(CFS) Nearest computed pipg- diameter 9.00(ln.) Calculated indiviaual pipe flow G.S39(cps) Normal flow depth in pa.pe 5.66(ln.) Flow toy width - inside pipe 8.70(lu.) Cxit,ica depth could not he cnIculated. Pipe flow ve'lociuy 22.33(Ft/s) pipe 0.04 min. Travel time through , Time Of concentration JIM) 6.18 min. ffffffffffffffffffffffffffffflifffffffffffff?ffffffffffffffffffffffff+ Process from Point/Station 106.000 to Point /St 108.000 PIPEFLOW TRAVEL TIME (Program estimated size) s :a :ion eleva - ion Downstream point/station elevation 81.00(Ft.) Pipe length" " 1000.00 (Ft .) Manning's N W 0.03 N i o. of pipes " I Requred pipe flow _= 6.539(cps) Nearest computed pip6 diameter 1 0 2.00n.) Calcult ae6 indoulaun pipe flow G.539(CFS) Nbumal f low Mpth in pipe 9.79(ln.) Flow toT width inside pipe 9.31(ln.) Critica depth could not be calculated. Pipu flow Velocity =. g.sn(pt/s) Travel time thrGugh pipe = 1.75 min. Time of concentraHon (TQ 8.22 min. fffffff+4+ffffffffffffffffff fa_ fffifffffffffffffffffffffffffffffffffffi- Process from Point/Station 108-000 to Point/Station 108.000 **A* SUBAREA FLOW ADDITION **** U _ s e c _ Y - L C� - d' - - � " C- , I -, - - V J. I _U i 5 f U ­.' - _S � () C i - - V L f i - i . _5 i �_i Yb _a J - 6 6- _1 Time o concentration 8.22 min. Rainfall intensity = 4.970(ln/Hr) for a 100, 0 year storms. Runoff coefficiem used for sub-area, Rational method,Q=KCIA, C 0.900 Subarea runoff = G4.4:0 (CPS) for 14.400(Ac.) Total runoff = 70.945(CYS) Total area = 25.80(Ac.) fffffffffffffffffff+4+Otffffffffffffffffffffffffffffffffffffffff+ Process from Point/Station 108-000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (User specified s i ze ) UPS Yj?a P 6111 [7AL_? evaT_1_3h __ 1.111. - .7 — Downstream point /station elevai S ton = 7.00(Ft.) Pipe length' = 73.00(Ft.) Manning's N = 0.013 No. of pipes= I Required pipe flow = 70.94.5 (CFS) Given pipe size = 36.000A.) Calculated individyal pipe flow 70.94:5 (CPS) Normal flow depth in pipe 18.52(1 Flo% t-op width inside pipe 35.990n.) COMR! Depth - 32.001n.) Pipe f low WIncs-ty 39.36MA) Travc! timu Lhrougp PIPC : 0.06 min. Time of concey)vration (TC) - 8.29 min. EI16� of conpuLations, tuLal study area Mcd t e ,r lao R \ � f- — ,- .A Y �y 0 r 0 sl) k evv 1 t 640 t 0. C)7. .r SS -7 2 C iii 0 K CJ r-a O O O O O O O O O O R. O N C> O O O O O 0 O O O v E� U O O C> O O O O C> O G E� W k7 W rt r1, O O l— m U Q o �i• m to In F 2 O O C, O m N O O C, l0 U m O o O r♦ ri ri ri N F+ f•1 M m W m N m c`,• O r7 c" r 1 O O O ri O O r Ul fr, m ri N r -1 C, O y' o, c> O lD H O O O O r{ r, O II 11 N C) M a7 M I'J O N lc> O m m O Ill C7 �T ry CU r-Z �N O r,` M W l0 N rr) m o w N m Ci, m cl G, O O O O O ri N W dJ Ci' m N • W C r-4 m c> C ,o r-0 V M O O O M I— l7 O l0 v O M r - 1 It) m h CJ N W O' N a, m o G 0 0 O O N V+ c> U) O O N > N M rJ U r7 lC) r- r' m V7 W O K F< L(7 M 7 Cu rl co - a; co t - m q o, Ca m m u, 0 0 0 0 O ra ra r-0 rl rt H U1 LI Cl O [; m O C? h O Q G 0 M N G _ N N c, F M r -a O O O O O r' f ' I1 II In N (n Ln m o m m M h o m In IN F< I l7 rl U1 N to Cl m M Cv lD M N m N In r-t � tll m r•J . a L� N nl to C\ (C +1 (U m O M O r{ it O li O V rl l:. ri ri - Cv M N r -J (V O Cl r-I m U O O O O O O O O 0 O G - (,] G O "' O O U O O O O Cl ,f] II k: h Il U II II it U C -I 3 k] a 7 [+ E a F -] F+ .l F' 2 a U a 0 ri o CG Ln [.. U ;,' Ci LG o, O l:; Ln O R; [" R' rn O R' o N N O m C> O N O r 1 U O M U rl r - r - m 11) Ul M - r -i Ell II O II O L' Q u O o G I. o n CI H ri 1 I r -I Pi F1 C7 In t': M ra - w W m Ur - W r -{ - � o r> c> � o o c> o ca o � G ;• LY C GY. R7 C'`? p7 C, C7 Q C9 o V o O O C> O O C> O O Cl O O o..� •� :1 ..1 .�� .a r -1 H r I (_ -1 II x E •_ f Cy (z •�• G s. In ri ri V' M tO u - O of 2 O o, o Ln ri Ln N m ro o Ln V, o r- rt, Cr [e7 r1 rt ri N N N N rl N N (V ri N 1 N U) y N C; -' r1 p b G: o V ri o F+ ca W W F C9 [✓ U P+ Ln U r .1 U c� �r LL [r E -+ - G G, o G\ l!1 cry }: p 7 N l In 14 co r� o C1 F+ - [-., m 0 F N cn r n. G+ a< C1 �f c0 r� F !7 n, .1 E• o f+ E• p s: u c.� C: 3 ca 7 E r; 0 a U R; c o E+ E a ro L U �•+ U F �� R) r, R: �J o O rti Sa C� n : 4 cj F L: J U o r4 W \/ to Cf) ro \}\ to fl, :D 14 wmg ,mm fo c,' u rc to to TO : D IA [A 2 E-1 % § §(\ \ } }\ C) p: 'r 'D CO 'D c) c" to f� rc LY emK EI —> to C) C) W CL () �3 0' C-1 cl: U mmumm CJ f!] I– ( � U : cn t;-) 0 nn E �o / / z m wOl f X �17, to U C9 o CO tj L 0 - CD gure 0 cl U) — L :-I C < LO LO Lc) Ln It - 1 ".- ------------- ---- \� -t L ----- ------ TV— H- - ----- ---------- N c� L C 27 - - - - - - -- LO 10 011 un foun� I Y I -A-5 ii 7 b I L -<C C', C) V NJ% Q7 C . t c 1 r . ( IPP c) - 7 c lei C\Y C-1 ),_.)ESTLTIIN" BASIN CAPA(TI'Y TAI)! J-_-'. ESTIM1 QUANTITIE� OF: T I__ -,, AND DEBRUYS (CWIc. Yards") DRAINAGY'. TRACT F2 F'A soll, AVFRAGE STREET SLOPE (Acres) 5 S 6 8 % 1 12% 1 10 Loo-se Granular 270 350 370 400 450 500 Compacted 1 IP 0 200 M 270 300 15 Loose Graf)LIIFAr 400 420 460 600 675 750 C'01-11pacted 25> 300 36, 400 45o 20 Loose Grwwlav 540 700 740 F, cloo l000 Compacted 200 340 400 480 54r 1) 6 40 Loose Granular 1080 1400 1480 1600 1800 2 07 0 07 C 0 m P a c t e d, 400 680 80 0 960 1.080 1200 Loose Granular 2160 2900 2960 3200 3600 4000 Coirnpacted 800 1360 1600 1)20 2160 2400 Loose Granular 2?00 3500 3700 4000 4500 5007 con.1pacted 1000 1700 2000 2400 2700 3000 150 Looso Granular 4000 U00 4600 6000 6750 2500 Compacted 1500 2550 3000 3600 4000 4 5 (9 200 Loose Granular 5400 7000 7400 K) 0 0 9000 10000 Compacted 2000 3400 4000 4900 5400 6000 NOTE: Always US-- the ValLlr-- for graf- material unless the project i s f i i - ' and the utility trenches are fillcd with soil which has been compacted to 90% relative compacti The cepacity required by fl lbove table shall be in a pit Or basin. At t'le lower end of the basin there. shall bc constructed an outlet dike with dimensions as per instructions. The size Of thz desilting basin may be reduccd by constructing more than one basin. Ho%vever, fl total vofu7ne Of hasins constructed shall be equal to the estimat volurne. of r roof. Solids. 1-28 i D -SIGIJ x I I I R :2CI -•' I.r � ✓�- ) , 015 I _{ } I ( i ti" I i I 1. ty1.X1� V�lll � I I I 1 r t4c) E ®,Qrtad tines 0 I eosed on cftF ra oloflcjr of C C t C . � � �, ail ____- I I I ____•____ --__ . 2 j r a I I I c.© 0 firgrrre 213. Refalionif.ip of circutor ereai codficient C. to - for dilferenr approcicll depiha (eeroied nappe ), in tables 22, 23, and 24. 'These data are based circular crE;st spr'inS °S farther only in the region on e.xperlinenial tests (laj conducted by the of the high point of the trace, and then only Bureau of ReclamcLion. The relationships of H, for !�' values tip to about O.J. The profiles to 11. arc- shown on figure 225. y picnl upper R, H, and lower nappe profiles for various values of H ; become Increasingiv suppressed for larger r values. Below the high point of the profle are plotted on figure 220 in terms of Fl a f113d �f the traces cross and the shapes for the hiL. pleads fa11 inside those for the lower heads. Thus, for the condition 6f = 2.0. �' If the crest profile is designed for heads :'.•here W Illustrated on fi-ure 227 are typical lover nappe exceeds about 0.35 to 0.3, it appears that sub - proFles, plotted for various values of 1-.C, for a t! irnospheric pressure will occur along soi - 110 Civen value of I?,. In contrast to the straight portion of the profile when heads are less than the weir where the nappe sprin`s farther from the designed masimurn. If subatmospheric pressure -i crest as the head incrensezI, it xvill be seen from are to be avoided along the crest profile, tl.ie crest fi-ure 22 that the lo-er nappe profile for the shape should be selected so that it will give support ply I 74 CIA?. 'fu elm to VOL-to s "i CA l z k 4. _.1 i ury I Co li4 ISIZ ble" - � �, S c Y 4 1 r . d 6'�v.� �'`•.i � "C a {tr + � } S n ` ;' ��� °`�: „ ,.eF a zr .,: Wy i f �.� �� '�1fi 1 ��a f�. � A ��• � 1 ; �f "` i�'i+" l t i T ar , t k rw Ft Y >i ` S iF"�' • fi w) us rr +t e t R .{t"' v /2" C'.r t " + y �tS` r y Ar ,. � �, k� '+er '"^. o- a.• 1 7h lr. or X 4"` F ',< R+ �. a�r'k tc fi ** ?\ .. 3. r ��: �. ryw „'S�'a 4 t < � F A «Y ),.: '''•°"'sr:i .� ,� .�i” GG . t �� 'i y �t s } y t'¢ :t t t ,4i Yr e,. Y� ' "l _ , S n '" 1� s{ f .A ,`tf ��} �Z , -;A ''2',yF #d• st.' �:.mt ta�'�# v"t�Wt #.' �+i. fa eb 5 t s rx � 's't- C OW F �wJ -w m} . : tC m r' 9 0�� �� ��I�r.' 1 <T S,tA:�fi� x , `` ( h zr „y t , 7,' � �T1. � �.. �. �� -: °'iL � vh S rk.���8 , �•, f i A t 4. " Y s�i ,,t .q r.. � s r?y �.�i �+ ? 5�, a s�t" ka t a # ` A �*' t �� � 4,'` 3 . 4b`s t'' TV #, a � . .F ^n-. p x # {�. �� ��..�"y't� ;',•� „a+ :.� - nw : -�' '4 P'�` -�'' a S t3;,,� + ,�'� a• -'� k h ^'�' x? cam. ��..� .��' w .':'�° t*'?:.'Si a •: y s {. t,..,,,•,� + N MI § € a n '' ''..:; � 'c.+� s r. €+'fa s zS,Y �+« r t -r � s{ � ` t �i* javy" s u *; 97 0 `2 e kf zh: y x. Y' �. v, > cb +ti. ,g: 1 k * 3 X $ ' � ' s•;a r -,.� r rt�'r�rt ` �� , ' ,X ` s # t;� m }^€ ,r`,' : iRi" ty».' "}e {{ t „Y _+ t r I r v�- L � ''�''�`:; M e - b � ' h 5 � r � '' �'� E `� Y���� �'�.�.'.) > 'fir �` ''�, f1 $. �*,J.. k # �" ` &�:++ ','�� •� .J,J� r''4 �'S 4 i� $q."trx ' f t ,xul l y { A , 4 j < r `Lai" r y+ ° ( F [ f kr�r,3 W`Y K gust • i yA i E`4 �y..'" i . �} .ea, t < A� iPv• Lj 1c. 5 166ff 11 �.* � t:: r Y a �• c sc r s- a ' i ;., �,r e � _ ...� � * v r � r 3�„ - '.-" � a Cg. $ �`' + 2 .t xp xK , a t � ....... :..�"2` # 3 -�,t�, .:y � f� �`�' �• �_ - -- t i. 'rS,+ 9i* w" °° ..# �s> t s b:°:. � - • '*�'� -h J f ,� _ �. t, �+�4 '°� � " j"""�d S',*'" "' Vi �"; �� - ��yy � Tom" S ,a y 7 ` ""'+f"rL;' � ,ak�Y � �� } t3' ya �. Y _ ,r �. ✓ � :..' 's� M ' r 4w�il i � y . _•. ` n r ^Y$f y w 1 hs !'A _- *e fi L dx g � ,J - . -__ t - y- � " ,�* :� "�"�' • a-- f � ,th F.n � � � 6�c w' _rtN-1 5,��� � � , - -� , e .a . zc. t # ,y y 1 y � � li±"�- "i L'+ a'- .'. " "�"._(`.' ....F?"k°.+,.•} ` ' =r�Y JY''' .. 'l. A..� [+�S - s�-� . �,.,,lre�.n t" . c is 4_T•.Y..�'.alJ„^n'7+"t'�'a�;.<. .- ` � ! . too e 1 t".) C., `Yw. y , P$ ^ :j z a, -- :r ,. tee• - }'^7W + o- SKV . a t x + rr r t t� � � � y q � '" °p• r 5: : j of y Aa f + 'v" do l �� ,�#�.' �b t a S 'f $ - �- cY �'a '�+ "* p � � ',h� ' �•�c� �`.`t�''.`a. Avea A I � r 1 • 4N x 1 L I 1 I oh 07 t LO tlb !.. co CI �_. 1 r � � u" h Lam '`• 1 ):. 4 ^ . Y �!' � ^ �F' r ,�a `�, �� —�._.. / ���` ! I � f `. x Q tf I T I Oki CU • ' = � . j a r ��.. / I S)CAV E 1" = 10" .1- TV 07TTV, ivy &71 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 19e5,1981 HYDROLOGY MANUAL (c) Copyright 3902-2000 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2000 License ID 1472 Analysis prepared by: Mayers & Associates Civil Engineering, Inc. 19 Spectrum Pointe Drive, Suite 609 Lake Forest, CA 92630 (949) 599-0870, (919) 599-0880 fax DESCRIPTION OF STUDY • Plaza @ Encinitas • 100-YR HYDROLOGY AREA 1 1 , • FILE: PLAZAA.OUT FILE NAME: PLAZAA.100 TIME/DATE OF STUDY: 11:06 12/I5/2000 ----------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6--HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "CO-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFIDENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PTPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER- GEOMETRIES: MANNING WIDTH CROSSFALL IN- OU'f.'-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.018/0-018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth) * (Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE w 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D S.C.S. CURVE NUMBER (AMC 11) = 87 A 1, 1 * A k i A 1, 1. * 1, -j- A i. it Y. A I A is is A 1, * 1, 1; i is A I rL0 rPOCE,.SS FROM NODE 4.00 TO 1, 4.00 IS CODE = I ->, lNDi.PFNDE V.1' S'T'REAM FOR CONJ-'LUENCE;<<<<< >>>-- COMPUTE VARIOUS COINFLUENC'ED STREAM VALUES<<<<< TOTAL NUMBER OF' STREAMS = 2 CONFLUENCE, VALUES USED FOR INDFIIENDENIT STREAM 2. ARE: TIME OF CONCENTRA 6.00 RAINFALL INTENSITY(INCH/11R) = 6.09 TOTAT, STREAM AREA(ACRES) = 0.12 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.62 ** CONFLUENCE DATA *A STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) I 0.64 9.45 4.544 0.31 2 0.62 6.00 6.090 0.12 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE * STREAM RUNOFF Tc INTENSITY NUMBER (CYS) (MIN. ) (INCH/HOUR) 1 1.10 6.00 6.090 2 1.30 9.45 4 . sel-I COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 1.10 Tc (MIN.) 9.45 TOTAL AREA(ACRES) = 0.43 LONGEST FLOWPATH FROM NODE 1.00 TO 14ODL 4.00 == 275.00 FEET. * * * * * * * * * * * * * * * * * * * * * * * * * * 1: * * * * * * * * * k * * A -A FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81. >>>>>ADDIT10N OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENS17Y(INCHIHOUR) = 4.544 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT _ .8500 SOIL CLASSIFICATION IS "D S.C.S. CURVE N13MBER (AMC 11) = 92 SUBAREA AREA(ACRES) = 0.21. SUBAREA RIJNOIF(CFS) 0.81 TOTAL, AREA(A.CRT. = 0. Gli TOTAL RUNOFF (CFS) = 1. 91 T C (M 1 N) = 9.45 iris * * * * * * * * * * * * * * * * k* I, -A -A k FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81 -------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENS I TY (I ITCH/ HOUR) = 4.544 _ - -- COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION 1S "D" S.C.S. CURVE NUMBER (AMC Il.) = 92 SUBP AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.54 TOTAL AREA(ACRES) = 0-78 TOTAL RUNOFF(CFS) = 2.45 A 1, 1r 9 -A lk 5 1 * * 'A * * * *is -A 1t A J, jk * *is FLOW PROCESS FROM NODE 6.00 TO NODE _/.00 IS CODE -- 31 >>>>>COMllUTF, PIPE-FLOW TRX� T1111H THRU SUBkREA<<<<< >>>>>USING CO rl PUTF'R -- ESTI Ml ATE D PIPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM (FEET') 112.40 DOWNSTREAM (FEET') 1.12 .2.0 FLOW LENGTH(FEE = 20.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7. S 114CHES PIPE-FLOW VEl,OCITY(F'EE'l.'/,qj'C,) = 4. ESTIMATED PIPE DIAMETER (INCH) 12.00 NUMBER OF PIPES PIPE - FLOW (CFS) 2. PIPE TRAVEL TIME (MIN.) = 0.07 Tc (MIN. ) = 10.06 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 7.00 = 450.00 FEET. **** *** ******* ****** A ** A *,� '-***** *****,k ***I, ***,}* FLOW PROCESS FROM NODE 7.00 To NODE 7.00 IS CODE = 81 >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY (INCH/JiOUR) = 4.363 COMMERCIAL DEVEI,OPMI--'NT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS I'D" S.C.S. CURVE NUMBER (AMC 11) = 92 SUBAREA AREA(ACRES) 0.02 SU1 RUNOFF(CFS) 0.07 TOTAL AREA(ACRES) 0.84 TOTAL RUNOFF(CFS) = 2. TC(MIN) = 10.06 FLOW PROCESS FROM NODE 7-00 TO NODE 8.00 IS CODE = 31 ---------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER- ESTI MATED PIPESIZE (NON-PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM (FEET) = 112.20 DOWNSTREAM (FEET) 1.11. GO FLOW LENGTH (FEET) = 60.00 Mp-2 N = 0.013 DEPTH OF FLOW IN 1.2.. INCH PIPE IS 8.0 INCHES PIPE-FLOW VELOCITY(FEET/SF.C.) = 1.78 EST'IMATE'D PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES = 1. PIPE-FLOW(CFS) = 2.68 PIPE TRAVEL `PIMP (MIN.) z: 0.21 Tc (MIN. ) 10.27 LONGEST FLOWPAT11 FROM NODE 1.00 TO NODE 8.00 = 510.00 FEET. *** *** A *** *** * ****-Ik * *****" lk *** * 'A * ****,k **** k **,I-*****,k ****** FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 81 >­>ADDITION OF SUBP.RLA To MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTE.NSITY(INCH/HOUR) ---- 4.306 COMMEPCIA.L DEVELOPMENT RUNOFF COEFFICIENT - .8500 SOIL CLASSIFICATION IS I'D" S.C.S - CURVE NUMBE'l' (AMC II) = 92 SUBAREA AREA(ACRY--:S) - 0. SUBAREA RUNOFF(CFS) = 0.07 TOTAL AREA (ACRES) = 0.86 TOTAL RUNOFF(CFS) = 2.75 TC(NIN) - 10.27 ----- -- ------- ----------------- - --- ---- -- ------ ----------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC 13) 92 INITIAL SUBAREA FLOW-LENGTH = 440.00 UPSTREAM ELEVATION = 110.60 DOWNSTREAM ELEVATION == 114.00 ELEVATION DIFFERENCE = 26.60 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) 5.182 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED_ TIME OF CONCENTRATION ASSUMED AS 6 MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.090 SUBAREA RUNOPF(CFS) = 2.12 TOTAL AREA(ACRES) = 0.41 TOTAL PUNOFF(CFS) 2.12 FLOW PROCESS FROM NODE 11.00 TO NODE 22.00 IS CODE = 31 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPASIZE (NON-PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM (FEET') = 114.00 DOWNSTREAM (FEET) 310.60 FLOW LENGTH(FEET) = 60.00 MANNING'S N =a 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE is 4.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) - 8.73 ESTIMATED PIPE DIAMETER (INCH) - 9.00 NUMBER OF PTPES PIPE-FLOW(CFS) m 2.12 PIPE TRAVEL TIME(MIN.) 0.11 TOMIN.) = 6.11 LONGEST FLOWPATH FROM NODE 10-00 TO NODE 12.00 500-00 FEET. !'LOW PROCESS FROM NODE 12. 00 TO NODE 12-00 IS CODE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -- - - -- - - -- ---- - ---- - -- --- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUHNCE<<<<< >>>>>AIfD COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 6.11 RAINFALL !NTENSITY(INCH/HR) = 6.02 TOTAL STREAM AREA(ACRES) = 0.41 PEAK FLOW RATE(CPS) AT CONFLUENCE - 2.12 00 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) I. 2.82 10,72 4.188 0.88 2 2.12 6.11 6.016 0.41_ RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. * * PEAK FLOW RATE TABLE *t' STREAM RUNOFF T c INTENSITY Are RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1905,1981 HYDROLOGY MANUAL (c) Copyright 1982-2000 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2000 License ID 1172 Analysis prepared by: Mayers & Associates Civil Engineering, Inc. 1 9 Spectrum Pointe Drive, Suite 609 Lake Forest, CA 92630 (949) 599-0870, (949) 599-0880 fax DESCRIPTION OF STUDY PLAZA ENCINITAS 100-RE HYDROLOGY AREA B FILE: PLAZAD.OUT FILE NAME: PLAZAB.100 TIME/DATE OF STUDY: 09:23 12/15/2000 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: - - - - - - - - - --------------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA - - USER SPECIFIED STORM EVENT(YEAR) - 100.00 6 -HOUR DURATION PRECIPITATION (INCHES) - 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) v 8.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET- SECTIONS FOR COUPLED PIPFFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURD CUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) 1 30.0 20-0 0-018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-DepLh. = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAI TO THE UPSTREAM TRIBUTARY PIPE. FLOW PROCESS FROM NODE 21-00 TO NODE 22.00 IS CODE = 22 - ---------------------------------------------------------------- ---------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .6500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC IT) = 92 SUBAREA APH7e (ACRES) = 0.08 SUBAREA RUNOFF(CPS) = 0.45 TOTAT, AREA (ACRES) = 0.4 TOTAL RUNOFF(CFS) = 2. 75 TC (M I N) = 5. A is -A is 'k -A A 'k ** h FLOW PROCESS FROM NODE 24 .00 TO NODE 25.00 IS CODE = 31 >>>>>COMPUTE PIPE-FLOW TRAV11, TIME THPU SUBAREA<<<<< >>>>>USIN(, COiNIPUTI�-'R-1','-7' PIPESTZF. (NON-PRESSURE, FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) = 1.14.60 DOWNSTREAM (FEET) = 113-50 FLOW LFNGTH(FEHT) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCII PIPE IS 7.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.99 ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 2 .75 PIPE TRAVEL, TIME (MIN.) = 0.33 Tc (MID?.) 5 . 59 LONGEST FLOWPAT11 FROM NODE 2 1 -00 TO NODE 25.00 155.00 FEET. is x ******i. ****** *** **I **** ill, * * * Y * * * 1! it 1, 1, , . � I, * is is * 'k * * * - A A FLOW PROCESS FROM NODE 25-00 TO NODE 25.00 IS CODE >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFI,UENCE<<<<< TOTAL, NUMBER OF STRE'AMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT. STREAM I ARE: TIME OF' CONCENTRATION (MIN.) 5.59 RAINFPJJ, TNTENSITY(INCH/HR) 6.38 TOTAL, STREAM AREA(ACRE',S) = 0.48 PEAK FLOW RATE(CFS) AT CONFLUENCE 2.75 FLOW PROCESS FROM NODE 26-00 TO NODE 25.00 IS CODE 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT =: .8500 SOIL CLASS IS "D" S.C.S. CURVE NUMBER (AMC TI) 92 INITIAL SUBAREA FLOW- LENGTH = 3.40.00 UPSTREAM ELEVATION = 114.70 DOWNSTREAM ELEVATION = 133.50 ELEVATION DIFFERENCE - 1.20 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 5.605 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTFNSITY(INCH/HOUR) = 6.090 SUBAREA RUNOFF(CPS) 2.07 TOTAL AREA(ACRES) 0.40 TOTAL RUNOFF(CFS) = 2.07 * * * * * * * * * * * 'l * * * > is * A * * * * A * i, * * * * * * 1. * * * * * * * -k * * * * * *'A * A * * * * * * * FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE,'<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ---------------------------------------- TOTAL NUMBER OF' STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: 13 TOTAL NUMBER OF STREAMS CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) - 5.71 RAINFALL INTENSITY(INCH/HP) - 6.29 TOTAL STREAM AREA(ACRES) - i.io PEAK FLOW RATE(CFS) Al' CONFLUENCE 5.92 FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 21 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ------------------------------------ RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC 11) = 87 INITIAL SUBAREA FLOW-LENGTH == 110.00 UPSTREAM ELEVATION = 140.00 DOWNSTREAM ELEVATION = 135.00 ELEVATION DIFFERENCE = 5.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.408 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5 -316 SUBAREA RUNOFF(CPS) = 0.30 TOTAL AREA(ACRES) = 0.16 TOTAL RUNOFF(CFS) = 0.38 FLOW PROCESS FROM NODE 29.00 TO NODE 27.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER - ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< ELEVATION DATA: UPSTREAM(FEET) = 135.00 DOWNSTREAM(FEET) = 113.10 FLOW LENGTH (FEET) = 40.00 NANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 DEPTH OF FLOW IN 8.0 INCH PIPE IS 1.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.37 ESTIMATED PIPE DIAMETER(INCH) - 8.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 0.38 PIPE TRAVEL TIME (MIN.) = 0.05 TOMINI 7.46 LONGEST FLOWPATH FROM NODE 28-00 TO NODE 27.00 = 150.00 FEET. FLOW PROCESS FROM NODE 27-00 TO NODE 27.00 IS CODE ----------------------------------- ------------------------------------------ >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCF<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) 7.46 RAINFALL INTENSITY(INCE/HR) = 5.29 TOTAL STREAM AREA(ACRES) = 0.16 PEAK FLOW RATE (CF'S) AT CONFLUENCE = 0.38 %* CONFLUENCE DATA ** TOTAL AREA(ACRES) 1.57 TOTAL RUNOFF(CYS) 7.89 6.03 FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 31 ------------------------------------------------------------ ----------------- >>>>>COMPUTE PIPE-1`1,0',4 TRAVEL TIME 'THylU SUDLREA<<<<,- >>>>>USING COMPUTER-ESTIMATED PTPESIZE (NON-PRESSURE FLOW) <<<<< ELEVATION DATA: UPSTREAM(FEET) 113.90 DOWNSTREAM(FEET) -- 110.90 -- PLOW LENGTH(FEET) = 100.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.1 INCHES PIPE-FLOW VELOCITY(FEET/SFC.) = 6.25 ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 7.89 PIPE TRAVEL TIME (MIN.) = 0.27 TOMIN.) = 6.30 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 31.00 415.00 FEET. FLOW PROCESS FROM NODE 31.00 TO NODE 31.00 IS CODE = 81 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.904 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC IT) � 92 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CPS) 0.65 TOTAL AREA(ACRES) 1.. "/0 TOTAL RUNOFF(CFS) == 8.54 TC(MIN) = 6.30 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUFTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< ­-USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) 110-90 DOWNSTREAM(FEET) = J09.70 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC-) = 6.34 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 8.54 PIPE TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 6.61 LONGEST FLOWPATH FROM NODE 21-00 TO NODE 32.00 = 535.00 FEET. FLOW PROCESS FROM NODE 32-00 TO NODE 32.00 IS CODE ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION (MIN.) = 6.61 RAINFALL INTENSITY(INCHOR) w 5.72 TOTAL STREAM AREA(ACRES) = 1.70 PEAK FLOW RATE(CPS) AT CONFLUENCE = 8.54 17 * * PEAK FLOW RATE 'TABLE tr t STI:EAM RUNOF'3l Tc INTENSITY NUMBER (CFS) (MITT.) (INCH /HOUR) 1. 8.80 1.86 12.963 2 7.18 9.32 4.586 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.80 TOMIN.) 6.61 TOTAL AREA(ACRES) == 1.86 LONGEST F'LOWPATH FROM NODE 21.00 TO NODE 32.00 535.00 FEET. FLOW PROCESS FROM NODE 32.00 TO NODE 35.00 IS CODE _ 31 > > >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<<<<< > > >>>USING COMPUTER -ESTIMATED PIPESIZE (NON - PRESSURE FLOW ««< ELEVATION DATA: UPSTREAM(FEET) _= 109.90 DOWNSTREAM(FEET) _= 109.60 ` FLOW LENGTH(FEET) == 30.00 MANNING'S N == 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.1 INCHES_ PIPE -FLOW VEL,OCI'TY(FEET /SEC.) = 6.37 ESTIMATED PIPIT; DIAMETER(INCH) - 18.00 NUMBER OF PIPES = 7_ PIPE:-F'LOW (CFS) = 8.80 PIPE TRAVEL TIME (MIN'.) = 0.08 TO MIN.) _- 6.69 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 35.00 = 565.00 FEET_ ;:t *ir�'xi: *� *t � it *t: *t * *t :* �t; i;> �::t- >; **i<i,- k *i:��t *trt;; *t- * * *i< *t:�,.• iY::r,trir>; *.� *tt,t: *t; t;* FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = 81. » » >ADDI i:ION OF SUBAREA TO MAINLINE PEAK FLOW ««< 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 5.677 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (PAC IT) = 92 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.63 TOTAL AREA (ACRES) = 1.99 TO'T'AL RUNOFF (CFS) 9.43 TC(MIN) = 6.69 FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< »» >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 109.60 DOWNSTREAM(FEET) = 108.40 -- - FLOW LENGTH(FEET) = 120.00 MAIINING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 14.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 6.42 ESTIMATED PIPE DIAMETER(INCH) 1E.00 NUMBER OF PIPE = 1 PIPE- FLOW(CFS) = 9.43 PIPE TRAVEL TIME(MIN.) == 0.31 Tc(MIN.) = 7.00 LONGEST FLOWPATH FROM NODE 21 -00 TO NODE 36.00 -= 685.00 FEET. FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 1 19 FLOW PROCESS FROM NODE 39-00 TO NODE 40-00 IS CODE - 22 --------------------- ------------- ---------------- ------------- ------------- >>>>>RATIONAL, METHOD INITIAL SUBAREA ANALYSJS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC 11) n 92 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY (INCH/HOUR) w 6.850 SUBAREA RUNOFF(CFS) = 2.04 TOTAL AREA(ACRES) 0.35 TOTAL RUNOFF(CFS) = 2.04 FLOW PROCESS FROM NODE 40.00 TO NODE 41-00 IS CODE = 31 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW k<<<< ELEVATION DATA: UPSTREAMWEET) = 115.00 DOWNSTREAM (FEET) = 112.70 FLOW LENGTH(FEET) = 230.00 FANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.51 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 2.04 PIPE TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) 5.85 LONGEST FLOWPATH FROM NODE 39.00 TO NODE 41.00 = 280.00 FEET. FLOW PROCESS FROM NODE 41.00 TO NODE 41.00 IS CODE = 81 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) w 6.191 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS HD" S.C.S. CURVE NUMBER (AMC 11) = 92 SUBAREA AREA(ACRES) = 0.53 SUBAREA RUNOFF(CFS) = 2.79 TOTAL AREA(ACRES) = 0.88 TOTAL RUNOFF(CFS) 4.83 TC(MIN) 5.85 FLOW PROCESS FROM NODE 41-00 TO NODE 42.00 IS CODE = 33 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< ­>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) 132.70 DOWNSTREAM(FEET) = 111.10 FLOW LENCTH(FEET) = 155.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.60 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 4.83 PIPE TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) = 6.31 LONGEST FLOWPATH FROM NODE 39.00 TO NODE 42.00 == 435.00 FEET. COMPUTED CONFLUENCE: ESTIMATES APE AS FOLLOWS PEAK FLOW FIATE (CFS) = 16.30 Tc (Mlli.) = 7.00 TOTAL AREA (ACRES) = 3.58 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 36.00 = 685.00 FEET. * * * * ** * *i. * * * * **_ * ** i. -k >'+ .r i.' * *>i* **** *Ai, At** * * - * *1****** is is *i: FLOW PROCESS FROM NODE 36.00 TO NODE 43.00 IS CODE 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA« «< »» >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 108.60 DOWNSTREAM(FEET) _ - - 106 50 - - -- FLOW LENGTH(FEET) = 210.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.6 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.51 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) =- 16.30 PIPE TRAVEL TIME (MIN.) = 0.47 TOMIN.) = 7.47 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 43.00 = 895.00 FEET. FLOW PROCESS FROM NODE: 43.00 TO NODE 43.00 IS CODE = 1. »»> DESIGNATE: INDEPENDENT STREAM FOR CONFLUENCE ««< TOTAL NUMBER OF STREAMS _ 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTP- A'ION (MIN.) = 7. 47 RAINFALL INTENSITY (INCH /FIR) = 5.29 TOTAL STREAM AREA(ACRES) = 3.58 PEAK FLOW RATE (CF S) AT CONFLUENCE -- 1-6.30 FLON PROCESS FROM NODE 44.00 TO NODE 45.00 IS CODE = 21 »» >RAT'IONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< -- COMMERCIAL DEVELOPMENT RUNOFF C'OEFFICIEN'T' = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC 1I) = 92 INITIAL SUBAREA FLOW- LENGTH == 330.00 UPSTREAM ELEVATION = 115.00 DOWNSTREAM ELEVATION = 106.90 ELEVATION DIFFERENCE = 8.10 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 6.060 100 YEAR RAINFALL INTENSITY(INCH /HOUR) = 6.051 SUBAREA RUNOF'F(CFS) = 3.75 TOTAL AREA(ACRES) = 0.73 TOTAL RUNOF'F(CFS) = 3.75 FLOW PROCESS FROM NODE 45.00 TO NODE 43.00 IS CODE. = 31 >>>COMPUTE PIPE- -}FLOW TRAVEL TIME THRU SUBAREA « «< > >>>>USING COMPUTER -- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) « <<< ELEVATION DATA: UPSTREAM (FRET) _= 106.90 DOWNSTREAM (FEET) = 106.30 FLOW LENGTH(FEET) 60.00 MANNING'S N = 0.013 23 CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE; STREAM RUNOFF Tc INTENSITY NUMPE'R (CFS) (MIN.) (INCH /IIOUR) 1 2.1-.26 4.68 7.149 2 19.72 6.25 5.931 3 20.96 7.66 5.201 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE (CFS) = 21.26 TOMIN.) = 7.47 TOTAL AREA(ACRES) = 4.68 LONGEST FLOWPATH FROM NODE; 21.00 TO NODE 43.00 = 895.00 FEET. FLOW PROCESS FROM NODE 43.00 TO NODE 47.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA ««< » » >USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) - 108.60 DOWNSTREAM(FEET) = 108.50 FLOW LENGTH(FEET) == 10.00 MANNING'S N _ 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.5 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 7.79 ESTIMATED PIPE DIAMETER(INCH) =- 24.00 NUMBER OF PIPES 1 PIPE -FLOW (CFS) = 21.26 PIPE T'RAVEI, TIME: (MIN.) _- 0.02 T (MIN.) __ 7.49 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 47.00 = 905.00 FEET. * * t* * ** * * **ir * :4 *i: k *i: ir * ** 6 it is i, i *i:ir * it frt, ->l• is *>i * �: i< * * ir * *i: it is i-k 1: *ir *'x' *xi **ir * * *t, sk *t: 'k FLOW PROCESS FROM NODE 47.00 TO NODE 47.00 IS CODE; _ 1 » » >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE« «< ^- - TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM I ARE: TIME OF CONCENTRATION(MIN.) = 7.49 RAINFALL INTENSITY(INCH /HR) _- 5.20 TOTAL STREAM AREA(ACRES) = 4.68 PEAK FLOW RA'Z'E ( CFS) AT CONFLUENCE _= 21.26 FLOW PROCESS FROM NODE; 48.00 TO NODE: 47.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC 11) _- 92 INITIAL SUBAREA FLOW - LENGTH = 220.00 UPSTREAM ELEVATION w 118.40 DOWNSTREAM ELEVATION == 107.10 ELEVATION DIFFERE2.CE = 11.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) - 3.869 *CAUTION: SUBAREA SLOPE: EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 25 TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1_ ARE: TIME OF CONCENTPATION(MIN.) = 7.61 RAINFALL INTENSITY(INCH /HR) = 5.22 TOTAL STREAM AREA(ACRES) =- 4.96 PEAK FLOi"i` RAT!: (CFS) AT CONFLUENCE: = 22.51_ * * *y: * * ** * * * * ** * * * * i`,* * * ** * * * r - ** ** * * * * A -A * * -A k * *-A** a. FLOW PROCESS FROM NODE 50.00 TO NODE 49.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA P.NALYSIS« «< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT =_ .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) = 92 INITIAL, SUBAREA FLOW- LENGTH = 170.00 UPSTREA14 ELEVATION - 113.70 DOWNSTREAM ELEVATION = 107.10 ELEVATION DIFFERENCE = 6.60 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 3.733 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6- MINUTES 1.00 YEAR RAINFALL INTENSITY(INCH /EIOUR) =- 6.090 SUBAREA RUNOFF(CFS) = 0.78 TOTAL AREA (ACRES) = 0.15 TOTAL RUDTOFF ( CFS) _= 0.7S FLOW PROCESS FROM NODE 49.00 TO NODE 49.00 IS CODE = 1 >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< <<< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES ««< TOTAL NUMBER. OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME: OF CONCENTRATION(MIN.) __. 6.00 RAINFALL INTENSITY(INCH /HR) 6.09 TOTAL STREAM AREA(ACRES) = 0.15 PEAK FLOW RATE (CFS) AT CONFLUENCE = 0.78 *a, CONFLUENCE DATA ** STREAM RUNOFF Tc INT'ENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 22.51, 7.61 5.22 4.96 2 0.78 6.00 6.090 0.3.5 RAINFALL INT'ENSIT'Y AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 23.18 5.11, 6.755 2 20.09 6.00 6.090 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) 23.18 Tc(MIN.) 7.61 27 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE -FLOW (CFS) = 4.23 PIPE TRAVEL TIME(MIN.) _= 0.22 TO MIN.) = 7.55 LONGEST FLOWPATH FROM NODE 52.00 TO NODE 51.00 = 450.00 FEET. FLOW PROCESS FROM NODE 51.00 TO NODE 51.00 IS CODE = I. >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< <<< » » >AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES« «< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) == 7.55 RAINFALL INTENSITY(INCH /HR) _ 5.25 TOTAL STREAM AREA(ACRES) _= 0.93 PEAK FLOW P.ATE(CFS) AT CONFLUENCE 4.23 ** CONFLUENCE DATA *" STREAM RUNOFF Tc INTENSITY AREA NUMBER (CPS) (MIN.) (INCH /IIOUR) (ACRE) 1 23.18 8.02 5.051 5.11 2 4.23 7.55 5.251 0.93 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. * * PEAK FLOW RATE: TABLE * * STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH /HOUR) 1 27.25 6.09 6.064 2 26.53 7.55 5.251 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CPS) _ 27.25 Tc(MIN.) = 8.02 TOTAL AREA(ACRES) = 6.04 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 51.00 = 1165.00 FEET. > t* > � t** ***** { :************* * - k ****> t**** t.{ , t* ir* a:>• ********' * * * * *'k' *,t **. * * * * *i * *{ *r FLOW PROCESS FROM NODE 51.00 TO NODE 54.00 IS CODE = 31 >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<< <<< >>>>>USING COMPUTER - ESTIMATED PIPESI:ZE (NON-PRESSURE FLOW)<< <<< ELEVATION DATA: UPSTREAM(FEET) 100.80 DOWNSTREAM (FEET) -- -- 1.00.20 - FLOW LENGTH WEFT) = 55.00 MANNING'S N =- 0.013 DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.8 INCHES PIPE -FLOW VELOCIT'Y(FEET /SEC.) _= 8.72 ESTIMATED PIPE; DIAMETER(INCH) _- 27.00 NUMBER OF PIPES = 1. PIPE -FLOW (CFS) = 27.25 PIPE TRAVEL TIME(MIN.) = 0.11 TO MIN.) = 8.12 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 54.00 = 1220.00 FEET. FLOW PROCESS FROM NODE 54.00 TO NODE 54.00 IS CODE = 1 >> >>>DE:SIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< <<< 29 TOTAL AREA(ACRES) = 8.70 LONGEST FLOWPATE FROM NODE 21-00 TO NODE 54 = 1220.00 FEET. FLOW PROCESS FROM NODE 54-00 TO NODE 56.00 IS CODE = 31 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THPU SUBAREA<<<<< >>>>>USING COMPUTER- ESTIMATED PIPESIZE (NON-PRESSURE FLOW) < << ELEVATION DATA: UPSTREAM(FEET) 100.80 DOWNSTREAM(FEET) = 100.60 FLOW LENGTH(FEET) w 20.00 MANNING'S N - 0.013 DEPTH OF FLOW IN 30.0 INCH PIPE IS 24.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.04 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 38.48 PIPE TRAVEL TIME(MIN.) = 0 .04 Tc(MIN.) = 8.16 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 56.00 = 1240.00 FEET. FLOW PROCESS FROM NODE 56-00 TO NODE 56.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY LANK # 1 <<<<< FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE w 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA 23NALYSTS<<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC 11) = 92 INITIAL SUBAREA FLOW-LENGTH = 480.00 UPSTREAM ELEVATION � 115.00 DOWNSTREAM ELEVATION = 104.10 ELEVATION DIFFERENCE = 10.90 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.501 100 YEAR RAINFALL TNTENSITY(INCH/HOUR) = 5.273 SU13AREA RT.JNOFF(CFS) - 1.84 TOTAL AREA(ACRES) = 0.41 TOTAL RUNOFF(CFS) = 1.84 FLOW PROCESS FROM NODE 58.00 TO NODE 59.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME ThRU SUBAREA<<<<< >>>>>USING COMPUTER- ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ««< ELEVATION DATA: UPSTREAM(FEET) = 104-10 DOWNSTREAM(FEET) 103 .30 FLOW LENGTH(FEET) = 80.00 MPJTNINGIS N =- 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(PEPT/SPC.) = 4.39 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES PIPE-FLOW (CFS) = 1.84 PIPE TRAVEL TIME (MIN.) - 0.30 TOMIN.) = 7.80 LONGEST FLOWPATH FROM NODE 57.00 TO NODE 59.00 - 560-00 FEET. _5 1 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOW;': PEAK FLOW RATE(CFS) = 5.47 Tc(MIN.) = 6.72 TOTAL AREA(ACRES) = 1.20 LONGEST FLOWPATH FROM NODE 57.00 TO NODE 59.00 = 560.00 FEET. FLOW PROCESS FROM NODE 59.00 TO NODE 61.00 IS CODE = 31 >> >>>COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA<< <<< >> >>>USING COMPUTER- ESTIMATED PIPESIZE (NON- PRESSURE FLOW) <<<< ELEVATION DATA: UPSTREAM(FEET) _ 103.30 DOWNSTREAM(FEET) = 102.10 FLOW LENGTH(FEET) = 120.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 11.0 INCHES PIPE -FLOW VELOCITY(FEET /SEC.) = 5.65 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE- FLOW(CFS) = 5.47 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) = 7.08 LONGEST FLOWPATH FROM NODE 5"7.00 TO NODE 61.00 = 680.00 FEET. FLOW PROCESS FROM NODE 61.00 TO NODE 61.00 IS CODE = I >> >>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM I ARE: TIME OF CONCENTRATION(MIN.) = 7.08 RAINFALL INTENSITY(INCH /HR) = 5.48 TOTAL STREAM AREA(ACRES) _= 1 -.20 PEAS: FLOW RATE(CFS) AT CONFLUENCE = 5.47 FLOW PROCESS FROM NODE 62.00 TO NODE 63.00 IS CODE = 21 » » >RATIONAL METHOD INITIAL SUBAREA ANALYSIS « «< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D" S.C.S. CURVE NUMBER (AMC II) _ 92 INITIAL SUBAREA FLOW - LENGTH = 430.00 UPSTREAM ELEVATION == 115.00 DOWNSTREAM ELEVATION = 103.60 ELEVATION DIFFERENCE = 11.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 6.742 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTEUSITY(INCH /HOUR) = 5.649 SUBAREA RUNOFF(CFS) = 4.75 TOTAL AREA(ACRES) = 0.99 `I'OTAI, RUNOFF(CFS) = 4.75 FLOW PROCESS FROM NODE 63.00 TO NODE 61.00 IS CODE = 31 » » >COMPUTE PIPE -FLOW TRAVEL TIME THRU SUBAREA « «< >> >>>USING COMPUTER- ESTIMATED PIPESIZE (NON-- PRESSURE FLOW)<< <<< 33 FLOW PROCESS FROM NODE 56.00 TO NODE 56.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK 4 1 WITH THE MAIN-STREAM MEMORY<<<<< MAIN STREAM CONFLUENCE DATA STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 10.10 7.2 5. 4 14 2.1-9 LONGEST FLOWPATH FROM NODE 57-00 TO NODE 56.00 = 730.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH /HOUR) (ACRE) 1 38.48 8.16 4.994 8.70 LONGEST FLOWPATH FROM NODE 21-00 TO NODE 56.00 = 1240-00 FEET. ** PEAK FLOW RATE TABLE * STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 45.60 7.20 5.414 2 47.80 8.16 1.9911 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 47.80 Tc(MIN.) = 8.16 TOTAL AREA(ACRES) = 10.89 FLOW PROCESS FROM NODE 56.00 TO NODE 64.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<< ----- --- - - -- -- ELEVATION DATA: UPSTREAM(FEET) 101.60 DOWNSTREAM(FEET) = 99.70 FLOW LENGTH(FEET) = 185.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 33.0 INCH PIPE IS 25.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.73 ESTIMATED PIPE DIAMETER(INCH) = 33.00 NUMBER OF PIPES = a PIPE-FLOW(CFS) = 47.80 PIPE TRAVEL TIME(MIN.) = 0.32 TO MIN.) = 8.48 LONGEST FLOWPATH FROM NODE 21.00 TO NODE 60.00 = 1425.00 FEET. FLOW PROCESS FROM NODE 64.00 TO NODE 64.00 IS CODE ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<< <<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.48 RAINFALL TNTENSITY(INCH/HR) = 0.87 TOTAL STREAM AREA(ACRES) = 10.89 PEAK FLOW RATE(CFS) AT CONFLUENCE = 47.80 1 40.]_5 6 12 6.610 2 48.93 8 4 13 4.873 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLI,OP,IS PEAK FLO'N RATE (CFS) = 48 .93 Tc (MTN. ) = 8.48 TOTAL AREA(ACRES) = 11-16 LONGEST FLOWPATH FROM NODE 21.00 `CO NODE 64.00 = 11125.00 FEET. END OF STUDY SUMMARY: TOTAL AREA (ACRES) 11-16 TC(MIN. ) = 8.48 PEAK FLOW RATE (CFS) 48.93 END OF RATIONAL METHOD AIJALYSIS fl C.. f°'yo"rology Area, C: 36 - I - , TIT*_ ; Vy Z i7v *i zVyTV_* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2000 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/2000 License ID 1472 Analysis prepared by: Mayers E Associates Civil Engineering, Inc. 19 Spectrum Pointe Drive, Suite 609 Lake Forest, CA 92630 (949) 599-0870, (949) 599-0880 fax DESCRIPTION OF STUDY • PLAZA @ ENCINITAS • 100-YR HYDROLOGY AREA C • FILE: PLAZAC.OUT FILE NAME: PLAZAC.100 TIME/DATE OF STUDY: 09:52 12/15/2000 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 1985 SAN DIEGO MANULL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "CO-VALUES USED FOR RATIONAL METHOD NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE SIDE/ WAY (FT) (FT) (FT) (FT) (n) 1 30.0 20.0 0.016/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) * SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.- FLOW PROCESS FROM NODE 71.00 TO NODE 72.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS <<<<< COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SOIL CLASSIFICATION IS "D S.C.S. CURVE NUMBER (AMC II) = 92 38 >>- - ->> COMPUTF-' PIPE-FLOW TRAVEL TIME TJlRU SUBARLA<<<<< >:-,>>-USING COMPUTER- ESTIMATED PIPE'SIZE (NON-PRE'SSURE' FLOW) « «< ELEVATION DATA: UPSTREAM(FEET) = 104.50 DOWNSTRFAM(FERT) = 104.40 FLOW LENGTH(FEET) 10.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 8.000 DEPTH OF FLOW 114 8.0 INCH PIPE IS 3.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.04 ESTIMATED PIPE DIAMETER(INCH) 8.00 NUMBER OF PIPES PIPE-FLOW(CFS) = 0.41 PIPE TRAVEL TIME(MIN.) = 0.05 TO MIN.) 6.05 LONGEST FLOWPATH FROM NODE 74.00 TO NODE 73.00 = 102.00 FEET. FLOW PROCESS FROM NODE 73.00 TO NODE 73.00 IS CODE ------------------------------------------- -------------------------------------------- >> >> >DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.05 RAINFALL INTENSITY(INCH/HR) = 6.05 TOTAL STREAM AREA(ACRES) = 0.08 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.41 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.14 6.56 5.749 0.22 2 0.41. 6.05 6.055 0.08 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE " STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 1.50 6.05 6.055 2 1.53 6.56 5.749 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 1.53 Tc(MTN.) = 6.56 TOTAL AREA(ACRES) = 0.30 LONGEST FLOWPATH FROM NODE 71.00 TO NODE 73.00 = 290.00 FEET. --------------- - - -- END OF STUDY SUMMARY: TOTAL AREA(ACRES) 0.30 TC(MIN.) = 6.56 PEAK FLOW RATF(CFS) = 1.53 END OF RATIONAL METHOD ANALYSIS Vil. CATCH BASIN!, RIP-RAP 8, HYDRAULIC CALCLJLATION,`' % r { �'R`� & A . SSUCIA'TE�� �--- Civil Engineeritig, Inc. rrr.nv ING • t_r.ar1NIMZING • SUR\TYING Catch Basin - fype B Inlet Gales for Plaza at Encinitas Ranch Phr sc 11 Given Q/L = 1.28 (per Chart 1- 103.6C) Inlet No. Q at Inlet Req. Len. Len. Pro. 8 2.1 1.64 4.00 16 0.8 0.63 4.00 19 1.5 1.17 4.00 20 0.8 0.63 4.00 22 11.3 8.83 9.00 (4' basin A- 5' wing) 25 4.8 3.75 8.00 (2 4' basins) WZ1 I-103-EX S �..e 0 to ILI Il _ fY .4 Cl G t� ©4 w ~ 04 .i Of sae, g�rfccF n? �— ° ".Loco' dADfOrJElion (3) SECTI ON DESIG � SH N O S F1 Ev. ICI`)MC_)GF�AM - CAPACIT Y v CU IN AT y AG rs On n c � G ° T) . .... . . . . . . . . . 4A, d:� A D CIJLX� CPENIh t-RU. V a ZVI p a ? cry 4-- IA (wly"CY'rr cumu 0. 1 5 6 0 6 0 2.0 so 4-0 so 60 GriATE INIFf ChPACrTY HN SUMP CONDMO14S (Table assumes no clogging. 5-51 rig-ure 5-18 Rip, — klap calculaition To determine the class of the rip-rap the velocity of the flow must be considered. The velocity is compared to a table from the Los Angeles County HIydraUliC Manual to obtain the required rock weight. This weight is converted to a class by means of table 200--1.6(A) in the Standard Specifications manual. Results are tabulated below. Line Velocity Class By Outlet to Encinitas Creek 11.34 5001b My Outlet to Graded Channel 4.2 501b / Facing Cniflet Into Encinitas Creek (for Rip.-Rap Sizing) Worksheet for Rectaingular Cl Project Description Worksheet Rectangular Channel - 1 Flow Element Rectangular Channel Method Manning's Formula Solve For Channel Depth Input Data Mannings Coefficient 0.015 Slope 0.040000 fUlt Bottom Width 9.00 ft Discharge 48.90 cfs Results Depth 0.48 ft Flow Area 4.3 ft' Wetted Perimeter 9.95 ft Top Width 9.00 P Critical Depth 0.97 ft Critical Slope 0.00429 fUft Velocity 11.34 ftfs Velocity Head 2.00 ft Specific Energy 2.48 ft Froude Number 2.89 Flow Type superctitiCZ11 Project Engineer: Martin Miller untitledJM2 Mayers & Associates Civil Engines ring, Inc. FlowMaster v6.1 [614k) 04102101 06:50 P1 0 Flaestad Methods, Inc. 37 Brookside Road Waterbury, Cl OG708 USA (203) 755-1666 Page 1 of 1 [>uimtlnt�Gradod. Channel (for Rlip-RapSiziD�-i\ Wor', for F�m-tangU\a[ChanOmt ---------- —' / Project Description womo»art Rectangular Channel 1 Flow Element [Rectangular Channel mamnu manning'cponnv/x co/vepor Channel Depth |nnv` oato mu^nioo,Conmcient 0015 Slope ooz000n ,uo oouon wium 4.50 n oixcxnmo 4.30 cu --------------------- nesv/u oovx` 0z1 x Flow Area nyn" wvtteuron*ete, 4.91 n Top Width 4.50 ft Critical Depth 0.31 n Critical Slope 000xrro nm Velocity 4a2 ms Velocity Head 0.33 ft Specific Energy n.s* n novoumumuer 1.79 Flow Type supoomuca| ~----- ' Project Engineer: Martin Miller vmx/my.o"/ Ma Associates Civil Engineering, Inc. no.wau^."n.`p1w4 cm/uoo, 07:03:50 PM (D Hoeu^o Methods, Inc. ar Brookside Road Waterbury. ornsrnaUSA (203) 755-166E3 Pa Io/1 r - -) ; LIVEK (,ki it -k i i�, Material and StrUCUJI Requ i rernents Rip--Rap Levees (2:1 max. side slopes) (Ungrouted) Rock Size Levee Thickness - T F Iter velocities (1150 S i ze) Straiqht Reach Curved Reach Thicknes 0 f.p.s. 50 lb. (10") 5- i nch 20-inch 6- i rich f.p.s. 100 lb. (12") 18-- i rich 24 - inch 6- i nch 10 f.p.s. 150 lb. (15") 23 i nch 30 -inch 9- i nch I I f.p.s. 300 lb. (18") 27 i arch 36- i nch 9-inch 12 f.p.s. 1/4 (21") 3 - inch 42-inch 9-inch I?" f . P. S . 1/2 (27") h I - i rich 54 -inch 1 -inch 13 a 15 f - P.S. ] - ton (34") 51- i rich 68-inch 16 17 f.P.s. 2-ton ( 65- i rich 86-inch 1 2- i 18 20 f.p.F,. 4° tarn (54") 81 - i rich 108-inch 1 (Grouted) Can be used only with special Distr ict approval 16 - 20 f.p.s. )-ton (34") 51 - i Fich 68-inch 12-inch Gabion Levees (2:1 side slopes) Levee Thickness (Straight or Wire Gage velocities Curved Reach) Rockfill of Baskets Apron Length 0 7 f.p.s. 12•-inch Baskets 4 El 1 12 ga. 12 feet 8 10 f.p.s. 18-inch Baskets /Ill Bit 11 ga. IS feet 1 15 f.p.s. 18-•inch Baskets ga. 21 feet Gab ican 1 evees not per. tted where velocities exceed 15 f.p.s. C6 200A.G.1 I� zo t.6? 07 Cobblestone shall not be used on slopes steeper than I vcrtiCl I Corltractoi shall notify the Agency in writing of the intended to 2 horizontal. Flat or elongated shapes will not be accepted source of stone at least 60 days prior to use. To ensure the unless the thickness of the individual pieces is at least one- required quality, stone: may be subject to petrographic analysis third of the length. ' or X -ray dlffraction. I , Unless otherv7ise designated, for application greater titan 7'he rr +atc:rial shall colifoml to the. following requirements: 1£0 tonnes(200 tons), design parameters including filter, Foundation, and gradation with supporting calculations by a TABLE 700' - 1.603)____ registered Civil Engineer, shall be submitted to the Engineer ��gt€3.� - - - Yesi lAattrtr c t too. Requirements. for approval. Apparen Sp Gravity _ A STP., C 127 2.50 Mi Stone shall be sound, durable, hard, resistant to abrasion _A b s orp t ion' Calif ^ ?_us — _ 4.2% M ax. a1. free from laminations, weak cleavage planes, and the Durability C ali(. 2 29 _ 52 twin. undesirable effects of weathering. It shall be of such character t F'ercentago Wear AS7f� C 131 45% Max. - that it will not disintegrate from the action of air, water, or --- -- ` go i. ilasrd on the fcrrnula bclorr, absorption may czcccd 4.2 percent if the Durability the conditions to be niet in handling and placing. All inateriai Absarpticn Ratio (DAR) is greater t un 10. Durability may be test than 52 if DAR is shall be clean and free from deleterious impurities, including g reater than 24. t Coarse Durabilit IndcA alkali, earth, clay, refuse, and adherent coatings. DAR = AbTq ¢ i - -- 200 -1.6.7 Grading RZegriirerclents. Storte for riprap shall 1 be designated by class and conform to the following 200 -7 UNTREATED LASE l; fela.'E'luk`c7Al: S gradations: 200- 2.1 general. materials for use as untreated base or TAB LE 2 . 0 0 - 1.6(A) _ subbase shall be classified in the order of preference as —� —~ Percent larger Than foIIC pj.:,: Reek 225 kg (590 lb) 170 hg (375 iC) 90 kg (Light) 25 kg (Facing) Crushed Aggregate B ase or Crushed Slag Base Skco Class elms cliss Cl aso 450 k9 (1 l b) as �' - Cnlshefl Miscellaneous Base 92 kg (7 l b) — — —__F_ 10 — P111 ,_c:.sseu.101iscellaneous Base 225 kg (MO lb) 50 -100 _ 10 5(1 � _ - - -y Selca Subbase; �so kg (200 lb) e5-1 00_ 50-100 m_O-S When base material without fuDtlier qualification is 35 k5 (75 lb) ~ 90.10 W 95 -100 90-100 50 -100 specifiDd, the Contractor shall supply crushefl aggregate base _ 10 k (2 5 lb 95-100_ 99- 9 0.100 or crushed slag base. Where a particular classification of base M` 1 kg - es - Material is specified., the Contractor may substitute any higher (z a_ Irr) � ciassiflo ion, following the order of preference listed above, Note. The amount of material smaller than tilc smallest sitr shown in the table far 1 any class sldi not exceed the r=entagr limit as determiniA on a weight basis. Corr ol'base material for that specifl All processing or blending pliance with the petcenr_age limits shown in the table for all cttzr sizts of the individuaf of materials to meet the grading reguirentent will be pleces of any class of rock slope protection stud be dttermi <ed by tht ratio or the , 1 numbtr of irdivichfal pieces Dar & -r than rke srrified size compmd to am totsl run:hcr perfCimneft a the pliant or source. Thc. materials sh�`31a compact of iadividvd pnioc3 larg r than thr s-mallest sizc listed in the table for that class. to a hard, fitrn, u nyie ld ing surface and slia rentain stable 200- 1.6.3 Quality Requirements, Visual evaluation of when saturated with water. the quarry, including examination of blast samples and diamond drill core samples, suitable tests and service records may be used to determine the acceptability of the stone- The 1 N � O N ri W \ C� CJ [f O O \ \ O V ri h E� W G7 r7 U a ,A p a O r, o 7 C1 .� l 0 kj o ° i � o C� :i ° h F O Y C> R_ Cf) r - V G] C� O O ` F� Q � r� E� a s o 0 C - E v o \ 7 r o N V C1i o CI C. O Ali r-i CIi G: .] O Cl Cu w 1� .i U C9 n7 w r �7 :� rS C) rt; 11 rn E� [a O ci7 r w n . c n u N cn y N Q; C, V' Cl }. a � W q C) R tY o o. o r1 0 k: F+ U o F W W a F C? w Q Q x q a N U u) z a . F rt M U rn m G, F - q N U w a �f U' rS m ri CJ m a - C9 J H 7+ CJ rt E G. m FA o q F+ - a L. o 0 F N fn m a - � G. m F Q CJ a . a N r 7 E• M ;� L•. M fn - W '- o f: II C1 c) N 0 li U m •a U F N . 0 fi 2 F C W of v rt q w (^ n Q: 0 N Fi V .� N a, F C✓: C7 [r, m 0 b ) to § \ } e / S §\ \/ \_[ 0w °R® eo p3 @/- ) ® b §/R k\n g2y \2� b§\ R�~ =m m§/ Cl) t4 to C@( 0 m � , bD \ \\ E RR E -4 w E, E, 5 a /gwn E. \Q °y « ° /R§§ )2§ &,oGU @88 [QR /§SQem )00 » /E[QR E o00 \(2� /22 m ( nme ee »oC4 mm [ ~ RkGuu ~ GQK§ N ) \ % ~ =8k �([[ \��U, (Ka2)=w o�wco(n G(\ o »mmm = = 0o §§2=m ° uu ww §§S:)E. 0 SG E§m==w(714, ew0oo4�« » mmC4 wa ommo=c �arC, »mwwmzww nnw /@%z wri /wmn rl oe2EE ^r l \ _= g wR nnw a « z §R » SGK\ dwmmmammr,E, oouwoo < ° ^ %%p k2eene 'gme0%6n JJRRKeuow x /m A§R2 2 -4 y / /\\C :4 �ww\xmok§ //D j r1 A M M C M M NI M M C) M M M M M M M M M M M M M M • A . -V ri r1 r{ ri rl ri r-{ r1 1-1 r { .-i r1 r-{ ri ri ri r1 . - ri ri r r N O O O O O O O O O O o O O O O O O O O O O O C, O V' O O O O O O O O O O CD O O O O O O O O O O O C, O O V' \ (� m O O O c? O O O O O G C? O G O O O O O O O O O O \ \ O G O 0 G O O O O O O O G O O O O O O O O O O O P• G H O V' V' •S V' V• CV C" O M r"i M M M O U O CV U O O O O O O O O O O 0 O O O O O O O O O O O O 0 O O W Pr 04 Q Gl CZ q . . . . . . . . . . . . . M O m O O O O In lf) O O O O O O O O O O O O O O O O . . . . . . . . . . r{ O u) O O O In U VI O M O O O O (D O G "1 f1; f Cn r i J' f•) Ol u) M 0 0 0 o 0 0 o r- o 0 0 0 0 o 0 o 0 0 o O o o 0 0 .� N M r m r-1 N O O M V' O U O O O O G O m O O O O o o O N N N N CV In lD r- m C, O r{ fV M V' LI) lD O O m O o O O O In 1A 7 rl 1-1 r { ri ri r1 rl rl N N N O O O O O O O C) O O O G O o M V' O o In lD a) o o a H r- m o o 0 O O O O o O o O CJ o O U o o O 0 o G O o r -I O O O O O O O C> O O O O o O o O O O O O O o O O O O O O o O o O O o O O O cJ O O U 0 o O O O 1 O O c o O O o O O O O U O o O O O O O o O o O O ri r -I A ri r { r{ r{ r4 1-1 r{ ri N N rl , i N N N N 11 r-1 I] > O O O O O O O O O O o O O o o O o O o O U o o O O G O o O O 0 O O O c O O O O c? O O O O cl o o O f� H 17 O O O O O O O O O O O O O O O o o O 0 o O o O o a o 0 0 o o o o 0 0 0 0 0 0 0 o c o o 0 o o o o t-i H C. cn M M In M M M M M M M "I f•) In H r{ ri ri M M q L` y O CJ G o O O O O O O O O O O o O C? O 0 O 0 o O o O F . . . . . . . . . . . . . . q , P lD VJ l0 O O O O m m m m m m CO m I. V' m m CD Co m CO r{ A r-{ H -1 H N N r 1 .i r{ r1 11 rt F fr; m G o O O O O O O O O G O O O O O U O U O O O O o q f ri G O c) U U O 0 O o o O O O O O O c O O O 0 U o o O O O O O O O O O O U O O O O O c? O o O O O O O ft H m N U I Pr 0 O O G CV ri O O O O O O o o o o O o N C' o m O V' N M N G, O ri ID `.D In r - N r V' O f') Ln M o ID r - C - V' Gi In H �] Q1 r1 •A V' m Ui C*I O rl V' In V1 lD r' r� ID fn a) al m t` ri ID N F1 a, m G O O O CJ O O U D1 Gl O) m D\ (T O G o . -1 'A r1 ri 'A 'A rI ri ri r-1 H U C O O O O O m O r O O O O O O O o O O of O O r- O O N ri M S r- M u) In r r) m In ri m r'• rn N Co o (V N O �a C.l O ri V' In CO m a) O r { .T In In VJ C` (i, r -1 M m to r r { (V h m a, cn m o 0 0 0 o G C', cr, m o 0 0 N .i ri ri r { ri .-f ri ri rl rl 1� r'- r1 ID o, M -4 O O 0 6 1D r1 m O [D m O O r- N O r r- V) II r o V O O O G\ _ In In In In O O Cl CD O O Ln .-{ cA M I O A O 0 . -1 r- O N r -1 V' (V G7 W ri ri In al V� r1 M CI C O Ol N CV .. N co !` m In lD C!1 U G: 0' G, CJ Ifl m ri r If, m CA r1 m V' m . N N N .i r I N U ri U. V, r { r{ V' M lD W 11 11 111 CA rl 4) a a. m u, r1 N V) M In m In m t` M In . -1 In CC M N N ID m CJ rl In M M N N CA N rI E. F [a �] U N r-1 N M V' ll) Ifi r a) al O .-1 N M ll) V., t` m o r1 N M I In C) [:) .-J .� ri ri ri ri ri rl .i r�i ri N N N N N N G V) N N f•1 N N N r'1 N N N CI fv IV N N N IV fV N N N ts. O U r-V M r1 r1 ' ri ri N .. O O O ," G O O O r� CO C U O O O \ \ G O O U H D Cl. O N O O O F W C =1 ac7a rJ o 0 n O O G a N O U O a H o o G a 0 0 0 J o G o 0 0 0 J o n 0 ,1 C1 N N N 7 O O G F O U O tJ O O O as V4 o c. o H Q E.< v� q ro m m ri H r1 F' Q 3 0 0 0 Cl F o 0 0 N a CJ G O F -� tQQ U .1 r - i ri r . u q G G o rJ ri r N r a: a r ry r•� N C4 O G (l L C o o c C r- 41 s 14 a H � t] r'J N CY o 0 O 6 1c S N CJ r� N o a F_ •�, C F. N } E • n: U 2 N n r m O [il C'i .l ry ry N U r] H U U) a [] q N N N n, (� H ri Fr' 17 h r� r� h <• (D U ri O U O O 0 O O O 0 O O O O O O 0 P. O r-i 0 G O O U G 0 O O O O O O O O U F U U O O O O G O O O U O O O O O U E+ W W W � � O O o O G O O O O C) o O O O 1 M t U O O O o U O O U U O O G O r O l H [+ Fl; O O G O 0 O 0 O O O O O O O m r V O Cl H ri V, r1 In M m lD m m lb r1 lw In LD ID d' N G N LD N In In In G In r LD N O c^ q N N N N ri H rl r-i U ri H H rl r-4 rl U r In r 0 M bl m O m (D N G rn m N Cl rl r{ In ri ri m M o 1D m w In ri H In O, to m N N d' ri a) In H ID U LD N F Q W N N M rl ri N H N ri O H H N H r-i N v II 11 II II 11 ry V rl In H h LO In 0 h �l m m r I.D H LD In LD LD v' h r] N In F` N F1: r 1 1D w FZ ri r-1 O r r d' O N In m F� x U N 1.D q r m o q ri N N q In In r m m m v q m m m Cn m o O G o 0 0 0 0 o G m H ri ri H H rl H H rl ri m o rn ID H rl "1 H w O O m f•1 r H N ri Cl M O � m LD Ln M H N ri H V, m H m m In O U m m m a C,) Q N (V In r V7 0 U H N N In lD r m w N 1: V m m m m m O 0 O O 0 O O 0 O O m 1 "I H ri H H r-i ri rl rl H II 11 II 11 II Cll }' O O— O O O O O O o O O 0 .� N d' M h N r] C) O H 1D ID In h r N r- O M In I'D F P7 nl (p Ci7 CO Lrl In v, r r- ID � F w m of q m q m m m q m 0 O q 0 G 0 0 0 o cn q H ra H H ri r1 H H H N O M H H G O G O Cl O O m (n O r Cl O O o 0 O O C) CO CC r-0 - rl C^ r M M In N r r Ln a) r'7 m lf7 rl m W G, (n ol r -i rl H In m rn m o rl 11 1n In 10 r al m C) m m al c) o G o 0 o c, o m d H ri O F II n II q II N r LD m -' CO In M -- vl d• r N F q ri Cn o m r d' ri of m m G m to o In Ln o In r Io M m I. R, ro r ry In ar - M LD N r1 G o r o � m In H w N N rl Ft m ,n i r C M m U H O m N N m LD G r N N m P. .I F M rl M LD N o r u, o G In \D o r G ri to In II M II H M M 11 N H r 11 r- 1D to N G O N o Ii [a. m C, O CU O G O O 0 0 O G O O G 0 C) O H 1 F O O G O O 0 0 CD O 0 0 O O O O O m o G -- C) -- 0 0 0- 0 0 0 -- o 0 0 0 0 0 0" s; 11 X Y. X X n X U (tl O LL O C: R: O Q, O C) G [� F F P. CL U) CL a a P1 Pi Cn P, c -9 k. G. U) P. F c4 0 0 0 0 o T m N O O ri U CJ m In . - m r1 lw LD In In M m M M rl V F N N G 10 10 t() In "I ri e-i rl O Cm lD N d' .� cJ cV II N 11 ri H ri II r< ri r -1 11 r1 r -1 II rl O U II O 0 II U 14 FI k1 v1 w m , (� n7 N i M In O} M O o O m l 1p Vr 7. �_ r =. N N M N V' In In T, In m to N G7 ri rc F rl r1 C, r -1 ri ,1 ri ri H O , -1 ri O O (D A; O O rs 1i C'1 O ri O r a, M C7 N S tl C) 3 7 G 0 0 O r O O G O O O O In O G H O n O V' O O N b ri 1 - i C - ) V . r -i O O C In P m 1 -1 M 1 CL –i .] r -{ Ol In l f_ q z .J L. \D LD 1n O O O O CI rr f M r M r•) rn M r7 M r1 rt r1 r-1 1 ri ri F' ri It 11 11 11 11 C7 11 N r v N c) .-+ N N N N ri O W U U h H C +7 I M La r m m O rl N M V' In lJ fn r R: G� H ri .-1 r-1 rf r1 ri r -1 ri .� R. C7 ri M M M M M ri ri ri H ri O O O O ri ri - V O O O O O O .j� �a m R O O 0 O O O \\ O O U O O w O ri V' V' O O F W G7 - w 0 0 0 0 acaw In O O O O O Q m �I o o v 0 0 Q m V' V O O O O O a M to O O O O a ri M s' ui 0 0 a U i 0 0 o rn a 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 O O O O O C:7 ri r-i N N ?+ 0 0 0 0 0 a Q Z o 0 0 0 0 o 0 0 0 0 w O O U O O Q N N [n M M M ri r! W v G7 { O O O O O O F C -1 m m m m w ri ri rl ri ri U fJ O o O O O O TS F O O U O O U f'1 a V O O O 0 O rti F o r3 R. o 0 0 0 m H W O O O O O .-i r1 r-i r1 r1 X. U 0 0 0 0 0 ri i 10 m M O m fJ r -1 ri r1 ri ri 1) C: M CJ N —A E m O O N lT U C� m ui a N n 1 c; x rt R: d rl m ,n LO !n o ro s. ._. r! n, ri al Cy rn m to ,n .i T 7 F w C/ 7: N ri N M d• in V� U h, U to ar n: W .� w Q U v cn n, a c v \ Cil p Q o W. > > V r+ 0 0 0 0 0 nr C, Y H U o 0 0 0 0 H W co nr HU W < Q 0 0 0 r W U o O 0 o m a U ri 0 Cu . Q O O O O O N N r � m Q C O ei O O O Il II 11 N U m M P, q m m q O o 0 0 0 r-i ri ri r-i ri CJ lD M l� In rl tJl In ri - CD W - � lD Cl a C7 d ca r w m r- C U o 0 0 0 0 r♦ 0 0 0 it n u >+ o Cl o� Q F c� rn trt ? ] w to r -- W �- m m •� 0 o q o q o o q r1 ra H H r1 7 M r D ri O O rfl O c CJ O U7 L, rl m - M W l L +r N CD r C, Cp O H U ti P 11 +l 'C} r✓ (n r ri r-I N W M O r p m Lr) rs rl m CD O N r! M rd O m , -1 o C, 0 w n O u o r o u Cu \ o 0 o 0 0 0 0 i -i O O O O ri O m -- o o -- o o -- r X X x u O n: n: o r.' o �o rx a >+ CG 2 4 O d W M � tl CJ w O M it U m M o o U Lf) .� U F u7 C q Cn G7 - G7 - '1 T O O 11 O 11 O 11 O II U N ri a a F W M In ui ui W M co 0 O i N 4: U 0 0 C7 O O U O U E -� f Q I! II 11 Q II Cl li. w N N ra N H w � u n w u U h O� is O r+ N M w m ri cn a: W F Q CJ Q m a; O O q �3 W. q G: W E h -s [il O H m W F w_ w q F W H O W H u q u a w W H x aaz awE co W. c� w 0 2 ! H > O q H x z F W a Q 2 G7 i uu x G. Q U U F W 0 67 0 7D CC U7 Iz O W F w a x w H W E+ u) R- u Q h w o W R a t q (n Iz u Q a ` El) N U W W w m a H x x F . ") F F F P C) a4 U EK F F q W g w U Q Q Sax Qco 0 :D:4 W W W W F H W 0 0 W W W G . F u u F (n Q fD z z z a `o H w W H H H 2 O r4 E x x O O O Q G, H E-+ P u.ww a 114 C" NU +F 000wor..QQ W I F E -, F h h) 11 r u) (n W z g Q U U h a a Csl � W u G o 0 o 0 11 w a. w cI cx a a q q fx F x O a, E F F >, >, (y, 0 h )�D oC) xwc� Cil W U U F F O O O x x w S N N Q w q F E x o x a a a a x x F_ F [u G, 0 0 o Q C4 WRaCxa 0Wcnoq� aawG.wwwFCa. ->>� FFFw.mQ� n H N W Iil W O r F (• E� �^'� wwwG.aW.x W x:c qFF F E E H H H F 3 3 O O m vl P �� awww µ rS W W W U U X 0 G. G. F H E -• �( U }. O O k l E q F E+ E (n (0 v) W H H N x C +1 Gl C) H H H i N g q q F q q H Cl ti F� (• m r r H N I h} =7 m Q Q q 0 > x x x c q n co :1— 01 G e t "CLZ 17l � �`O Leighton and Associates '�• -`�„® 1 9 6 1 2 0 0 1 G E O T E C H N I CAL CONS U L T A N T S May 7, 2001 Project No. 940028 -027 To: Encinitas Town Center Associates 11, LLC 707 Wilshire Boulevard, Suite 3036 Los Angeles, California 90017 Attention: Mr. Sandy Kopelow Subject: Update Geotechnical Report, Expo Design Center, Encinitas Ranch, TM 94 -066, Encinitas, California In accordance with your request and authorization, we have prepared an updated geotechnical report for the proposed Expo Design Center project (formerly Encinitas Town Center Plaza ). This report provides a summary of our updated geotechnical conclusions and recommendations relative to the current site development plans. This report highlights the significant geotechnical constraints on the site and provides preliminary geotechnical recommendations. Based on the results of our geotechnical analysis, the proposed development of the site is considered feasible from a geotechnical standpoint provided the recommendationssummarized in this report are implemented during grading and construction. If you have any questions regarding our report, please contact this office. We appreciate this 0�� be of service. R. Respectfully submitted, M NO, 1,349 9 y ® CERTIFIED LEIGHTON AND ASSOCIATES, INC. ENGINEERING • P GEOLOGIST F ESa1p �7` y9 COZO Fy OF CAOi O <3 0 .. c� O Sean �C moo, RCE 54033) N0. 54033 Michael R. Ste �� EG 1349 Exp. 12/31/03 Director of Engineering Vice President/Directorof Geology CIVIL qT F OF CALIF�Q� Distribution: (1) Addressee (1) Encinitas Town Center Associates II, Attention: Mr. Larry Dodd (1) Perk-o-witzRuth Architect, Attention: Mr. Rueben Gonzales (2) Greensburg Farrow Architects: Attention: Ms Elisabeth Young (2) Mayer and Associates, Attention: Mr. Dru Mayer L 3934 Murphy Canyon Road, #B205, San Diego, CA 92123 -4425 (858) 292 -8030 - FAX (858) 292 -0771 ^ www.leightongeo.coni 940028 -027 TABLE OF CONTENTS ]'aloe Section 1 .0 INTRODUCTION ..................................................................... ............................... l 2 PROJECT DESCRIPTTON ........................................................................................................ ............................... 3 2.1 SI "rE DESCRIPTION AND HIS" I'ORI' ............................................................................................ ............................... 3 2 .2 PROPOSED DEVELOPNI LN' F ...................................................................................................... ............................... 3 3.0 FIELD INVESTIGATION AND LABORA' TORYTESTING .................................................. ............................... 4 3.1 FIELD INVESTIGATION BY LEIGEITON ...................................................................................... ............................... 4 3.2 FIELD INVESTIGATION BY OTHERS .......................................................................................... ............................... 5 3.3 LABORATORY TES "HNG .................................................................................. ............................... ........................ 5 4.0 SUMMARY OF GEOTECIINICAL FINDINGS ....................................... ............................... ................1.111.......... 6 4.1 REGIONAL GEOLO GY .............................................................................................................. ............................... 6 4 .2 SITE GEOLOGY ....................................................................................................................... ............................... 6 4.2.1 Artificial Fill (11ap Symbol— Af and a fo) ...................................................................... ............................... 6 4.2.2 Topsoil (Unmapped) ..................................................................................................... ............................... 6 4.2.3 Quaternary Slope {gash 01ap Symbol — Osix) .............................................. ............................... 4.2.4 Torrey Sandstone Formation (; tlapSvntbol-!' t) ................ ..........._ .... .............. ... .................... .......... .......... 7 4.2.5 Derra - Foation (,flap Sy m bol - T f .................. ............................... ..I............... 7 I r r m 4.3 GROUNDWATER AND SURFACE WATER ................................................................................ ............................... .. 8 8 4.4 FAULTING ................................................................................................................................ .............................. 4.5 SEISMICITY ................. ............................................................................................... ............................... . 4.5.1 Shallow Ground Rupture ....... ...... ... .... ._..... .......... ..... .... ...... .... .... ... _..... ... .............................. ............ .......10 4.5.2 Liquefaction .................................................................................................................. .............................10 4.5.3 Dynamic Settlement .... .... ......................... ... .... ....... ..... ...... .... .... .... .... ...... ..... ................ . ...... ...... ...... ........ ...11 4.5.4 Lateral Spreadin .... ........ ................ ......... ..... ..... ...... .... .... .... ... .... ._..... .... ....... ............................ ................. 11 5.0 CONCLUSIONS AND RECOMMENDATIONS .................................................................... ............................... 12 5.1 CONCLUSIONS AND RECO`VEENDATIONS .............................................................................. ............................... 12 5 .2 E 1K"rrI1XORK ........................................................................................................................ ............................... 12 5.2.1 Site Preparution ........................................................................................................... ............................... 12 5.2.2 Removals and Recompactiorz ....................................................................................... ............................... 12 5.2.3 StructuralFill ... 1111....... . ............................... ................... ........ ... ... ........ ........ ............. ............ ...... ... ........... 13 5.2.4 Transition Lots or Steeply- DfpingBedrock.- lreas ........................................................ .............................13 5.2.5 Utility Trenches ........... ............................... .................. .......................... 13 5.3 SLOPES ABILITA . ................................................................................................................. ............................... 14 5.3.1 Fill Slope Stabili ....1....1......1..1.. 14 5. 3.2 StabilitvF ill Back Cuts ........................... ........ ........ ...... ............ ....... ..... ............ ....... 1....... _..1 ..... 1... 1....... .. 14 5.3.3 SurfcialSlopeStabilitY .................................................................................................. .............................15 5.3.4 Slope I Oce Compaction and Finishing ................ . ........... 15 ......................... ............................... 5.4.5 Slopc LandscapirtgandDrainage ....................... ................ ...._........ .... .... ... ........... ... ...... ................. ...... ... 16 &R 940028 -027 TABLE OF CONTENTS (CONTINUED) Section Pau 5.5 CONTROL, OF GROUNDWATER AND SURFACE WATER ........................................................... ............................... 16 5.6 FOUNDATION DESIGN - COIVINIERCI.m, S'rlw " 1' URES .............................................................. ............................... 16 5 F1.00R SLAB DESIGN ........................................................................................................... ............................... 16 5.8 FOOTING SETBACK ............................................................................................................... ............................... 17 5 ANTICIPATED SE FILEMENI .................................................................................................. ............................... 17 5.10 LATERAL, EARTH PRESSURES AND RESISTANCE .................................................................... ............................... 18 5.11 SEGMENTAL RETAINING WALL. DESIGN ............................................................................... ............................... 19 5.12 GEOCHEMICAL ISSUES .................... ....... 19 ..................................................................... ............................... 5.12.1 Concrete ....... ................................................................................................................. ............................. 5.12.2 AletallicCorr osion ......................................................................................................... .............................20 6 .0 PAVEMENT SECTION DE SIGN ............................................................................................ ............................... 21 6.1 TRAFFIC INDEX .................................................................................................................... ............................... 21 6.2 ASPHALT CONCRETE AND CRUSHED AGGREGATE BASE SF',C'IIONS ....................................... ............................... 21 63 AI_I ERNATIVE 1VI "CFI SUBBASE LAITlZ .................................................................................. ............................... 22 6.4 PAVE%lFN'I' MATERIALS AND GRADING RECON' LMENDATIONS ................................................ ............................... 23 7.0 GEOTECHNICAL REVIEW ......................................... ............................... 24 7 .1 PLANS AND SPECIFICATIONS ................................................................................................. ............................... 24 7 .2 CONSTRUCTION REVIFW ...................................................................................................... ............................... 24 8 .0 LlMITATIONS ........................................................................................................................... .............................25 FIGURES FIGURE 1 - SITE LOCATION MAY - PAGE 2 FIGURE 2 - CROSS- SECTION A -A' AND B -B' - REAR OF TEXT FIGURE 3 - CROSS - SECTION C -C' AND D -D' - REAR OF TEXT FIGURE 4 - RETAINING WALL. DRAINAGE DETAIL - REAR OF TEXT TABLE TABLE 1 - SEISMIC PARAMFTERS FOR ACTIVL FAULTS - I'AGE 9 TABLE 2 - DYNAMIC SETTLEMENT RESULTS - PAGE I I TABLE, 3 - EQUIVALENT FLUID WEIGH'l - PAGE 18 TABLE 4 - EQUIVALENT AXLE - LOAD TO TRAFFIC INDEX CONVERSION - PAGE 21 TABLE 5 - ASPILILT CONCRETE AND AGGREGATE BASE PAVEMENT SECTION - PAGE 22 'I ABLE- 6 - ASPI TALI' CONCRI: I'E AND AGGREGATE BASE OVER 6R.- ANULAR SUBBASE PAVENIEN'T SECTION - PAGE 22 L PLATE PLATE 1 - GEOTLCIINICAL MAP - IN POCKET' 'P& =— 940028 -027 a TABLE O}. CONTENT'S (Continued) APPENDICES APPENDIX A - REFERENCES APPENDIX B - EXPLORATORY LOGS APPENDIX C - LABORATORY DATA ANALYSIS APPENDIX D - GENERAL EARTHWORK AND GRADING SPECIFICATIONS APPENDIX E - SLOPE STABILI "IY L In go i� -Ili- ®�"°�• 940028 -027 ra 1.0 INT This report has been prepared in accordance with your request and presents an updated geotechnical review for the Bxpo Design Center project located in Encinitas, California. The intent of our geotechnical review was to develop geotechnical conclusions and recommendations relative to the revised site development layout to accommodatethe Expo Design Center. Spec ifically,our scope of services included the following: • Review of referenced reports and maps (Appendix A). • Site reconnaissanceand geologic mapping of current site conditions. • Preparation of a Geotechnical Map (Plate l) reflecting site geology, previous boring locations, and both existing and proposed grades. • Geotechnical evaluation of the field and laboratory data generated during the recent and previous investigations with regard to the proposed development. A compilation of the exploratory logs is presented m Appendix B. A compilation of the laboratory test results is presented in Appendix C. Preparation of this report presenting the results of our find in conclusions, and geotechnical design and construction recommendations for the proposed Expo Design Center development. L L & -1- ��', g y - O� � U 4 PEP S > ��1PR' ANC S w n GO z O/ I U n�; C r G4 \ O,1 yi FAKC O 10 o IC GA VIOT A r ^' i Ap11lS.' A - EGO' IA � I M15I_ON E5TANCIA I l< O i LSIEPPA v15TA PL �JGN , A w � 0 5 PROJECT LA FL EL 5C;Uff A o G U� SITE Ir! A ® S� GALL[ 0 U !EN 9 ` I evILLO�` O 0RCr,A WOOD GLEN pl G Q0� 9 m E c J F� RANGE 6 05' SUD.IMERT I� t I J ai O N Q w a Z > VANE5 < �i Q /�- r �� V Alt ED r,ILL TO r� O ELON 1 A A J r 1 o f r2Er �, -F' FAO 0 L O >;A NORTH BASE MAP : Thomas Bros. GeoFinder for Windows, San Diego County, 1995, Page 1147 0 1 000 2000 4000 1 "= 2,000' Scale in Feet S IT L C Project No. H Expo Design Center 940028 -027 Encinitas Ranch LOCATION Encinitas, California Date MAP May 2001 Figure No. 1 940025 -027 2.0 PROJECTDTSCRIPTION 2.1 Site Description and His tory The proposed Expo Design Center project is located west of E1 Camino Real and north of Leucadia Boulevard in the City of Encinitas, California (see Figure 1, Site Location Map). The site is bounded on the west by undeveloped natural land, to the east by a natural drainage course and E1 Camino Real, to the north by the construction site for a mixed -use development and to the south by Leucadia Boulevard and the Encinitas Town Center retail complex. The site was previously utilized as a borrow site for earth materials during the adjacent Encinitas Ranch Phase I grading. Subsequent to the completion of the Phase I development, the site was converted to an import site for various ongoing projects in the North County area. We anticipate remainingearthworkwill be primarily cut and fill grading with minor import. 2.2 P roposed Development Based on our review of the referenced geotechnical investigation prepared for Expo Design Center (GPI, 2000), the proposed development will include construction of an Expo Design Center, retaining walls, the extension of Garden View Road, a wildlife corridor and undererossing, parking lots, and associated site improvements. The grading plan was utilized as the base map for our Geotechnical Map (Plate 1) and the proposed site plan identified on that map was utilized for the development of the updated recommendations presented in this report. The discussions within this report focus on the developmentwithin the site for the Expo Design Center. Discussions relevant to design and construction of the wildlife corridor and undercrossing proximal to Garden View Road are presented in our previous geotechnical report specific to those improvements (Leighton, 1999). Design recommenclationsfor the smaller retail /restaurantstructures situated in the east portion of the site are presented in our previous update report (Leighton. 2000b). Conventional cut and fill grading is anticipated to complete the remaining site grading required to establish the design grades. Fill slopes located within the site are proposed with inclinations of 2 to I (horizontal to vertical), or flatter. Steeper grade changes are accomplished by retaining walls that are planned up to maximum heights of 25 feet. MR In 'i 940028 -02� 3.0 FIELD INVESTIGATION AND LABO RATORY TESTING 3.1 Field Investi - ationbv Lei�?l_�ton Several phases of geotechnical investigation have been performed within the Expo Design Center site. A brief description of each phase is summarized below in chronological order. In September 1995, as part of our preliminary geotechnical investigation of the site, five 8 -inch diameter hollow -flight auger borings were excavated, sampled, and logged by geologists from our office (Leighton, ]996x). Logs of these borings (B -38 through B -42) are provided in Appendix B and their approximate locations shown on the Geotechnical Map (Plate 1). Much of the alluvial and slope wash soils encountered above the groundwater table in these borings was removed during the subsequent export operations at the site and then replaced with compacted imported fill soil. On October 16, 1996, four 8 - inch diameter hollow fliIIhtauger borings were excavated, sampled, and logged by geologists from our office (Leighton, 1996b). These borings (B -1 through B -4) were located in areas of building pads at that time. The approximate locations of these borings are depicted on the Geotechnical Map (Plate 1) and the boring logs are included in Appendix B. On October 1, 1999, five exploratory trenches were excavated along the westernmost portion of the site as part of a limited geotechnical investigation for the proposed wildlife undererossing and associated grading at Garden View Road (Leighton. 1999). The approximate locations of these trenches are depicted on Plate 1. The logs of the trenches are included in Appendix B. The most recent subsurface exploration by Leighton consisted of the advancement of nine cone penetration test soundings (CPT-I through CPT -9) on January 14, 2000 and four mud rotary borings (M -1 through M -4) on February 21, 2000. The CPT soundings were advanced to depths ranging from approximately 30 feet below the existing ground surface in CPT -9 to approximately 115 feet below the existing ground surface in CPT -7. The mud rotary borings were advanced to depths ranging from approximately 60 to 100 feet below the existing grade. The approximate locations of the CPT soundings and mud rotary borings are shown on the Geotechnical Map (Plate 1) and the logs are provided in Appendix B. During each of the above drilling and trenching operations. bulk and relatively undisturbed samples were obtained from the borings for laboratory testing and evaluation. Drive samples were utilized to collect samples during drilling operations. The relatively undisturbed in -place samples were obtained utilizing a modified California drive sampler driven with a 140 pound hammer dropping 30 inches. Disturbed samples were obtained during Standard Penetration Tests (SPT) that were performed using a 24 -inch long standard penetration sampler driven with a 140 pound hammer dropping 30 inches. For both types of samplers the blow counts required to drive the sampler each successive 6 inches was recorded and the final 12 inches of measured blow counts is presented on the boring logs. &R - 940028 -027 3.2 Field Investi gat ion by Others Most recently, an additional seventeen, 21 -inch diameter borings and 23 additional CPT soundings were advanced by others (GPI, 2000). These logs are included in Appendix B and approximate locations are plotted on Plate 1. 3.3 LaboratorvTestin Previous laboratory test results are provided in Appendix C. Previous laboratory testing along with summaries of the testing procedures are presented in the various reports listed in Appendix A and in- situ moisture and density determination are presented on the boring logs (Appendix B). 1 � _ - 5 - 1 940028 -027 4.0 SUMMARY OF GEOTECIINI CAL FIN DI NGS 4.1 Regional Geoloav The site is situated in the coastal section of the Peninsular Range province, a California Geomorphic province with a long and active geologic history throughout Southern California. Throughout the last 54 million years, the area known as the "San Diego Embayment" has undergone several episodes of marine inundation and subsequent, marine regression. This has resulted in a thick sequence of marine and nonmarine sedimentary deposits on rocks of the Southern California batholith with relatively minor tectonic uplift of the area. 4.2 Site GeoloIV Geologic units present on the site include artificial fill, topsoil, slope wash /alluvium, Tertiary -aged Torrey Sandstone, and Tertiary-aged Delmar Formation. The approximate areal distribution of these units is depicted on the Geotechnical Map (Plate l) and our interpretation of the subsurface conditions is also indicated on the cross - sections (Figures 2 and 3). A brief description of the onsite units is provided below. 4.2.1 Artificial Fill (Map Svmbol — Af and Afo Artificial fill soils are presently covering the majority of the site. These fill soils have been placed as part of the ongoing import operations and have been documented by representatives of Leighton and Associates. Documented compacted fill soil associated with existing embankments for Leucadia Boulevard is present along the southern boundary of the site. These fills were placed under the observation and testing of Leighton and Associates during grading of Encinitas Ranch Phase I. 4.22 Topsoil (Unmapped) The distribution of topsoil was not mapped, but was observed above undisturbed slope wash soils within the ungraded area on the west side of the site. Topsoil materials are formed in -place as a result of weathering of the underlying soils. These soils should be removed within the areas of planned grading and may be reused as compacted fill. Topsoil thickness' are estimated to be on the order of 2 to 3 feet in thickness and may be locally thicker. -6- M 940028 -027 4.23 Ou ate rnarvr Slon Wash (MapSy �7�bol- Qsw) Slope wash and or alluvial material underlies the majority of eastern portion of the subject site beneath the compacted fill soils. These materials were not differentiated during mapping and are depicted on the geotechnical map as slopewash as the contact between these materials is gradational and the engineering properties nearly identical. During site grading slope wash materials were removed to a depth near the groundwater table. Remaining slope wash materials generally increase in the thickness in a west to east direction with a maximum estimated thickness of approximately 85 feet at the easternmost edge of the planned parking area (Figures 2 and 3). As encountered, the slope wash is an accumulation of poorly to moderately consolidated silty sands derived from the adjacent hillsides by downslope gravitational creep and sheetflow from surface runoff. The slope wash material consists of a highly variable thickness of loose to medium dense, silty, fine - to medium- grained sand interbedded with relatively thin to thick layers of firm, fine sandy silt and clays. These soils are anticipated to be encountered within the westerly portion of the site during grading proximal to Garden View Road and will require complete removal and recompaction (see plate 1). 4.14 Torrev Sandstone For mation Map Svmbol =ltd The Tertiary -aged Torrey Sandstone is exposed along the westernmost portion of the existing grades and in the natural bluffs and ridges along the western property boundary. The Torrey Sandstone Nvas also encountered underlying the slope wash material at depth. The Torrey Sandstone is also a source material for the slope wash accumulations. The Torrey Sandstone consists of light gray to light brown - brown, dense to very dense, silty, fine- to medi um- grained,sandstone. 4.2.5 Delmar Formation (Map Symbol - d) The "Tertiary -aged Delmar Formation was encountered during this and previous investigations (Appendix A). The approximate aerial extent of e Delmar Formation as mapped durin'o earlier investigations is shown on the Geotechnical Map (plate 1). The Delmar Formation was also encountered at depth (below the alluvial soils) in the central and eastern portions of the site. The Delmar Formation is exposed off site in the existing cut slopes along the east side of El Camino Real below elevations of ± GO feet mean sea level. (msl). The Delmar Formation was encountered on site in Boring B -41 at a depth of 75 feet. This formation consists of olive -gray, siltstone and claystone. Due to its considerable depth, the Delmar Formation is not anticipated to be encountered during the proposed grading operations. L M 940028 -027 43 Groundwaterand Surface Water Groundtivater was encountered in our previous and the current investigation of the site subsurface soils. Groundwater was also observed in the borrow pit excavation on the site and during site remedial grading (Leighton, 1997) at an approximate elevation of 70 feet mean sea level, or approximately30 to 55 feet below anticipated pad grade elevations. A subdrain was installed as part of previous site grading adjacent to Leucad[a Boulevard. The location of this drain is shown on the geotechnical map. Surface water is also present in the adjacent drainage channel to the east almost year round. The approximate depths and elevations of the encountered groundwater are depicted on the borings logs (Appendix B). The water table encountered is generally thought to be part of a regional water table controlled by the in, ajor drainage to the east and south of the site. No surface water or seepage conditions were encountered during the most recent investigations and groundwater is not anticipated to be a significant constraint to site development; however, seasonal fluctuations of surface water and groundwater should be expected. It should be noted that groundwater levels may vary at the time of construction from those obtained in this and earlier studies. In addition, significant improvements to the surface drainage will be installed as part of the project. This will reduce the potential for water to infiltrate into the subsurface soils. Seeps were observed during our previous investigations and grading activities with the westerly portion of the site. Observed seepage is attributed to groundwaterperched at the contact between the slope wash and formational materials. Accordingly, subdrains have been recommended behind stability fill and retaining wall backcuts within the westerly portion of the site. 4.4 Faulting Our discussion of faults on the site is prefaced with a discussion of California legislation and policies concerning the classification and land -use criteria associated with faults. By definition of the California Mining and Geology Board, an active fault is a fault that has had surface displacement within Holocene time (about the last 11,000 years). The state geologist has defined a potentially active fault as any fault considered to have been active during Quaternary time (last 1,600,000 years). This definition is used in delineatin Earthquake Fault Zones as mandated by the Alquist- Priolo Earthquake Fault Zoning Act and as subsequently revised in 1997. The intent of this act is to assure that unwise urban development and certain habitable structures do not occur across the traces of active faults. The subject site is not included within any Earthquake Fault Zones as created by the Alquist- Priolo Act (Hart, 1997). Our review of available geologic literature (Appendix A) indicates that there are no known major or active faults on or in the immediate vicinity of the site. The nearest active regional fault is the Rose Canyon Fault Zone located approximately 4.6 miles west of the site. -8- M AHWA 940028 -027 4.5 Seismicity The site can be considered to lie within a seismically active region, as can all of southern California. Site specific evaluation of the earthquake hazard was performed using a deterministic and a probabilisticapproach. A summary of our deterministicevaluation is provided in Table 1. "Table l F Seismic Parameters for Active Faults (Blake, 1996 and 1998, CDMG, 1996) Distance Moment Peak Ground Acceleration Fault from Fault to Magnitude (g) Site (miles) Rose Canyon 4.6 6.9 0.50 Newport- 11 6.9 0.29 Inglewood Coronado Bank 20 — _ 7.4 0.25 Based on a deterministic approach, Table I presents the postulated peak ground acceleration that could be produced by the maximum credible earthquake. The maximum credible earthquake is defined as the maximum event that a fault is capable of producing considering the known tectonic setting. Site - specific seismic parameters reported are the distances to the causative faults, earthquake magnitudes, and expected peak ground accelerations. As indicated in Table 1, the Rose Canyon fault zone is considered to have the most significant affect at the site from a (lesion standpoint. The maximum credible earthquake is expected to produce a peak ground surface acceleration at the site of 0.50 -. The Rose Canyon Fault Zone is considered a type B seismic source according to Table 16 -U of the 1997 Uniform Building Code (UBC). From a probabilistic approach, the design ground motion for this project (ICBO, 1997, Section 1629) is the ground motion having a 10 percent probability of being exceeded in 50 years. This ground motion is referred to as the maximum probable ground motion (CBSC, 1998). A maximum probable ground motion of 0.26g is postulated for the westerly portion of the site where the fills overlie Tertiary -aged formational material. A maximum probable ground motion of 0.3]g is postulated within the easterly portion of the site where fills overlie appreciable thickness of saturated alluvium. The earthquake source data used for probabilistic determination of the design ground motion was obtained from the California Division of Mining and Geology (CDMG, Open File Report 96 -08). The effect of seismic shaking may be mitigated by adhering to the Uniform Building Code and state -of -the -art seismic clesign parameters of the Structural Engineers Association of California. The site is located within Seismic Lone 4 as designated by the Uniform Building Code (ICBO, 1997, Figure 16-2). The soil profile designation for the Expo building pad is considered to be type S, per the 1997 UBC, Table 16 -J. Near source factors Na and Ne for the site equal to 1.0 and 1. 1, respectively, are appropriate based on the seismic setting and criteria of Tables 16 S and 16 -T of the 1997 UBC. &N _ —= -9- �'° 940028 -027 Secondary effects that can be associated with severe ground shaking following a relatively large earthquake include shallow ground rupture, soil liquefaction and dynamic settlement, seiches and tsunamis. These secondary effects of seismic shaking are discussed in the following sections. 4.5.1 Shallow Ground Rupture Ground rupture because of active faulting is not likely to occur on -site due to the absence of known active faults. Cracking due to shaking from distant seismic events is not considered a significant hazard, although it is a possibility at any site. 4.52 Liquefaction Liquefaction of cohesionless soils can be caused by strong vibratory motion due to earthquakes. Research and historical data indicate that loose granular soils underlain by a near surface groundwater table are most susceptible to liquefaction, while the stability of most silty clays and clays deposited in fresh water environments are not adversely affected by vibratory motion. Liquefaction is characterized by a total loss of shear strength in the affected soil layers, thereby causing the soil to behave as a viscous liquid. This effect may be manifested at the ground surface by settlement and /or sand boils. Liquefaction potential was evaluated recently for an alternative site layout. Liquefaction is not considered a concern below the western half of the site due to the lack of a groundwater table and the density of the compacted fill and underlying formational material. The equivalent blow count data used to evaluate liquefaction was taken from the CPT soundings since repeatability of that test method is more consistent than demonstrated using borings. Samples obtained from boring samples were, however, utilized to assess fines contents and plasticity of clayey layers. The potential for liquefaction and was evaluated by the procedures outlined by Tokinatsu and Seed (Tokirnatsu and Seed, 1987) with modifications outlined b} Youd (NCEER, 1997) The groundwater table was taken as encountered in the borings /soundings. The factor of safety against liquefaction was calculated using the maximum probable grading motion earthquake (PGA uac = 031g) on an individual sounding basis. Following evaluation by calculations, soil properties were evaluated to determine if the soils are of the type that can experience liquefaction. The granular soils encountered below the groundwater table were found to be interbedded with occasional clays, silty clays, and clayey silts. Data on these soils were compared to the Chinese Building Code criteria using Army Corp of 1=,ngincer modifications. The laboratory test results reveal that the fine - grained clayey layers are not susceptible to liquefaction: therefore, it is our opinion that the potential for liquefaction of the fine - grained clayey layers is low. - 10- ���w 940028 -027 The liquefaction potential below the western portion of the site was evaluated to be very low due to the lack of saturated slopewash materials. Liquefaction effects are limited to the approximate eastern half of the subject site. Our analysis indicates that zones of the saturated alluvial soils are susceptible to liquefaction as a result of the design ground motion. It should be recognized; however, that many of the parameters used in liquefaction evaluation are subjective and open to interpretation. It should also be recognized that much of Southern California is an area of moderate to high seismic risk and is not generally considered economically feasible to building structures totally resistant to earthquake hazards. Current state -of -art standards for design and construction are intended to reduce the potential for major structural failure. 4.5.3 Dynamic Settlement Based on the observations during site grading, results of our subsurface exploration, geotechnical analysis and dynamic settlement calculations, the eastern portions of proposed development are underlain by slopc deposits at depth and have a potential for dynamic settlement as a result of ground shaking by the design ground motion. Dynamic settlement was evaluated utilizing procedures outlined by Tokimatsu and Seed, 1987 for saturated sands, and Pradel, 1998 for unsaturated sands. The results are presented below on an individual boring basis. Table 2 -- Dynamic SettlernentResults Estimated Dynamic Estimated Dynamic Location Settlement in Settlement in Total Estimated Saturated Alluvium Unsaturated Alluvium Dynamic Settlement and Fill Soils CPT -1 1 inch <1/4 inch I to 1 -1/2- inches CPT -2 3 -1/2 inches <1/4 ]rich 3 to 4 inches CPT -3 2 -1/2 inches <1/4 inch 2 to 3 inches CPI" -4 -- <1/4 inch /4 to 1/2 inches CPT -5 1 inch <1/4 inch 1 to 1/2 inches CPT -6 3 -1/2 inches <1/4 inch 3 to 4 inches CPT -7 3 -1/2 inche <1/4 inch 3 to 4 inches 4.5.4 Lateral Spreading Post - liquefaction slope stability analysis was performed for Cross- Section D -D' (through the slope at CPT -2). For post - liquefaction analysis, a residual shear strengths were selected utilizing procedures outlined by Seed and Harder 1990. Based on our analysis, it is our opinion that the slope will possess a factor safety in excess of 1.3 when liquefied residual strengths are considered. A summary of the analysis is presented in Appendix E. 1 &N �i 940028 -027 5.0 _C ONCLUSIONS AND RECOMMENDATIONS 5.1 Conclusionsand Recommendations Based on our geotechnical evaluation, it is our opinion that the proposed development is feasible from a geotechnical standpoint provided the following recommendations are incorporated into the design and construction. The following sections discuss the principal geotechnical concerns affecting the site development and provide preliminary foundation design recommendations which Should be implemented during site development. 5.2 Earthwork Grading and earthwork should be performed in accordance with the following recommendations and the General Earthwork and Grading Specifications for Rough Grading included as Appendix D. 5.2.1 Site Preparation t Due to the periodic grading activities at the site, majority of the site has remained relatively free of vegetation and debris. If encountered, vegetation and debris should be removed prior to the recommenceme tit of grading operations. Prior to grading, areas below and within 10 feet (1orizontally) of buildings and pavements should be cleared of surface vegetation and moisture- conditioned. 5.2.2 Removals and Recompaction The existing slope wash, topsoil, and any undocumented fill soils that exist on -site are potentially compressible in their present state and will likely settle under the loading of additional fill soils and upon further wetting. In areas that will receive additional fill soils, or will support settlement- sensitive structures or other improvements (such as buildings, retaining walls, pavement, utility lines, etc.), these soils should be removed down to competent formational or properly compacted fill materials as determined by the geotechnical consultant, moisture- conditioned, and recompacted to a minimum 90 percent relative compaction (based on ASTM Test Method D1557). The lateral removal limit should be established by a ]:I projection downward and outward from settlement- sensitivestructures or embankments to the recommended removal bottom and then projecting another 1:1 line upward to the ground surface. This projection should start 10 feet horizontally from the outermost perimeter footing edge. Removals should be accomplished as recommended above or to a minimum of 10 feet (measured laterally) beyond any embankment, building, pavement and hardscape perimeter, whichever is greater. Fill soils should be free of debris and organic materials (trees, shrubs, stumps, roots, leaves, etc.). Care should be taken by the contractor to protect any existing underground utilities and improvenrentsthat are to remain. M � 940028 -027 5.2.3 Structural Fill Import and onsite soils are generally acceptable for use as compacted fill, provided they are relatively free of organic materials and debris. Areas to receive structural fill and /or other surface improvements should be scarified to a minimum depth of 6 inches, brought to near Optimum moisture content, and recornpacted to at least 90 percent relative compaction (based on ASTM Test Method DI 557). The optimum lift thickness to produce a uniformly compacted fill will depend on the type and size of compaction equipment used. In general, fill should be placed in uniform lifts not exceeding 8 inches in thickness. Fill soils should be placed at or above the soils optimum moisture content. Placement and compaction of fill should be performed in accordance with local grading ordinances under the observation and testing of the geotechnical consultant. Import soils should be evaluated by representativesof Leighton and Associates prior to site delivery. Fills placed within 4 feet of finish grade should consist of granular soils of very low to low expansion potential and contain no materials over 6 inches in maximum dimension. Oversize material (such as rock or clean concrete) may be incorporated into structural fills if placed in accordance with the recommendations of Appendix D. All grading should be performed under the testing and observation of Leighton. 5.2.4 Transition Lots or Steeply-Dipping Bedrock Areas Based on the elevations depicted on the grading plans, a transition condition from formational to fill materials will be created by the proposed grading for the Expo Design Center pad. This condition should be evaluated during grading operations by a representative from this firm. We recommend that the entire cut (formational) portion of building area be over - excavated and replaced with properly compacted fill of very low to low expansion potential. Over - excavation should be extended to a depth such that all footings that traverse the formation to fill contact so that overlying wall footings will be underlain by at least 2 feet of compacted fill. The lateral extent of over - excavation should extend a minimum of 10 feet outside the limits of the building foundations where attainable. Where site constraints limit the lateral extent of removals, revised recommendationswill be necessary. 5.2.5 Utilit-v Trenches The onsite soils may generally be suitable as trench backfill provided they are screened of rocks over 6 inches in diameter and organic matter. Trench back should be compacted in uniform lifts (not exceeding 8 inches in compacted thickness) by mechanical means to at least 90 percent relative compaction (ASTM Test Method DI 557). Excavation of utility trenches should be performed in accordance with the project plans, specifications and all applicable OSHA requirements. Each contractor is responsible for providing a "competent person" to review excavations as required by OSHA standards. Sandy native or compacted fill soils and /or adversely- oriented bedrock structures can make excavations particularly unsafe if all safety precautions are not taken. Excavations in bedrock may expose planar bedding which may be adverse and dip into the excavation & 13 M. 940028 -027 depending on trench orientation. Such a condition requires special considerations when the excavation and trench safety are being reviewed by the designated "competent person ". In addition, excavations at or near the toe of slopes and /or parallel to slopes may be highly unstable due to the increased driving force and load on the trench wall. Spoil piles and construction equipment should be kept a safe distance away from and on the down slope side of the trench. 5.3 Slope Stabilit Our understandingof the proposed grading indicates that fill slopes at inclinations of 2:1 (horizontal to vertical) or flatter with an approximate maximum height of approximately 30 feet (respectively) are proposed to create the proposed design grades. We do not expect that cut slopes exposing natural deposits will be created east of the Garden View Road improvements. 5.3.1 Fill Slope Stabilitv Fill slopes to a maximum height of ± 30 feet are anticipated. According to topographic information on Plate 1, up to approximately 18 feet of additional fill materials are required to reach the project design grades along the northern limits of the subject site. It is our understanding that the materials anticipated for construction of the remaining fill slope will predominately consist of silty sands derived from excavation of the existing formational and compacted fill soils from the western portion of the site. We generally recommend against the exclusive use of cohesionless sand in the slope faces as these materials are prone to extensive rilling. We anticipate however, some slopes may be constructed with the onsite or import cohesionless sands due to economics and earthwork logistics. Accordingly, the construction and maintenance of slopes should be strictly adhered to. Our analysis, assuming homogeneous slope conditions, indicates the proposed fill slopes and buttresses created during earlier phases of grading have been constructed at inclinations of 2:1 (horizontal to vertical), or flatter, and have a calculated static factor of safety in excess of the minimum typically required (1.5) with respect to potential, deep- seated failure. The remaining proposed slopes should be constructed in accordance with the recommendations of this report, the attached General Earthwork and Grading Specifications (Appendix D), and the City of Encinitas grading ordinances. 5.3 .2 Stability Fill and Retaining Wall Back Cuts Stability fill and retaining wall back cuts should be observed and geologically mapped by the geotechrnical consultant during construction. The purpose for this mapping is to substantiate the geologic conditions we have assumed in our analysis. In order to expedite the geologic mapping of these temporary slopes by our field geologist, we recommend that the grading contractortrim these cuts with a slope board as they are excavated. & _— 14 - 940028 -027 Because the temporary back cuts may be excavated into Loose, friable, or saturated material, back cut failures and surficial sloughing should be anticipated. Loose soils which may be deposited into the stability fill key areas as a result of such failures should be removed per the recommendations of the geotechnical consultant prior to placement of the compacted stability fill. Where excessive failures or sloughing are noted during grading, it may be necessary to lay slopes back to a flatter inclination. The potential for back cut slope failures may be reduced by constructing the stability fill in several sections. The length and geometry of construction sections can be provided during grading based on actual field performance observations. Extreme care should be taken by the contractor in areas where stability fill backcuts are near existing utilities or improvements. In general, to reduce the potential for back cut failures, we recommend that the stability fill excavation and embankment be planned to minimize the time the back cut remains open and unsupported by compacted fill. Segmental retaining wall back-cuts along Garden View Road should be excavated prior to construction of concrete curbing or pavements. 5.3.3 Surficial Slope Stability Our analysis of properly compacted fill slopes (Leighton, 1996a) generally indicates an adequate factor of safety against surficial failures assuming adequate protection against erosion is provided. In addition, the outer 2 to 3 feet of fill slopes generally become less dense with time. Accordingly, since the onsite soils have a high susceptibility to erosive rilling, proper vegetation selection and ongoing maintenance are imperative to achieving the desired long -term project performance. All slopes should be constructed in accordance with the General Earthwork and Grading Specifications (Appendix D) and City of Encinitas grading ordinances. Berms should be provided at the tops of fill slopes, and brow ditches should be constructed at the tops of cut slopes. Drainage should be directed such that surface runoff on slope faces is minimized. Inadvertent over - steepening of cut and fill slopes should be avoided during fine grading and construction. If seepage is encountered in slopes, special drainage features may be recommended by the geotechnical consultant. Erosion and /or surficial failure potential of fill slopes may be reduced if the following measures are implemented during design and construction of the slopes. 5.3.4 Slope face Compact and Finishing In order for the recommended mininnun of 90 percent relative compaction to be achieved out to the slope face, till slopes should be overbuilt and trimmed back to expose the properly compacted slope face core or periodically backrolled Nvith increasing height of the fill slope with a weighted sheepsfoot compactor and trackwalked. I 940028 -027 5.4.5 Slope Landscaping and Drainage We recommend that all graded slopes be landscaped with drought - tolerant, slope stabilizing vegetation as soon as possible to minimize the potential for erosion and slumping. Moisture in the slope face should be maintained relatively constant (i.e., prolonged drying and wetting of the slope faces should be avoided). Burrowing activity by rodents and other vermin Should be controlled at all times. 5.5 Control of Groundwater and Surface Water We recommend that measures be taken to properly finish grade each building area, such that drainage water from the building area is directed away from building foundations (2 percent minimum grade for a distance of 5 feet), slabs, and tops of slopes. Ponding of water should not be t permitted, and installation of roof gutters which outlet into a drainage system is considered prudent. Planting areas at grades should be provided with positive drainage directed away from buildings. Drainage and subdrainage design for these facilities should be provided by the design civil engineer. 5.6 Foundation Design - Commercial Structures It is our understanding that the proposed Expo Design building will utilize a combination of continuous perimeter footings and conventional interior isolated- spread footings for building support. The folloNving recommendations are based on the assumption that soils of very low to low expansion potential (50 or less per UBC 18 -I -B) will be in the upper 4 feet of pad grade. This should be confirmed during grading by the geotechnical consultant and alternate recommendations provided, if necessary. Footings bearing in competent natural soil materials or properly compacted fill should extend a minimum of 18 inches below the lowest adjacent grade. At this depth, footings may be designed using an allowable soil - bearing value of 2,000 pounds per square foot. The allowable soil - bearing pressure may be increased by 500 psf for each additional foot of foundation embedment to a maximum allowable- bearing pressure of 2,500 pounds per square foot (psf). This value may be increased b one -third for loads of short duration including wind or seismic forces. Continuous perimeter footings should be designed as grade beams to accommodate the design settlements, reinforced by placing at least two No. 4 rebar near the top and two No. 4 rebar near the bottom of the footing, and in accordance with the structural engineer's requirement. We recommend a minimum widths of 18 inches for continuous footings and 24 inches for isolated- spread footings. The structures should also be designed for the anticipated settlement (see Section 5.9). 5.7 Floor Slab Design All slabs should have a minimum thickness of 4 inches and be reinforced at slab midheight with No. 3 rebar at 18 inches on center (each way) or No. 4 rebar at 24 inches centers (each way). Additional reinforcement and /or concrete thickness to accommodate specific loading conditions should be evaluated by the structural engineer based on a modulus of subgrade reaction of 150 pound per cubic inch. Slabs subjected to vehicular, forklift, and other heavy loads may require increase thickness and reinforcing. We emphasize that is the responsibility of the contractor to ensure that the slab reinforcement is placed at midheight of the slab. Slabs should be underlain by a ti &H 16- 94002£ -027 2 -inch layer of clean sand (S.E. greater than 30) to aid in concrete curing, which is underlain by a 6- mil (or heavier) moisture barrier, which is, in turn, underlain by a 2 -inch layer of clean sand to act as a capillary break. All penetrations and laps in the moisture barrier should be appropriately sealed. The spacing of crack- control joints should be designed by the structural engineer or architect. Our experience indicates that use of reinforcement in slabs and foundations will generally reduce the potential for drying and shrinkage cracking, however, some cracking should be expected as the concrete cures. Minor cracking is considered normal; however, it is often aggravated by a high water content high concrete temperature at the time of placement, small nominal aggregate size and rapid moisture loose due to hot, dry, and /or windy weather conditions during placement and curing. Cracking due to temperature and moisture fluctuations can also be expected. The use of concrete mix that possess a low water content can reduce the potential for shrinkage cracking. Moisture barriers can retard, but not eliminate moisture vapor movement from the underlying soils up through the slab. We recommend that the floor coverings installer test the moisture vapor flux rate prior to attempting application of the flooring. Breathable" floor coverings should be considered if the vapor flux rates are high. A slip sheet should be provided beneath settlement sensitive floor coverings. 5.8 Footing Setback We recommend a minimum horizontal setback distance from the face of slopes for all structural footings and settle ment- sensit ivestructures. This distance is measured from the outside edge of the footing, horizontally to the slope face (or to the face of a retaining wall) and should be minimum of 10 feet. We should note that the soils within the structural setback area possess poor lateral stability, and improvements (such as retaining walls, sidewalks, fences, pavement, underground utilities, etc.) constructed within this setback area may be subject to lateral movement and /or differential settlement. 5.9 Anticipated Settlement Settlement of properly compacted fill soils can occur upon application of structural loads and upon wetting due to water infiltration which may occur over a period of many years. Based on data provided by Expo, we understand maximum column loads will be up to 120 kips and wall loads will be 120 kips up to 5 kips per foot. The recommended allowable- bearing capacity is based on maximum total and differential settlement of 3/4 inch. 17- �` 940028 -027 5.10 Lateral Earth Pressures and Resistance Embedded structural walls should be designed for lateral earth pressures exerted on them. The magnitude of these pressures depends on the amount of deformation that the wall can yield under load. If the wall can yield enough to mobilize the full shear strength of the soil, it can be designed for "active" pressure. If the wall cannot yield under the applied load, the shear strength of the soil cannot be mobilized and the earth pressure will be higher. Such walls should be designed for "at rest" conditions. If a structure moves toward the soils, the resulting resistance developed by the soil is the "passive" resistance. Tor design purposes, the recommended equivalent fluid pressure for each case for walls founded above the static groundwater table and backfilled with very low to low expansion potential soils is provided below. Determination of which condition, active or at -rest, I's appropriate for design will depend on the flexibilityof the wall. The affect of any surcharge (dead or live load) should be added to the proceeding lateral earth pressures. Based on our investigation, the sandier onsite soils may provide low to very low expansive potential backfill material. All backfill soils should have an expansion potential of less than 50 (per UBC 18 -1 -13). The passive pressures provided below assume the setback recommendat ions are adhered to. "Table 3 Equivalentfluid Weight Level 2:1 Slope [�ondition (Pcf) (PCO Active 35 55 At -Rest 55 75 350 150 Passive (Maximum of 3 ksf) (sloping down) The above values assume low expansion potential backfill and free - draining conditions. If conditions other than these covered herein are anticipated, the equivalent fluid pressure values should be provided on an individual -case basis by the geotechnical engineer. A surcharge load for a restrained or unrestrained wall resulting from automobile traffic may be assumed to be equivalent to a uniform lateral pressure of 75 psf which is in addition to the equivalent fluid pressures given above. All retaining wall structures should be provided with appropriate drainage and waterproofing. Typical drainage design is illustrated in figure 5. As an alternative, an approved drainage board system installed in accordance with the manufacturer's recommendations may be used. Wall backfill should be compacted by mechanical methods to at least 90 percent relative compaction (based on ASTM Test Method D1557 -91). Surcharges from adjacent structures, traffic, forklifts or other loads adjacentto retaining walls should be considered in the design. -18- ® A� 940028 -027 Wall footing design and setbacks should be performed in accordance with the previous foundation design recommendationsand reinforced in accordance with structural considerations. Soil resistance developed against lateral structural movement can be obtained from the passive pressure value provided above. Further, for sliding resistance, a friction coefficient of 0.35 may be used at the concrete and soil interface. These values may be increased by one -third when considering loads of short duration including wind or seismic loads. The total resistance may be taken as the sum of the frictional and passive resistance provided that the passive portion does not exceed two- thirds of the total resistance. 5.11 Segmental Retaining Wall Desig Segmental retaining walls may be considered at several locations on the subject property. Settlement- sensitive structures should be set back from the top of the wall at a minimum distance equal to the wall height. Appropriate geotechnical design parameters for the reinforced earth type retaining walls are provided below: Friction angle of backfill soils 32 degrees Cohesion 0 psf Weight of backfill soils 120 psf Allowable bearing capacity 2 psf (18 inch minimum embedment) (18 inches minimum width) Expansion index <50 (per UBC Test 18 -2) Temporary backcut per OSHA Seismic Acceleration Maximum Probable Ground Motion Adequate drainage should be designed behind the wall by the wall design engineer and reviewed by the geotechnical consultant. Typical drainage includes a PVC pipe surrounded by gravel and filter cloth with outlets into positive drainage facilities. Backdrains should be provided behind the reinforced zone within the westerly portion of the site. 5.12 GeochemicallSSUes 5.12.1 Concrete Laboratory tests performed on native soils indicate a negligible concentration of soluble sulfates in onsite soils (less than 0.005 percent) for tested representative samples (Appendix A). Accord 1noly,typical cement may be used for concrete in contactwith onsite native soils. Import soils placed near finish surface should be tested for sulfate content. 19- ®� 940028 -027 5.12.2 Metallic Corrosion Minimum resistivity and pH tests were performed on representative onsite soil samples. Test results indicate the onsite soils possess a mild to moderate corrosion potential for buried uncoated metal conduits. It is recommended that a qualified corrosion engineer be consulted for the necessary protective measures. -20- ® ®� l 940028 -027 6.0 PAVEMENT SECTION DESIGN Because of the variability of materials on -site and unknown import soils, it is not possible to know which soils will be placed or exposed at pavement subgrade. In order to provide the following recommendations, we have visually evaluated the onsite soils and utilized representative R -value test results from previous investigations(Appendix A). The following pavement sections are provided for the site interior driveways and parking areas. Pavement design should be in accordance with the City of Encinitas and Caltrans Highway Design Manual. Utilizing traffic indices provided by the City of Encinitas, and an assumed R -value of21, we provide the follow ingpreliminary sections. 6.1 Traffic Index In accordance with your request, we have reviewed EXPO Design Center requirements for asphalt concrete (AC) pavements in order to develop preliminary design recommendations for areas to receive AC pavements. The EXPO design requirements identify pavement types for two traffic conditions, a standard duty and a heavy duty. Their pavement design information is summarized in Cable 4 below. Also provided in the table is the traffic index detennined using Table 603.4A of the Caltrans Highway Design Manual. fable 4 Equ Axle Load to Tra ffic Index Conversion Traffic Typ Equivalent Axle Load Design Traffic Index Standard Duty 50,000 6.5 Hea D uty 22,000 7 .5 Although not specificallyaddressed in the EXPO design requirements, the design requirements allow for alternative design recommendations based on local practices. It is customary in local practice to construct automobile parking stalls to traffic index values in the 4.5 to 5.0 range. For this reason, we have provided the lower traffic index for consideration in designing parking stall areas. L 6.2 Asphalt Concrete and Crushed Aggregate Base Sections The design of the asphalt concrete over aggregate base section presented below was performed using Caltrans design methodology and an R -Value of 21 as determined by test results presented within the referenced GPI report. -21 _ _`® 940028 -027 �_ -- - Tab le 5 --- _ _ - - - -_ - _ -__ - Asph alt Concrete and Aggrega Base Pavement Section -� - - - -- __ —_� -_- — - -- �_ - -_ -_ - -- AC over Aggregate Base Asphalt Concrete Aggregate Base Pavement Location Traffic Index (T.I.) Design R -Value T hicknes s (inc T hickness (inches) Auto Parking Stalls --- � = = = 5.0 - -- -- 21 � - -- - -- � - - 7 Auto Dri 6.5 2; 4 11 Tru ck Dri 7.5 21 4 -1/2 13 63 Alternativewith Subbase Laver Based on our understanding of the remaining grading for the site, we understand that excavations will be required to lower the existing grades in the westerly portion of the site and placement of fills will be required to raise grades in the easterly portion of the site. As we anticipate that much of the excavations will encounter granular materials with R- Values in excess of 21, we have provided alternative sections that would allow for an increase in subgrade R- Value. For preliminary analysis, we have used an R -Value of 40. The column identified as subbase thickness corresponds to the minimum amount of granular R -Value 40 material that would be required within areas to receive AC pavements. This approach would require that the grading contractor selectively grade the pavement areas so that the most granular of onsite materials is below the aggregate base layer of the pavement section. Asphalt Con and Aggregate Base over Granular Subba P avement Sec F AC over Crushed Aggregate Base and Granular Subbase with R >40 Asphalt Aggregate Base Granular Pavement Traffic Index Design Concrete Thickness Subbase Layer Location (T.1.) R -Value Thickness (inches) ,vith R >40 (inches) (inches) Auto Parking =- 5.0 St all s Auto Driveway 6.5 21 4 6 12 Truck 7.5 21 4-1/2 8 12 Driveway -22- MOX" 940028 -027 6.4 Pavement Materials and Grading Recom►n end ations All aggregate base, subbase, and the upper 12 inches of subgrade should be compacted to a minimum 95 percent relative compaction based on American Standard of Testing and Materials (ASMT) Test Method D 1557. Compacted materials should be placed at near optimum moisture content. Crushed aggregate base and Asphalt Concrete should conform to and be placed in accordance with the "Greenbook" Standard Specifications for Public Works Construction requirements. We recommend that the curb, gutter, and sidewalk be designed by the civil engineer or structural engineer. We suggest control joints at appropriate intervals as determined by the civil or structural engineer be considered. We also suggest a minimum thickness of 4 inches for sidewalk slabs. If pavement areas are adjacent to heavily watered landscape areas, we recommend measures of moisture control be taken to prevent the subgrade soils from becoming saturated. It is recommend that the concrete curbing separating the landscaping area from the pavement extend below the aggregate base to reduce the migration of irrigation water in the aggregate base. Concrete swales should be designed in roadway or parking areas subject to concentrated surface runoff. Z -2i- 940028 -027 7.0 GEOTECHNICA.LREVIEW Geotechnical review is of paramount importance in engineering practice. The poor performance of many foundation and earthwork projects have been attributed to inadequate construction review. We recommend that Leighton and Associates be provided the opportunityto review the following items. 7.1 Plans and Specifications The geotechnical engineer should review the project plans and specifications prior to release for bidding and construction. Such review is necessary to determine whether the geotechnical recommendations have been effectively implemented. Review findings should be reported in writing by the geotechnical engineer. 7.2 Construction Review Observation and testing should be performed by the geotechnical engineer during construction. It should be anticipated that the substrata exposed during construction may vary from that encountered in the test borings or trenches. Construction observation during site grading and foundation installation allows for evaluation of the exposed soil conditions. Site preparation, removal of unsuitable soils, approval of imported earth materials, fill placement, foundation installation and other site geotechn teal ly- relatedoperations should be observed and tested by Leighton. ZZ -24- 940028 -027 8.0 LIMITAT The conclusions and recommendations in this report are based in part upon data that were obtained from a limited number of observations, site visits, excavations, samples, and tests. Such information is by necessity incomplete. The nature of many sites is such that differing geotechnical or geological conditions can occur within small distances and under varying climatic conditions. Changes in subsurface conditions can and do occur over time; therefore, the findings, conclusions, and recommendations presented in this report can be relied upon only if Leighton has the opportunity to observe the subsurface conditions during grading and construction of the project in order to confirm that our preliminary findings are representative for the site. ZZ _ -25 - ft,,, --- �s s A B-40 M -3 CPT -5 (prof. 75' (Proj. 26' (Proj. 80 n n orth) CPT -1 north) - - FF 109 ) o- ------- , I - --- -- - - -- ------ - - - - -- - - - - -- N !00 i m Af A o I co I IZ TD -61.5' 1 TD =51' — -- TD =70' _O I of I I a , I 0 I � I ' I I 1 I I ' I, 1 / Elevallon 1 (In feet) f I I I i ,I I I 1 1 I I I 1 1 I 700 I 1 I I I V a 1 O v v O O M -3 (prof. 25' CPT-4 west) (proj. ' CPT -1 e D F F 109 --- - - - - -- I - - - - -- - - - -- --- - -- - - - - -- --------- - - - - -- 'f - - - -_ 0 I 100 f Af , I Q_ - -- Af I Q I a I I lD - -- - - - -- = -- - --- -- - - -17 I m X 50 - - -QSW QSW Td i TD =70' I � I � � l i I I 1 i 0 I I � 1 I -50 I (in feel) a I W I I I � I � s 100 ! I 0 r z w v o ° Q DESCRIPTION OF SUBSURFACE MATERIALS o a cn F- z0 r a : w �� ZLL �C0 W aW v ° o iz - N v> J W w This summary applies only at the location of this boring and at the time of drilling. J o } Z U) p � LL Subsurface conditions may differ at other locations and may change at this W o nw � m location with th 40 e passage of time. The data presented is a simplification of actual conditions encountered. Te 16.6 107 9 D 33.3 9 D feet, with clay Total Depth 44 feet 75 SAMPLE TYPES DATE DRILLED: 11 -1 -00 PROJECT NO.: 1680.1 @ Rock Core EXPO - ENCINITAS [S Standard Split Spoon EQUIPMENT USED: — � []D Drive Sample 24" Bucket Auger LOG OF BORING NO. B- 3 © Bulk Sample GROUNDWATER LEVEL: Tube Sample Water at 37 feet FIGURE B -3 []T z o � o a DESCRIPTION OF SUBSURFACE A14TERIALS ° ui v�� azLL_ =F QW LU c p a r– v –' w �" Lu This summary applies only at the location of this boring and at the time of drilling. J p z <n p o - Subsurface conditions may differ at other locations and may change at this W o LU m < location with the passage of time. The data presented is a simplification of actual conditions encountered. 15.4 108 15 D 40 Natural: SILTY SAND (SM) olive, wet, dense, trace porosity 45 70 18.2 107 7 D CLAYEY SAND (SC) olive, wet, medium dense SANDY CLAY (CL) olive -grey, wet SANDY SILT (ML) olive, wet, hard, with clay 65 15.9 112 40 D 50 Total Depth 51 feet SAMPLE TYPES DATE DRILLED: 11 -1 -00 ® PROJECT NO.: 1680.1 © Rock Core c EXPO - ENCINITAS �S Standard Split Spoon EQUIPMENT USED: �— c FDJ Drive Sample 24" Bucket Auger LOG OF BORING NO. B- 4 © Bulk Sample GROUNDWATER LEVEL: Tube Sample Not Encountered FIGURE B 4 ° Lou ° a DESCRIPTION OF SUBSURFACE MATERIALS 7 FZO _� aw ui w This summa a lies onl at the location of this boring and at the time of drilling. w z in LO p o Subsurface c may differ at other locations and may change at this w w w Q location with the passage of time. The data presented is a simplification of actual 0 0 m V) conditions encountered. B 0 Fill: SILTY SAND (SM) brown and grey, slightly moist, 125 dense, trace gravel, mottled 6.6 116 8 D SAND WITH SILT (SPISW -SM) grey, slightly moist 5 SILTY SAND (SM) brown and grey, moist, medium 7.1 119 6 D 120 dense to dense, trace gravel, with sand lenses, mottled 8.3 113 5 D @ 7 feet, trace clayey sand lenses @ 7 to 13 feet, slightly moist to moist 10 9.4 118 8 D 115 15 Natural: SILTY SAND SM) red-brown, 10.9 111 5 D N wn moist to very ( 110 moist, medium dense @ 20 to 26 feet, dense 11.6 119 8 D 20 105 25 15 p 100 Total Depth 26 feet I SAMPLE TYPES DATE DRILLED: 11 -1 -00 PROJECT NO.: 1680.1 © Rock Core � Ic EXPO - ENCINITAS i �S Standard Split Spoon EQUIPMENT USED: D Drive Sample 24" Bucket Auger © Bulk Sample GROUNDWATER LEVEL (ft): LOG OF BORING NO. B- 5 0 Not Encountered FIGURE B-5 Tube Sample z ( ° z ° ° DESCRIPTION OF SUBSURFACE MATERIALS ° F a z rzo =F Qw zLL qQQ� w aw LU o a �- v V' a w This summary applies only at the location of this boring and at the time of drilling. J o z in p Subsurface conditions may differ at other locations and may change at this w W "' —j a location with the passage of time. The data presented is a simplification of actual o a m conditions encountered. B 0 Fill: SILTY SAND (SM) light brown, moist 110 ® ®® SANDY CLAY (CL) brown and grey, very moist, hard 14.1 117 4 D CLAYEY SAND (SC) brown to dark brown, very moist, trace brick, mottled INTERBEDDED SILTY SAND (SM) AND SAND 5 (SP /SW) grey and brown, moist, dense, with claystone 13.7 109 7 D 105 fragments, and cobbles, mottled, with sandy clay and grey clay lenses 11.5 117 4 D @ 7 to 10 feet, medium dense 13.5 112 6 D 10 100 15 10.2 120 5 D Natural: SILTY SAND (SM) brown, moist, medium 95 dense, with sand lenses, trace gravel B @ 18 to 26 feet, grey and brown 20 10.1 113 5 D 90 25 10.8 121 5 D 85 Total Depth 26 feet SAMPLE TYPES DATE DRILLED: 11 -1 -00 PROJECT NO.: 1680.1 © Rock Core — ® EXPO - ENCINITAS S Standard Split Spoon EQUIPMENT USED: p Drive Sample 24" Bucket Auger [D © Bulk Sample GROUNDWATER LEVEL (h): LOG OF BORING NO. B- 6 Tube Sample Not Encountered FIGURE B -6 z °' ° `� DESCRIPTION OF SUBSURFACE MATERIALS LL a Uj T � o a c~n oN ' w w This summary applies only at the location of this boring and at the time of drilling. W LL W p o - Subsurface conditions may differ at other locations and may change at this w LU F7 �Lo i v o v a W location with the passage of time. The data presented p in N d is a simlification of actual conditions encountered. 0 Fill: SILTY SAND (SM) brown, moist 130 CLAYEY SAND (SC) red - brown, very moist, dense, mottled 10.9 120 9 D 5 SILTY SAND (SM) red - brown, very moist, dense, mottled, with clay 125 @ 7 feet, trace twigs 10.4 116 6 D 10 @ 11 feet, some sandy clay lenses 120 10.9 120 8 D 15 115 @ 17 112 to 19 feet, red -brown to olive, moist 20 @ 19 to 26 112 feet, moist, no clay 8.5 109 7 MD 110 8.2 110 7 @ 24 to 26 feet, very moist, cemented sand lenses 25— (grey) and siltstone fragments? 12.9 110 25 D Natural: SILTY SAND (SM) grey - white, slightly moist to 105 moist, very dense, fine to medium grained 6.5 110 40 D 30 100 6.5 103 0/11' D 35 Total Depth 35 feet SAMPLE TYPES DATE DRILLED: 11 -2 -00 ' PROJECT NO.: 1680.1 © Rock Core E _._ EXPO - ENCINITAS Standard Split Spoon EQUIPMENT USED: MONO �D Drive Sample 24" Bucket Auger © Bulk Sample GROUNDWATER LEVEL (ft): LOG OF BORING NO. B- 7 0 Tube Sample Not Encountered FIGURE B -7 z � o z O ' _ DESCRIPTION OF SUBSURFACE AMTERIALS 0— o a a N V a w LL This summary applies only at the location of this boring and at the time of drilling. w L p v y z U5 w z w "' -j Q location with the passage of time. The data presented is a simplification of actual o a m u> conditions encountered. 1 0 Fill: SILTY SAND (SM) brown, moist, dense, trace wire 135 and clay lenses, mottled, with sand lenses 5 4.8 116 6 D @ 5 1/2 to 6 1/2 feet, sand lens 130 10.2 105 5 D 10 @ 10 feet, red -brown and brown, very moist, medium 125 dense @ 13 feet, sandy clay lens 4 D 15 120 9.9 107 @ 15 1/2 to 16 feet, sand lens 7.9 103 5 D 20 115 @ 22 feet, some sandy clay lenses 11.5 106 4 D 25 @ 25 feet, twig fragment 110 SILTY SAND (SM) red - brown, moist, dense 9.8 110 15 D Natural?: 30 105 8.4 111 17 D 9.1 110 16 D 35 ' 100 CLAYEY SAND (SC) olive brown, very moist, dense 10.6 110 12 D Total Depth 40 feet SAMPLE TYPES DATE DRILLED: 11 -2 -00 ® PROJECT NO.: 1680.1 © Rock Core v �--- € EXPO - ENCINITAS �S Standard Split Spoon EQUIPMENT USED: ❑D Drive Sample 24" Bucket Auger LOG OF BORING NO. E3° 8 [] Bulk Sample GROUNDWATER LEVEL (ft): Not Encountered FIGURE 6-8 OT Tube Sample z W v W DESCRIPTION OF SUBSURFACE MATERIALS I w a cn� Fz0 = ~ W uj W a - v r a w Lu This summary applies only at the location of this boring and at the time of drilling. J z in p o Subsurface conditions may differ at other locations and may change at this W a W W m < location with the passage of time. The data presented is a simplification of actual conditions encountered. 0 Fill: CLAYEY SAND (SC) red -brown and brown, moist, medium dense, mottled 120 Natural ?: CLAYEY SAND (SC) brown, very moist, 12.5 105 2 D 5 loose to medium dense, trace porosity, some clay lenses @ 4 feet, light red -brown 115 15.5 104 3 D 10 @ 11 feet, sandy clay lens 5.7 100 2 D SAND WITH SILT (SPISW -SM) light brown, slightly 110 moist, medium dense, some silty sand lenses 15 5.8 111 3 D 105 7.3 99 2 D 20 @ 20 to 25 feet, loose to medium dense 100 4.8 100 4 D 25 @ 25 feet, dry to slightly moist 95 30 8.8 97 8 D 90 CLAYEY SAND (SC) brown, wet, dense 35 17.0 98 14 D Total Depth 36 feet SAMPLE TYPES DATE DRILLED: 11 -2 -00 PROJECT NO.: 1680.1 © Rock Core o-- 0 EXPO - ENCINITAS [S] Standard Split Spoon EQUIPMENT USED: [ D Drive Sample 24" Bucket Auger B Bulk Sample GROUNDWATER LEVEL (ft): LOG OF BORING NO. B- 9 Tube Sample Not Encountered FIGURE B -9 i Z w zo W " o w DESCRIPTION OF SUBSURFACE AMTF M S D i50 u QFL Z aw Qw U-10 a r cn w w This summa a lil at the location of this boring and at the time -' es on of th iling. w LL p z v2 3: g o � s summ c may differ at other locations and may change at this W i w w _j e location with the passage of time. The data presented is a simplification of actual o a M m to conditions encountered. 0 Fill: SILTY SAND (SM) light brown, dry 1 11.9 107 5 D CLAYEY SAND (SC) light brown, moist, medium dense, mottled I 7.8 112 6 D SILTY SAND (SM) dark red - brown, moist, dense, trace 100 5 gravel, mottled 5 D @ 9 to 10 feet, medium dense 95 10 Total Depth 10 feet SAMPLE TYPES DATE DRILLED. 11 -1 -00 ® PROJECT NO.: 1680.1 © Rock Core EXPO ENCINITAS QS Standard Split Spoon EQUIPMENT USED: �D Drive Sample 24" Bucket Auger LOG OF BORING NO. B -10 © Bulk Sample GROUNDWATER LEVEL (ft): [fl Tube Sample Not Encountered FIGURE B -10 Z w o o U DESCRIPTION OF SUBSURFACE MATERIALS ZLL ~ QO F' QW ui W L o o a U) w W This summary applies only at the location of this boring and at the time of drilling. J p } w — p Subsurface conditions may differ at other locations and may change at this W 2 o WW � m N loc with the passage of time. The data presented is a simplification of actual conditions encountered. B 0 Fill: CLAYEY SAND (SC) light brown, slightly moist to 95 moist, medium dense, with fragments of asphalt and concrete to 12 inches in diameter (10% debris by 7.3 105 5 D volume), some clay lenses 11.3 118 5 D SILTY SAND (SM) red -brown and brown, moist, 5 medium dense to dense 90 @ 7 feet, clayey sand lens 8 D 10 Total Depth 10 feet l SAMPLE TYPES DATE DRILLED: 11 -1 -00 ® PROJECT NO.: 1680.1 © Rock Core_ EXPO - ENCINITAS ❑S Standard Split Spoon EQUIPMENT USED: D Drive Sample 24" Bucket Auger ❑ LOG OF BORING NO. B -11 © Bulk Sample GROUNDWATER LEVEL (ft): T❑ Tube Sample Not Encountered FIGURE B -1 1 z ° ° a DESCRIPTION OF SUBSURFACE MATERIALS F :� zLL ~ <tv F--�jj ~ W Q Uj N wo a V) N a w LL This summary applies only at the location of this boring and at the time of drilling. LU p �. z � 3 0 � o Subsurface conditions may differ at other locations and may change at this w 2 o a x m < location with the passage of time. The data presented is a simplification of actual conditions encountered. 0 Fill: Crushed Asphalt pavement, black 110 CLAYEY SAND (SC) grey, very moist, medium dense, 11.6 115 4 D mottled SILTY SAND (SM) red - brown, moist to very moist, 9.6 111 6 D 5 — . medium dense to dense 105 I 10 Total Depth 10 feet SAMPLE TYPES DATE DRILLED: 11 -1 -00 ® PROJECT NO.: 1680.1 © Rock Core EXPO - ENCINITAS QS Standard Split Spoon EQUIPMENT USED: []D Drive Sample 24" Bucket Auger LOG OF BORING NO. B -12 © Bulk Sample GROUNDWATER LEVEL (ft): OT Tube Sample Not Encountered FIGURE B -12 i z w o c ° DESCRIPTION OF SUBSURFACE AIATERIt1LS ° � o cn� r zo x � cw zu �aLL w dw LU w o a ` ' w w This summa lies only w o r Z o E o —� Subsurfac c ditions m at the location�of this boring and at the time of drilling. ay differ at other locations and may change at this w o a W m < location with the passage of time. The data presented is a simplification of actual conditions encountered. 0 Fill: CLAYEY SAND (SC) light brown, moist, medium dense, mottled, with fragments of concrete and visqueen (10% debris by volume), upper 6 to 8 inches, silty sand, 9.2 110 5 brown, moist @ 3 112 feet, clay lens 100 9.4 110 4 D 5 g SILTY SAND (SM) brown, moist, medium dense I SAND WITH SILT (SP /SW -SM) brown, moist 95 10 8 1/2 to 9 feet, with organics Total Depth 10 feet SAMPLE TYPES DATE DRILLED: 11 -1 -00 ® PROJECT NO.: 1680.1 Rock Core EXPO - ENCINITAS Standard Split Spoon EQUIPMENT USED: �D Drive Sample 24" Bucket Auger LOG OF BORING NO. B -13 © Bulk Sample GROUNDWATER LEVEL (ft): MT Tube Sample Not Encountered FIGURE B -13 Z w 0 o a DESCRIPTION OF SUBSURFACE MATERIALS 0- I o cn t=zo Qw ui t W v o d N a u l summary applies only at the location of this boring and at the time of drilling. J p v z p o " Subsurface conditions may differ at other locations and may change at this w M w w _j a location with the passage of time. The data presented is a simplification of actual o a 0'- C o J) conditions encountered. B 0 Fill: CLAYEY SAND (SC) light brown, moist, medium dense, mottled, some gravel and asphalt, with silty sand lenses 710.9 107 4 D 105 1 11.8 116 5 D SILTY SAND (SM) red -brown to brown, moist, medium 5 dense, with clay lenses @ 7 feet, fragments of AC 100 Crushed Asphalt, black 10 � INTERBEDDED SANDY CLAY (CL) /CLAYEY SAND 10.6 114 4 D (SC) olive- brown, moist, hard /medium dense, with r asphalt fragments 1 Total Depth 12 feet I SAMPLE TYPES DATE DRILLED: 11 -2 -00 ' PROJECT NO.: 1680.1 © Rock Core EXPO - ENCINITAS Standard Split Spoon EQUIPMENT USED: In Drive Sample 24" Bucket Auger LOG OF BORING NO. B -14 © Bulk Sample GROUNDWATER LEVEL (ft): Tube Sample Not Encountered FIGURE 8 14 i Z o WO o a DESCRIPTION OF SUBSURFACE MATERIALS o- Lu �� z� gaa,. w aw > c ° p a F cq a w LL This summary applies only at the location of this boring and at the time of drilling. w Z 0 p g Subsurface conditions may differ at other locations and may change at this w Uj 2 o a .1 location with the passage of time. The data presented is a simplification of actual conditions encountered. 0 tden LAYEY SAND (SC) brown, very moist, medium e, mottled 15.1 100 3 D 1/2 to 4 feet, light red - brown, trace fragments of rete and gravel . 1 54 114 6 D 5 feet, sand lens, dense 95 DY CLAY (CL) dark brown, very moist YEY SAND (SC) red -brown to light red - brown, moist, medium dense 90 10 Total Depth 10 feet SAMPLE TYPES DATE DRILLED: 11 -2 -00 PROJECT NO.: 1680.1 © Rock Core EXPO - ENCINITAS nS Standard Split Spoon EQUIPMENT USED: �! Drive Sample 24" Bucket Auger © Bulk Sample GROUNDWATER LEVEL (ft): LOG OF BORING NO. E3 �T Tube Sample Not Encountered FIGURE B -15 w g v ° a DESCRIPTION OF SUBSURFACE MATERIALS Z 2 cn HZ� F� w o a c N a w LL This summary applies only at the location of this boring and at the time of drilling. J i o r Z v) p � ° Subsurface conditions may differ at other locations and may change at this w 2 Cr w w -j a location with the passage of time. The data presented is a simplification of actual o a m '35 conditions encountered. 0 Fill. CLAYEY SAND (SC) light brown, slightly moist 1 1/2 feet brown 10.3 122 7 D SILTY SAND (SM) dark brown, moist, dense 105 22.6 108 8 D 5 CLAY (CL) dark grey, wet, stiff CLAYEY SAND (SC) grey and brown, very moist, dense 100 SILTY SAND (SM) brown, very moist to wet, medium 10 dense Total Depth 10 feet SAMPLE TYPES DATE DRILLED: 11 -2 -00 / PROJECT NO.: 1680.1 © Rock core � EXPO - ENCINITAS Standard Split Spoon EQUIPMENT USED: O D Drive Sample 24" Bucket Auger © Bulk Sample GROUNDWATER LEVEL (ft): LOG OF BORING NO. B -16 TCJ Tube Sample Not Encountered FIGURE B -16 i L W ° 0- DESCRIPTION OF SUBSURFACE MATERIALS I D� zu r-a� r-� Qw w o a � 0 � � [ w This summary applies only at the location of this boring and at the time of drilling. w ui p r z p Subsurface conditions may differ at other locations and may change at this w o d W m < location with the passage of time. The data presented is a simplification of actual conditions encountered. B 0 Fill: CLAYEY SAND (SC) AND SANDY CLAY (CL) light brown and dark brown, moist and very moist, medium 100 6.0 118 4 D dense /very stiff to hard, mottled 14.4 109 3 D 5 SANDY CLAY (CL) brown, very moist to wet, mottled 95 I CLAYEY SAND (SC) dark brown, very moist, medium 4 D dense 10— Total Depth 10 feet SAMPLE TYPES DATE DRILLED: 11 -2 -00 I PROJECT NO.: 1680.1 © Rock Core ® EXPO - ENCINITAS S Standard Split Spoon EQUIPMENT USED: �- p 24" Bucket Auger Drive Sample GROUNDWATER LEVEL (ft): LOG OF BORING NO. B-1 © Bulk Sample Not Encountered []T Tube Sample FIGURE B -17 V) U F- cn QJ Q W Ol w L - , j D i 6l F- C� .� r t/) ~ LLJ O O Q ¢ Q O O o- 3 CY . z O Q) 2 Q F-- 0 S Z r LL1 Z Z J U ~ E Z ri D C CD C) Z Y W w N ¢ � LL � W F-- Z U) f--- w CY CD _) w (-D Z F--O Q O z m O =D c/) O -� w U I- CD F- O � J Z LO 4 o � O O O F- 0 3 C7 O .. LLJ r w O Q Q) Q) ) C� LL ru 4- ru 4-)-) Q) 00 tD O - M r- Q O T7 N Of �D O •r � E - C 3 C� 3 N rp N O N O Ql O O N N >,4- -0 r Q) rn r 0 rII .ice . 0) > rp O C C Or O .� (A -C-- LO J W _J 4-j r— •• ' - 4-j 0 CD--O 4--) z ra °' 4-j - n v O - p a r- N O Z3 3 v +' �4- w U m � O(l) Q) r C N W O3 O4 . (D - 0 N W v r r Q) +.� � •r- Z � to O N O 3 0 3 U N O E Q) C) -0 Q Q) rp 3 i� Q 3 ru N m Cr) W a--) - C) Q) O rp NO 6l a_ _ N O '---i O E Z7 z W QJ _ J r p � � � •r CL N (L p - '+ ro cz� z O CD who w Q c� ~ o - w Q n pj Q O � O� L/-) E E O w � ru Z:3 t ` z z .i-) w +� 4-) Q) U L/,-) - U Q Q) a C7 =D n'-3 00 1 Ca- O~ � C� Q CD 501 -A - (10/90) Leighton a Associates 4- t— Un 0 w U Q.) a w rn N Uj p L'- Cr F C4 ri W V) 3E � O O a 2 23� . Z apF -w = Z W Z - ,E- Cl 0 ri N pOO� E Z CD CD W U LL U I- Z m O Z cn f ® o �, tz O Z LO a-J O LLJ 2 O - 0 F— 0 3 QD w 0 v� J (1) 70 Un 7. w +-) Q) CO a c� Ca . •� ` o Q Y CO 4- 4 (> Q) i-J 0 0 +I r C E C : ru 3 V) O .0 O C QJ Q) >) � ti O 0 to CJ> > ru ° C C O Q) O U rD i V) J w J 4.j L 3 CO V) ° p �, Q +, Q) 0 E 0 LO M E az3 ..c 0 II L Z 0 � E C7 0 CD O m U O Ql Q) f U 3 r-•- - U LIJ + N p +r� O Z3 N w r 4 > O C to ra Z7 O C to I-- O O E ( Q Q L = N Z 4--) ro 3 - •r C N m Q 3 ro 01) w 0 Cn O rp NO (T) a s N O ,- -i I O CJ) E Z) w rp i t\ ri J r O C LZ' QJ r �N Q) OI 1 4--) rp } Z CD O L ,--I >- O w 0 p w Z O Q Q F- Z o w Q) O Q CD C/,) Q) -0 - D � T � TT W ru = • - V V Zz4-) w L V) Czf +-) +-J (1) U w 00 1 a i L z- C: o f- m CA- w LLJ 501-A - (10/90) Leighton & Associates u c� o L CF) L J �n a e F— w O U p Q 1— C] r--+ O a 3� (_7 Q) a- C) F - W = Z — W Z Z J w r Z --) C� OU W F- Z W 00 W U O z ~ Z m w cn LIJ U � O a U F— CD 3 3 � O� CD o W ~ CO 3 c� w 0- O +j C J Ln W 4 C 4 Ql U CO Cl) p Q ] ¢ L C�4 O 0-0 C� +1 . E C 3 ru N 0 U O z Q) Q) Q) ro 4--) ru a> > ra O C 01 Q) U U a) rp O O +3 JwJ =+-j V) E ? CL O 7 Ln O z:S ro E C1 T7 0 7D II O L Z E ru 0 Z3 0 -0 O ^ 1 ~ N• L U CL _ W m O3 X Q 40- N W O - 0 V) W 4-j � C > O N 0 3 = 3 v C U 3 Q N L] 3 C +� CO Q 3 M N 7D Q) V) O L N N O G') Q- _ N O �--i i O pl TJ W Q) C- n ^ J O C Cr '— V) J 4--) r6 CL N Q) O CD Z U O (1) Of f V Q) Q .. }, F— LLJ L CZ) W I ''-' ' L Z Q O f Q) 1] O W M w r ::5 - • F-- C°� M w Q C/') Cl� +-' 4--' (1) U W U U E U �.�. O O L L CL- CL � C CD Q O 501 -A - (10/90) Leighton & Associates E I I +,, , ........._.......... i^ r 4_ V) U F- i V� W al W p LLJ Ol c7 r L.L \ �- a-_> CO O W to d Q CL LLJ CD O � = 3 � Z apF - --W W Z Z J Z rJ ppOJ I z Cr_ z E D JCC F- Z W ¢ O W CJ Z CD O Q LL ( ` O Z cn I t W CD V) z J W v F C D F— W OJZ 4 �� o Of CD =D Q W F- N 3 c.� .. •r W O +-j C D (a) (3J C (� Q) -0 ru N CO r-_ ��� 3 ra r- L C ' c� O O L/) QJ a p . ' +I - 0 Q) ru O to .. .. W L C E 3O� �L o C O O V QCJ O a -0 O a) r }� Q> > ru 4-) Cn Q) U cn QJ ro rn C 0 JW� �.cN ra Cl- 4= � a) ~ V) L >, o �� >, to rp -D E �� ;.,•:. ... r = n v � r:. � CD :. U - r C 4- U, ' 1 o r: a w p E n -- N C) W _ f--- •0 W Z - - 0 O W +_' - ru O F— C to 4 — C E cn 3 3 U ru O r- L 4- J U Z Q _n Q) N CO p Q) -0 •r Cn 1 � r r N ru N O C') J -0 +-� 4-- )-- O L N O .-4 Q) V) W r0 I r - _ r - 1 I� In 0) E ru Of r r CL CV a) O LL r (n V O > •� Z O L -� J O W O p W U Q f Ln Q CO ~ C LLJ v O F O ~ cn QJ .� -7 CL W r E W Q (2 ) Z Z 4-J W C Cn () UW - U U E p U Q) Q) Q L3r D �.r O O OJ L- L- CJ" O Q CL d W W (Z 501 -A - (10/90) Leighton & Associates V) U o a w CF) w o w a� F— cY 4-) cb o LLJ V) C. F— W \ O cL af M = I 3 cl:� . S z UJ Q Z W z a 0 D � J � w LLJ U w w F- O Q O z m w i CD V V) z -� w U f-- i O2 � o w Q 3 C� CD f •• 0- C D c � � a w c.� U m r� CD +-) O Q ter- 0 0 L/) (D L o +11 LLJ O s] C) ro can t� i �0 rp i? roc o3ov OLn o � ro 4- a-- r--- +� aQ)u � n U u Iw� �.�� corn CL O >11 (.. ro r0 O i- Z V V O +. L U CL -�-� " r C7 (a) 1�.. ` •� . O _ W + Q) O m N 0 N 4- U U r 4- Q F- � . o O w + r O Vn 3 U r O 4-J O Z: - p r u O L 4- U Q w N O Q)�. (-n I � Lr) ro N o 0) w n o r } 3 ry _ ru - (n 0 E rD Q - - 0 LL- - O CY Q) LL N Q) O J - (/) U O ,r O O L - V O Q Q i w (7) m Fw-- `i L - Q l.L i Q z QD O O r- W 1= -0� C o C,- w W i ro Q ° U F - o, a + +, U W u v a v i 00� w� L L C7 O F- a ci w w F— Q9 Q CD 501 -A - (10/90) Leighton & Associates i f PRESENTATION OF CONE PENETRATION TEST DATA 1 I ETC -2 ENCINITAS, CALIFORNIA i Prepared for: LEIGHTON & ASSOCIATES San Diego, California Prepared by: GREGG IN SITU, INC. Signal Hill, California Prepared on: January 19, 2000 6 TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 FIELD EQUIPMENT & PROCEDURES 3.0 CONE PENETRATION TEST DATA & INTERPRETATION APPENDIX - CPT Plots - Interpretation Chart - Interpretation Output - Pore Pressure Dissipation Plots - References ® - Computer Diskette with ASCII Files PRESENTATION OF CONE PENETRATION TEST DATA 1.0 INTRODUCTION This report presents the results of a Cone Penetration Testing (CPT) program carried out at the ETC -2 site located in Encinitas, CA. The work was performed on January 14, 2000. The scope of work was performed as directed by LEIGHTON & ASSOCIATES personnel. 2.0 FIELD EQUIPMENT & PROCEDURES The Cone Penetration Tests (CPT) were carried out by GREGG IN SITU, INC. of Signal Hill, CA using an integrated electronic cone system. The CPT soundings were performed in accordance with ASTM standards (D3441). A 20 ton capacity cone was used for all of the soundings. This cone has a tip area of 15 sq.cm. and friction sleeve area of 225 sq.cm. The cone is designed with an equal end area friction sleeve and a tip end area ratio of 0.85. The cones used during the program recorded the following parameters at 5 cm depth intervals: - Tip Resistance (Qc) - Sleeve Friction (Fs) - Dynamic Pore Pressure (Ut) The above parameters were printed simultaneously on a printer and stored on a computer diskette for future analysis and reference. The p ore water pressure element was located directly behind the cone tip. The pore water pressure element was 5.0 mm thick and consisted of porous plastic. Each of the elements were saturated in glycerin under vacuum pressure prior to penetration. Pore pressure dissipations were recorded at 5 second intervals when appropriate during pauses in the penetration. A complete set of baseline readings was taken prior to each sounding to determine temperature shifts and any zero load offsets. Monitoring base line readings ensures that the cone electronics are operating properly. The cones were pushed using GREGG IN SITU's CPT rig, having a down pressure capacity of approximately 25 tons. Nine CPT soundings were performed to depths of approximately 30 to 115 feet below ground surface. Test locations and depths were determined in the field by LEIGHTON & ASSOCIATES personnel. I GREGG IN SITU, INC. LEIGHTON & ASSOCIATES January 19, 2000 ECT -2 Encinitas, CA 3.0 CONE PENETRATION TEST DATA & INTERPRETATION The cone penetration test data is presented in graphical form in the attached Appendix. Penetration depths are referenced to existing ground surface. This data includes CPT logs of measured soil parameters and a computer tabulation of interpreted soil types along with additional geotechnical parameters and pore pressure dissipation data. The stratigraphic interpretation is based on relationships between cone bearing (Qc), sleeve friction (Fs), and penetration pore pressure (Ut). The friction ratio (Rf), which is sleeve friction divided by cone bearing, is a calculated parameter which is used to infer soil behavior type. Generally, cohesive soils (clays) have high friction ratios, low cone bearing and generate large excess pore water pressures. Cohesionless soils (sands) have lower friction ratios, high cone bearing and generate little in the way of excess pore water pressures. Pore Pressure Dissipation Tests (PPDT's) were taken at various intervals in order to measure hydrostatic water pressures and approximate depth to groundwater table. In addition, the PPDT data can be used to estimate the horizontal permeability (k of the soil. The correlation to permeability is based on the time required for 50 percent of the measured dynamic pore pressure to dissipate (t A summary of the PPDT data is provided in Table 2. The PPDT plots and correlation figure are provided in the Appendix. t The interpretation of soils encountered on this project was carried out using ® recent correlations developed by Robertson et al, 1998. It should be noted that it is not always possible to clearly identify a soil type based on Qc, Fs and Ut. In t these situations, experience and judgement and an assessment of the pore ■ pressure dissipation data should be used to infer the soil behavior type. The soil classification chart used to interpret soil types based on Qc and Rf is provided in the Appendix. ■ We hope the information presented is sufficient for your purposes. If you have any questions, please do not hesitate to contact our office at (562) 427 -6899. Sincerely, GREGG IN SITU, INC. Brian Savela Operations Manager APPENDIX I I I I I I I I P I A R R ECG GREGG IN SITU, INC. Geotechnical and Environmental In Situ Testing Contractors I THE PIEZO CONE PENETROMETER I I The electrical piezocone (CPTU) is the premier soil logging tool. The CPTU provides a rapid, reliable and economic means of determining soil stratigraphy, relative density, strength and equilibrium groundwater R pressures. r Gregg In Situ offers a choice of 2.5, 5, 10 and 15 ton tip (Qc) capacity cones. Triaxial Geophones Our cones also have variable capacity or Accelerometer (Vp 8� u friction sleeves (Fs) and pore pressure (U). The pore pressure can be measured at one of 2 locations, either on the face of the cone tip or behind the cone tip. Pore pressure Inclinometer (1) dissipation data is recorded Thermistor (T) automatically. All data is displayed in real time at the Friction Sleeve (Fs) ground surface, facilitating the on site Load Cells decision making process. Field data reduction, plotting and CPT interpretation can be carried out upon Pore Pressure request. Porous Filter Transducer (U) Element Cone Tip (Qc) _qR EG Geotechnical and Environmental In Situ Testing Contractors Los Angeles • San Francisco • Houston • Aiken Vancouver Edmonton • Salt Lake City • New Jersey Tel: (562)427 -6899 Fax: (562)427 -3314 • E -mail: jgregg@greggdrining.com EGG c� Gregg In Situ Environmental and Geotechnical Site Investigation Contractors Gregg In Situ CPT Interpretations as of January 7, 1999 (Release 1.00.19) Gregg In Situ's interpretation routine should be considered a calculator of current published CPT correlations and is subject to change to reflect the current state of practice. The interpreted values are not considered valid for all soil types. The interpretations are presented only as a guide for geotechnical use and should be carefully scrutinized for consideration in any geotechnical design. Reference to current literature is strongly recommended. The CPT Interpretations are based on values of tip, sleeve friction and pore pressure averaged over a user specified interval (typically 0.25m). Note that Qt is the recorded tip value, Qc, corrected for pore pressure effects. Since all Gregg In Situ cones have equal end area friction sleeves, pore pressure corrections to sleeve friction, Fs, are not required. The tip correction is: Qt = Qc + (1 -a) . Ud where: Qt is the corrected tip load Qc is the recorded tip load Ud is the recorded dynamic pore pressure a is the Net Area Ratio for the cone (typically 0.85 for Gregg In Situ cones) Effective vertical overburden stresses are calculated based on a hydrostatic distribution of equilibrium pore pressures below the water table or from a user defined equilibrium pore pressure profile (this can be obtained from CPT dissipation tests). The stress calculations use unit weights assigned to the Soil Behavior Type zones or from a user defined unit weight profile. Details regarding the interpretation methods for all of the interpreted parameters is given in table 1. The appropriate references referred to in table 1 are listed in table 2. The estimated Soil Behavior Type is based on the charts developed by Robertson and Campanella shown in figure 1. Table 1 CPT Interpretation Methods Interpreted Description Equation Ref Parameter Depth mid layer depth ... __._.. .... ... _.... __.. _. ..... .. .. f I ... . AvgQt Averaged corrected tip (Qt) Av991 _.. .. AvgFs Averaged sleeve faction (Fs) (( f _ .. .. - . . _ - _ ........ ......... I 1vgFs — n Fs. ......... - _.... _I ... - . AvgRf I Averaged friction ratio (Rf) AvgRf = 100% • Avgf s AvgQt AvgUd l Averaged dynamic pore pressure (Ud) ( i Avg Ud Ud, ,1 SBT Soil Behavior Type as defined by Robertson and Campanella CPT Interpretations U.Wt. Unit Weight of soil determined from: 1) uniform value or 2) value assigned to each SBT zone 3) user supplied unit weight profile TStress Total vertical overburden stress at mid layer depth Tsr, -e,ss y, h where y, is layer unit weight h is layer thickness .................................................................................................................................................................................................. ............................... ............................... EStress Effective vertical overburden stress at mid layer depth EStress = TStress — Ueq Ueq Equilibrium pore pressure determined from: 1) hydrostatic from water table depth 2) user supplied profile .......... ............................... . ......................... .......................................................................... ............................... ....... s .......................................... ............................... Cn SPT N6o overburden correct ion factor Cn =(v ) -0 where a,' is in tsf ............ 0.5 . .. < .. C„ .. < . 2.0 ............................. ............................... ...... ............................... . ...... .......................................................................... ............................... N SPT N value at 60% energy calculated from QUN ratios assigned to each 3 SBT zone ......... ......................................................... ............................... ..................-......................................................................... ............................... ............................... ( N 1) 60 SPT N value corrected for overburden pressure N 15 = Cn • N 3 4(N1) Equ . .......... ........ ....va lent Clean Sand _ .. ... -. d C rection to (N1) p . .... .... ........... ............- ............... - -. ........-- ........ - -.. .... -( N1 KSPT N1 ....�60 1 — K SP7. ( ..... )60 . ......... - ..... 7 _ RRR _ Where: KsPT is defined as: 0.0 for FC < 5% 0.0167 • (FC - 5) for 5% < FC < 35% 0.5 for FC > 35% FC - Fines Content in % ........ ................. .................................. ........... . ........................................... ............................... .................. . I .......... .......... (N1)60- Equivalent Clean Sand (N1) (N1) — (N1) + 4(N1)60 7 Su Undrained shear strength - Nkt is use selectable Su = Qt — 7, 2 Nki ................. ........................... ........................... ............................... ....... ---- - - - - -- ---..-.. .......------ .................. k Coefficient of permeability (assig .. ned to .. each SBT .. ..... 6 _..... - _ .... __ .... ... ......... . Bq Pore pressure parameter Bq Au J _ (.. 2 of �� i Qtn Normalized Qt for Soil Behavior Type classification as defined by Qtn — Qt — o v I 4 Robertson, 1990 ....._.......... .._..._..... ...__. _.... _ �- v _ t ._ .._.. __.. ..... -. Rfn Normalized Rf for Soil Behavior Type classification as defined by f 4 Robertson, 1990 Rfn =100 %• s SBTn Normalized Soil Behavior Type (slightly modified from that published by 4 Robertson, 1990. This version includes all the soil zones of the original non - normalized SBT chart - see figure 1) .................... .......................... .... .- ............. . -. ............................... Qc1 Normalized Qt for seismic analysis qc1 = qc • (Pa/(7, ) 5 where: Pa = atm. pressure Qc1 N Dimensionless Normalized Qt1 qc1 N = qc1 / Pa where: Pa = atm. pressure REG I CPT Interpretations { AQcl N1 Equivalent clean sand correction AgclN = f'cer • gc1N 5 ppp 1 - K CPT Where: K crT is defined as: 0.0 for FC < 5% 0.0267 . (FC - 5) for 5% < FC < 35% 0.5 for FC > 35% e1 FC - Fines Content in % Qc1Ncs Clean Sand equivalent Qcl N gclNcs= gcIN +Agc1N 5 .......................... ............................_........................ ........- ...................... ................. I............ ..... Ic Soil index for estimating grain characteristics Ic = ((3.47 - IogQ) + (log F + 1.22) 5 FC Fines content ( %) FC= 1.75(lc ) - 3.7 8 FC =100 for lc > 3.5 FC =O for Ic < 1.26 FC = 5% if 1.64 < Ic < 2.6 AND Rfn <0.5 ................................................................................................................................................................................................. ................................ ............................ ... r PHI Friction Angle Campanella and Robertson 1 i t Durunoglu and Mitchel Janbu ............................................................................................................................................................................................... ............................. ............................... Dr Relative Density Ticino Sand 1 Hokksund Sand Schmertmann 1976 Jamiolkows.ki - All Sands OCR Over Consolidation Ratio . .___. ........ ..... ... „__ - _ ....- .... .... .. . ... ._...... . 1 I _ . State g Parameter _ &R R Cyclic Resistance Ratio 7 .. REG CPT Interpretations Non - Normalized Classification Chart 1000 :..:. F 1 - r « u r 00 o ri / tr 1 U �fil: r F::: :; , 0 10 C) 1 0 1 2 3 4 5 6 7 8 Friction Ratio ( %), Rf Normalized Classification Chart 000 Be3K]Y3TT_ r o %i, , rr f 1 2 ■F 3 organ mafertaE > o 4:. :gt E{2yf4 Cat oa fs� s fr 2 § a $ Str eFays ft c r .8 d -3sfd k3 Sitty S3FtC3.:=` r - :::; I fr rf !` .£ ' r %fi f %•.:�:'% ' %. ; .;:.;a: .. .:.:. Z 0.1 7 10 Nomialized Friction Ratio f ' - x 100% qt - 6 vo Figure 1 Non - Normalized and Normalized Soil Behavior Type Classification Charts I EGG s 1 CPT Interpretations Table 2 References No. Reference 1 Robertson, P.K. and Campanella, R.G., 1986, "Guidelines for Use, Interpretation and Application of the CPT and CPTU", UBC, Soil Mechanics Series No. 105, Civil Eng. Dept., Vancouver, B.C., Canada ............ ..... . ............ .... I .......................................................... ­ ............. ­ ........... ............................................................. ............. 2 Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J_ 1986, "Use of Piezometer Cone Data", Proceedings of InSitu 86, ASCE Specialty Conference, Blacksburg, Virginia. .............. ... ........ .............. ........ ­ .................. ........ ............................................................................. ............................ ........... 3 Robertson, P.K. and Campanella, R.G., 1989, "Guidelines for Geotechnical Design Using CPT and CPTU", UBC, Soil Mechanics Series No. 120, Civil Eng. Dept., Vancouver, B.C., Canada . . ......... * .. ........ . . .. * ..... ­ ........... ... ­_ __ * . .. ..... * ........... . . . . .. ............... ... * ­ ... * ........................ 4 Robertson, P.K., 1990, "Soil Classification Using the Cone Penetration Test", Canadian Geo t e chnical Journal, Volume 27. ................ .. . ..... I .......................................................... ......... I ............... I ............. ......................................... ............ 5 R obertson, P .K. and Fear, C.E., 1995, "Liquefaction of Sands and its Evaluation", Keynote Lecture, First International Conference on Earthquake Geotechnical Engineering, Tokyo, Japan. ......... ...................... %. ... . ....... ­ ...................................... ..................... ...... ............ ...................................... ..................... ............. Gregg In Situ Internal Report ............... .............. ....... ........... .... 7 I Robertson, P.K. and Wride, C.E., 1997, "Cyclic Liquefaction and As Evaluation Based on SPT and CPT", NCEER Workshop Paper, January 22, 1997 ........... ... ....... � ­­ ....... ­ ................ ......................... ................... ................... ........................ 8 Wride, C.E. and Robertson, P.K., 1997, "Phase If Data Review Report (Massey and Kidd Sirtes, Fraser - River Delta)", Volume 1 - Report (June .,1,9.97.),.U.niv.e,r.s.it.V.of Alberta ....... 9 I Plewes, H -D., Davies, M.P. and Jeffenes, M.G., 1992, "CPT Based Screening Procedure for Evaluating Liquefaction Susceptibility", 45th Canadian Geotechnical Conference, Toronto, Ontario, October 1992. REG Z cc) i7i 6,' C 11A llll�ql " 111AIIIA Z CD 0 Ll CD ---------- --- -- ---- -------- - 4--, J1 ti 0 Ljj LLJ O z CD Li 0 ......... .. ---------- - .. ... .... . - ............ . --------- ------------- 0 7i CD - CJ .................. It'i . - --- --- ---- ----------- .......... -- ----- --- cl N u CD U LJ .......................... .... .. - ----------------- --------- ---- -- - ------- ............... ....... ------- - ---- - ---------- ---------------------------- ru U 0 0 U) J 113 4 -- ----- -- --- -- -- -- -- ---- C/D LL- CD CD w ��!J �� a Ln ---------- --------- C3 u 0 0 CD 0 0 CD 0 c D ci V CO co C l i LU z co co e N rn qT 1 «� G m III ml ~ I II mI m ['n li ¢ in v:i U llrn l t'n �U Iin 1 1 it Uin d in U� in Vin UinUlil in I� u�lm 111 z O `nVi [n lr�t'i�l Ill,�i�I VIII UI Il �ilv: +n a _~ O W -- --- ----- .. ..... .... ... . ... Lo it, ts" - v i m" 0 LL co-) W Lt� e O z o a z � W❑ . .... .. - -- _ci a) 0 N � O cn E-� W LO CJ ....... ...... ................. . - _...,.... - ..... _._..... ------------------- - - ----- - O U K ----- -- - - - - -' ----------------------------- -- ---- - - - ---- - U .� 0 O Cn J V - - _.._..- - v -- --- -- -- - - -- li 4 ® o v � O C!1 CD v _ t � C) O u Q Q ° o O o o O o 0 'n CJ V (D co O CJ W (q3) ujda0 I Z b b t b7 Co ry C 9 G G C G G k G C � I LL O 9 [l] Vl VJ j 9 rC V�I,m m U� tl BUJ m 9 9 C �/l ro •� N ^I --^ I C �i;lll =� 1 lin f%�II in I I I fni I U nC l Z4 III v:I U[ l ; t dull yin [n IUIIII I(nll lC II IU g III III iI Z O C I I(%]I (nm to II U N�III�;A 1 a O � F O U LJ z (V m Li W .. A Z O � � a ❑ Z N - - ....... -q� - - . :_ ...... .. ...... - .._.... - - o ° LO CJ N I — - - -- ........ . ..... — _ -- - - ---- ----- ---- . ._ N U W 0 — .............. ....... ........ ............ ...... - ---- - - -- ., 0 .-� 0 O � J � 4_ _.. — - ---- -------- — --- ...... .------------------- .... LL- CD ° ° CD O r �Q O O O O O O O vv C J V c0 CC) O CJ W I (4j) gTdoo Z LO b m _ co T ee 0 ell t lo W C-J m��im�mnmim m' ���u iG�iu�iun��ii�iih imc>� v �i�u'm v m A � O i r6 � G C W N ~ -- - --- --- - -- U CO a 7 O C `i W o Z O a V Y/�� C Z 'V I W ❑ \ I -- ---... ... — - ------ -------- - - - -- - --- 4 0 I p O — to E-H I W CJ Q Q i i i N U I O - - ---- - ....._...._ LJ [ 0 ... .... - ----- -- - -- ......... . ..... .. ...._....... - - ----- -- - -- - -- -- -- - - -- ._ - ----------------- - ru U 0 O Un J co - - - - - - -- - - -- - - -- d CD O O Cf) O CD v �.. Q v � (, o O O O CD CJ v c0 CO O Ci LV Ai i i (� I T b = C C co co �in�mi��m�ii�iE���in�i u Z ( ., J m n ru �i m im m 1 iui llliiv�m.�iui w m �i io O It LJ q § =s a W ,c z O CD z W O ------ . .... ........... ....i ..- - -- - ---- -- -- - -'..- -- ----- ---- -.... ......- - -- --- - -- - - --- - --- - -- - 1 f O- H LO CJ LO I u C ........ ... .. .... .. ...._ - --- _ ',.. -.. - - -- .- ;.. -...__ -..... - - - - - - - - --- ------------------ O — WC - ....... . ......... - - -- - -- -- ---- -- -- - - -- - -- - -------------- O-- ............- - .._. - -- - - .._ — ........ - -- G U G O .............. .......... - - - -- - - - - -- - -- - ----- - - - - -- ° o Q V _. - ........ _.- .... - --------------- o co i a � 1� U Cy �J Q V ° O O O O O O O v CJ 4 (O o0 O CJ CD I I ui i I � p U; v] ' [l] C U] U ul �? U] d tl C •([n� (n ~ l VJ V pT� V] I W ~ �• �TII� F III CII T�I II � >•I.. IIII G I ^ lu I I . �' Ipl II..� q� I.�+ �+ GI r+ III =IIII =111 a ��I AIL' Il ��cl�ll��l�� a Z �ii�iiii m iii im ui uiui v iii v CJ � O U y CD G all CD LA o w a z o z � � w ❑ .. rl O I J 0 H W to LO CJ D d Q [ - - 0 m 0 0 O Cn _J - - - - .......... ....... - - - -- ----- ----- -- .... - -- - - - - --- r, w LL- CD o O w U ° O� o ° 0 0 0 0 ry CJ rVn CJ 0 OD ° all WI I I � Z o CY .-i m m c c in m vl cn in Tn mm v in u; in y [n Irlll� �'c� ��ll,�l m�;�lll llllll�ll 111 1 111 a Z o N O O . a i LJ a z o w ❑ O 1 fN J �+� -^ m O U) f CJ (N U I O `` w 1 - - - .. ---- -- ... - - ..- ......_. O ru I Y U O O_ 4-- I f� LL- r MIN n ✓��v A�'- <C o 0 � w I - ^ a � w 'n 0 ❑ O O O � CC) O CJ I I I I I I LV I 6 1 1- daQ !t - ! CJ 7 \,D I r C G to in C N I � -IIII II"..I pl � Il pl ro z O �I�I���IIIIII�hI��I��I a. CJ J O W I— W A W ° L O � Z ra I LLJ t � f 'o O E-' CJ . ----..._....._.... __.. - - — - -------- - a a N U r —� 0 W C O -- - ---- _.. - - - - - -- yn U V / J O ^ l Y � 1 -------- --------- ---- -- - ---------------- - - - - -- - ------------ ------ --------------- --------------------- .---------- W CD � o 4 .... -- -- - - W7 u Q O O O O O O V O O O CJ I I W (1 3) uldao i cc cc Z T RS m Z O C.J O U O W I — - - G CO - -- - m Cn m LLI I W ., Z O a CD +- Z_ O ICJO M - - - -- --- .. . ... - - - - - - -- -- - - ...- ....- .._..._- 5 w o O U) H U) LO CJ -- '-- --- -- ---- - . _ .... .... .. .....- - - - --- .. - - -- - .._ -. - -- -- - -- --- - - ..----------------- - - ---------- ~ • fn (N U Q O 4 W C O U O O U) J — 4- - 1 cf) ■ W i O o 1 p 4 o C) --------- ------ - V , � O v O ti a ,n 0 o O O p O O O V N V (D c O C ' J I I I I W (1j) uldaQ M y � CZ) Fa(c�() m 5 -6. ;cz� is !n IV .5. O 65 M 0 U ...... .......... -------- ----- CO 4 cn V CD - Lt LJ 0 0 CD Z co 0 ■ Li D ... - ---- ---------- — 0 ..... ...... .... . ------- - - --- - ----- ------- - ----- - -- -- ------- Lo 0 Cl LO ci . .................... --- - --- ---- ------ . . ............... . y - .... — 777: T El CD I LJ ------------ ---------- ------- - ----------- ........ -- --------------- ...... .......... -- --- - -- - -------------- -------- ------- --------- : ------------------------------ ------ Ij 0 CD - -- -- - ------- --- 7 - - - --- - -- - -- --- --- - - I CD - 0 a �� - _ _ .... ___ ........ ...... . ...... . ......... u 4 I �4� a; CD C:4 0 CD 0 0 0 0 CD CD N (D OD 0 ci I i a Z 0 p m c cc m 7 M ' in fn w in V: m r in T Ul '�i W U h T T T T T >. T. v V T P. T TUT T r T U T N z C,i m�� ° im mi� �ilimillliiic i�imwl�� m mim ��ullin it m it aim��III��iu�I mGilm mm C�mtl�i m iI uin milli � O O - - -- -- - -- - - --- ---- - o H � W � W O 'n CD Y O z � 10 F I W ° .... _.__...___ -..._ _- ..___-- ......_.___._ ._..--- _-- ---- ---- --------- t, .--i ...i. ...i ... O z f ° G7 V1 LO C'J N - -- --------- - CL a �✓ W C - .- ..__.- - - -- -- - ----------------- .._.._._.. ..... - - -- - -- ........ - - ...._- ...... - O i U e-1 � O o ------ a 4 � � O � - w f � U I I O 1 Grp 4 ° o 0 0 o O o 0 CJ v (D c0 O C 1 v I I W i co z q <I: (T) li m a a a m C c a 6) LL O G UJ to tl In m Ul C G ul= I1 rn N vl "ti m �+ i li llinliiinlin ut m li cnl�rn 1 r � %nm i'n Ir Cin I I1 1�I� liI Ci llm 9 ii in ii in f'i tn'ml(nl1 W! 1n?Iln I�.... vtl III Ii i II�I CII to VII III C. ro G O ° _ CJ ° 3 U � � J U ° I ° r- ' Ql ri N U (U O p. Z U (D — -- — -- ❑ s z I Co r w o O m H m U CJ - m _. . .... .... .. ---- C1 N U a ° G V ' U =• ~ r. ..- ---- - ------------ ------------- . O .. Ym W 'V ✓ U 0 CD 'n V / r� \ ....... ...... ..... ...... . .. -.. -....- - - -- -- - - - - - -- o U O ° � Ilvl v � w CD 0 °� ° ci W i Z LO c 7 co ry I �� n in in v: ^ cn J •� tnIIIV�I °IINI� IIIU IUIU IIUII I III Vi I�JI U IIUU U Z 0 a _ cJ W N = 4 - -- -.... - v Y „ C2 t � 0 I W � W . o tit Lt z °o a Z m V'I - - - T r 1.. L ° CJ Q � C D - u O W --- - - - -- ------ O 0 ru �0 0 O _ 9 - -------- -- - - -- - - - -- ---------- - - - - -- --- - - - - -- I ° 0 ° _y 4 til i Ln � I ... . . . .. _ ...__ ........ �p I r 2 CD a I CD0 CD o O o o ° V cJ V cf1 co O cJ IW qJdao q co C E C G c P CY lu ii�� ��ns�iu ° u�i�Ill iC3115, _ 0 WN _ ----------- - q p xj m hI p O a W ❑ __. ..__[....... -- _ -- - -- - - - --- - ----------- .... - --------- -- - --- -- - -- -- - - - - -- -- tZ � Cn O cc Ln C,1 L� _............ - ----- -- a � N o a I o ` W C -- - - ------ --- --- -- ........................ ....... .- - - --- --- ---- - - --- - ----- --- --- - -- - - .......- O N rQ I U O O - - --- -- -- - --. - - - - - - I -- -- - -- -- -- - - ------ i ° CD ° - -- - - - - - -- - - - -- o � a U + �1:�✓ ` �i o I f �Q /H ° O O O O O O ° co c0 O N Ell I Fan V I I I W (1j) uldaQ I i i b Z c o b m .. vt� = I d C rn N vl �n In e s r c m m in i 6" m e C6 M ^ III I in rnl G U II 0111 to IItnUUI `ll vi rn nfnllllU l(nl in VIII `VIII I II fn I lv� , tnll11 1 1 T(nl nl� in I��I lll mlllli� a Ill ml mllliq V i[nl Z 0 1 y lll� m -- -- ------ -- cn y I l a I I W W O a z n � O z 0 I W ❑ -- - -- - -... - - - - -------- - - - - - -- cn a E-: Q in cJ ^ - - - -- --------- ... ...... - - ---- ----- .... ........ _ - -- .. ...... Q C N U CL L F -- .....!..... ..... .. ...-- !... -... - - - -- 0 0 � I U .� 0 O U) J I3 �j o I CD 0 o .....__ _ a u CD Q� r J� 4vJ c I 'R O CD p O O O O O V ci v cD co O cJ W R Z : C ° !! IIII�! I! 9m�i !I�!II��!�u1II!1lz 3"IIi IIX�� �ll!!I�� r! III! II�I��il�l !!�mlm�!IhI�!�I!IIII!I�!I�I!! z o a _ CJ b n b W o z (o W o .1 - --- - -------- -- - ....... ----- --------------------- 5 OL x U� F� I � CJ _.. -- - a W C - -- - . .. .. ........................ ..- O - ee y U C ° V/ J r� - - -- -- -'- -_. - - - - -- o - - -- - S ° CD e 0 i . _ - -- -- �v �� o w w o °o O cJ v cD co o cJ W (��) ugdda i z_ T T co m ` f S z O lull- nlili -i �I� I��II II I11�11 I IN ICI � — � O c� l W C 1 - - - -- - -- - - - -- -- -- -- fl y CD o - -- q A O N W W O O H O 0 z 0 W❑ -- - ..... _......_... - -- - - -- `-� ` -... ..----- ._.--- -- .......... . ..... . -.i.. O cz ' � m U7 O O FF cn 1 � to CJ co : ....... ...- - - --- --- ------- ------ --- - ---------------- �_ N U a °_ . W i - ........ -- __ _ - - .... - -- - - - . -- -------------- - - -- - -- - - --------------------------- � O i YU O O U) J 1( 7 - ---- ------ - --- o r i - - - -- ------------------ -- - -- ! o - E o ° ° o - - - - -- � a ►-� Q a U x a /f1 ° O o O O o O O V C J V (D co O C'J (D I I I I I I E W (�j) q1da0 1 co co M I \0 Z 0 CD W N F-- � m O I W W . o z o a z m 0 � -- - ------ . ------- ----- - - - - - -- - - - - - -- -- Co s O CQ H u) CJ CI ----- -- --- --- —.. _. ..... ---- i Q Q. N u O _ — U .. W ~ ._... ------------------- -- - --- --- -- - -- - [ ----------------- - --- ----- pe 0 0 I U 0 O 0 J 0 .. — -- — — t_..- . --------- - -- ---- -- ---- - ------ --- ----- - - - - -- --------- — -- --- -- ----- ---- ----- .....------- -- Q O I O � O O vv 4 O fy a �., - �I I F-1 U) a G c U 1.4 O y � Q I 'n O O O O O O O O v CJ V (D co O CJ � I W (Tj) ujda0 I i CPT Classification Chart (after Robertson and Campanella, 1988) 1000 Jg r,E v 100 8 r- �j 10 I 1 0 1 2 3 4 5 6 7 8 ! Friction Ratio ( %), Rf Zone Soil' Behaviour Type 1 2 sensitive fine grained O 2 .: • organic material 1 Gay 4 1 5 silty l.day, to clay 5` 2 clayey, silt to silty clay I fi . ® 2.5 ' sandy silt to clayey silt 7 3 : silty sand to sandy. silt `8 4 . sand to silty sand g 5 sand 10 ON 6 gravelly sand to sand 11 1 very stiff fine grained 12 2 sand to clayey sand * overconsolidated or cemented EGG Gregg In Situ, Inc. I C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O o 0 0 0 Of o 0 0 0 CD 0 0 0 0 o O o O o o O o 0 0 0 0 0 (r . . . . . . . . . . . . v o O o CD 0 0 0 0 0 0 0 0 0 o O o 0 0 0 0 0 0 :3 4- (U O a) aJ (U O N a) (3) Q) (1) (1) N ( 1) ( 1) (U lO r-r Ln CO rn to v) m m CD O CD m CD CD o C� CD C:) io C� C:) lD M .n SD S S S ZD S=D U S=D S S S ZD -A O ' l0 N Ol co lO (") N N V O w r- M M M .---I O O m lD SD N d' V' N Cl) l0 CD lO O (T .--1 O CY) (3) M r� -zz� M O O LO 00 Ln ct V LO �D �O lD V h M M V' M co 3 O N LO co (D Cl) M r Ln h (A CO O N rn Cn lD CD O ..i r-1 N h M O r-I M Cn O l0 V' M M M M \D O lO N f� r h 4" F- Z N u3 �O r� CV Y M co M Cl) Lo Un Lo V V h M Co �t co co m !n C1 O O O O V' ID N N M CO co N r- co co CO N (S lD cY N m >� C O O O O (T h lO M N N O O O Ol Ol al 61 CA O O O N N N N r0 � Cl L ' (U t ^ _ 2 O O O O O O O O O O O O O O O O O O O O O O ro CT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 E U v yJ 0 CD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t v J-) O to M� Ln h N CO r M L .� h M M �O r-a t` M CO V' (S �n I Vl 4- O O N N M M 'r d' rn lO l0 r- h co (31 CS O O Q) rn � L 4� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r-r .-i Sn v m W > +3 vl ^ M (T Cn h N CO d (3) LO h co m in .-r r M CA 4l CO O ' `}- 1 O O .-1 N N M M ct ';t Ln lD �o rl r- CO (T C)" O O .-+ — N C U N L O O O O O O O O O O O O O O O O O Q V) L In ro F-- M 4� co ro (T w M m c0 (T cD CT m (S co 0) 0T m �O lD �D � "D to I Y 3 U O O O r- h r- h O r- o O O r- O o h '�Y • (1 N N N — .-r — .-r N N N N .-+ N N in rp to L M C to E co w M r r h r co h CO (D M r- M M h�� LD M Ln LO C 1 ^ D _ (n ( r- L N E rp Q C1 O7 N It O Cl) lD O O CO h O 10 0l O C •r- C 4- Q) i� O N O N M N C? N N N M N N O CV N v N Q CD c 3 aJ O O O 4� v c ,..1 co O O +, r- O O N N Dl •� M ti") �O N C 3 O .--1 O N �O co L O N In L `F- f� (3l Q) W CY � n (S LO ':T O) M h d' h h CO N O �O �O rn co Cn f� CO co O -0 E • O , Ol o . r[I Q '-1 .� O rp 4 � al O .-1 N .-r C D M M in "r Cl) CO cy) U 0 0 CD a) LO p O O O a O O (D S m O C CC) . .-) M M �O O M M <t M Ol N CO o d' �D r+ (T h C Q rn ^ (S CO .-i o Ln M r--i O Z O O O E '� 0 w cf CO Dl CO M w D h h N CC) N O r C O CO r ,N Q > +� O Cl) in �-+ N .-y — r+ N� ('> M co M Ln � co M N N M C1 Z 2 O L aj Q .--I O S Z_ (1) L (Jl S c ry H � N U v S_ a) C31 W aD U + O 4 ^ )n r � l0 N (T CT (T M m '41 0') CD Ol rl � f� O l0 l0 M N 7 O O h W ♦- H C1 W O CD It H .. .. a) N C71 N rn (T N CO o0 (D N r-r Cn d' O N O (31 LO O N lO Ol M o n E E E v E 3 r +-J •.. •.• CU - C) - 0 ra > +J M M Cn 't c0 <Y O M O LO N r--r l0 co m . �l (T CC) <t �O CA (n !O 1] Vl 01 O O L 4 L - N N (11 . . . ti r1 N I y � .. .. .. .. .. L N N N r O ' ro C t L ro f= a) CU a) CT O H +� +1 (L C O) a) 4- O +' aJ U vl m +..� L �[ m S. S a) v ti h lD � N .� Oi c0 k Co 4� CT L Z Z C a) O H W rU Q) Z L Y S L C)) CO lO d M .-1 O O O (3l f� CO +4� +> > i 'r fU QJ +� ^ <t 't � � �t T ' M N . r .--1 r N N N . •--I . QJ J C Cl i� U F- H F- L to Q) M Z3 ' L L +, vl rU C1 4� O - r - 3 U) Q CL C� N S al 4 - O N M C )n �fJ r� CD (T O .-1 N M V 10 lfJ r-_ CO O C1 U) J U U U Z W W i O o0 0 0 0 0 0 0 0 C:, 0 0 0 0 •-1 0 0 0 0 0 in o 0 0 o M 0 0 O LD O O O O O O O O o 0 i CL' O M O O O O O O O O O O C:) o d O 0 0 0 0 CO C) Ci' O O O O r1 0 0 N 0 Ct 0 0 0 0 0 0 0 0 0 0 CC U , O O O O O O O O O O O O o O O O O O O O O O O O O O O O O O O O O O O o O O O O O O O O co O M 61 O O co 4- 4- CO in 00 CO Ol 4- O LI] 4- N CO 4- 4- 4-- O l 4- 1` O r-1 o M 4 - 4 - 1\ Lo V V Ol 4- N 4-- 4- 4- 7 4- M O CY O t N 0' O N O O N Ln Ol ct N N N N of a) l0 O N a) U) M 4) 01 O N N 4) Ln . LO 0 p L. p V) N . . p p c:, C:) C) . p p p C] p - � p p CO O C 0f r-1 C C C C t` M M C t` .M1 Ol = Cl) CY _= M •-� •--� M �' N N M M= 7D O I O ' 61 Ln Io Ql O 1` N co .--� M !� t` n O 1 0 •--� N o M O O V' M LO r1 00 a) . - t Ln in M (TI �' CO M . . Ll Ln 0'1 Ln Ln co M O Ln N r1 CO M r1 M O N 1\ O M O LO 1-- Ln M 61 N Ln M LO 00 lD n N M r� O 1` k-0 CO Cr 1\ I'D O co M 'r o n CO t` CO r-I r1 N CO V M . . N N . r r1 .� . .-� .--1 .-� N M t\ Z � � � to I 3 - - - - O .n CD V to M co N . r-1 lO t` V M r Ln r-- t . . O . M Ol Ln t . O N l0 O M . N QO n M co Ol co C Ol L I O v r1 l0 N O N O . CO I.0 00 t-- r-_ of n m Ln Lp LO CO Ln . O M CO n M -I � ct l0 01 t` O V' � �n V " N O O1 M m L.O CY Ln C'3 01 .�-i � �' .-+ '� d� � f N " N N N M M N N � � � N N N N -i I I . N I co l0 N '-1 C7, CO n Ln M N O O Ol M 1` h 1` l0 ID l0 In to V 10 M M co N N N N r1 .-I ri O O O Ol Ln m O1 C � M CO CO CO CO t� t` n n t` t\ n r\ t\ 'D lD I l0 � lD � l0 to lD lD lD l0 LD L D LD LD lD CO LD `, ,f, I'D I'D i.0 CO Ln Ln Ln in V - O O O O O O O O O O O O o O O O O O O O O o O O O O O O O O O O O O O O O O O O O O O O D7 (O d I 0(D 0 0 0 0 0 CD 0 0 0 0 o O 0 r-1 cY r 0 CY t\ O co Ql N to Co �-I f� O �' f� O M iD Ol N Ln M w 1\ 4- O O O O o 0 0 0 0 0 0 0 0 0 0 0 0 CD ' rI r-1 N N N N M L` M CY Ln ^ f� co M co N p }) O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ' M O1 3 - o t-0 M 01 in - 1\ M 1` O N Ln r O M Ln CO r1 M LD O- Ln D .-1 lD 'a) N ,o D t f t` O N In 1\ O M lO Q1 N N 4- M M CY Lo In l0 1\ f� CD W O> O O - - N N N N M CO M M d . V C . Ln Ln Ln L lD L . . . f . . CO CO UJ . m � .� ,-1 .-+ ,� .--I .-- .-1 .-1 r-I .-1 ,--I r-I N N N N CV N N N N N N N N N N N N N N N N N N N N N N N N N S- N N J-> V) v W vt - L.O N 1` M Ol <Y O LD M LO ' 1\ M M Cf O Ln . n N CO O Ln M co - O Ln r1 1 N CO co Ol Ln . 1\ N Ql Vl 4- M CO V CT Ln Ln lD , , CO CO 01 O O .-I '- N CO M � CT' LO Ln lO n f CO CO Ol 01 O -1 r- N N M M C}' C Ln LD lD 1` t ,� ,.-1 '.--� ,� ,_.I .-I r-I r-I r1 r1 r1 N ('\I N N N N N N N N N N N N N N N N M M M M M co M M M C" > M M co co In LO LO V LO LO CO LD LO Ln I-n Ln Ln LD t0 LD M l0 - k.0 �o CO �o LD co CO co ,o M ila k`0 l0 ko M CO LO lD lzt 10 Ci' Ln L.0 In 3 U d --� T 0 0 0 0 V <Y t` V d' t� V r� n n V t� t` d . - 1 • - � o o O O • 0_ I - . - -1 - - r r � . � ti .--1 r r� . - . - -I - -I r .--I .�i r� .� . . . ' Ln LD n r r-- Lo M T M -11 Ln - - - I m V CT' f� M 61 lD M M LD c1- M L, M 01 lD Ln l0 03 N � Ln 'z4 M lO Ol O r- . r1 1\ U) V to tD O N O Ln Q1 0 O) O r-1 V �. O O M Ln M l0 l0 .-i 1.0 In l0 CO Ln t� O M CY N LO M O .-1 N V Ln L.D Ln Ln CY Ln O .-1 N M M N n^- i N M > CO Ln CO 1- N Ln In CO O) lD 1, .0 Ol N CD N N l0 O _i M l0 M V co M .--1 1\ Ln o 1\ O7 M 61 1, 0 ---r . . .--1 CO r - O N r1 M . o Ol Ln r1 O Ln M Ol M In N Ol In Ol . j N CO -1 Ol ct Ln O co r, <t CD r LO M Ol Ln Ln Ol M M Ln V LO Ln LO M M M Ct CY M M N N M M M M . M N N N C\, M N N M M M Ql Q M n l/I M Ln M 0) Ol CO CO .-1 CO O Ol O Ln Ln - in o - LO CO M 1` (D' 1- `,D D CO D1 M Cr 1\ CO LO co M O Ln CD lD Ln o Ln r1 Ln Ol co CY M t` r-- 0) (3) M C . V O O O LS] r+ LO r o Ln t0 Ln 61 � t` t` t` ry Ln lD M d' . CD M Ln o ri O . d M M O Q1 �---1 O O CY Ln M LO d - Ci Ln Ct .-1 !- M M Ln Cr N •-1 �--� �-1 .-- N N .-I .--� O O O .-1 .-i r-1 N r r--1 N M M N f� Cn I Ln > + N . .-1 CL' Q � C) O H n U r-1 co 0l O CO Ln 1` LD co N N 01 M l0 O l0 00 N CO M N Ln LO O N r 1-0 l0 O M LO CO OI co Q 4- r1 Ln 1\ M CO 1` r O 1- M M O) N Ln -I LD 10 Ol M Ln CO Ol Ln O N Ol .-1 . al CY o y� o Ct U N i Lp M O) O Ln Ol N O M CO M O) LO r O Ln > +� Lr7 l0 .--I d M CO -I � CY 61 N O C) L n � N 01 LD .-I LO M Ct Ln (3 O N � cD N - r1 d� n l0 Ln M M � 'T l0 l0 61 N M V) Q v r1 r-1 r l rl r-I rl r1 r-1 r--1 r-1 .-1 rl r-1 .. O - Z li S In M .-I O CO CD Ln Ct N O 0 ) 0) ID 0 Y N m O1 CO LO n M co O M I - Ln CY N O Ol t� l0 d M .-I Q1 W LD Ln M N N N O .--I ' rl . o O O o 0 o Ol 01 Ol Q• 61 m M CO M c0 c0 M M f� t� n r` f� f� LD l0 LO LO LD LD Ln Ln Ln Ln Ln Ln CY co C O_ N 4� - N M Ct Ln LD f� CD Ol O . . N M Ct Ln LD 1` CO 01 O N M Cf n LD f� M 6) O . N M 4 Ln LO f� 00 (3 U U ' � .i N N N N N N N N M M M M Cl) M M Cl) Cl) M Cl) V ct CY Cr Ct V' CY �" V Ln Ln Ln Ln i in Ln Ln Ln Ln Ln LD LO LO LO i I I I 0 0 0 0 0 °0000 °0000 C� CD n N c c c M O f- c O O M CO CO D ..-i 4- I in In M 00 00 Z � v N I O � O O O - co O Z O� Qi t .tea c") M CC) CO r` r` C Lo In In In In U � O (D O O O d O CO �O Ol N O) 01 O\ Ol O N N r-4 ' =D J-� O O O O In In Q\ N In M N 4 - Ol Q1 O O O v v N N M M M N W N 1 In N CO In r� N 4- CO 61 01 O r+ v M M M d 4 � � N Lo Lf) I + 4 3 v ° 0 0 0 0 O M M M M M ZD N In tIJ N N CY) 4� Qi .-i N .-/ ♦O > 4-- CJ M i N Q 4- O �O d 0 01 Ol M to O N > tfJ > J-� �O 1-0 l0 O 01 V O H r— U -t - O U +1 ^ . N M i c0 Q 4 +, O > .� o. Q I U Q1 Z LL_ 1 r� lD N O� 41 d L ten.. acv- n uJr�mrn C9 C"- U o i0 uJ .0 o m m z n n n r (n v J c - C �-. G) — N— N~ C O -h fD G C c O v D V 1 � w O - O v� O `+ O J Cr . �� (D r� O cD W V (T (n A W N �-- O �D co W V d, U� A W -. w In (+ - S S< a (D 0 Z --i -i -� C) O + • v J V. (D (D CC N N N V r✓ A cn ~ •-� N W A A A A A A A It 0_ It Z (D o �_' m J O ( (D Z Z - s c0 d, W i0 N N A` m V cD o O O C r-' W A 01) W to O (D 3 3 w 7r "T J to �. J �. ° 0 n c+ O (� to C (D (D cD c+ <-+ O �t (D 13 I'h It c+ -i O 10 (D (D (D :3 '' It p - a � S C (v ni V7 r r t✓ r- r r✓ r-� r--• r t✓ r✓ O O cD vl Q' _ _ _ J A N a> r , V Ol W U� V co W 61 V A !T O t✓ V O V fi< d-- r-i O_ (D 3 U- O O m (7 rn m r cD O ct V OD m V r--' w a, (n V Ol A V V W r-' rn V co A A rn (n to t0 i-' (D ID .. .. .. �. A cD o rn v --I - m_ V o 0 C v CJ (D (D .. .. .. co N N O N O1 O O1 ' Co V d> Co A N V CP Ul �-' W r O It m cD (D "T C-) O A r-+ G7 r O .3 (D .• N W Z N N N Z O r O '--' M O C p to 3 (D 00 ,..� O V n cn A (n A W C+D A (.W A N W W N W C, A N W N to (0 C n ➢ {2o Cn c+ V A V hJ t0 V V v N O o' F✓ !-� W Ul Co - U1 Co a D ( N U� W A V lD V F-' N O O O D A Q\ V N r W r A CD A A c0 c0 w cn - P m r✓ (D (0 N fi� .. O o O N CP ;o (D O O O O V (D d d O O O n N � cn (D It W O r I a W W W W U .? N N N r N ti-+ 1� N N t✓ N N W A Cl) Cl) N 0 O N c0 U� N N co W p� V O V w O V co O O OD O Cu V O A Ol ' `� �7 ' - O (n O Ui U'� V W U V W 0l U1 O N F-+ CD A A U> O lD N - fi �_ (/'1 N O W Ul O t✓ • O O (+ O O W I O t O O O ^ < d N 7 - h < O 7r W c0 O O O W O N O N N O O O O CD r 1 r--' C In ' O = ^ (D C O (D O- W W (n O (-+ o V co t0 C1 co t✓ ol co 0l W a I Iq a I-- r- U7 n+ Dr m (7) m m V 00 V V V V V V Cn U 0� U + 7 _ -3 Q a co r t✓ r� (..� �-- r — — N — r--' — — C (^ 1 o V V V V v V A A A A m cn Ol (n U m co co w W�o W co W co co W m m 61 m d W r+ W cn d U1 (D ^ c+ D (..+ r-+ F f✓ r - � O O O O O O O O O O O O O O O O O N N N r--+ r O O l0 07 co V V 0 Ul A A W W N N r 0 CD �' (n 0 (n cD A co 2 (T( 10 A V — Cn c0 W Co N V (n O A co W < m n, r✓ r r-' t✓ (-` 0 0 0 0 0 CD 0 0 CD 0 0 0 0 0 0 0 0 (U d I N r-� F-� 0 0 c0 co W V V Cn ' Cl Ul A A W W N N r--� O O --h cn to A co N C-" cD A V r U co W co N V Ul O A co W (n O ( O O O O O O O O O O O O O O O O O O O O O O CD O O CD 0 0 0 CD CD 0 0 CD CD 0 0 CD CD CD CD 0 O O CD -fib 0 0 0 0 0 0 CD 0 0 0 0 CD 0 0 0 CD 0 CD 0 CD CD (D y O O O O O O 1--' r-' N i--' 1-' �' �' 1'_' v✓ �. �' ("_' N N N N J O I'D cD to co cD 0 0 CD F-' t✓ N W W A cn m V 10 CD CD 0 CD `< O N A 41 I'D N Ol cc A cD A O V UD A A lD W O O O O _ d !n W (T ? T A Cn Ol (n (n (n (S( ul A N C C A cn Cn A W A W Z -I Cn (D co co (O W (O (.D O (n A Co N A U� W cn W (n o Cn ^ o Ul cD pl l0 N Cl) Cn O V 1p O co V co U1 O V Ol Q� lD Q N (n .p (n 1�- Ol V (P m m (n m UI W V W -1 c0 N CO V CO V CD cn c0 W v Ol A o c0 cD co W dl A m (n Oo A O V N c0 (P W cD c0 (,D O W W cn o c0 V lD A N W co v o C C=3 :3 =3 Z5 =3 C:3 c c C O (n W cn CD O D O C) O O D O � � O CD O Cn M r N (D (D (D (D (D (D (D (D (D (D (D (D r A to -h C V Qi c0 O -- -h A --+, - -4 1 - -4 1 'i cD ' '++ -- -h + fi -h - h -h N W W W co CD O O O O O O O O o o O O o o O o O o O o o C O O O O O O O O O O O O W O O O O O O O O O Z7 0 0 0 2 0 0 0 0 0 CD 0 o A o CD 0 0 CD CD 0 0 0 I CT (T M (T (T C-" (n CT' Cn Ui (n UI U) U' U) A A A A A A A A A A 4W W W W W W W W W W W N N N N N N N N ^ O C Co G� -p W N r O lD W V aN U'1 A W N r 0 (D CO V Dl U' A N r . W V . . W r r . W . . A W N c+ 73 ---1 D (D W W A Cn U) Cn (n (r U) 0� O) G) CT O) O) -C-:>j V V V V -J co co co co (1) W co (o (D tD 'D (D �o O O O O O CD r r r r (+ O N N N C. ) of m W to r W A CT V to N A Cn V W C) r W c" of W (D r N A U) V tD O N A U1 V CO O r W C)' �" J O Z (o (D � Ut (T Cn CT V r A W A U) U) W N W A r A A O) Co W W W Cl A W V CO Ul W W CT A r r O) CS) lD M W O lD O V �' G (S) cD O Cn W W V CT r (D (D A Ui (T W N to A N Cn (n r (D r N N W A N U -1 V Cr dl W W A N V W O W (D co -, o W O V 1-- (3) V !-� (n O Co O A W OD A J> (T N O O Ul V V W U V W (n (D CD W Cn (T N A t0 V W r W co W r A W W r r C) - ; _j � cD O r CD r r r r r O r O cD 0 0 0 0 CD 0 0 0 r O CD 0 0 0 0 cD cD CD N r r r r W W W Q) ' c �O W U) N Cn (D) Cn O (o A (n W W r Co r W co W V Co (D Co Cn V m O W (T V U) [P V co co r v r r V N O U) (T W OD N O A -A r fV V co V r() N A CJ) a) W O N W V to V V U) tD Ol r (J) .A N \o V W U) N N (n (P V N U) r N IV N (V N N N W N N W A N N A r r r O r N r r r — r 0 r r r r r U) U) W (.D r 1-' N w W W W �< --1 A O W '-' �1 r W O M r C ) W r al A iD (o O to to N co N (n r" co O - In �l A O to (n N Co r N -1 0 N N CJ (3) -� A W N 110 (n Co �o I'D (D r cn W W to N (D V U1 co -1 W O W N to r to O W W Cn (D N (n (D O) co W (D < I . . . . . .A . A . A . r W r A N N N r r o . . . . . . . O r o . . . . ( C .A 1-� cn N O O W Ql A N O CD (D 1--+ O W O OD V) V W A O D) A W U) O) f-` 6) Co A U� N V O (.P r O V W v d r CA V (T --J Cn V ul (T (n D) (T V (n W W (S W m m W W V U) U) V V co co co V (T V V V co W 11 0) Co V V Q) D) U) N -i r — r r r 1-' r r r r r r r r r r r r r r r r r r r r r r r — r r C r r r r 1--' r r r — N N r r r r r N N N r r r r 1 r r r — N r N V 1> l A Q A A A A V A r A A A A O o V A A v - -1 o 0 o A V V - r r A A O V - - A A A o Co a> co (T co oT CT (T m CT co (T - A (T m A a (T (D (O an D) (T co co (D (D O co m co W co A A D) CT (D W (n D) (o N W W W W W co W W W W W W co W N" Iv " N N N N N N N N N N N N N r r r — r r l r — r i--' N fD V V m U) cT A. � W W N N r O 0 to (o co co V M� Ul c" A A (.W N W W V V G) (n u A A W W (n O (T (D .A Co N V r cn O A co W V N G, O Ul (D W V r (J) CD A W N O) t--� cm (D W Co N V r (r (D W 07 m to N N N N N (V N N N N N N N N N N N N (V N N N N N N N N r r r r — r r N r r i--' 1-' 1-' Ln Q) Q) la� W (T Cn (n (n cn A A A W W W W N N N N r r r r O o CD O (D (D (D co W W W V V V C+) CT) U) A A W W co U) O (D c" N O V Cn N (D V A N (D V A N (D (J) W r W cD W O V A r to ON W r OD m r (n (O W co N O) r r r O O O O O O o O O O O O O o O O o O O o O o o O O o O o O o o O O O O O O O O O O ; U) 0 0 CD lD lD to to co ' co co V V V O) Q) O) cl Cn c" A A A W W W N N N I--' r r F 0 0 0 0 0 0 0 0 Co U) N lD (T W O V A r co A r co (J) N lfl O) co O V A r co .A r co U) N co GT W O V A r o 0 0 0 0 D La d O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O (D p) p) Dl Ol CT (T Cr D) m m CT CT (S O) m G) (T (S GT m T O) D) m V v V V V V V V V V V V V V V W c o W W co D r r N N N W W W A A A Cn U) Ui (S O) (T V V co co Co S (D o O r r N IV W W -A A U) (n V M 10 r N A W W N i a 1--� N N N r IV r r N r r N r — r W N N N N W W A W U) A co .p - tD V (n W N O V U) A 6) co m m Cn O G1 cn N o w W Cn o 0 IV r U) CS) U) N (n ^ o N CD V A CT A CT N W co Cf) r W V co A ' co r V (n U+ r (--� O U) V (D (T O A O r W ' W r U) V r D) co W W O A Oo - RE _ N Z r N W W W - --j � --f, r cD (3) r Cn U) (P F-� tD r A W r U) lD O N r O O W r 0 W W lD A N A (J) O O] CS) o lD r CO (I) V V r r 0 (7) A (-+ CT (D W (r r W co r Ol (o D) N r A D) V r N V (n (D N W W (D A Cn V O O A V Ul lD (D W o (D N r M (T O O V O C C c C C C C C C C C C C C C C C C C C ^ D A D A 7 �--� W N W 4, N r N W r CJ W D D D IN N D D D D D D N D D D O r A A D V V co D (-+ p p p p. p p O C) (7 p O 0 p. O � (D (7 p p. CD N N (D (D (D W (D N .A N M -A (D (T Co W r CO N r (D (D (D (D W (D (D (D (D (D (D co (D (D (D (O r (D N (D (D (D W W (T (D fi >_ -h r -h r --h W r W O) �o -4 r Q) W CT O (D W O) r D) O O O O O O O O O O O O O (z> O O O O O O o o O O O O O o O O O O o 0 o O O O o O o O o O o (7 . .Z7 A O O O O O CJ r A O O O O N co O W W r r O N r r W r r r r W W r ..jjam� O O O O N r\') N O 0 0 0 .Z) 0 0 0 0 0 0 A• V r 0 0 0 0 U) N O U) N O) V O (D (D co (T (D V c" Cn O O U) -A O O O O O r W O O O O 1 r V �J �J V V V V V �l V Cl Cn 0l C' Dl O o C tD (O iD (O (O �O tD (D lD kD 0 CO CO CO CO W Co Co W Co O lD 07 V C� Dl _A W %) r CD (D W V� C, A W W N r 0 lD W V 0, U' A W N r 0 lD CO �J � . U -h (D v >_ V V V V V W W W W W w (D (O lD �p lO lD 0 0 0 0(D 0 r r r r r r r N N N N N N N A Ul V W O N Cl) (n M co t0 r W A m V iD O N 1P Ul V W O r W Cn C1 co (D r-� N A m V iD C T1 Oz (D r r r r r ^ D i cn 9] o Ol A r W N N N N N N N N Ul N A A co N N N N W O (O r co (JD C1 W N N Ul Ul 'A' N W' t'i' < (P O (31 Cl O co Cl r Cl UJ o N W W A N al r N A iD Ul A V A GT O v W W T m w 07 A N Ul W N CD Oo O C lD (n 'O (O 0o W N N V al A r O N co W N O m Ul ? N r r r (D co N N 0 (Il o It N o r d V n O (7 y r . Ci W W W r o o O o O o O O N r r r r o 0 0 0 o r r O O r r r o 0 CD r r 0 0 0' < �O N 07 A CO A v �l CO v V m�� Cl r W r o �D 00 lD (D co �D Co A CO W M N W lD (O W Ul (O (O - h A r W w W l0 r m Ul V r A lJ 0 0 x 0 0 l0 W co m (n v N O V r O C ' U) J N Ul W N N W W W W W W W W W A A A W N N W W W W N N N N N W W W r N W W N \ cO V w A N Co N O W A A V iD O �D W N V �O r -P --j W (" - � co Ul Ul Ul -P O N d> m W 07 'D .� U1 W M Ul Cl W ( A V V m N W iO (S lD �O Cl Ul W O C" CD �O �O M �o iD A C" O O W r W N N N N N N N r r 1-+ r — r 1-' V Ul 1> D t0 co V Ul w N O V 0> m N N N O "D CD V Cl W W A W W A dl V l0 0 0 0 0 0 r c+ C W 1� (D CO A U" o O W m Ol W ' CO C1 (O W A O 07 O Ul .P A "D Ul N Cif O W co V v d 1 N 1 r W N V V Ol Ul Ul Cn V, A cJl A A A r W Ul Q) Cn cn U A ll a V (T Cl v l 0� a, a, Ql Ul Vl V M Ul r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r — r r r N r r r r r r✓ r r r r r r W r r r r r r r r r r r r r r r r r r CD --J V A 11 .P A A A A A? o A? A A lP - -J -j A A A A A A A V A A A �O co co (3� cr� Ci Ci Ci C� Ci M Ci C, (T A a1 al Cn Ul al 0� Co W 0i al Cl m m C, Cl CO Q\ C� N cn cn cn cn Ul CP CT (n Ul cn cn cn cn cn U, cn A -P A A ,P A P A A J� A P AAA A A W W W W to (D m co w m m (n (n A A w N N r r o 0 (O W m V V m Cl (n A A W W N) N r r 0 t0 (D co W -h �+ C� O A W W V r - � Ol O Ul (O W co N� O A� W N N 0" r (n iD W W N d1 r U, O .P co N V r m cn W W W W W W W W W W W W W W W W W W W W W W W W W N N N N N N N N N N N N a1 C11 U Ul (n Cl A. A A 1j W Cl) W W N N N N r r-+ r 0 0 0 0 (D �D (0 (O W co co Oo V V V V -h to .A N l0 Cl A r co W r Co Q, W O V (n N O V A N (D V A r (D 0� A r (D T W r 00 m W CD N N N N N N N N N r r r r r r r r r r r r r r r r r r r r r r r r r r r r r ' N ' I N 0 0 0 0 t0 (O (O (X) N W V V V C l Cr) Cl (71 (P Ul U, 1A A A W W W N N N N r CD (Sl N l0 (71 W O V A r W C" r Co C" N iD (:�j (..W O V -P r Co Ul N W Ui N to U) W O V 4P r a O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O (P Cl Cl O O O O O O Cl Dl O O c) T Ul ( Cl (P l Ul Ul ul Ul ( Ul Ul Ul Ul (.Ti (.Ti C" l Ul Ul Ol Ul Ul (P l Ul (n Ul U1 Ul Ul U1 m Cl 0� • . N W CJ W W W A A A A ul Ul Ul Cn (Jl C, Cl a1 a, V V V V co co co Co (D (O lD tD 0 0 CD r r a V Ul pp .A r r r 1-' r r r r r CJl N N N r r r r N N r r Z lO W A (n �J O N 1v W 0 .A Ul (n O Ul (O Cl S A N Cn N W A W 07 co o CD V W W V O W W Wcr, (Jl Cn A W O m W r V N (n V r A W r Cn (D W O W N O W W W 10 W W O W O co a 0 N � Z 1� N N N N r r r r r r r r r r fi v r w A t0 Ul Ol � V Ul co Co W V 1� O (O (D W M M V V t0 � A V r .P O co W O N W m o V r Co Cl Ol Ci O W r N T al r (0 O N O Co W W Ul W Ul (D Cn N N N (J O r r W v 0 C C C C C C C p z (O N r r r r r r r r 7 r N N N r r r r N p r N W A N r r=5 W W r N N N CD O O- p p O p m m m O A W m N W A A Ul m V CD (O W i0 a> (n V A (D (D O W (0 (D kD (fl N W W Cl N "h N CD Ul W V Ul -h W lD V A (p (n M W O--f. fi N Cl O Cl Ul W Oo -h M W V Ul O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O CD 0 0 0 0 0 0 0 0 0 0 0 CD 0 o O N 0 0 0 o O r O 0 0 r p O 0 0 0 A A W C) 0 0 CD 0 0 0 0 0 0 0 CD CD 0 0 O O N O O 0 0 0 0l O O O m 0 0 O 0 0 Ul r r 0 m N N r r — r-• r r — r r — : — o' r J , m Z n n n r c - 0 n W A r G r O o io D V al (T A W N r O tD CO V� (n A w N — O -1, (D C C N O - O D N! O - 0 v O - 1 O c :� . tt - rL to ct S < c d N to -i --i -1 O ct O 0 O It (D N N N N N N I--• r r r N w A 41 A .p A A A It -' (D d -�- (D �'+ v. O (D (o a, Uo � i--' N A� V 1-• A W V to O O O r W A Ol Co tD S C d h Z Z O a �. �- JTl J C t* n Z Z tD o r n n r* o o c C tD N ( t0 fi - to -3 -� E3 c+ 0 ct .. J - 0 ct rt --1 O to (D (D (D :3 (ncn(n cn nU,(nU .� o w 73-73 -�3 C- fl' = .. n r o o to n 0 __ ° N 000 0000000000000c� 000 CL Cl (D m rn m m m rn m m m 7 > C, m C r C CD C) C Tl m 7 m �� Cl 7� C) m m r - io o - r* to - (D O .. .. .. _ •� •� A �o O M v -{ O O O O r r CD 0 0 0 CD 0 0 CD 0 0 CD 0 CD CD 0 0 O — G v 17 C7 (nom U, U U cn AAA A A w A AAA A A Cn all C" a, mco ( - 3 .. .. .. C) CD , L7ro ] - 3 (D N co •• Z N N N S O r 0 �--+ CD r C4 O V t" r n O to 3 O .. -< O O O O O O O O O O O O O O O O O O O O O O C N �u (� D R U c' O O O O O O O O O O O O O O O O O O O O O O to Z O O O O O O O O O O O O O O O O O O O O O O O C-i 3 O O O N A (D O Cl) n v O O O CD 4(D O O O n N r r r r N N N N W r W A W (n - --1 U, U O CD - S C-. ;Q � (D r-' O A O D1 V W N ,--� — al r al A O tD W to V N O O f> (D a m U, V tD C" n r 01 �� U, w a, W A U tO V a, O O O r O N D rn O co (n N T W A A CJ O 01 V N W o N to r 1-' W r CD 0 _I N O w (n o (� O O -' ct O O CO 00 C 1 r O O O W W W W U A N N N — N r r N N r tV N (J A w W .� Cl (V to . O 7 a Cn N N co A V �l O V co O V W O O CD O CD -1 O Cn dl - w3 '� :3 �' ::s A co N CD W w A a, w LO V� .- C.o r t.o .A A V F-+ O W O (D CL ( D fi CO r r- ) Q N - r -i - 3 C) - O N V N N 1 al V 1p N tD to tD tD (.O lfl tD N N N N N N =3 d d (D n O d (D N (D (D d r r r r ,--• r — F-� N N r N N N N w N r N r � (/� d co N r (n r Cn V V ko W Co r W r W U, W t D to r A o A Co A r,-) o' a W N W O, r r M V A V U, W O OD N (,.] W n co to (n A A r (n V to (n A (n (n (n co W O m w N a, Z co C t W O d c � C C C C r C C C C C C C 1 d (D I O W W U', W N N r N r: 7 :3 :3 .O C (3 N C O tD a, w C O, CO U, A to Cm r O C 0 C C C C) =3 (D • (D (D (D . . (D (D (D (D (D (D (D r O -+, A -t, --h fi W Co V M U, O N r m --, Z fi d D _ C N C C C N N N C N N N 1-' N N N C C C C C C (l J I � O C C N) tD N W� O W W .A 4, W V A -3 C C 7 C 7 r C- C O O C C N N C . W A V O O 0 0 0 0 Z - 41 - h (D W a -- h A U a 6) O O N - Z ert T N N r r r ^ (D O 1-� O O O to A O O tD (o V r V V a, 0 0 0 0 0 0 I O O O O O a, W A o co A N A tD r --1 0 0 0 0 0 0 V tt (D C C CD J C Q C O C O 3 N A AA AA AAAAAAAA AAA( 1= (D U, (D N N A N O O A a, a a, a a, A C4 Co W O O D - fi O �G - D N C C _ r V V - -1 �1 U U co w co w co t.o V tD to (o to (O tD 7 (o :3 •� U A F--' 1 10 O a, OD N V (n A m N r r A F-' Cn U w C U' C:) f O Cn . (D (D W Ui N A. t-+ CO W to O N A CD N O V A lD O O V fi CD r F-' - - r r-' r r O C> 0 or r r rrrr, --•r r r r r r 0 0 0 0 n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 'o to I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 0 0 0 0 0 A W .A -A U, A W W A W CO W CO A A A A Cr, a, (D a, (D E3 (D O V O N A a, to to r A m V O O N O U co m -1, <o -h ' C (D C C C C C C C C C C C 3 I C Cfl 0 0 CD (D O a, O (n (n N A W W r\3 C C C C C C (D (D (D (D rD - tD (D (D (D (D (D a, to W U, -h (-- A W a, to r W fi O Z C C C C r C C C C C C C I a, =3 C C N (3, V a V a . D j Co w V :: 3 C C C C :3 O, C r(D C C . . C A .A O N O V to C � C C C C O N lD !D (D - (D - N O -- (D (D O n W - (n A al t0 A N N �, I I cT Ol Ol m U, cT cn (T cT cn (T (T cT (n A -P X+ A A 1> A A A A W W W ( U� A W N o �0 O0 � M U' A Cl N '-fi CD -, o C: -3 A w N r O co V cT A W N r O tD W V m cT A W N O . . . c r "O ---i = (D W w ,A Ut M Ul Ut U, (n 01 Ol (T 01 0) � V V V �l -1 'J Co w w co co W Co (O (O (D (D (D (O o o O O O o r� r C � 't (D O N N N W U, Ul CO (D F W A G) V p O N A C " V (_) O t-- w (T () Cr) (D t-- N A Ol V (D o N .A cn v W O r� W Ul S .J O (D � (T (T (T Ul (31 (T U, Cl 1 (T (T (P (T UC" (T C " U' (T M D1 CT U1 C" Ui U't Ut (T Ut CT Ut (ll . . . . . CP (J1 . . (T . . T (T V1 CD O O o O O O O o O O O o O O O O O o O O o O O O O O O O o o O O o O o O O o O o o O O 3 (T O rnmmrnmrnrnmmmmrnmmrnmmmmrnmmrnrnrnrnmrnmmrnrnmrnmmmmmrnmrnmm N co o 0 0 0 0 0 0 0 0 0 0 0 0 CD 0 0 CD 0 CD 0 CD 0 CD CD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o r✓ o' A U1 A M A C11 C" O1 (T CT A W Ul U1 W M U1 W W A (T A A A U0 w al Co w A A (T (T (T vi v 0 V n i o n O O O O O O O O O O O O O O O O O O O O O CD O O O O O O O O O O O O O O O O O O O O C:) O Co U1 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O o O O A w N N N N 00 W A co N N W A w N C" N N r - � r - • i - ' � - ' r CD i--� CD F-' O O r'-' O o 0 0 0 0 O CD 0 0 O O O 0 (n V N � (T I-' r N N N N r r- r✓ N N r r r✓ r✓ N W N `--� N r-' W A W — �--' W N W W (T A U, Ol M V W �J W O W Co m Q\ W W (T W (O V W -1 Co co N -.1 W 0:) lO r Ol O N co UJ A A a, V (T CD (T N (D r Ol co l0 A (T O N 01 w r — r I--� (T W O V N `1 (O A Ut A cT V M Co Ut Cl) � 0o W V (D � � Co Co (T cst I-- N N N N co N W W N N .A A N N Ui N N N O N N N O Nm (T W W W w � V Ul N A N w w N N w N O (D W co N r (-' '-' (O O W O N (T N N co �-' 07 (T t--+ O A (D -P, N Cl) V O N N W V 7 Q\ --A ry (D co kD V W N O N✓ (D O Ol A V (D A W co N W (,.W N N CO Co r Ol Co (T V al A N QJ Q1 Ol G> Ql 01 01 A m Ol Ol r Q1 Cr) r Ol Cl V V M 01 01 - -1 dl -1 V V V C) m V w W w W A N W w A N N N r N N A (T W N N A N (T (T C, J:, N N A W r F-' A A V (T ( 1 CO V (O O (D (T 00 V N co (D O V O N Ol A V N W V W 01 A 01 — N co (D — V 01 m Ol V co O t-' V O O N Ol O Ol N N W t A ON o o w V Ul N A Ol co Ut w A m A r - V A W N m (D (T (O N t Ui W Ut (T r-� (T Cn W Ol N Ol V O V Z O (D r C" 41. t --' (-- C t✓ r r� C C t C �-- r✓ W r✓ CD C) r C C m r� CD C d N C" 41. Ul J�. � r V N A 01 �� (O O D ( O Ut t) W O co (T " A A W - P O o w N C n 0o 01 W CT Ol O O tD C .O r Ol 1 A O W W N co r O O m (O O .A (O W O V U A 07 W . .✓ . . V W W O O W N . W N N co N of Ol C A -h Cl) tO O �l CC) -h �-+ Cl) --+, N co W Ol 61 W (D W a1 V (T (O l0 O O (O (O fi -- h W r-+ (O N V .A W -h Z p r r r r C r✓ r N C C r C t--+ r✓ f--- r i-'' �' t N h-' F'' �-' C C N N r r r Co r✓ � n n U lD V (O co :? (D Ut W CD N w A W (O tD V W O O A O O W (D W W t0 Ut � D W O r-- r-+ N Co V l0 r Ut V W O] C:7 r Co N (T N O O N Ol O N V m V N Ol O A Ol CD (O N N w r� V CD 0 U" N O r (O Co (D 0 C n Ut ( 1 O -h V O1 U1 lD N - - h O1 O1 --h W Na ? A O V " CO Ui r-� W t✓ O (T Co A (T -h -++ W V N 00 lD O O N N C.) W W w W O� U1 41 w w O O A A O A A N N Co A A N C..) N N i-- N W CO N W O O W W co w 07 w W O W Ol Q\ (D CT O O Vl 61 O O N (T O (T N m Ol Ol N w 00 W w (T W A 0 p (T V co A W (7l A O n V u, A F - ' F-• O W A O lD N O O N CD CD Cl) 1-` V 01 Ul W w V N (T r--' A V r✓ V O (T O O Dl Ol N A O A W O V C C C C C C =3 Z3 :3 =3 :3 d O ::3 O O O O O O O w W w w W (D W (D W W W (D (D w (...1 (D W W W W W W W w W W W w W W Co W CO N (D N W A CJ A A A A A (D N A A Ql -h N -h N .A A -h -h N N fi N N Ol co A N N Ol N W co co Ol N N Ol A - h - +, '_i+ 41 O Du O O O N A N C C C C C C C C N W A W A A W=s w W A Q C w CD O w W - (T w W w A w (n co (T A w w A W C C A (T A CT O1 C" 0l V .� O" O W co O O O O O 1--' O w (--` Ol o O N t -'' N . . O Cn (T O O O r V W Ut F (D O O Ol -- h 1 - + - h N (O w fi 'fi O 1 - ' - A N 1 O V O O O0 V A (T W N O O l0 O --h A N Co (T r V lD A v O t✓ Ql (-- Ol r W Ol W vl Ol r- Ol W Ol Ql W Ol 61 O O O o O O O O o O O O O O o O o O O o O o O o o O o O O O O o O O o o O O O o O o O o O O (7--3 C C t t I=-- C C S-- O O O O O O O o O O O O O O O O O O O O O o O O O O O O O C C C O O O O O O O O O (D O (D — r 1-' (D (D O O O O O O O O O O (D (D (D N N W W W A' 3 (D V W 1-� W A S to -h A A w --h --t, V l0 co w O O �D U l0 V N (-+ (D l0 V (7) O --h -41 -h O (T (n O O O W A O C C C C C C C � i-- r r-' D (--� � i--• r i--' r-+ r r✓ :3 73 N r r :3 �--' W O O (O o p r o CT A r o Co V (O (T (T A Ol O co a1 0 0 0 w (T U Do (D V 01 V O 01 l0 Ol N -h fi Ol V -h N V (n tD N W w 10 A ul Ut O CD A V V Ol O O (" Ol O V N -h ' O Z C C C C C C Ul :3 � r✓ W N W N D N N N N C E I o N N N m CO N N r N N N M N N =5 N N C C A W N N w A a, l0 O W O W(D N '9 W Ol O O (-� O N r . . N O r . O C w Oo . O V N. O ID ID O r-' N (,Y, . W W O n 00 01 N N lD --+, N W lO 1--' A - fi N A -- tt A C" 1 CO A Ol Ol V (O N Na O lD 00 (T N (T V N I { r O CD lD CO CD Lfl Co CD lD CD Co co co co W D0 co co 00 m co co V V V -4 - J V V V V V 0� T dl Ol (3 ^ C7 Z7 G-) O Co D0 V (T Cn A W N r O iD m V 03 CP A W W N r O CD co �J m Ul A W N r O Co co V Cn - T . 7 (D V V V V V co co Co Co Co Co Co CO CD CO CD CD to 0 0 0 CD 0 0 r �' r {--' �-' r N N ry N N N �.. �+ N -P Cn V Do O N W Cn M 03 CD r Co .A M 1 CD O N A 01 - , A W O r W CSn � 00 CD r N A Ql V O Z CD r CTS Cn Cn Cn Cn Ul Ul U" (-1 U" (n Ul �-' U3 Cn Cn (3 UC (n Cn Ul Cn Cn CD U (n (n (TJ (n (n Cn U (n Cn Cn Cn O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 7, Cn CD -' m mmmmrnrnmmmmmmmm rnmmmmmmrnrnmmmrnmm � A o(+ to CD C) 000 0000 000r- �00000OOOOOOOOOOOOOOOOOO � ( o Cn A A Cn Q\ Cal 01 V Q\ --j V V C31 Co Ol (n Ol Ol � V 01 Cn A A 01 U, Ul C31 0l M M -P C3 0) V 03 N r r H CD V � O (� f O O O O O O O O O O O O O O O O O O O O O O O O O O O O O CD O O O O O O O W CTi . O CD 0 0 0 0 O 4, V O1 O1 CO V� -1 -j W Dl p O O O v� O O O O A CO O W A O N CD o N W O J� (n yyy V N (n A -A W W r N W N W J� V _ Co A Cn Cn �A A Cn u, u -A (3 F-- lD V Oi 0� V CD W OD O 0) '-' �-' W W V V U' . o ct . 10 . . co V V W A W cn W W 0� r U1 N Co U W N W U, UI W O� N r V V CD W r-� N -A (J N N W .A A Cl) A J> A A (n Cn Cn Cn W W Cl) CJ A L A N ry co N N N co co co N W -A W A Co A UC t U, W Co N V (n lD O r Cn W V {--+ A V N (3� O Co CO co Co co V Co C" V D3 W Q3 0� -A Co r Ol r V W t0 A N V O W r W (30 A V A V N O Cn (n V O 0l 00 N N r O CJ 0 o l Na O O cn V O> r r — r— r r r r r r r A r (-' r r r- CT r A Cl m r r — 01 O� CO CO V 0� r r r r r r r r r N r N N Cn Ui r W W N r r W W -A Cn N r CD r CG3 W O r N N CJ co A CV N co 0� W Ul CD CD O to O V O m 0� r 0 dl W lD CD to Cn V O Cn 0� Ol -1 Co W m CN N A W Co O A O W V Co V co Cl) Co co V co V Co CD O Z O c+ N r r N C C C C C C C C C C C C C C C C C r r C CD N Cn A D i3 =3 :3 D =3 CD D 73 : V O W: V N CP ::3 N r\,) CD V fJ CV co V 0� O C !D (D (D (D (D (D (D (D rD (D (D (D rD (D (D (D rD . (D C O C O C C C C O C r C7 C C C C V O co C V r r C C C 0� N V C m n (D (D rD . (D �-• 4�1 co A V -h -h -h -fi -h -h fi -h - V -+, -h -fi -h -fi ? CD N -h r co V --h --fl V Ul UC - 41 r Z O W N N w C C C C C C C C C C C C C C C C C C r r r C fl �J r N o 7 7 7 7 7 7 7 7 7 CD co 7 CD (n Co 7 7 7 Cy (n W 7 lD v A CD 00 C C C O C C C (7 C C C C J> C C O O CD O Co C 01 r CD C7 C C 00 co A O U, z (D (D (D (D (D (D (D (D (D (D (D (D (D (D (D (D (D D D (D N (D n fi -- h -�, �, -i, -h 01 --h -+, - h -h V al N -h r r r (-- r r i--+ r r r r r {--� — r r W N W W O 0 CD 0 0 CD 0 0 CD CD 0 0 (n CD 0 CD 0 CD CTi N W O (n .A A O O O w A (n O CTS ^ A �J O V Cl 0 0 0 0 0 0 0 0 0 0 0 (n O O O O O CO 00 N 00 - O O O O W N O o P n . n O (n (T (-' 0 0 CD 0 0 0 0 0 CD 0 0 0 1p O O O O O (n Cn .A O N — W 0 CD CD Ol � O O A C C C G C C C C C C C C C C C C C C C C C C C ^ 73 = CD C C C C C C O C O O C C C C O C C C C C C C (D , d W W W W (D (D (D (D (D CD (D (D (D W (D (D W (D (D (D (D (D W W W N W W W (D (D (D W W rD (D (D cD CD co co co 03 -h -h -fi - -- h - 'h - -h N - h -41 O -+, --h - h -h -h O Ql 61 fi O N .A - h fi - N N - --4 - ... D C C C C C C C C C C C C C C C C C C C C C C C W CT) 03 Cn Cn :3 7 7 7 7 7 7 7 7 W 7 7 W 7 7 7 7 7 co (n A 7 co W W 7 7 7 W w =3 ::3 7 ^ CS N N W W C O C O O C O C O r C C O O (.D O C C O N V C O . C C C .A W O C C o Y C (D (D (D (D (D (D (D cD (D CD (D (D (D cD (D (D (D (D (D (D (D (D (D 7 41 CD r A -h -h - +i -h -fi -h -- h -fi O -h -h O - h - .1 - - fi O Cn CD -h O r Cn - h O r r r 01 W C i 0 0 0 0 0 (n Cn (n Cn Cn U" Cn (3I 0 0 0 0(D 0 0 CD CD 0 0 0 Cn 0 0 0 0 0 0 0 0 0 0 0 C O O O O 7 7 O O D :3 D O O O O O o O O 7 7 O O C C C O O C C C C C O C C C C C O C C O C N N r N (D (D (D (D (D (D (D (D (D N (D (D O (D (D (D (D (D O r �--� rD O (� r (D (D (D O (D (D rD (D CD O CD N -fl -- h -h - fi -h -h --+l -- fi N -fi V -fi fi -1 fi - h Cn .A Cl) -- h Cn r W fi --h fi C (D C C C C C C C C C C C C C C C C C C C C C C 7 W r r N: �3 D D:3 D:3 7 n :3 D :5 -:3 D D D r r (--� r 7 r h-' r r CD O, --1 A C7 C C C C O C O C C (7 C CD C7 C C C C V N A C �J r .A C C C O N Co C Lfl fD (D (D (D (D (D (D (D (D (D (D rD N (D (D fD rD (D D (D N (D T r-- W o o --h Ul CD W - -h - Z C C C C C C C C C C C C C C C C C C C C co A A 73 =3 D D D�� m D��� r 7 D 7 7 r w W� r N N 7 n� N N N: ON r O (-' co C C C C C C C C C C C C -1 C C C C C Cn N O Cl Cn W CD C C O O -A Ol C co O (D (D (D (D (D (D (D (D (D (D (D (D . (D (D (D (D (D (D - (D (D (D (D () 0� W -A W --, -h -h - - fi -h -h -h -h -fi - fi -h CD -h -fi -h - fi -41 - -1 O W I I I N N 0 cn O � -3 ,.. r+ O lfl 07 V Ql A W N r O It �D co W V� C� A W N �� O -h (D C �� O - o D (/� a O - D v O c (D ct p o o -- 3 < C a M 7 ct (D S i O . O CT (D I] ct ID n, - (D < J c or O N t--' r r r N W A A A A A A C d c-t' N 7� ID ct �. S J J C7 c fp Z Z 'T l0 all OD r N - P 0 V , - � A Cli v CD O O O r W U o7 iD S 1 O ct 0 0 H to C fD [D c0 ct J- cD rt- O (D -, o ct ct -i O (n (D (D N .. p -fi c+ - S O O l0 V w Q1 Cn 1� r a> A r V N O w cn V - -j 0 O� V CO U, c+ < a a a O (7 m m f O c N W W tv � Ul A N V M A N Cn A iD O� N N 3 .. .. �--� Q. M U, O m V O O C v D O N CD .. .. v m H '-� n n m , ,- O 03 (3 m w m CD �--+ r w r Cn CA W W A O'J V cD m t0 m - 3 E3 n F--` A w r O _ - I (D .. w 10 \ Z W N N CD 1 CO 7 O 3 CD C (D V n D Z < r C N N w N N r r\> w co N w -P w N A N W N In C V D R° (P ct CT) A 01 W CT r D7 m N A O lD r Cn U V V V N , D �+ -T1 Z O Cl) N �0 OD Cn V C31 W A N O� r V V N W A W V Ol Ol V1 O -� O O O D Cn O N O O CD O Z7 p O O O O V D d {] O O O n W ➢ � C✓ Z7 ,--, O a W W A A W r N N N r r N W N W A A N N �. ,--' ^< (D �' 'y O r r D N O F 3 C7 O N O m Cn N co Io� A m W V A O X77 - D fD . N r cn Gl r v U, W m A A V lD 0', v to o Cn A CJ V -h J C/) ry O W U 0l r 0 o ctoov O 0 ,n O (D 0 0 0 m ^ < a N ,n -h < O f d CD p N N N W CJ O CD 0 0 0 0 v n O fD d O N w O A N Ul Cn 0� w Cn V w N �D V iD O OD Ol w r CD n v d V) W v o 0'1 Cn cn U1 A Ul v V V V w co m m V U U1 m U U V -{ � W a D W It n (D O 1 V d O , rrr�,- 'r,-•r r, -rrrr r--- -- — — r r rte -' c �^ N N r — r r w 1 r A A A A A? V V V o O? A V A O i A -P A V cL-r off, M Oi M 01 (71 a', Co OJ Co Oo t0 ID � Ol W O� Cn M O� M 0" W ct w co N r + cD r r r r r o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o N N r h-� O O 10 C0 co V V 0-1 (n ul A Jl W W r\-) N �' 0 0 -h O -A co N V r CT O A co r (n CO A w Cl) N N Ol O .P tD W In C m r� Cl) ^ It �+ r r r r r o 0 CD 0 CD 0 0 0 0 0 CD 0 o O o 0 o N a N r r CD 0 lfl lfl co V V Ol U CD A w W w N N r 0 CD A co N V I--� W O .A W r Cn kD A OD W 07 N C O A O W to O fi I D l- O O O CD O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O CD fi O O O O O O O O O O O O O O O O O O O O O CD CD O O O O r r r r r F-` r F--' r r r F F , N to I'D Co lD O O O O r r N W W A Cn � D V � O O O O 7 `' O N A V O N m %D A w A O Ol A W w co co O O O O ID _ d N W W A W W N W Cn A W A U W W - P W V NN N V W Co W A O O W r V N Cn V N W �o N l0 O W lD A ^ O v Ui 1-� A m N O A A A w V W lD W A �-+ lD �--� i0 V A CT r � Z W Cl) W IN W N W Cn (n U T U� A V A w Ul A Co --1 O r V i0 W r to V N l0 W V Cn l0 O to w L" V Q, N V .0 cn A V O N cn Cl) W CN O\ -Cl. A m r r V A m v o C C C C O� Cn dl (n .? w 7 0 Z3 =3 co a) 0 m 0 A (n U T 2 O ' (n (:D O O CD CD O - cm) - C7 ' ko Di Ql O r -P m (D (D (D m (D r co (D W (D Lo O w A m fi C V r r U - h O O O O O O O O O O O O O O O O O O O O O O n Z7 0 CD 0 CD 0 CD 0 CD 0 CD CD 0 0 0 0 CD CD 0 CD 0 0 ZJ O O O O O O N O O O O O O O O O O O O O O O I I I Cl W� W m (n CP Cn U U, Ul U, CI, (n (n A A W W W C.J co W W co co N N N N N N N N' O C 1- .A W N — O� M V 0l Ul A W N r O �O W V� U _� W N �-+ O �O co -J Ol Cn -A W N r r O (D co �J m U' A W N fi (D - 0 C W W . . . . Cn (n al CJl Ol �J v V v V . J co W W W W W Co 10 �O CO iD CD , D 0 0 0 0 0 O r r N r •.• (D o N N N CJ Ul M W tD t-+ W A Ol V CO O N A U -1 W O I--� W W Cl Co CO (-' N A 0') V �D O N 4' Ui V Co O W U r S J O Z t1] r r Cl CD Co r W CO W V Cn J� r N Ut V CO O V CJ (n (n W O (3 (n A V 07 (7, N W �l V Ul m W m V U, W co (n co �D V N W I cc A O c r r r Cl W O N �D t0 W W N N V V cn N U' r W �0 O C1 l0 r m co N Co O W A r U' (D Ol Ul r W N A A r A c W' _ (n A C, (n r W r Oo Ol r Cl m Co l0 Cn V N V V -A V V lfl V V tD r -J W CD r (D A N O V CO Ul cn r W W C o' (7 V 7 o n D � r N N r N r IV r r O r CD r O r — r r r CD r r r O O r O O O O O O O O O r N N N r r N W W N N c< W O N W A o Ui o CO CD (D r �0 r CO W r A r o Co O r o CD ' C o r CO Co U� al iD (0 V V (D T O W W V A cP V Ql W fi - Tl (Ji Cn lD (3, O m V A A V W CO Co r N) lD Co N W W N (n r (n V N A Ul C C\ A V O Cl A O co Cn �l N to 0 V W O r N r N r N W A A A r r r 1-' r N N r N W r C r r W r N N .A N N W W N r W 0 co to Ol O (n "D Co cn r N A Ol N W U' O Ol O iD O W M A V Co W Cl N .A O M t0 W �D W V r O W �' N O W W (-) Cl) r O w r N V A V Cll d .A A lfl w �0 N �D A - V r N Cn O CO V A m V�o N�o m r .A (3� W Ul -h ' fi r W W (D W ID W Co W tD O O tD ID (D W W W W V V V C3) V V V . . . . Cl . . . . . . . . W . . C Cl CO W V O V V CO V r 0 Cn v A W N N Cl � N r CO V W cn D N r-� V (n m w W �-' O> --J O N w W co CT) ul v d. W ' W V V V V Cl C' (n W W - 1 V W W V(D� O1 V(3� Co V0� Q\ Co Co V U M Co V V V V V V Cn V W M .A 0� V Ol r— r r — r— r r r r r r— r — r r r C N r r r N N r r r-' N r r r r O v V V V .A A r r V V o O - -1 A o V .A .A o CD .A .? o V --j V V --1 V A V A A A A � A CD W co W co Ol Ol Ol A A ' CO Co (D (D Co Cl Cl OD Cl LD W W Ol CO (D W Cl 0� 10 co co co co co co 0� co 0n Cl OJ Cl W Ql a, It N W W W W W W W W W W w W w (.J N IV N N N N N N N N N N N N N N N — r 1 r r 1 r r i--' r N V W dl Cn Cn .A A W W N r ! 0 0 to vo W V V� 6l U Ul 4 W W N N r O O iD l0 co co V m a UJ Cn A A W N Cn iD A Co W V N (y, (=) W l0 w W N Cl O A l0 W V r Cl CD A W IV V r Cn S A W N Ol O Cn Co W co N0� r W `--� rn N n ct N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N r r r r r r r r-+ r r i--' 0 (D co co V V V V all � all C1 (n CT, U, (n A A A W W W W N (v N N r r r o 0 0 �O (O W W V m Cl W U+ .A -A W r) --h p r W m W r W Cn W r Co (n N O V A N CD W A r W m W O V cn N CO m A Co N W O Cn 1.0 W W N m 1-' (n Co O O O O O O O O O O O O O O O O o O O O CD O O O O O O o O O O O O O O O O O O O O O O O ; i k,o co O W O V A W (n N LO Ol W O V A r V r OD Ul N lD Ol W O O O O O CD O O O O O O O O' d O O O O O O o O O O O O O O O o O O O O O O O O O O O O O O O o O O O O O O O O O O O CD n fD C + Cl M m Ol m C1 Cl m m 0l Ql Cl 0\ Ol a) Q1 Ol Ol m O1 Cl Cl a1 01 m Ol O1 C1 V V V V V V V V V W Co W Oo W co lfl o 0 CD r r r r N N N W W (.J 41 A A U, (n Ul Ol Ol V V V co W (D Lo 0 CD r N co .A Q> V W O r W A Ol W rQ >y ? co N W N !V N N r N NN r fN IV IV IV N N N r (V r IV N rQ A W fV IV W (n A W Z W U, m O o M U, W CO N V CO lD V N A N <O V CO (D W r N W N V O 10 I- U, Ol co r N 0 Cl U, Cl N ^ O .A Ql O ' co V W O Cn O Cl O N co W '10 W N Dl r W N A CO r Ql r - W LD O> V V Cn O W (O r W m co N m Cn W 1 0 0 _ N � Z N N r r r r r r r r r r r r r r i r r r r r r r r r r r r r r N W N r r N N - i, r U1 r W W m dl U r A O A N 6l Cn W W r V r W W • rQ A r N W r") V W W (Tl N .A A Cn W O co A W m lD � O W �+ ' CO N Cl Cl A V O T Ul A W co W m O A 'D N W l0 CO W N W W U, r v .A V r -A (0 1, N (n O CD CD 10 O A o C C C C C C G C C C C C C C C C C C C C C C C C C N�� W W 0 r N 0 Cl -P N V iD Ol N Cn 0 0 0 0 0. . O O O CD 0 CD . CD CD 0 0 C7 - O D O CD 0 CD O O (D (D (D (D (D W ID Cl Co Ol (D (D N (D (D N In M W (D (D co Cn (D (D (D V W (D (D (D (D (D (D (D W (D A U, -A .A (D m 0 C -h "I --+, -h - h W r m N W -h - , -41 --+l --+l r CD -, r --h -+, W A - h - h - i, W CO - - h --% - i, fi -- h -,, G� --f, o CO 0o A - h o A •� O O O O O O O o 0 0 CD 0 0 0 o O o O o 0 o O o O CD O o 0 o O o o O o 0 0 0 0 0 0 0 0 0 0 (� A .A O O O -A O .A O O O O W N N N O O O r N W O A t-• N W O N h-• r N 1--� r r W U A O O O O O O O ZJ ' r 0 CD 0 Cl CD t O o O O N O A (n O O O co O f--• O r V t-+ W O O (n Co CO Ol Cl tD 1--' O Ul 0 0 0 0 0 0 0 I V V V V V V V V V V 01 m 01 al ^ U c7 G7 O O O O O O O O (D lD kD lD CO iO CD (D (D Co co 07 W w Go co W N W r O (D V O1 U� A W N C-� O CO co V al U� -h (D - 0 C= - 3 V Ch (n A W N r O l0 CD V cn A W N .--� O. Co _ -i D (D D 01 01 O1 Ol O1 CT V V V V V V W CD W CD W CD Oo iD CO Co �D Co to O O O O O O CD �-- r r r r' N N N N IV N fi - Tl Z cC] r W A (T V O N A U1 V co O N W (Jl 01 co CD r W A 01 V �D O N A cn -1 Co O r W [r 01 a1 CD (D r N A V CD 3 J p r� r r r r r r-� r r r r r r r r r CD r r- ➢ ul O Ul W r V (t Cn N .A co W r r CD O (D (r V O Ol m V r (n O N m V V A Oo CD r W O W 0 W CD N CO O O A In < A O c+ V CP V A N N CO O A V Co r 6i V A r cn N A Co O r N A (3 r Cl (r �J V N W Co W . W V A W N CD ' fi 0 Cp (J1 N (31 U� CD U1 c" N Ol A O1 CD (P V N O� CD Ol lD CT1 CD V 01 co N CD V r O W CJ1 61 W CD CTS F� Ol V A W Or N H O 1 r O N W N N N r W N r N W N r r r r r H r r r N r N r N r — 1-' — Lo O . Cn CD CD (T w N 00 r W U1 Ui N V CA r (D O W r r r O1 W �O CD Ul V lD CD O CD U Co A 01 C71 W U1 C W Co N� F-' O C-) O CD N cn r A Cn r W W O r r O A V N U1 01 W m O Ol m m m V W IV w CD (^ O CD W O W fv W r Iv w W W tv N W co W W r r— r CD r N N N w r N N r N IV w N r r — — �LO W 01 r CO O cn CD A Cn A N lfl O tO Cn O W U� al r N co N O O C n N N O m CO O N O CO A r r-+ V r CJ Lfl cn r O r N co W N 01 CD N Co CT O lD O CD O V tD CD r O A W V W O co W V CD Co Ul CD CO N O V V tD A fi r r r r r CD O Co (T1 A O O N A O (P A N V al CJ1 . . . O r .--' O O O . . . . . . . . . lD v C CP CC) V A W A V lD LD N N CD V w r V V C31 co O m co -J O N CT (P r W A co �' N CD V O O U lD C-71 A A W d' (n W cn 01 Cn V V CT A U1 V V V V 01 V V V Cs W C 01 (n CD Co V (D �O kD 01 C7) V 01 V cn V CD V (T) (T CD Co V Co Co CO -� r r r r r r r r— r r r r r r — r r r r r r r r r r r r F F r r r 1-' 1--' r — -- — r r r C r r r r r r r r 1-r r r r — r r— 1-' N N r r N N 1-' N N N r r — — r N N N N N N N A A A V V A A .A V V V v A V V O O A A O CD V O A A A A V A V A V O V A A O O V O 0 CD c c 01 m 01 co co C31 CT Ql co CD co ' CO D1 CD CD ' CO 01 CD CD 01 01 � to CD CO r r 01 Cn CD 01 CD 01 W CD 01 al iD W iD -i (n rn a, Ol 01 C7 C 01 C" C n cn Cn (n Cn (n cn cn U' U1 Cn (n Cn n s1 cn A A A A� A A A A A A A A.. A A co W W W y� Cl) N r r 0 0 Co , co V V m CT n (n A W W N M) r r CD Co CO W CD V C71 01 Cn Cn A A CJ N N r O iD Co co OD O O1 CD W V N Ql O (J1 CD W V N O1 O A CD co V H Ui O A co N T O A co W V r Ul O A co N V r C-71 CD W v r m c� ^ c A A W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W N N N N N 0 ( O O Co CD Co � co co co co V V V 01 CT 01 0� Ul (31 CI ul A A 41 W W W W N N N N r i--� r� O O O O l0 t0 W A r CD 01 W O CD Cn W O V A N CD 01 A �-' co T W O V (n N to 01 W O co Cn N O V A N O Ch A i--' co Cn N CD N N N N N N N N N r r 1-' r i r h r r r r i--' r r r r 1 r F--� r F r F r r .. . H . . . . . 0' N (D ■ N N N r r r 0 CD 0 CO CD Co CO CD co . m V V V 01 Ol O1 UI (P U1 C i A A W W W N N N r r r 1--' 0 CD CD to to fi - 1 ■ ■ ■ V A r V 41 N CD Cn N�o U1 W O V A r Co CO Cn N Co 01 W O V r co U1 r W CP N �D 01 W O V A r CD CJ D d O O O O CD O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ( D U1 (n CTS U1 CT Ul (n CT cn CP cn (P Ul Ui U CP (n (T (n (n (T C i U (P Ul C71 Cn Ul cn (71 cn (P (71 CP (P (P Ul (P CJ1 CT CT cn Ul Ul O O O O O r r r r r r N N N N N 41 W W W W A A A A Cn Cn (S1 U1 Cn (71 m 01 01 v v v �I co C D co co Co CO a N r N r N r r N A W W W Co W A Co fv W W C.a fV (J W CJ W G.) fv r� IV W W r--� W CJ W N r N N W N N W Z ■ V W CD W Co Cn CD CD V A CD U1 W -P O Co (n A (D A co m 01 W O -G co co Co V r 01 CD A r-� W W 01 W CD A A (n ^ p A (D 01 V CO r m A O O N 01 O W A CD CP A N CD CD Cn U1 r m V Co W CD V Cl) N W l0 V N O A co Cl) CA 01 co E _ � Z r r r r r N r r r N I r r r r r r r r 1 F F N r--• r r F r W 61 r O f A Q tD Lo W N l0 W V V (n Un CD W O CD CD A CD CD 01 CD W U1 O U, V O O CD W Co W V CD W CD O V Cn (D co O) V -A r CD W A ( O Co N r A V r W O A CD r-• A V C fV 01 r IV W N cn W N cn (n r v 0 C C C C C C C C C C C C C (D (D (D U W (D C C C C C C C C C C C C C C C ^ A N O�� W r N��� Z5 m n� 7 CP 7 m Cn D 7: =5 U W� 01 :3 N A N rn (n L7 D O O C CD C C O C O- 0 0 0 C C7 O- - CD - O- O C CD O CD C O O CD I O W CD (D (D V (D V CD (D (D N A lD (D (D (P (D (D v N (D (D (D fD lD (D O1 A (D N (D 01 (D (D (D (D (D fi V CD � -4, -h N CT Ol -h -h -41 --h (n -h fi - V --h -h N 01 --h -h -h -h V (J1 -h 01 -h O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O 0 0 0 0 0 F 0 CD 0 0 CD 0 CD CD CD 0 0 0 01 O O O lD O1 O CD A CS1 O co 0 0 l0 O 1 O O O A CTS A A CD r ; I F r r r r r r r r r CD 0 ^ C (7 W N r 0 l0 Co ct N "V C(D rt _0 -i :3 N U C1 U1 U U, (P `• rt (0 N W (n O� co to S J O Z La ti (D 7 r r n N OJ N ul A N A rt < U, O O V O Ul (P A N la A o rt fi fJ W C cn W W �D A A �. rt W o O (D < V ^ r n N W r N r r rt < (T h fl O V r N r O U, A O� W Oo O O V W O � D r N co A W W ^< Cn A O. V Cl A N 00 A Q) Cl O -h ^n -n < A O r A O� Oi rt (C C V -tiva,N cn a CC) V cn A A cn --1 N r r r r r D CD V AAA A --41 It to co al m O� m Ln to ^ ID I ( A IO W A N O m cn rr A A A A A A C rrrro o vim+ (D M N N N N N N N rt C n (D A A co Cl) W W v-0 Ul N to M W O a cf] O O O O O O (D n (T U1 U1 CD u U1 CD O O O O O O a A A N N r N Z W O A l0 Ql r ^ O N M r W N W 0- R _ � Z N N r O N A co O v Ol W r V r 61 O C C p p n V (D (D Ul r U1 O v C O O O O O O n 7J O O O O O O Z7 O O O O O O I I N tv r F F-• r { F� F' F-' l--+ F� •� 4 m m — - a J 0 = �+ O� CO V rn Ul A W N r-+ O tD Co V O� U, A W N F✓ o -- h (D C C Ul O v D c d 0� "1 v O Z O D D S r r d o rt Z D < C w D n S i� 1 w (t O (D O rf D N N N N N F-' �--� F-� N w A A A A A A A - °1 �'' O ( O rn W l0 '--• N A Ul V F- A (n V o O O O r W A rn co D Z Z Z o (D (D f7 It O O (n C (D (D (L] ( - (o D J = It O rr .. .. .. J v c ('t O (o (D (D (D D - (D (n (), U, (.n cn cn cn v, cn U, (n cn cn U, U, uA F� rn U1 cn U, (n ^ o - o, D D' D c o, D It .. . n fi It - 1 O O (o 000 0 0000000000000 3 N as (D m m m m m mmrn rn rnrnmmmmm mmmmmrn �� �E ID a D cs F o�c �rnmr Do -rr 0 0 0 0 0 0 O O O O O O O O O O F-- 0 0 0 0 0 0 It n •• w C - (� c� F - ( ' ' (n al m of V rn A A A A w W (n ul A cn (n rn (n (n rn A m tD (D D n O N 3 (D C) t-' CA CD D O �-o z O O O O O O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M D rt' < ~' 5-- . C (n Z W It O O o O O O o O O O O O O O O O o O O O O O to O O O O O O O O O O O O O O O O O O O O O O O D O O O N U, N O Z7 --h D (D O O O O W (D N W F✓ F� W N N N W (n lD O C� ,T7 O fD rn rn V (n U A N ko w rn rn V co V rn A A r O W o LD (D It W O F D n �o O W Cn r (n CA A N W tD rn �D V O O O w A �D V cD O CD O N O rn O �o o V of F Ut N 03 N N N V to rn O O io W �o N co O "S Vl N O - S W U m (� - 0 0 rF O O V o In (D O O O w 1- N N N F-+ 1-' W w N w A A N N A a N o . - i , O T a F - F V N N (n co co w (n N Co lD O A rn N rn A V 1 O Q) 7 - h i3 - �' :3 � rn F F-' to 01 (n --j (.11 co (n Ul V F 00 co o N — Ol , W V o (D a ^ ( D C7 rh w v D W v — — F--• — — — — — — — I V rn rn rn rn rn V to v V ,.p ,D N N N N F N N tV N N D a a ( W It D D n (D a w N W N w w F- F w u, V rn V rn Cn ? ' V U W w W N W N W F N W U. F✓ n - v.A V o t - ' V cnw- Prnr��-- rnwcDO'DAo n t- rr F� F - tD �A N N A V W (D V G A to N N Oi O U, A W �D W z co (D It W O tv rF ( D r F r w W C C C C C C C C c C d N OD M N w W W A A W N m D D D D D c 1 . 1 Dorn rn o wmcnw0000F- m00000000 n � (D (D lD (D (D lD (D fD (D -- to o P A co o A A co v A i + + + h+ h z rr d p r r N N N w ul N N F-j W N cD C C C C C C C C C C n J m CT% co 0 o w W U, m o V o D D D c D D D D D D 2: a rn O w W N N A DD rn A (n N O ID ID ID ID ID rD ID ID ID � O C C O CD O C7 ( Z iA ■■ O , D W rn F� Cn Cn V W (n rn w -- h --+, -+1 -h -- h - h - f, - h - h -{, In O "S rr S W N N N W W w w F-' w ^ N Ul to Co F .A W N W W CO V 0 0 0 0 0 0 0 0 0 0 n �l 3 F-- o N 1A N W (n J> co w A w cD o 0 0 0 0 0 0 0 0 v rF C C C C C ^ -3 C C J D D D D D D D 2-D, "D O O O O 0 O ( D S ry -rl -A (D (D (D (D (D A A A A A A A A A A A (D A -- c (D ( D O -h -(, - Al -n --+l J� ? A 41 U� W A 41 OD m O� -+, O� co O� -h o •� ( D C C C C C (n D D C D D V w cD V Co u, V V D V V V co to ^ ^ CT �o cD m m 0 m N W O O� tD (n rn N - F-+ P m � rn (n O (n Do � -- h -- h - A - i, � � � O � O W Co W O A - fi (n A - O - 0000 om F rF F r cD cD — 000O� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 v N C C C C C � � 1:--3 d c O D tz D D O O O O O O O O O O O 7 O O . W O 0 M M N W W W W A A? A I> 0') M .A A M A 3 (D O -h fi - h fi Co C', CD A rn o N C" V Ul Cn -f, o, W Co ' QD (D C C C C C C C C C C D r N N N W r D D D D D D D D D c r--� Cn N .A W F (o rn co co V W N � c:, � C:7 C:) O � 0 0 0 (D (D -- fD lD (D (D (D fD (D rn N W O N o O (n J� F� ,0 1 N V - 1, fi Z C C C C C C C C C C A w rn (n rn A uA a, o" (n US V D D D D D D D D D D (n rn W F N U1 F� Cn rn O F� Cn N � O � O � � � O O O M (D (D (D (D fD (D (D (D (D (D n A O , D V N W Cn W ? A rn W --h -h - h I I E Q1 M pl M Ul Cn U1 Cn Ul CD CD Ul Ul (Tl .A A A A A A A A A A W W W W W W W W W W W N N N N Ul N N N i ^ C (7 T +n p W N O to Co V ON (31 41 W IV H O to W V CTl J> W N H O to . V . . . W N N H O co V . . W N' c'r -i ::3 (D O N N N W C" C l Co Co 0') W A 0 l CD O N A Cn V co O co W co ul co Ol 07 Co N A 0� � to O O N A U oV co O W U T O Z (o H Cn U1 Cn Cn U1 Cn Cn (), U1 Ul (P Cn Cn (31 Cn Cn (n Ul ul U"1 U1 Ul Ul U1 C" m ul U1 Ul Cn U1 (P C Ul Ul Ul (3, Cn Ul Cn Ul Cn Cn U1 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0(D 0 0 0 0 0 0 0 0 0 0 0 0 0 O CD m m m m m m m m rn m m m rn m rn m m rn m rn m m m m rn m rn rn m m m m m rn m m m m m m m m m 7 N _ n o CD p o o O O O O O O O O O CD o O o O O O O O O O O O O O W O� � A T 4, ( 0 0 O o O1� O O W H W A A A� U1 CT 0� W Co A A W W A Cn Ul J� (n W A Cn cn W W A Q\ r7 V 7 O n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD o OD (n -0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD 0 0 0 CD 0 0 0 0(D 0 C . 0 0 0 0 C 0 0 0 N N m U1 N H I - ' H �-' H 1- H N H �-' �-' H O R N (--' O O O O O O O O O O O— O O O O O W CD (T W N W N N H H N W A W N N N H .A N N W C..W N w N w W W A W V A Co N M N W m' D' N OD —J CO lD A W V 01 V Co V N O H O H N Cl) co H (O A m Ul O -A 0� W Cl — O A W H W�o m O W N tD 41' ' 0� �i Co V W N N W CD A N Ul O� 01 V tD N N Co H Ol V H r-' 1-' H W N N CD WA O N Co H A A W O N r N '--• N W W A Cn Cn N N H N H H N N — H — W r-' O H H H — H N W A N N W W � Co O co N JA V tD . m W Ul co W Co W O V H H O 1� V V co co w V N N Cn (-' ' CO lfl Co O Cn V �' O .A 41 V L--' v H to Ol to A o W Cn Co H H o Ol A A co 0� w 0 V �-' A C', Cn co !> 61 �-' W O N O Ul Cn A W co v m O Cl) W V V V V V0� V V V V Ol d> Ul 4�. V VC� 0l V dl V O> M H V V V(3� ::s H H H O al n � .A w N H H W A Cn Ol �A W W W N 6� A N CSl 7 W A W A ul A O C� A N ( V A O V D Cn (Sl V 0� Co f-' �-' tD N .A N -P O O� co A W O 0� A N O N W V . m I--' W W V (Tl W V V H H N Ol U, (D;, W N N ? V Co A W Un O w l U, ' CO co Cn co (V to N A V to A W tD V O W Cn N CD H N 10 Ol V M O W CSl V N Ol Z D !D fi C O Ol N 7 N to Ul Cn V W W W W LD W N W U, O 7 W W Cn CD Ul (n (Sl V dl Cn O - W ( n Co O D v v Ul o 'D Ol Cn [7 C 0 Co N 0 A A to N to O w O H H Ul W O O Ol W 0� W O W co V of (T V N( D A J� - W n N . . V H to (T W V r -h -h fi Cn 4 to N A �' W W a) r V Cn W CD V Qi -h A O W A V V tD W Ul N .A V -ti, O H W Cn Z D H r H H H N C H H — --I H Cn V 0T V (.n CD C-71 �� Oi w O N N V m V O O w 0i Cn to H w� O W O W to lD O w o (n V co n m tD CO W N .A W to W 01 D D O H U1 V H N W CT J� O tD Ul Q N W N co C co t0 A H (n a1 Ol Cn W V O W C O V V Ol n CD CD N V Cn N -A W ID (D (D to tD V O to (D O V CO A .A W N W (T N -i O Cn A w co W O v W H H H H ^ N C.) W W I - A O O O w w N N N A w W Cn H w w w N N W O N N W N N N N W H N W m 00 O N H N N H O O O Co O O O W O - H V H CD Ul N CD O V w N .A N O W O Ul H A Cn Cn 01 CD co W w O A Cn N V o 2 I V w d> N co O N O O O O W co CD — I O A W V V H M O Cn Cn N O ul H N Ol co W co A O Cl) V W O Ql N O O v C C C C 7 C C ? a O C7 C C C7 A W W W W W W W w W W W W W W W W W W W (D W W W W W W W W (D W W CD cD (D (D A W W lD A A p - (D LO O co 0i m 01 .A fi - -41 -h N Gi 0� co O) 41 J� O co d1 A N W W A -h N Co A 61 U� W -T N W W --h O N N O �• (D C C C C C C C N M U1 A Ul -rl 4� :3 = :3 W -fl cn A W W W W Ul -i> w W A W W A A w _+ A A ul 0l Ul A= Ul V 0l Cn �-. CT O C7 0 C Cn .A V Cn 0` V Cn V O (3 -A CP W 0D to t0 O O D Oi to A W Ul H C V W Un C to V co a P O CD CD (D (p (D (D . (D �.. co O F H H N -il -il - h - 'h O O to V m O V H O CTl N N V O1 W - - fl O W w Cn Cn N W0) fi V co O -11 O1 V lfl H C) ' I Ol m (31 W w r r 1-+ H H Ol Ol F� W 1-� H 01 H H F-' W 0) H F-' H F-+ 1-' H H 0� N Ql 3 m o H O O 2 i O O O o O O O O O O o o O O O o O O o o O O O O o O O o O O O O o O O o O o CD o O o o O C 17--3 C C C S i i i C i ' ' ' O O O O O o 7 7 O O O O O O O o O o O O O o O O O o O O O O o O O H O O O O O O o O p CD CD O (D (D (D (D O H O H H H 1 H O H H H CD (D (D O O H H O H H H (D N N N (D N W W W (D Ui V N Ql W Ol --h - h -h fi CO H tD w H .A H O V N N O t0 to N O -h C-71 W H �-+ CD O N OD -41 A -A H - Ol O W `'-' C (D CCC _ � I F--� H 1-� {--� H H � � H F-� H H H H H H H N H F-� H H H H 0� W N W N 61 Cn O 0 C O O S 0, CD W W H V Cn O N �--+ (n 0 0 W A co to V V W O O to 0� O1 D A CD U1 m N (31 ul N W w� -- h �, M M H A Ui W O A Co W Ul CD Co W? W -h cn ? O to W Ul N ul A Ul o N O Z v I C C C C W C I W CJ N w N 0..1 � CZ 7 N N H r V N fV M N H N N N N H H N C 1-- H N N N N N N A J� A W CD O> U� Ul N . N co Ti O C O O H W N V N H . . W Co N C (D (D W V N N W CD O N O .A (D Cn A O cD (D (D (D O V O O -P 61 T -h -i, -h H H Ol V (n N O W co (I't H V co H Ol m —, t0 Cn V W O Cn (Sl -h CP Cn lD I I CD C CD CD CD O O O O O O O O t0 CD CO 1p 1p l0 (D (D CD Lfl m Co Co W W CD (p Co W W �J CD V Co V M CP A W N r- O CO CO `J Cl Cn A W N O CO OD V al Cn A Co W . N O CD co OD V m Cn A W N O co . al Ur fi C3 v C� 't O pl al al Q1 al al --A V V V V V W W m W Co 00 m� <O lO lD CO CO 0 0 0 0 0 0 N �--' �� N �--' 1--' N N N N N N c + (O J co A al V Co O N A U( V CO O N W (P � W l0 r-- W A m V Co O N A CP V 00 O C-� W (P D1 U3 (D r-- N A V - Tl Z CO O _ N -3 Cn (n (P Ul CP m Cn Cn Cn Ut Cn (n Ul (P Cn LP Cn U, Cn U Cn Cn U, CD (P U Cn Ul (P CP (P (i (P Cn Cn Cn Cn (P Cn Cm Cn Ui (P Cn ^ . . . . . . . . . n N CD CD CD o O o O O CD CD 0 CD 0 0 0 0 CD 0 CD 0 CD CD CD CD CD CD CD 0 CD CD o O o CD o O O o CD 0 CD CD CD 0 (P o mmmm rn rnmrnmrnmmmrnrnrnmmrnmmmmrn nmrnmrnmmrn AO h C _ 0 0 0 0 0 0 0 0 (D 0 CD 0 0 0 0 0 0 0 CD CD 0 CD 0 CD CD CD o O o 0 0 CD CD CD 0 CD 0 0 0 0 CD (D 0 CD C) o- Q1 CF) 0') A -A rn V al A A A A Cn A A A al w c i Cn oll W W A co N N (P Cn A Cn A al A co A Cn m CJ W A W W W W (7 V r) o n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD W (>, O O O N O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O CD Cn Cn Co A A Ln 1-' V CJ N N N w N N U( W Cn N O V ry N N ry A �--' N N r-- W A 1v W U C N rQ N W r-� W A W �' W A W W W Ur O N a> CO O A O CC) f-- V A O CD V W O] O N Co U N 1--• W U, A A O W J-- N co CD t-- O t-- A A O fi O1 A CO N N CO O O al ' CO IV W V (n W N W 1-' W ' Co ' Co V W N al V W Ul — A W N al W A ' CO A m A CD i--' r-' co W W A rV w A A N N N N (.3 N N N A t-' W W O F-- N N N w I--` (,3 N— N W W — — — — F-' r-' � J C 0 W Co W V O CV al A N of Ul N O� lD A A Co W U, r-- O CP � C--- A V N (T O al al N W O Co W W A N C V N i W � V al A v V V v V V al CT CT V A V V V al N V v V V V v ' N r W W N r N A C1 al Cn A ul A V W (P W A W Cn OD Cn al CD CD A N A A al N a1 V Cn W Cl V Cn (P Cn 03 .O V V W al O Ul A O N Co O al W A co V 00 W Cn al V co O Cn al V A O (P V U N CD CO W co W CD Cn O Cn lD (O a\ n Co al N A CT O Cn N W rV N A - _J co W co 0T CD Vl (P O V A Ul V O N V Co W N N CD N CD W Co V N al to W f-- A Z ID p w N N — J-- r-' r C i-- (..- �' r �--' �' F-- �-' �-' �' C �'.' a 7 A N 7 7 m A N V Cn CO al co A V m N m A A dl O CD co l0 D7 N Ol N W T Ol (P O of V CD p p Ui N p C7 C7 CO Cn CD Cn Cn A W p A Cn CO CD O O W Ol r A (P O (Si N r-' O co r) (D (D (D - CD (D (D . . (D rp r-. -h -h -h 00 CT -h --+, -h r al Co m O Co 1--' Ol fi CD CD Co N V A r Cn N Co ' CO W A V �J V f W O (n --h N Ol O Cn V A Z G7 C C C N F--` W N N N N 1 C 1-- I--' N ! N F f-- r N 1-- N 1--' N N — N 1--` — F — C h - — N r — — n 7= 7 co (P 3 7 7 1--+ co O 0D O A m N Cn W co W A V W A O N W N Cn O m W w m� N IV Ul r� W W CD C7 (7 N W O p p !-` A r N W lD C-- Co CD A 0 N Cn O co W N O� W CO 0T U, N A m U N CD O O co al CD O A Z fi ---h - N N -h --h -fi A Co N O V 0T A A --f, (D A A N A (D m N N O Cn r V tD CD (3 N V Co A -h A N CD ' CO co W (n r-o C - CD C) CD r C ' l O O O A A O O O W N CJ CJ t W W N O N N A A N N W N m 1--i A A W A N W 00 N W A O N N N N N co ^ O O O O . . O O V . . . �A N . V O . 1� W lD . . O W . . O p , , V U7 O N O . O . 1--' . W c" W O O O A Co O O O V A W O W V 1-` 1--' O a) N V F-- (T Cn OD (P (.n LD OD O Cn O N 00 A �' A L, O W O F-` to Ul A C C C C C C C C C ^ ::s 7 Z i3 =3 p -� O CD O p p O p C7 p (D :3 (D W (D W W cD (D (D GJ CJ W W W W W 00 cD W W W (D W W (J 0 A W -4 .) r -- Ol (,3 W Ol 1 W -- W G3 W W W W O cD N N A co D1 Ol A m A ao fi Ol CD A - al W Ol W O U� A N A A Ol fi (T3 O N -h O, co Ql al 6l 00 (D C C C C C C C C C co 7 W 7 W W 7 3 7 A u, Cn CP A LP A (3, = A Ol A 7 CP M U. Cn al 0i A W A A cP (n CP Cn W :3 (P (n (P CP Cn m ^ u C7 O p OD W CD (7 p N al N O W O al O C7 lD N Ul p N 1 O Ul m Cn 1-' O (P W C7 N 00 N al C7 O V O N N W \ CD -- h O fi W -A -- h -- h fi CT V V Co (T O A r fi W W fi o 0 A �J A al Cn O W CJn _J fi �l Ol O W fi N W Ol W ry C) I W r r W C-� W r r r r Q\ r 1--• Q1 r T al r-� r-- r-- r-- Ol CT — T r W — — r al C7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . � Z7 r O O O O O O Cn O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O � N C r C r r C C i r r r i r C r i r C r r r r i r i i i C r i r r C Jv c - f 7 0� 0 0� : 7 0 0 0 0 0 0 0 0 7 0 0 0 7 0 0 0 0 0 0 0 i 0 0 0 0 7 0 0 0 0 7 0 0 0 0 0 0 � � lD O (D O O (D (D (D F--� F-- N J--� r--� r r (D O — N CD t-- r - + r - + r� , r O (-- i--• rD — I I I (D J--+ r-- �-' �-+ t-' r✓ � 3 (D -h N fi W V --h -h -� O Ul 00 m V w N v -- h W A O --h O w W r-+ N W W V W V W fi m W Cn W fi O — W O N A p C C C C3 CD CD O (7 p CD W A lfl Co V CP Cn A p V V Co W V V W V A Cn Cn O Cn V N O A V A W CD al Ql N m V 0l ..� CD O fi - - C. Cn V A — W 00 W --h W V N Cn Cn V W Cn LD I-' A -J O JV A N CJ fi CO W W V Ul F-- O Z_ 7 13 :3 N N 7 7 7 N W W W W W W A N N W W N N W N) N rV W N CJ Cl) W N W N W N) 7 N ry w N ry N CD CD CT I O W O (7 p p V V tO M A W 1 - ` O p CD W al m N V F W W W 1--' 0 CD U N O A CP W Ol C7 O w O 1 N V O -- h -4 --h Cr) O -h fi fi al r W OD W N UI N fi W Ol A W CO N W V Cn Ul CD N CD A (..W Cn O W W Cn fi A Ql CTn N O W (n I I r r r r r r r r r 0 O ^ D C") �7 +n W N r 0 10 W - fD ZJ C Z rt 1 D v. w ul cn c cn r n N W cJ� O� c D �D • O fD cn cn to cn cn cn n Cl) 0 0 0 0 0 0 cn o mmmrmmm Aoc+ N co 0 0 0 0 0 0 v C7 O r H n V O n 0 0 0 0 0 0 w c n CD 0000ro cs� rNCnrnwv W O 0 �O lD .A �o It 7 csi O Oi O, cT A N A UT Cn W �7 h MMM cn pl r 4 n N -O Co CD r A t0 V w W Ol r\3 N r N ,O Sl r A N N r h r W r N r Co M Z D (D c+ N C C C C a O� r L.1 0 0 D f) ADO- hfi -h-41 ' Z r W C C C C C V O C C 7 r ' ■ N W � 0 D cD fD D N V O -h fi fi - w r r r r N W O O O O W ? 0 0 0 0 l V 1p O O O O C C C C C C C O v v CD CD W W !D M N fD LO Cn 6l C C C C _ ,:7, w C C E W W C O O D C (D CD fD (D Z O r -i, O r r co W r W n 0 0 0 o C, o v cn ccCC O O 7 C C W OJ 000 d (D r r- CD fD cD CD E3 (D 0 ID c c c c I N C C 7 C v tp o CD CD 0 � . Co W !D CD (D M Ql Z C C C C I W A C C C C C i r O O Cl D O O cn Ol D M M M I ^o m mznc n rcnv �Q N N �-- p O C 7 Z O 10 Co V 01 Ui A W N O tD CO V . . W N . . (+ _D d to c - t S < C w m to 's -i -1 n (1) O �' o O rr (D �. m rr < J a m v. (D (D CO 1--• N N N N N N N W A J A A A 4A J� r m d S T J O rr C - 3 CD Z Z (T CO CD r N A CT V r -A U, V (D O o O r W A CU (D v S �D a (D 3 3 �� (D ct C (1 ct O O - 0 to C (D (D CD rr _�. CD r O It (D C It D (+ O O CD V1 S N Vl fl� a. CZ m V V ( 3, U 1 CO Cl OD W N F--' F-` .A lQ OD I-' V N V 0l (S� �l Ol rr < rr C1 m 3 (Sl N O 7C n fTl M I Lfl O rr W W V c" co O CO 1-' lfl N CD N CTS V F� O O (T CD N i--' m m -. .. .. m V O O C n 13 V CD Cn CD W t--+ " Co co W W C71 (T co Co (T A F N M CD tD (D D n F A r--� f,7 I--' O rr 73 .. — --j O 1-' C C O In 3 (D n �-- CO O V ci' p D O � Z ^ -,> < I--' C N W N N W N N W N N W A W N N N W W N N N O N (< C N D Re U, C W N 4 M V OS 01 O V r O O m (O OD O v CO U N co W lD V I--` W O CTi aT A co N O CO co O W V m N -A lfl !n (7 O O O ➢ W Cn (D D U) -fi (D - • O O O N ~' 27 p O O O O m -5 1 O O O n D -y L A CO m N N F-' 1-' N N N Cn - m rr O I-' F� ➢ p (D O 1-' 3 CT O N N i N O Cn W C71 N 1 N CO U� CO W Ol .A CO A W V A co m' Ul m W N I I-- CI O� (b V W V O CTS lD (S QJ C3" W A fi J N N O W U1 O (n O O 1 r O O V 0 ( N O O O (D O F C C1 N n fi < 0 J d p W N 1 N W O O N 0 CD v (D m (n N N 01 W W (O N A D O l0 lD rV A A N w W co 1 fi n fi v ➢ E3 cn GO d d 01 (n V V V V M CO V C V r-� A U" a) --I ---i W 7 10 — F - ` F - ' — — F-` 1 -' 1-' F-` 1-' — I--' 1-' — 4 1 " " — " F-' 1-' 1-' N N F-� W t F-' 1-' — n A A A � p�� V V V V V o O V A V CD .P p p V (� rr co M 01 C) Ol 01 C71 (T CO CO CO M C O lD CO OD d> CO Cry M (S Ol Co � -t co � a r m 0 0 0 0 0 0 0 0 0 0 0 0 0 O O 1 .0 CD co V V (T CT CP 11 A W W N N O -h ✓� O .A CO W V /-� (S O .A co N Ol O .A co W OD N 01 O A M a N N O CD 110 OD V V m 01 U1 A A W W N N I O O - 4 , -- h 4A co W V I CT O� CD N 01 O J Co W (b N 01 O A CD W fi S O O O O O O O O O O O O O O O O O O O O O O 't (_ D O O O O O O O O O O O O O O O O O O O O O O fi O O O O O O O O CD O O O O O O O O O O O O CD m �' fu lD O O O O O r r F-' — F-' F-' — F-' t-' t-' F-' F-' r N N N N m n < k.0 1 0 l0 Lfl lD O O O F Y--` N N W A Cn O1 V (D 0 0 0 0 7 l< CD N .A V CD N Un CO W co W CD m A W W V 01 O O O O F-` N co N W N N A N W t W W W A A 41 W N W 01 W N W co V CO V t-� co O J� OD CT OD Ln (n W 01 �D 01 V p7 O Cn M O V V V J� W CT 01 -P Lfl V CO V O W 10 CJ O E _ N h Z N W N N -r, r\.) W .LA -A A A 0 CT M U, CT W V 0, m W - h D1 � V 01 O CID N W W W V UD " N Ol co m W V A O Lo N A co V 00 (T W 01 co O 1-' ' CO ' CO A co A V A W F CT V O C C C O1 7 n 7=3 :3 O C Q\ C D A A 01 C c C7 O O C D C D CD C7 O C7 C7 (/� C7 V `--+ co (31 V 01 w m m m m m m m m w m m CO (n W m Cn U1 W W Co O -h -h - h -h -4 (}D 0 0 0 0 0 0 0 CD 0 0 CD 0 0 0 0 0 0 0 CD 0 0 o n 0 CD CD 0 0 o A o 0 0 0 CD CD CD CD 0 0 0 0 0 0 CD 'a 0 0 0 0 0 0 (n o 0 CD CD CD CD 0 CD CD 0 0 0 0 0 0 I dl CT CT m (T (n Cn Cn Cn Ul Ui ul Cn ul Cn A A A A A A A A A A W W W W W W W W A W N r O lD OD V CT Ut A W N r 0 lD CXJ V 01 Cn A w N r o l0 (p �J CT U' A w N r r 0 . V . A Co N �, - 0 - :3 CD W W l 01 V V V V V V M W W Co CD M Co (D Co O O O O O O r r r r C+ U� CD Up U1 Ui M O1 M O1 O O N N N W U1 C31 w (D r W A CJ1 V lfl O N A (n V CD O r w (n (T co CD r N A (T V LD O N A Cn V CO O F-� W r N r r r N N r r r r r D' J1 O CO V m ul 41 A w w W N r N W Cl N r N A m O O W N r O O N N V Cn A A CO V W N' ct < Ul O a, co � w m A O r V U1 V W A r V (j (P UI N (O CO r N Cn OD CD O 'J CJ1 (n A V O A V (T V V Ui '-� Co N CD A O c+ J� A N 01 O CO A N w LD V Ol O� v (n Cn (t 01 N O Oo CT V A V (n r co Cl.) O` A N O -1 CO N OD Cn r O� 01 Co t A CD r r n V 7 O n r r ^ D r (T m ul A w W w N N N r r r r r r r r '--- r r N W m O m (n A V O U U, A Cn CT Cn w N W W r N O N A.w A CT A A Cn r A N V r w CD W 01 ("' O W CD co N O '--- m CD r r co 01 r Ol O m \O (-' r N A V V V M Cn O O N CO V co m Cn A lD N W _A V A w W A w N CD m O w 0S w 0 CD N CO O V V co r O1 ( 1 CD 0 (n U( Co `� r Ol CD _ D 01 V (J1 (S V V CT V Ol Ol �1 O1 W N W N N A U� (j, CT Cn Cn A A A A W V1 A A W A A A A A A N W . \ lD O co C (T CD V m co ul Cn N m V IV O O A A CAD N CJ Co -A O 0T N r V co to 0T O Cn Co r A A 1V W �D r O 0 cD 0 0 0 0 0 0 0 0 CD 0 0 CV W A C.W W A M 01 01 (n fV r l--- N (`'1 r r r r O r N 8 0 C N Ch N r W - A Cn C-71 Ol N O . w r r N O O W LD Ql N V co (P CD .A r 0 Cn m m ul (D CO ul O Cn V lD W co CD w v Q N rrrr -- r' ter' �r�-- r'�rrrrrrr r OD r r r r r Ga w w W W W w W Cn 01 Cn m W W W r r r r r r r r r r N r r r A Cn r U1 W � w N W r r r r— r r r r r r r r r r r r r r r — r r r r r r r r r r r F-- r r r r r r r r r — r C w W w W w r r r r r r-- r r r r '--' r r r f-- r w W w W w w tV w w w w N W w W— r w r r O O O O O '-' r r r r r .-' r A A A A A O O O O O O o 0 0 CD O O O O O A A O A A' r Cn Cn Cn (n CT - 4�1 A A A A A A A 01 CT m m CT A A A A CT' (n Cn Cn Cn Cn (D Cn (n Cn (n CO (n Cn Cn m 01 Cn m (a) A A ' to ct W W W W W W W W W W W W w W w N N N N N N N N N N N N N N N N N co V V al cn Cn A A W W N fV r O O CO CD co OD V V m Cn Cn A A w N N) r O O CD m (b v V C51 (n cn A A W -P V N� C,O w CD N V r O Cn CO A w N V r 01 CD (n Cfl N 01 O w V r A (b N ul t0 W CT O A co N (T O (n 110 v m C* w W W N IV N N N N N N N N N N N N N N N N N N N N N N ry N N IV r, 't - I D O O O (O l0 CD co co ' CO (D V V V V (T m (T m (n Cn Cn Cn A A A w W N N r CD(D CD CD OD v V 0T (n (n A A w N �+ N V W O V J� t� CD OT A r CO V A N "0 V A r CD m A N (D (n N to W V r A w N cn Cfl W m O A co N CT O Cn CO O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ' I C i V A F co C, all 10� w O A A (D U1 N co Cn N CD m w O O A O 0 0 0 0 CD CD CD 0 CD 0 CD 0 0 0 0 0 0 0' Lo -D d O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C 01 .m O O O O O O O O O O O O O O ' C7 CD I U1 Cn (n (n (J" n Ui (n ul * L" (T (r CT (T CT CT Ch O1 CT (J1 � � Ol (T O1 T m O1 0S 0T V V V V V V V n co co C w co w .. V V co co co CD 10 CD Co CD 0 0 CD r r r N N N N W w W A A Cn Cn M V CO CD C) N CO A (n V O] O r W A m Cp [L to CO m ON Un -A A w w N N r N r N N r N N 1 N A (n O N N N r O CO N N V V A W M W W M r W W N Z' N w w W Cn �I m A N l0 O m A co O r CD ul A V A r 0T Cn fV -1 O w O r fV r IV w r A 0 0 0 A co m O co ^ m CD W Cl) N co CT 00 W V 07 . m co (0 O O .m A V CO Cn (n O O 0T r CD ' N r A OD N r O V A CO m Cn V w O N w (T CT 1 N � Z (n (n w W w N 1V N O� N CO V V O1 w W U J Cn Cn C DC D dl N N Cn r W N N' N W CD V N co V O CD V N O A O N co N al Cn O U, C, N V A N co U� V r A Cn r W A r r W CO N A O . m (n C, CT V O1 W O A O W (n Cn V A N (n LD 01 r r O N CO O co N r O w m O co W 01 V m(31 CO 00 r r (D Cn r N O C C C C C C C C C C C C C C C C C C C C C ^ 7 7 7 7 W w N fV N r r r N A W w (n r r r W 7 7 7 7 7 7 7 n n 7 7 7 7 7 7 w 0T 7 W Cn N N to N C7 C7 O (77 (D N (D (D (D (D (D CD CD D C7 O C7 O C7 C:) C7 C7 C C7 C7 O C7 O C7 . C7 I (D (D M N CD V Cn 01 A N A r V V O W Co r Co N V N (D (D CD (D (D CD ('n O (D M CD J. N -h C V r co U, Cn (n Ol A OD CO N A CO r A A N CD ' �• O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O (� ' . T7 O O O O O O O O O O O O O N O W A O O O O O O O O O O O O O O O O O O O O O O O O O O CD O O O O O O O O O O O O O r O r w O O O O O O O O O O O O O O O O O O O O O O O O O O O I rnrnrnrnrn �D Co V � Ui --h fD U C - 3 t - u --1 :3 (D N N N N N v c+ -T, � N A Ol V l0 � Z lf] . p H N Z3 y r CD ^ D N O l0 O 07 ul c'f < CP O . . N . . co O C lD r O V N It C7 O- A r n V n O n D A r 6i 0� 01 O� M c < cn V O Cl O O w -t T [3'� co N A w N ..i r Ql d> U cr, 0 v < oe n V N N N N -41 Cn m N p V -i� D h < W W N N r v C p r A O V Q r r r r r N rn rrrrr --� r r r r r C W W W W W n 0 0 0 0 0 n� cn cn cn cn cn N -3 c�D r r 0 �a �o v N (3> O w V O V m Cn c W W W W W N N r r r v wovwo �+ CD CD 0 CD o ct c V1 ID "O 07 W Cl) 9D N p � w O d n O O O O O cD C7 (T U U1 G 7 l -_j Ql pl Qall O V C. r o �O l0 CO �D Z r N V r r CD � O : _ to Z CTl Ui Ui .P Ui fi r .A Cn io ' CO w o C C C C C I C C C f CJ O C] O D V1 (fl !D CD fD (D (D v = O O O O O [7 ;10 O O O O O 77 O O O O O I I I l 4- 4- 4- 4- 4- In M 4- M f- In •-I N N Lr) d O In U Q) a) Q) a) Q) W Q) a) - O .-1 l0 N O r1 O 61 O O O p U n � O U CD M d O M to C C C O C C lO �o �n d )n rn d rn Z p 4- 4- 4- 4- 4- 4- 4- 4- -n 4- N f lO rn W In — OD to I- C') D O O O O O O C) N O 00 In !l- r\ M co p d N d In C • N C N N C\i C p ZD W 4) O n O 4 - 4 - n N CO M M f- — CO C) d 4- 4- 4- 4- 4- 00 N E d �D a) a) CO 'Cl It d M Cl) d Cl) M co co Cl) a) (1) a) Q) a) N r0 L O O C C 0 0 0 0 0 0 0 0 0 0 0 0 C C C C C o M r r Z r r r r r r r r r r r r=D ' N d O O O O O O O O O O O O O O O O O O O O O O U CD F- O O 4- 4- N Co d (31 co CO N n h 00 m L .-. . Q) 4) . Q) Q) 4) a) Q) V1 O In In O m�o Co Cl) N d m d r� )n In M r+ o Cl 0 0 o d .� ..i m 01 = n w 1 w (31 m CO 1-- n n n C C C C C to =D 7) =D O_ T O O 4- 4- �o w .D �10 00 00 �o N 4- 4- 4- 4- 4- O N C7) rn U N d d d d d d d d d CT ro a) C:) O m 0 m CD 0 )p fl- p C C C C C C C CL L u = =D = 7D = =) =) 4) J--) O O O O O O O O O Cl) O M O Ol O M O O CO M O I- N E U W 2�' 0 0 0 0 0 0 0 0 to f-. O M N M m N N O M O t� a -) L O v) 4- 4- 4- 4- 4- 4- 4- 4- N C 4- N 0) r1 rn )-D to 6) Co n 4- U a) a) a) a) Q) aJ Q) a) a) - . Z O O o Cl O O O O N O) O 61 .-i 10 01 OD 01 p O r-+ N C C C C I'D .D C CO 10 f- CO rn O C CJ (=> C\j CD U p ::D p N N '-4 .--) . . N Q N N N ti Q p 2m - 4) Q) 4) Q) a) a) a) �D 4- 00 N W d 01 .-� Co N �o d C U o O m O O i=) O 0 I-- �D C) d 0 O )n In O N �t d co co C d M rn C UO cY L 1-) r0 4 W �--) 10 .--� o CO 1O n to O n -1 d CO d rn in lD r-_ N M L Z U 01 In M lD )S) O M N iD N O B m d O) N CO M d i0 O d u7 0 N 1 .-� M C j r-, In u\j CO d m M d 00 In 00 rn If) n 1 .0 r lD to Vl L r r-1 .-1 .-� .-i .-1 N .--1 • N N Q) Ol C i- M C In E d r i i N N C\i N N N 61 Ol N I� 61 I� t� f� iO CD �o CD CD . E 0 CO o Q D_ N U r n L Q) O M r, N M Ol I� O n O N CO 01 (7) CT) co O '--� Ol (7) d C- C 4 - G a0 d I� CO d C) in �D 0' 0 CO LO CO N N rn d CO o N N N - 0 Cf N N N N .--) N N C) 3 0 0 0 0 4- c .--I r- O O O O 'L O l0 O rn �D M f� O n O1 d O1 O .-� r-_ , 1 ID O O a D r C r N N N O-0 E r --) O +) O f� G) M N Ol d CO M 01 m o to d d 00 lD c o 0 c 1 3 t N M �D CO O m 4- 4) Q O r1 01 o fr-_ O r` n d M co In rn lO ao O .D 11) lD In Cr 7 L O m M M (\j M N N M C7 N U O O O W '.0 O O O C) 4 .--f V) O O CD - - C 4" N . - rn a r Q o 0 o E o O o 0 o CO O O o O O O o O O O o O o O o O o , ` O Z v N C O O O O O O O O O O O O O O O O O O O o O o 7 74 � O Q CO O O O O O O O O O O O CD O O O O o O O o O O In 0- r Z L N U 4� f- U co U VI O H D r-I O O Q O H N N E L -C Ol .--. L N m w d In lO t� In In d M M d d d d d �D t0 CD iO �0 �D In • C r U U F- +-� - O 0 0 C7 O 0 0 0 o O 0 0 0 0 0 0 0 0 0 O o 0 O O 1� W H F 2 W 0 �4 d H '' Q) 4) � W W W W W W W W W W W W W W W W W W W W L1J W CJ O1 _j w wU]C c:> In E E E (D E3 0000000000000000000000 _rD V) ro N O) O O rn In rn In rn �n I) In in In � In .n in in ID c o s t v o rn n In rn C) F- l� 1� CL C L.- .- .. 41 +) E C 01 � M al Q) p U 41 Q) O O O Ol f- )n U) CO �D L Z Z C a) O -- +) F--- W L - ro Q) Z L a--) D L Ol 00 io d M 41 y> N a) - ro O N d d d d d d d M N - . a) J--) C -0 � O J--) U !- )- F- L N a) r0 7 > t L 1- VI ro d + - ) L C O r L O 0 O r0 r 3 V) Q CL O V) ::D 7 Q) `1 O r N M d' in to f W O1 O r1 N M d In lO f� W O1 O r CD V--) � "7 U d. N -) U U U Z W W O CO ID M n 4- t- O 4- m m M M m U Q) Q) Q1 Q) Q) Q) Q) Q) Q) U Q) Q) Q) Q) Q) Q) Q) Q) O O O M 61 d �D O M CD n- O M� CD CD ^+ N O O 0 0 0 0 0 N d CD In -+ D O O O O O D O O O O O O CD Cn N O In C N CD CD m C I n Ln 01 d �n Cn = _ _ M N N N N O O = � O= O= O= W r-1 LD rl r-1 ri r-i rl .--i r W ::D Z p 4- 4- O m '--1 In 4- Ol o M O 4- d co d lD • m U (1) N (D Q) Q) (1) Q) Q) N (1) Q1 61 •-+ m O m O O W ,D M Lo O O O D O O CD 'D N M N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .-1 _ _ N .--� � N C lD � lD N _ lD � _ N lD f� n = _ C C _ _ _ •-� •� •� • --1 r-i = _ C _ _ _ _ _ _ _ _ _ _ t-- 4- 4- m o r-i r- M In �o d m CD r- 4- 41 E M Q) Q) M d d M d IT d In M M M d In In M Q) Q) Q) Q) Q) --� Q) Q) a) Q) Q) a) Q) Q) 4) In In O �D �D 41 M D O D - O D O cl O C - C - 0 0 0 0 0 0 0 m D ro ___ o o? o 0 0 0 0 0 0 0 0 0 0 0 0 0 . o c__ coo _ o c_= c___ = c o o r+ 0 0 N a 0 0 0 0 0 C) 0 o 0 0 0 c) CD 0 0 0 0 0 0 0 0 0 0 0 In 0 0 0 0 0 0 0 In o 0 0 CD 0 0 0 0 0 0 0 af . . . . . . . . . . . . . . U cD CD O �D .-i �-+ •-� - .-1 - - - - - l--) - - M 10 I'D lD Co �D M � M M M M CD lD •--� •-� � •--� •-� O a 4- L- 01 M N lD cD I\ O M 4- 4- f� n 4- I� 4- 4- 4- 4- 4- 4- 4- 4- 4- lD d N O Cn L. .-. N Q) Q) - - Q) Q) Q) Q) Q) Q) a) Q) Q) Q) Q) O D O D O O d m 01 0) m M M ID 01 '-i N d CD M O O D p M O d 0 0 0 O O O O O O Cn 01 .-� O _ M d _ C Cn 10 lD �D d cD lD I� n In CD CD I- In d = _ _ _ d M _ M 5- M M d In d N O O O O O U Z O O X 0 0 0 0 0 4-- 4- 4- iO m 4- 4- CO N N N CO O O N N m O O N m iD 4- 4- 4- 4- IT N 4- N 4- 4- 4- 4- 4- 4- 4- '1- 4- N d d cD ID p1 0) Q) Q) a) M M Q1 Q) M d d d M d d d d Cl) d d d M M Q) a) Q) Q) Cl) M Q) M Q) Q) Q) a1 Q) Q) N a) N M' Cl) co M co O O O (:n O X 0 0 O 0 0 0 0 0 0 0 m 0 u 7D O O f m m 0 In O to f"-I O r� r� O O O O O O O O m m r� c) 0 0 0 0 0 0 0 0 0 0 0 0 0 U W d� O O O Cn r, d 0 Cn rl I� In O - I N O N M M co O cD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .i O O M Cl) co M O M N N N O Cl) C`) N M co co O O O O O O M IT In IT In C) 0 0 0 0 0 0 C) 0 0 CD CD 0 ri .--� .-1 •--1 .-1 .--1 ri .-1 .-i .-1 .-i .-1 r-ti r-i r-1 r-I .-i .-1 .-� r--1 --1 .-� cn 4- 4- O N N CO 4- ti 11] .--1 m 4- 4- d n M M In q-- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - Q) _ Q) Q) Q) Q) Q) Q) Q) Q) a) Q) a) Q) Q1 Q) a) Q) N 4J Q) Z O O 01 O CD cD O cD r1 .--I N O d 0 N co m 0 0 0 O O O O O d In d o �--� 0 0 0 0 0 0 0 0 O O O O O C = 01 01 lD = ,-� I n � d = O � _ CD O d CD C = _ _ _ = _ O In M �D U O ,--� .-� N N O M N N N O M M O N M M M 0 0 0 N .-i 0 0 0 0 0 0 0 0 0 O O N 4- 00 01 4- N f� d 4- 4- 4- 4- 4- 4- 4- 4- m O d N N 4- 4- ,--i Q) Q) 41 Q) a Q) a) Q) Q) Q) Q) a) a) N Q) 0) U O O ,D N M I� O N n d Cl) O d t� M -, t CO �D 0 0 Cl 0 0 O O M d f� CC) 0 0 0 0 Cl 0 0 0 O O O O O _ M In .-i O 5 In d In M s N •-� S N M �D I\ = _ C_ _ S_ _ = _ lD N O N m s- _ _ _ _ _ _ _ _ N = N N W� O: O O .-1 .-1 !-1 Q) O d O N lD Cn N m 01 f� Q1 N m d O 1� N d d Q1 O Ol r--� M CO d n '"'� O O1 I 'D Co N I- m U Cn CD N m M 01 � M M CD N 1D M m lD o d cD m M cD In Cn O CD N N d O N m O1 . r QO Cl) f� O d M CJ N N CD M In In co CD O O O In m m M M f- CO m • "'� "'i N N N C"7 Cl) d I n Cn .-i r1 ID I co 10 .-1 ,D to �D �o --� - - - - .--1 10 m V7 d Q) O CD m m d d N Cn O o M d m m Co O In N CO In Cn O�o In M m m f Cl) In m lD Cn f _ N t- n O m N iD f- O n In Lo ID ,D O m iD N m n 0) In r- n 10 N co Cl M n N cn I\ Ol N m m W r� i 4- i C1' CO .n co c) d d d d d d M In d M d d d Cn In In f- Cn ,D d N N co N M f� m f- n m I- n r` n la .--1 In m N d N lD O> m In In I\ d u, m lD N f 01 O m O m m d m t- O N Lo CO 01 Cn k.0 Ch Cn N Cn 01 N _ .---I O N d N d N M lD �D m CD M d CO In CO N Co In �D M O r--i Cn In CC) r-1 N O O y.> N N N M n m CO m 01 O f� C7 N N �n co M d d N d f n m M CD lD 01 01 in Ln In m d N I O O O O O O O O O O O O O O O O O O O O O O O O O O -I .-) N M M " N �f] O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O Cr Lo m O O O O O O O O O O O O O O O CJ O CD C7 C7 C7 CJ O O CD C7 CD O CJ O O O O c O c 0 0 0 0 0 0 0 0 U O .ti d m m Co In In CD I, Cn I n I n In Cn In Cn Cn Cn Ln Ln In Cn In In 00 CO CO m CD in iD Cn CD Co m m m CO m m C Cn In • O U 0 0 0 0 0 0 71� � - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = m N i-� O d \ W W W W W W W W W W uj W W W W W w W W W W W W W W W W W W W W C> W W W W W W W CD W W W W r- O Cn E O O O o O O O O O O O o O O O O o O O O O O O o 0 0 o O O O O o o O o O o O O o o O o 0 N . U i u) in ,-a r-i r1 - .--. .�-. .--1 .-� .-i .--' - - r-+ rl ,� Cn in Cn In In in In In in Cn in In in In in LO In = a) H O r f-1 O t m n o d N 0 01 lD t� d N-I 01 m In In M -I O m r� In d N 0 6) n CD d M - 01 m lD In N N N N O O Z W L n co m � + 1 � � .-1 O O o 0 o O 01 61 0', 01 01 01 a0 m m CO m co m f� n n n n n cn CD Co co CD � In Cn In Cn Cn Cn d M M a) = F-- d +� .� N M d in CD f� m (7) CD ,--� N M d L O_ Q) `� N M d In f - m (7, O C) d n �O 1� m 6) O N M d n tD f\ m D• O C7 d' U O N N N N N N N N M M M M M M m M co c") c`) d d d d d d d �t d d Cn Cn n In n �n In In 4- ���v 0 I 00000 z Cl 4- 4-- 4- 4- 4- W I v 00000 c0 N In V In W E 0 10 LO d' 41 M . o 0 0 0 0 0 V) 0 - N _ O O O O O l l o f O oInr-- rn IZ) L -0 C � d M (U i0 d �D 10 10 0) Q M M M M M ro L N CD CD 0 0 0 u i 0 0 0 .� 0 0 0 0 0 4- 4- 4- 4- 4- U a) N N Z O C) m 1:11 CD Z 4- 4- 4- 4- 4- H Ul N a1 v N U m m cI c� m Cr I C c C C C =D Z O 1-� 41 D Z Ql 00 H ,D 10 H U N D IO N 10 F co N co O CO V M � In lD d' lS7 6l 4 In .0 Q1 a0 z C Cr� 10 O M H Q I N N M N C Ql t0 H C> CD H H In O O O O O In I co I O O O O O U O C I� U H H In In .n In In I co Y O LO -le E W W W W W n E 0 0 0 0 I 0 n U C Q7 H O Q) Z lL Ol 1- 10 'r N Ol Y N N N N N (U C F d Y L =3 d N 4- Lo lD f- cc) Ql C7 0_' CJ O lD 1,0 lO lO 10 o, QD o 0 0 0 0 0 o rn o 0 0 0 0 0 0 0 0 0 N M co N O O O O O O O M O 0 0 O O O O O O O . U O O O O O O O O O O O O O O O O CD O O O O O 4- � 4- 4- 4- 4- 4- 4- 4- 4- V' Y- 4- LD LD 4- r- 4- O 4- O 4- O N N d N N O N 0 0 H Q1 N CO r- 'T Q O Q Cl) O Q V) v> � 0 0 0 O � W O O O • CD O .-� .� N C a0 C f� C C .� C C C C C C C C C C Co C L 7D ZD O Q1 j. ' CO N t O n co Lo LD O r� W N lD Lo ct co r- .-. y N r- Ln M CO LD 01 O N M O M n 00 co M O B M r� .�1 LD t\ 61 W Ln M Ln to lD lD d M M lfl Z \ •l 3 0 �t LD n N 'n a CO O LD .--L N M N • LD co Ln Co Cd �t O, O O LD LO co N Ot O Ln N lD dD LD � d> m M t- Lo Ln LD O) Ln co 0) Ll) O a, Z ,� '--� N Lp �' LD M M Ln LO V M M LD m Q M- O O' O CD Ln LD N N M to m M W M Ol Co N O M Q) >� C 0 0 0 0 01 I - LO Ln � M N �'--� O O O O a1 Q) CO +� U N N N N .-a '� '-� r-i '-a �--� '� '--� O O O O N L31 �9 C1 S- 4 y O O O O O O O O O O O O O O O O O O O O O O rp �� O O O O O O O O O O O O O O O O O O O O O O E =D y O O O O O O O O O O O O O O O O O O O O O O v t O N M 61 Lo LD N Co CO Cn d' CD lO N M d O Ln .-L r- N Co Ln O O N N M M 4 C' Lo LD LD r\ n co m Cl O C) — N N v1 . L y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 v 0 W > N W M Ol V O to N Co zr O Lo . n N co Ln O O O O N N M M <Y Ln LD LD I� n CO O) Ol O O --� --� N C L O O O O O O O O O O O O O O O O O O N u ro F- M y m o' Co co M Co M co co Co to CO co LO LD LD aD l0 a0 LD Ln L 1 . 4j 3 u oorr ����nnr��nnd r � N C y O N M L N E F- CO CO i- n n n n n n n LD n n LD lD ID I� Ln t� LD m m m E ro .. m rQ o_ n Ln Lo M O Lfl Ln Lo N I� M v N i . L w a) y O O O O N O 0 0 0 0 M CO lD LD M LO a0 ra Y 0 > 4- o v 0 0 o r 4� O O Y C r-1 Ln O O +� O O ti co ,� LD r1 Cl O O) '--I d - O� Ol Ln M M to N Ln M L O N In cr ^ - M �. � co O LD O m O rY 0) M Lo CO N Lo N N - W o f r+ O ,..� ,..i N N N N N M N M N (" 5 N M N M al O D 1� 41 ¢ •� O O 7 O cD H O O O v O U N o 0 0 0 0 -- Lo N o00 a) rn M N Ln T N N O M CO Co f- N n N LD Ln o0 01 Ln i Ln Q O O O � �� OC Li 4- M f- O H cD O V Ln LD . - y (` . - 1 CO O � H N Q1 CO Z _ y 025 Q y Q > y OO d N<Y NLn NM 7 Of O Q Z v n O H t-- CD m\ `? .. E 41 tZ Lf5 L Ol O .--' C7 `"� U U y '� O 41 . LD lD �--I . Co d Q N 'r o) M d> n M n . W O M d' O C .. E 3 o O M n •� O to Lo M �Y N C") N CO Lo O) r LD Lo ra N LD N y- O c' J W W U ]z O Lo E E E r '� > y LD ^^ Lo N O M 1 O O O O) M 't d Ln O O O) N M I� f- y 4J -� r0 H N •--i .--i N N r .--1 . .--1 N . •" L H N � L 2 -� O O 4 W N D_ O O 4+ U ra .� C y z " - Y L 5:: 2: ( D -p - 3 C O) Co to r O O O Ol I� LD �Y �"� I� LD �Y' N • 61 CO l0 p) 0~ W +� y> +� Z N -r- ro U1 r +-> .-. 7 d' t d' d' M N .-i .--� • .--I N N N N N N (1) i � O J-� V f F _ - - - 1 L N > L L y Vl Lo D_+-� L C n O GL d O 3 to Q CL O N N 4- O N M n LD f� co Q\ O .-� N <"') d' Ln LO f� M O) O r Q v .--i r r — �--I f . .--1 . . N N (J i--i K 7 U CL V1 J U U U Z W W O O O O o (D 0 O C) 0 0 0 CO 0 0 0 o M r+ h�o �o o 0 0 CD 0 0 01 0 0 0 0 0 0 h o CD 0 0 0 0 0 0 O O O O O O O O O O O O N O O O N M N N M N O O O O O M O O O O O O M N O O O O O O O O O O O O O O O O O O O O O O O O O O O O O CD O O O O O O O O O O O O O O O O O O O O O C o 4 - 4-- 4 - 4 - M V O 4 - M 4- CO •� N .-i O 4- Lo r 61 4- V iD tD lD LO `-i N LO co O 23 4- a) .-i U) O Ln N M (L) 4) a) CU O) co ri N r- U) N (1) v Q) a v � M r-i h r• lD CU h D• O O � lD M co r-- iD h V p O c p c, CJ p p p . p y � 1 c C"j p h M CD p p c lD N M= N = _= p == M 7 M rt M �t N ? N Cl) N N M �Y N M ^� O Ln M O d' lD M l0 CD tD M T O h 0) h 0) O M ri lD Ln CO h O CO N <Y LO O O N N O) CO m .-. � O M 00 � M l0 N O V <t N h d' i .h--i LO h-i .�-1 r ri — CO M ,:t M ri .--i iD n h p O iD (T GO O) N M LO ri N "i' 00 h h �o h M M O) a' h h C M LD ri h Ql LO �D d M O v �D M c0 to M �D co ri O O) c0 M M Ol r� ri CO M �D -1 m rt M O M M Cl) c0 N r� a7 Co h u7 .--i CO N co O O z lD �n r� M CO lD .-r O Ln M rt M M �D M N N N N N N N N N N N N N ri .� .-r ri N N N M N Cl) N ro N r - r) - N O S CD �D in V N r• O O) W h r h lD �D LO cn Ln d M M M N N N .--i .-i .� O O O O O) O) CT Q1 co C co co W a0 CO h h h h h h h h lD l0 l0 lO �D lD iD l0 iD lD iD lD iD lD �D lD l0 lD �D l0 �D �D �O �D iD l0 to M i.C) Ln Ln U O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O) Ll O O O O O O O O O O O O O O O O M l0 01 N tS) M N LD CD ri f� O M N tD CO .-� CD '� h O N lD D" 4- CD 0 0 0 CD 0 CD 0 0 CD 0 0 0 0 0 0 0 CD 0 �-i N N N M M M V �Y 7 Ln I tD �D �� h h h CO CD Co O N =:> 4 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O N r� Cl) 01 V O lD N c0 O ri r� M co d' O M lD 0) r1 cY h O N Ln h O M LO cO O CO lO CO . M lD CO . ' - lD CO .• ("� N 4 M M d �t L �D l0 r-- h CO 0) O) O CD . N N N N M M M <t d' d d' )1') to lD lD iD lD h h r r-- CD [X> co co Cr) (31 O N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 4 ) v N w M Ol r O tD N co M CD V r-r �D N CO V Ql M .--r h M CO 0� Ln r �D N CO M (Ti Ln O iD N h M M M rn 4- M M It IT LX) iD lD h h CO al O) O C - N N M M V -t L) �o D r- r - co co O) O CD .--i — N N M T V LO Ln lD i0 t� h . .--1 r .--1 N N N N N N N N N N N N N N N N N M M M m M M M M C M co Cl) co co C 41 Ln 'D CS ♦D T to iD 00 tD iD Ln �D �D �D to iD CO c0 CO co CO co O) iD �D �D 'D ID 1D 00 iD 'D lD CO cD tD 'D tD 'D l0 'D 3 v od o o(=>C) <D r--r--t- r-r-r- C l ) . •--� M c o co .� . - i .--I M ri .-I .-1 .--1 .� .� e--1 N .-1 .-1 ri .--1 .--� rl .-i .-' Cl) C') co ri .--1 .-1 . .-i e-i — .--1 co • -o h .-1 ri .-r cn �D .--r iD h h h h h r-- CD �D �D 7 �o 'D to h �D Ln �O h V kD U) cO l0 M to Lo M to N r N O Ln LC) O O Co CO iD O iD M O O h O) Co CD r• kD d' O) r - N O M O cn .--� . t1} O M �D lD 'D N cIJ h . N t O) }.) lD CO O d N N d' O .-r �- M O O M 'D O r-- � Lo M N N O O O O r--i N tD O O) r h Q• O a 4 - h N ri h V O O) Ln O) �D r - r-- 00 LO M O �o O) (71 O d' 't iD C, 0l to M h r - to co h O r-- O) d rr Cl) co IT M p_' .� M <t O N N �t �O h O r-1 N N N M M M O) � t� iO to cD 01 M N N O) LO 00 O i0 M M Co O) "1 �t O) h ` ri O O > t d - N N M M N rt M N M M N t.O >� o M d' M tD tD M N �i' <t d' M M M M M Q O O L � ) N �D t.D O N co � D M O co S to M h (3) m 't to O) 00 h "") r L N Ln r, Ol N V CO co .-i CO �D �D LO LL 4- LO N M Q• M r - i O N h h O CT M N M�-o ri N M O M- h M M O .-i IT O m N to > +-) M �O �D N N M 4 to 4 V h N r) M Lf) t 0 N . .-i .-I .--i .--� �1 .-i r-I .-i . .--1 .-i .-i ri .-i r-1 .-1 .-1 cl, Q V U C h U i i n O V +-) �S co i' V co �D M i' M h 'D it] co O to N V to �D h �D co CO h N �D Ol to d . co ri M cY �n m M cn N Co Cr 4 +-) O O) N M h M n cD N �--t d t7 CO h M V r+ to N M . to 01 . �O '-i .-r �' CO N N Ol O) LO M 61 Q) N co O) r O .n > +) tD LO �O CO V �O .-r O) r+ .� iD CO CO O d �D .-i CO 00 h M h CO �n iO d lD C' f� lD M if7 �O N d' M M V l0 M V �D N N C 4) M O M h to C' N 01 CO �D n M O CD h In 'T N O 0) h�o Cf M rr O) Co lD Lo Co N N N O CJ) 4 — O O O O O O (T (D) O) m m 01 CD co co c0 co W 0O h r-. r-. �D Ln to Ln to 'n to v ♦- 0-41 i GL O 4- N cn `7 to 10 h W 01 O .-1 ri N c d' h CO CT O ri N M Y �O )D h CO CT O .--r N M d' Ln h CO O f-i N M c CJ �' U ) t N N N N N N N N M c) M M M C) M M M M co V 7 -1 'Y `1' 7 cr cY Y V 'n tO in �n to �O �O Ln to �O �O lD �D 0 0 0 CD 0 0 0 0 CD 0 0 0 0 0 0 0 0 CD CD 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 CD 0 0 0 0 0 0 0 0 0 0 0 O o 0 0 0 0 0 0 0 0 C:> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ccpp 4-- LO LD LD W LO N N 1- - V Lo M N `1- Lr) 4-- 4- 4- cY N Q1 Lo LD LO CO O 41 OD N O Q O 01 N O LD Co LO W N N • O co Cl) N C C .-i N N M N N M_ O O f� CO M W t0 M lD O 0 cf N M N rr Lo ir) LD Cl) G M LO O 4, 01 LD LD M N N Lo 1� V LD LD lD LD I N 61 n LO N Mn M Z � � N 3 0 Co Ln N O Ol n O lD LO Lo. O r- N M Co O r+ LD LD O CO c, M N N M LO Co CO Z r-I N N N N N N ri N N N 0C)� N N Cl) LD O CO I M CO OD CO f- n n n LD LD LD LD LD Lo LO LO Lo V - C' cf' V M M M M LO LO LO to LO LO LO Ln LO LO LO LO LO LO LO Lo Ln LO 'n LO Lo Lo in LO Lo U O O O O O O O O O O O O O O O O O O O O O O O O O r0 01 N LO OD r V 1- O M LD 0) N LD 01 N Ln Co n O M lD 01 N 4- Co Ol 01 O1 O O O N N N M M co d V n LO 'n to l.D 4) V J-J O O O N � co .-� LD CO r-i �' lD Ol rl d' ^ O M to co O N M f� O 4- M 61 O O O O .-i �--� .-i .-1 N N N M co M co V d r �t Lo Lo L . LD L 4. N CV M M M M M M M C'M M M M M M M M M M M M M M M M N W i O to N OD O1 Lo 01 c} O Lo LO N n CO O LD M N 4- Oo 0) Ol O O N N M d• V Lo LO Lo I� n CO CO 01 01 <D N M M M V V a' V <t <Y 4 LD Ln 10 LD V'1 H LD LD W LD d <t LD LD LD LD LD d LO Lo V �T r l 'T d' zt in LO Lo LD y 4 O O i 1 O O O O 3 U ��nct �• -- �d'� V d Lo LO Cl) M LO LD Lo M"T M M CO M Co Co M M CD N 'D 01 O1 of O LO O .-� 01 N CO Cl) LO Lo CO f - 01 f� LO O N Lo LO O m � 't LO LO LD LD 1 n LO .-� CO r� Oo . 4 M \o to LD I - Co OD Ol .--1 CO O O N N Q � k - Lo 01 O Lo N N LD LD to V Cl) OD d' O Lo LO Lo O M LD LD .� to Ol N M M m O n LD Ln 01 M m Lo f-_ Cl) .-i co d N > v M M N d' V' �t C' N M I Ln d <t Ln l0 LO �n Lo lD Lp LO Lo LD a 0 0 D _ Io DLn n , to f� f\j 0) LD CD Ln CO M M lD LD Ol N LD N N LO LL. 4- N N Ol I'D CD .-� M N O r-I O n LD f� M LD O LO O .-� O LD CO f- CO O Q7 i .--/ r-1 N .-1 - - Cl) •--1 N N N N Lr) CY Q U O Ln - O U 41 .-. Co O1 LO O 01 Lo d CO Cl) - M O d' 61 d' Lfl N M N Ln Co V cA C7 4 O d 0) co OD N LO O LD f� a0 O N co r d' M M N n n O Lo > +� M C o W LD N cV V o 01 cv M M V c"M M V Lo -i co f- N C 4J ti 0 r �� 01 CO lO Ln M O cO h LO rt N O O1 f� LO �' M 01 Z LL t Q1 ^ lD N r i .-a .--1 ,-� O O O O O O 01 dl CT' 01 01 Ol Ql 41 � N N N N N - N v C1 O) 4- LO Lp f� CA 01 O - N M V �O LD f� CO 01 O .-a N M M -r LO LD n M Co 2' U O LD 'o LD LD 10 n n r n n n n n^ Co M CD Co co CO OD Co Co co 4- M O 4- 4-- 4- w 4- lO O 4- Ln U a) (L) (1) (1) aJ (1) - - (1) a) (L) - a) - • N O N f- n o p p O cV p p p I- p O p to p n o p o lD co Cl) 7 O :::D :D Z O O O O 4- 4- 4- r- 4- 4- 4- lD O 4- 4- 4- I- 4- O n 4- CO Q) (3) a) . a) (1) a) v n) a) - a) • a) O O O N p p p N p p p Lo to p O p CT p CT lO p m Q) p M CO CT t-_ n M lD M N to O M l0 Ol 4- O lD f- Q) E M M M M V' M "Y 'l- V M M'71- V M Q M M d' y M rp L O O O O O O O O O O O O O O O O O C O O O O N ra r � r r r r r r N CL O O O O O O O O O O O O O O O O O O O O O O O O O O O O O F-- O O N f- Lo O .-i O O lfl .-a r+ n �' O m 4- r-+ f- N m L n a) In p\ d' d' V N Ln M CT Ln Ln N O '--1 O .-1 I� p N N M d .� m m co f-_ oT CT M co m CT r� n co co CO CO M n lfl n � a) Q T O O co to M o CO CO M CO 't d' l0 4- N N N O a r rn n�tv nv<r<t�d �vcrd �r� a)�v�v Q) J-) O C CY I O O O N O 0 0 to M 0 0 0 l0 O co O O N o . E li \ O O V w 0 0 0 f- O O O N O O O N O l0 Ln O N O 1p r.-r 4- 0 4- 4- 4- f- CT 4- 4- 4- M 4- In LD 4- M v U a) v a) • Q) (D a) - • a a) a) - () m Z .-+ co lO Ln p m p CO p m p CO f- p p p n O (S N D lO M N C c C N C c L= A co C = c n C lD CO c CO U r-1 rl .-i i-1 O : N =D Z =D .-i r-1 Z O N • r--1 N C)r y� Z - O O O co M 4- 4- 4- in 4- 4- M 1p 4- 4- 4- N 4- M M 4- N Q) a) a) a) a) a) a v a) a) a) O .-� p p p N p n p M O O O O m p p M p p p O rl = r C c C co co C m (\I Q) ro =D =D ::D N Q) M +) p CO rn N l0 ,-- n 'o 'o r-1 - co M O c} t- N N N 01 .--i +-) M l0 Lo O CT CO lO Ln CO Lo m CO Lo N M U vl O Cl) d' M .-i .-1- -� W 1� N •--� rn lD Lo LO O CT no N lfl N M N (\j N Q) C 4� M C n E rp N t= O O CT CT N N N CT N N N CT CT N N N t-_ E a co M Q C1 cn 4> O L v .--I co N 1� M— N Cl) Lo co CT I- N N Q) O W Cl) co lO o d d' 4- CT d co i' <D O7 O lfl O (S O t O M Ln CT M Ln N O N N CL' 0 0 N N M N M M M N co N m V' Lo O o 3 a) O O O +� ol �[ }) O O N N M Ol Ql O N N L . 61 N O l d 1 •-'. . CO N . Q) w Q) C1 � o n Ol — (71 O .--1 " Ln M (7) CO f� o in M d' CT Lo l0 ro Q -a o O M N a) C Dr o l0 CT r - d Ln M n to 't M CT I- n (3 M U Q) Ol ' 7 L O CO 'Zt N 17t lO M CO d' M •--� • '� N '� O V O o 0 a) O O O o 0 or T N O O O N rn a L Q O o o E D o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O o o O o 0 O O O O O O O O O O O O O O O O O O O O O O 41 In Q N O ZT } o d m O O O O O O O O O O O O O O O O O O O O O O L U t� O m .-� �U O r O L CT O O = N N Z QJ Ln o .� V .-� �) E L a) rn w M M V 1r �r d r V� rn �Y T 'o LD Ln ., ,, .. .� o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .--+ r-+ 0 0 f� _ w F - w o M LO - ,.y Y w w w w w w w w w w w w w w Lu w w LLJ w w w w a.>•. -o rn.�ww�1o� n E E E � �� E3 � 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V) to CP O O L y 4- U 4 , c In c s s .a o Ln Ln rn �n �n �n �n In rn �n r+ (1) a) D C7) Q) J-D _ :D N i O1 Ol (T Ol Ol U, Cn CT UI U Cn Cn U U� Cn A A A A A A A A A A W W W W CO W W Co W co co N N N N N N N .7 W A W N r O tO OD V 6, Cn A W N r U to co V CT U A W N O t0 CD V O U A W N r r O t0 W V Ol (n A W N' C -1 C CD W W A CT, U, Cn Cn Cn Cn Ol Ol O, Ol Ol 0, V V V V V V W CO CO W W Oo CO tD t0 tD ID t0 t0 o O o CD o O t-+ r r C t0 O N N N W Cr, CT W to r W A M V tO o N A Cn V OD O r W CD Ol (X7 , D �' N A Ol V tO O N A U, V N o r' co Cn Z �l O Z tD Cn U, Cn c" to U, Cn Cn cl (n v CT U, C" (n U Cn Cn W U Cn U U (n v (), U, U CD r Cn CJ Cn - r - U Cn r CT, U Cn 1-' n .. N 0 o O o O o O o O o o O o 0 0 o O O O O o O CD 0 o O o O o O O O o 0 o O o CD o O o o O o rnmmmrnrnrnmmrnmrnmmmrnmrnmmmmrnrnmmrnmmmr ' T,mrnmmmmmrnmr ' nmmm 0 0 0 CD 0 0 CD 0 0 CD 0 0 0 0 0 0 0 CD CD cD 0 0 0 0 CD CD 0 o r CD o o r r r o o r (D o r o r C') (D - OD O, M Oo Cn o, v Ol Cn V A Cn M U A Cr) U, Cn V CD to W -A A A A A A Cn U, cn m Cn Cn (n Cn A Cn C." (D Cn U U, Cn Cn .- C V O h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O o O o o O o O o 0 CD o O o O o CD 0 0 CD o O o CD GO o 0 CD 0 0 0 0 CD o O o 0 0 0 0 o O O o O o O O o CD 0 CD CD o O o CD 0 o O o 0 CD 0 CD 0 0 CD 0 CD cr W r r N r r r r r N F r r r r r r /-• ,-' 0 0 CD o O O o O O o 0 CD CD 0 0 CD CD 0 0 0 CD 0 0 CD GP 0 0 tD N r r N r r r r-� r N r N N r N N r N N W W W W W W Cn V O, A A Co O, M ,-' M W N Cn CD ,-' A IC) U, O U O O .A N N (T t0 t0 r W N V V O W Cn N O o O W O W (P O N M (Do V W (y, O W O M c- 07 ko lD r -,D 1 t0 Ol co O, co 10 t0 O V A Cr, N co 03 �-' lD w Cn N O W W tD co V A V N l0 r m U tD V V N V CT A 0 0 CD Cn O A A Lr N .A A W W A N IV W w r w w N -A W W r r r r r r N W A W W U W A W Cn S CO O, A CS Ol W U, t0 to W to W W- A W Cn A Cn O O LO (.)1 A A O Cn Cn N Cn N W Cn 07 A Cn w N A Cn UD ' N O - 'l A m r Ol Ol r W m A Q, 0T r W QT V V V V V V V V Ol Cl A Ol r M 6l V Ol O N V CT C3 r co N r W N N N N r W W N W N W w N w w U A Cn A Cn Cn V O tD V N M r W Co A CO A W V N N Cn IC) N Ol Co t0 Ol Ol W r t0 V W Cs, W V t0 W CD m U N Ol Oo N V V U U m O, o U r--� V N A N U Cn (n r W CO Ol f D 0, r N N CT ' CC) t0 A CD A N O A Cn m r Cv W t0 Cn �l A N O co co W W (T Oo A A V V V A O C C C C r C C r C r r C r r r r r C r r r r r r r A W r 7 W A Cn r r W Cn A W Cn tD V V V V V N V Cn O (y, C V CT co N C C C I'D N fJ C O O O (n O O O, m O N N O r V t0 w N CD r O r U, r t0 W Cn Cn V r W W V tD (T N V O V (T ,�- CD CD (D CD (D CD - (D • CD (D . -t, -+, W - - i, O W -�, co O, -h Ol A N A V fi Cn N co w W W w CO Co tO tD -h (p N co t0 - fi w -h m V Z fJ C C C C W C C CD 41 C C71 N N (l C C E C co W C C O A C C3, V C CD (S A O, C D C V CT O A N N W N Cn W O N N r C O, CD N :3 :3 co C N W r O O O O �-- O O V O Co O - Co ON O(D N lD W . . . . W N W Oo CD N 0 Cn W O(D W (D (T W Z CD (D fD CD - CD CD N (D (D CD (D CD fD - - -h -h Ol -41 fi [n w - O N - Cn (p to Co tO - t0 V A (n Ol (T r W W V r lfl tD W --h r- W (T W --h -h O O O O O A 0 0 Cn A O w W O A W A A w O A A N W N N N N N N N C i A CO W N 1--' N O O N N W ^ O O O O N O O O, - -j CD m tp CD N N l0 W Ol O N W N O Ol CD CT V W U, t0 O CO t-' O O CO . O O V O r V r) n O O O O N O O N m O m A O r N w m t0 O W t0 lD O 0T Cn Cn O V A O V w to O V co V Cn O O W O N Cn C C C C C C C C C C C C C ^ O O O O O O C� p O C D p 0 O (D J' CD (D (D (D W W CD W CO (D W W CD W W (D W W w W w W Cl) W W A A co /D w A A A A A w (D A A A W CD CD CD --h -h - h -h A• -h -h - y, N -h N A -h A O -h A A - A A co m O Ol co co co O O N -'h co N O O N CD CD �, O N N W fD C C C C C C C C C C C C C N ��: W n�- w 3 w W� w A 75 W W 7 W W Cn A A A U A Cn O, M Cn =5 Cn V O Ol V (T 1� =S (n V V Cn ^ C 0 0 CD 0 W 0 0 0 r O U V O t0 O U tD p V Cn r (T OD U, r to t0 to O, V CD C o r r N V (v A O V A A C� CD (D CD (D - (D CD (D (D (D CD (D (D --h -h -, N -h �, -h t0 -h V V -h U, O -- h CD V -h Cn r O W V co O, A W o Cn O r r r r O O, CT Ol Q O, m m Ol r r r r r r r CD m (D, m r— r r o r m CD r o r C (.I' CD 0 O 0 0 0 0 0 0 0 CD 0 CD 0 CD 0 CD 0 CD CD 0 CD O O O o CD CD CD (D 0 0 0 0 0 0 O O o 0 0 CD CD C C C C n =S : O 7 :3 n O 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O O O 0 0 0 0 O O O O- O O O CD O p p (D CD (D (D r (D (D fD r CD O r (D r r (D ,--� r (D r— r r r r r W W N N N A W W W w A N N .A W A E3 (D -h N -h <D N -+, Ol N -h A N 1, Cn A �-' w N N U, A t0 N V V ti, U W V V W w N -�, t0 A tO co O N C C C C C C C C C C C C C ::s z r r r r r r 1-' r r r r / r r r Ol U� " r") :::s C7 0 0 0 A O p CD r O 0 A 0 A N A W A O W N U, r t0 to O o r W O N t0 CD CD w w O CD CD V O W U, (D . (D (D - (D (t CD . -h -h - h --h N -h -h U, A -+, Co CD -h Co O 0T r to tD N Ol l0 M r N U, O V Ol V --h C31 O, t0 r -h -h N -h C3, CD O Z I-' C C C C C C C C N N N N N N N N N N n N N i--� N N N N N A O> Cn A N A A A CI U =1 O O O O W O C7 r N O r V CD tO 6l tD 6, t0 p V U t0 0S CT Cn t0 V U W V (D U+ W O i-- r O w 0 p w O co O O -h O Co --C, V tO -h V U N ,--� tD �, V Cn co tU V A Cn 6, t0 N N r - ' N tO - �' A Cn (n -h --, W -h t0 t0 N c � w W co co co O W V Qi Cn A w N r O CD co V m (-� c+'D -i n (D (p CD (D lfl (D CO O O O O O O r I F-' 1-' �--' /-� N N N N N N N ( Q r W A M V CD O N A (n V CO (D 1-' W Ul O) M CD r N A 01 v (D S T7 D Z CD fD � r r r r Cn C" Cn Ul (n Cr (P r r Cn UC Cn Ul Cn (n (n (n UI Ul Cn (n (l (n o O o O o O O O o O O O O o O O O O O O o O o O O U� O m m m m m m m m m m 7 77 m 777 T 7 m 77 rn m 7 o000000 -�- '000000000000 o U cn (n Cn co co co m w N Qo Cn Un co V CT 0� cn G� co co m A V m vn r n v o n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m (n CD O O O O o o O O O O O O O O O o O O O O O O O O O T r O r N w w N w W co r o w N 1 w r r CO N — r N r U, O O lD N IV W r r r N W C r W r N r CJ O W O Co N co CD r co V V (D r V N Cn V W U1 (T m CO o 7 0 r A o co ul Ol W W Co r o N lD V O A (P V U� Cn Cn A V (n A A N A (P (n A N A A O') V A A� W N A r r (n r Cn O O (n W Oo ? CD r Ol W C r V Cn r o V M r W (n tD V (n w co N N 0 01 m V 61 U1 CD A r N m r- rrrrrrrr rr �rr�F- '�rrrrrnrr � � w A (n W N r r N Cn Cn r N N r N r r W A r D CD (n W Cn (n OD to W V (T (P N V 0T A 00 Cn A Cn W w A (D Co (D to Cn (S V CD O CD O U (n N w (T Cl) V m0� co V r Co N to w Z N C+ C C C C C C C C C C C C Iv C C C C C C C C r C C 7 7 7 7 7 7 w 7 7 7 co 7 7 7 m 7 7 O O O 0 0 C7 O O � O C D C7 0 0 0 0 C7 0 W O D O O A C7 C7 f1 CD (D (D (D (D (D M (D (D (D (D fD (D (D CD (D CD (D (D Co - (D CD r -h -h -fi -h -h -h -h -h -h fi - fi -h fi -- h - A - -h -h -h w c� C C C C C C C C C C C C N C C C C N C C C C N C C f) 7 7 7 7 7 7 co 7 !� 7 7 7 7 I 3 7 r 0 0 C7 0 C7 0 0 C7 O C� C7 Fo O 0 0 0 0 OD C7 0 a C A C7 C7 z CD (D CD (D (D (D (D (D (D (D (D (D (D (D (D (D (D (D (D (D (D (D n r r r r CD C> rr CD rr rr rDr rr CD O o O O o O o o O o O A O O O o W O O o o W O o O O O o O O O O O O O O r O O O O N O O O O W O O O O O O O O O O O O O O Co O O O O V o O O O V O O ...i C C C C C C C C C C C C C C C C G 7 7 7 7 7 7 O O C7 O O C7 0 0 0 0 0 CD O C7 C7 O 0 0 (D S W w W W (D (D (D (D (D (D (D W w (D (D (D (D W (D fD (D W (D (D CL] t O oj -41 - fi CT (T -M - h --h Co N D -- h -h -h -h CT -h -h C C C C C C C C C C C C C C C A A Cr W 7 7 7 7 7 7 7 A (n 7 7 7 cn 7 7 A O A r V co) 0 C7 CD O C O W r C7 C C7 0 A C7 C O C7 V C7 ED O (D (D (D CD (D (D (D CD (D (D (D (D (D CD (D • (D (D Z --h -�. fi -� i -h V U A O w w W W o� U� W W G r w W .Z-7 0 0 0 0 O o 0 0 0 O O o 0 O o 0 0 O O o 0 0 0 0 0 'D N C C C C C C C C C C C 0 0 0 0 7 7 7 7 7 7 7 0 0 7 7 7 7 0 7 7 7 7 0 7 o ('+ C� O O O O O C7 0 0 C7 C7 C7 0 C7 C] 4 0 A W W (T (D (D (D (D (D (D (D W N (D (D (D (D N (D CD (D (D (D (D D (D (n A V w -h N lD - - fi - fi o - il C7 (D C C C C C C C C C C C C C C C C C C C C C C 7 7 7 7 7 7 7 7 7 7 7 7 Cn 7 7 7 7 N 7 7 7 7 F' 7 7 r O C7 O C7 O C7 O C7 O C7 O C 6 C7 C7 C7 CD r C7 O O C7 Cn O CD ._. (D N CD (D (D (D CD (D (D (D (D (D (D CD CD (D (D CD CD (D fD (D O -h Co -h -h -h - h o -h -h Z r C C C C C C C C C C C C r C C C C C C C C C C 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 A 7 7 7 7 W 7 7 CT CD O O C C O O C7 O O D O N 0 0 C7 C7 V C7 C7 O CD r C7 CD 0 CD (D (D (D (D (D CD (D (D (D (D (D (D (D (D (D (D (D (D (D (D (D N N r t t✓ r �-- �'' �- �'' �' ^ O m m d z c7 n c� r cn v J 0 7J G) C-) CD -0 D N� O C t-' O CD W V O1 CP A W N O l0 W V (n A W N �' o ( d 1n fi - S < C or (D V1 'S -I -i -1 n [ ). fp. CT ' (D (D N 1-- I-- N N N N N N 1 1 F N W A A A -C1 A A A `--' O < C •. (D p W W t0 r N A• Ol V � - A (n V I'D c::, CD o r W A O) W to S f(D 0' N 3 3 a � c�'t � �' O a n C4 O O O to C (D (D t0 fi �• c0 O ( D (D ( O ct tD (D (D .. 7 • • (D :3 0 0 LO CT A N CT A A (T W N (D W O co A W Cn W V V (n A N c < C1 '--( d (D 3 Cn O (7 m m r lD O (n N O V U� l0 W (T to V A Cn V v p !-' N .. .. m V O O C o V A t-� O co t0 t0 O (n A O W W V N A O V W N io CD It m 1p S S CD 6l W` Z M N N O O CD F-' O ct (D ' ' C ) r, CO V ( n O 3 n ^ D � � O ;o Z � A r c (n Cn Cn (n r\.) r\.) ! W W W (-' W N N �--� IV N W W N r-' O to CI] C IDn D V. ul (-+ W t0 (Ti W W (t N Ci c CT O W N 6) O lD U, Ol O ' 0 co co W V O A• W W C( O1 W W W Co �l 6'� W A W .� (n (D O O O D cn N D (n 0 0 0 Ln w ;u D O O O V D p( d O O O O co (D C' 70 D (D A A A W U , (n W N G.W W C( Co C..W A A W A A A W W r� O 0 0 �-' 3 0 O N t0 (D O Co co W W V to W t-' V N O N co r U( Cn A V co �' l0 A "O �. (D cn CD to W A r V (T A W Co W r Cn Q> V Qi W W W W O Cn O -t, Z 0 N O c W Cn A (n O O ('t O O Cn ~ 0 N O ( O O O CD �F 7 CL v to < F -h < O 7� 0 A W N O 1--' O O O O O N O O O O O O N F-' N O It C O (D (D 0. I-' W A W W 01 co W M U1 CD O Cn W to C" CD m m F-' A O v (1 3 0 C7 c r of ° a m W W Cn V W C� W W 0T W A• (n Cn E � GJ (D r (D d J n o 0 41 41 ct � 0 0 A v A A r A A r A A A o o A A A 't n m Cn Cn Cn 0� A A• (T co W m A (T m A (T rn � Cn U d, M M _ W Ln a It ^ It O rr- rrr 00000000000000000 " p O l0 co co V V M (T (n A A (..1 W N N O A co r cn O -P tD W v r cn o A W W W W V o A W W (n rt cn o to _ W W V V O) Ol (n A A W W N N t✓ 0 0 -h _r, W t (n o A ko W v r (n o A 07 W co w V O A co W •� (n O ct S O O O O O O O O O O O O O O O O O O O O O O ' O O O O O O O O O O O O O O O O O O O O O O fi(D I O O O O O O O O O O O O O O O O O O O O O O `-' CD d Ol O O O O O F-' F-' 1-+ N — Y-' F — N N N N J (D C-) (D t0 to to O O O 1 F �--' N N W A U 0l V lD O O O O 7 O N Cn V O W m O A LD A Co m A N N (n A O O O O t-' _ a N r t r O7 W r O Ol A - W A A A W W W A N N W V V IV N (Z) Z -1 V� Co N W fV W rV . O W W W W r W A N O O1 W W r O l0 O V V V W W a, W O O W W o O O V (T O N O ocl) A .A W A A W W Cn A I W A Cn A t (n A N --h W V W O I-- (n A W co A V O Cn N co U (n W co A (n (n N O O V W io O W CO o G.W W N tD CO A v 0 C C C C C C =5 n= N w W Cn 0 W V N Co (T W W A In O= A W N I C/1 D (::) O . p N (D CD W W (n N O W C( (n O �o M M N CD (D W A N fi C co (n Co W CT N W N O A (n --h - A N M W O O O O O O O O O O O O O O O(D O O O O O O � O O O O O O O O O O O O O O O O O O O O O O z7 O O O O Cl O O O O O O O O O O O O O O O O O ' V (3l U� A W N r O CO co W N r O (D Cl) (T Cn A W N r. O . V . A W N rt (D : A W N r O l0 OD Ct - 1 fD It O N N N W Cn (T (A lO W A lfl O N A (n V 00 O W CD m m lD N A (T l0 O O N A Cn V W O /-• W Cn v �' ' J O Z lD H r N ^ D (/I H N lfl CO CT cc':') V W V A W W V Cn Cn V (T N N A A N W CD Cn W W (n CT A A W A W N r r W A U� CP A r-� N c+ < (n O CO A Cn r Cn N r V (n V m W o A N W (T r V W N . V O . Co V. jO r N r W V V W r co W V. - h A W O C A (n (t V O O A Cn W (n W W O W V v (n CT) C:) J O U' W fV r) r (T (T V U' V r (P (T) CD (n (T A O N W N cn V ( ' H o n �. ,.�rf --•C olCD rrr- nor- �00000CDC)CD o�-- �000pCDCD AV - t< � U' (n (O C" (T A' co H W (n (D m (n W W A A r A m N co CD V (O V lD V Co V W (T V N W CD O C CD V A O CP CP A N (n ( O Cl) -p Cl) Cn (D W V CT (D o O co 0 co O O O O m co A CD W (D (D A v V W (D N N r r W Iv r r Iv N �--� N W CP r N W N 0 �--� N r r N N N N W Cn A r r O r r N W W N O m GT W -P A Co Cl) V OD (D A CT m W (3o N Co Cn N C n (b to CD V W Cn Cn N CD CT m V N N UP N (0 V A A V O Z7 W cn H A m r r Cn N (T A OD m m m A V CD Cn W O CT Ul O Ul O r N W (31 (O C3) N m O CT O O N (D V -h D r r C 0 0 0 o O t0 CO CO (D CD O m m Cn --I V �l co o tO 0 �D CO CD CO (O W . . . . (T A A . . . V V V W . 03 Cn W co 1-+ N N W (T (D Ul A OD (CD W CT W (T O V N co o3 m A U� N O O r V A r A O N V 0 w (.P r r v (1 Vl CP co V V m co 0'% v V Cn CT (T V m m V m A co m G3 w m W V m m V v (T (T m Vol A W Cl) V V W N V - � A A A o A v A 'r' 47, A o 41 A (0 CD CD CT Cp (T M CD m M (31 W Cn M M CT M A M (T (T 61 CO Co CT M W Co (T (T m co (T A A co Oo (D Cb co (T (T co Cn ^ c+ W W W W W W W W W W W W W W N N N N N N N N N N N N N V M CT U (n A A W W N r 1--+ 0 0 CO CO co V V 0T CT Cn Ul A W W N N O (D (D m (D �l V m (n Cn A A W W (n CO A (3o W --I r Cn O A Co W V r (n CD A (D W V N (T O A tO W V N O� O Cn (O C,.W V N M r (n (D W V N (T O m cn N N N N N N N N N N N N N N N N N N N N N N N N N N N H H r r r r r H r r . r ! - ' . V C3i (T CT 01 (n � UP C." _r_ A A W W W W N N N N r H r r 0 0(D 0 lD (D tD CO W W M V V CT C Cn A A W W - h N H W (T Cl) O co U N O V Cn N (D V A r CD CT A r (D CT W co CJl W O V (n N O V A N (T r Cn tO W V N (T O r H O O O O p O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O CO (O iD OD co M W V V V 6� CT CT (n Cn U A A A A W W ("� N N N 0 0 0 0 0 0 0 0 0 0 0 A r al Cn N (.D OT W O V A r C D ul co (n N (O Q w O V A 1--' m Cn N co C N LD M Co O O O O O O O O O O lD O O O O O O O o O O O O o O O O O O O O O o O O O O O O O O O O O O O O O O O O O O O O 0', (T N N N W W W A A A Cn Cn U M (T CD M N CD (O O O r r N IV W W - A U, V W CO W r w N A CT OD N LL W W W N N N N N N r r N N r N N r N !-' r r — r r r r O O W A co m N N W A Cn O (O W A W (T Cn V N A CO CS C5, W W CO V V Cn Cn U co N r N CP m V W 0, Cn N o O N Cn V V �I W . w V CT W O C.-) Cl) CO O N Ul V l0 lfl V CO V O co A A (O co N O N co W O W r CD 0 N !-` O V (T O N � Z CD (p co A O� V (3 A A W (p (T co N (n Cn N CT O N bo O C,) r o N W N N r O r O CD CP (D r N W 0 r co W ('(' Cr . . . Cn O A V CT W CD (n A W (T r r r o CD O V O m Cn A (3� CO V V (3o o (O r N r W A M V V lD (D CT V v O C C C C C C C C C C C C C A (n 7 c W N N A W= A N r W w � N= O N N O W W W O W r 0 0 0 0 O O O O to N p CD C) - O- O O (D (D (D M (D V (D CD Cn Cn V CD o V (D V O lO O Cn (D CO CD (D (D V (D (D Ul (n O (D O (n W V (D (D (D (D (D W N N -h C -h h -h W fi -h N W W - h O (D fi CD Cn F--+ (T N Cn V �, -h U� O M -h 0% Cn r --h W OD Oo W -- h O O O O O O O O O O O O O O O O O O O O O O O O -Z> O O O O O O O O O O O O . O O O O O O C7 N o Cl) O N O N O W N N A O O W O O O W A O N — O W N r N O O W N C . 0 CD o N h-' r r r Cl) 0 CD co O N O CT O C31 O V r W N 0 0 M 0 0 0 O N O M M O O U' W W O O A (D CP O O O V A A (D x 0 0 r r r r r r r r CD (O CD �O �O CO CD tD tD w w co w 07 0D Cb w CO CO �l �1 �I �1 �1 V �J �J V V 61 (T al Ol m 0 0 0 0 0 0 0 � � co ^ p n +n V 6l (P A W N r 0 iD m V (T cP A W N r 0 (D m V G, Ul A co W N r 0 �D m A w N r CD 10 CO V O\ Ul -h (D 0 >` 5 . c+ U O O) Ol Ol O• CT Ul V V V V " Co m m W Co m m to (O (O (D (D (D O O O O O CD r F N N N N N N 't � r W A Ol V i0 O N A Cn --A m O N W Cn m m (D r W A m V (D O N A Ul --j m O r W (P � m to r N A (T V tD � O Z cf] r r r �-- r (n W N m N W W W r W A A V Cn O m O N N W N A m Cn r W N A O N A CD A N Co m A (D O fi< CP CD N lD m (D (D W N m A w rlj N V r N W Ul U� (O N N W Ul V V V r 0', r iD to A CO W M N W A - V N V N V fi o i m A O d> V V CD A A W N V m V Ul A Ul O CD F-' m A W r A dl m r V N V (j A (7l W Cn O N m V W !-� N N N O CP �-' c+ O- � v � o � < r N F-' r 1- F N N W N r 1-+ r r r N 1-� lQ m 0 F-' N A r A 0l r V r A F-� A A Co CD W N N O Co N A Co Ul W Ol A N Co Ul W m m V W V V V O Ul W N W (O A Cp U, r O 0 CD r V m co W m CD Ul co o V m (D (D m m CO W W O� A CD (D N A CD N Cn A iD N Ul N r (n N (sl V m D W A W W r A N r N r r N W IV W N N N N V (P (D O r Cn V m Co Ql O O Ol — V O Ul Ol O1 N N Cn r m r W V O O> to I'D W t m m W A Co (O A r (T m CD W CD V Ol r Ol W O W m W m N r m CD m N Cn N m m w N m CO F N A W O V m O N0� r r r r r r r r O r N W Cn (P Cn V CO ( M D O O r CD CD 0 (O m m V m m m O O r r r r . . O� (O r N N N N N r r trt C Cn W O Cn O cn V (P O N CD r Cn O lfl m m m Ql W N V (P Cn O A W N V O (D O O (D r M Ol Cn C l CD W O v n [/l fA M A CP CIN v CP v CO M V V Q1 (T V CP V M V V V Ol O' m m m V m m m V V V m V Cn m m (n Cn m V M m m ---I r r r r r r — r r r N F� N N N r r r N r r A A A A - -4 A - -A O A V V A A V A V A V V v A A O C) CD V O CD O V V V O - 'A A O A A A O V A o 0 a1 Ol m m m m m to m m m m m m Ol m m m m m 6l (T tO to CO m CD (D CO m m m CO m m (O m M Ol CO m O) (fl �o N ^ cF (t (T m Ol Ol Cn Cn Cn (P cn Cn m Cn cn cP (n Cn Cn m Cn Ul Cn A A A A A AAA A A A A A A A. A W W W W' N N N r ! - ' O O CO m Co V V Ol O\ m A A W W O O to m m V m (T Cn CP A W W N N r F-� O lD �O m m tD A m N V F Cf� (D W m N Ql r (P lD W m N m O Cn (D W V r Cn O A m N m O m W V m O A m N V r In m W W W W CJ C.1 W W W W W W W W W W W W W W W W W W W w W w W W w W W W fv N" N fv N N N N N vl N o m m O V A N l0 Ol W m a, W O m C-" N O V A N (D W O V (5 N (O M W m Cn W p m m m Lo V A N N N N N N N N N N N N N N r r F-' r — r r W W W W N N N r F r O O O (D (D (D lO m m m V V V (71 m Ol Cn m (P Cn A A A W W W N N N r r h-' r O --11 10 O W O V A r m U N m C" N lD Ol W O V A r Co CP N (O Ul N (O Ol W O V F-' CO Cn N lD Cn N (O m Co O V (]J LD O O O O O O O O O O O O O O O O O O O O O O CD O O CD O O O O O CD O O O O O O O O O O O O n .CD w Cn (31 Cn Ul U1 Ul Ul Cn LT Ul ul Ul Cn U1 CP (P U1 U1 CP O U Cn (P (n Cn U U U Ul U, l Ul Cn l 1 W Ul Ul C" (P U1 U1 (T Ol C'71 61 .. r r r r r N N N N N" W W w W W A A A A A CP Cn (P CP Ol O� (T v V V V m m m m (D CO �D O O O o W d F-• F W W A r A W N ci A r r N N N (.l W A W N N N N W A W co W A W W W W W N N N r N N Z (P (O r A O m N A G N 61 m N A (D N W r LD V N V CO N O W O1 m A CD Cn N N A Cn — r CD O.) m N Ul ^ O (T O A r W m Cn V O a A W N (O CO V ON m W O CT A V N m ' CO m V W r al V Co (O M N lO N Ul Co W r O V O � Z f✓ F N N N N N r r N r V (O CT) V O (D N (T N CD N CO (D N W Ul V m N F✓ Cn N Ul Ulm N m (Sl O r Cn N O (D V lD r N. N O W h tO 0l O A V --j CD A N( 1 m r W CO (.n N CJ N r N N (T O1 A V O W (O O Cn m A (T m W a, v 0 C C C C C C C C C C C C C C C C C C C C C C C C C C C ^ Z5 =3 :3 =3 :3 O Z5 D r D V W r O '� W C C In N D 0 0 p 0 O O O C D p (7 CD CD C7 C D C7 O p (7 C7 (7 p (Z O K-) p p r m V (T (D (T (D (D Cn (D (D (D W (D V (D W (D (D (D W N (D (D (D (D (D (D (D (D (D (D (D (D V fD r N m O O r m al W -h V -h -h (P - fl - M A -41 N -h m --h -h Ql V -h -M -h -h -h -+, -h fi -il h -4 1 Cn - 11 OM CD O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O C 0 0 0 0 0 0 0 0 (T O O O C-71 1 O O O O O O O O A O N O O O OI F-' N O O O m O N O O O W O w (P Cn Z7 r r r r r r r CD o ^ o n70� N r o �o W -m o N Cn Cn Cn cr, Ul It 10 w cn rn o) ko Ji o z O U, Co O� Co V In lQ A O It h fJ OD C V r r A Q1 v C"t C'7 O O n U, N O O O CP V O N v T CT? (J � V 07 <D D N N N w W LO A W V W V C� CI, O Ol ^ D h < rncnNro vc cc N r r r r r n . A A A r It fi It co co Oi O� 01 N ^ It cn Cn A A w v N co N Ol O C3, i N rn r. <-r A A w ci W 0 0 o v womcnw Cn Cn T r CO UI N I .._i Cv LO O O O O O CD C7 .. CP Ui Ul Ui Lm O O O O O A d A N A W ^ p V co Cn O TT O to � Z N V 6l V l0 v � CO A W r r o C C � is r r N N Ln � � _ CD Gn OJ U> -h C -h O v O O O O O O O O O O A O O O O O N ry r- .-- r r r r - r r� ,� a J m z n n n r N v J c.� v � L7 V O, U A W N �--• O iO 11 V a, Cn A W N I CD �, o C C N O v D F_ O O c o lD CO In < C a rD to Z -i - -I n (t O �• CT 7 ( rD N N N N N N W O O O. Z3 fD l0 ct W l0 r N .A O, V r A Cn V tD O O O r W? CO tO S C d fi J - 3 z N D' - ' J - ,"1 O c--r n �+ O O "O CD In C rD CD (o c t0 7 (+ O ( Z `--� J v t+ rt — O (D fD (D (D •- (D r� r� cn cn cn (n U U, Ur U U (n U U C" U r� r U U (n ^ o o+ �' =F :3 c !� -+� c+ Z O O (O In S _ _ O o O o O O O O O O o O o o O o O O o O O o d d O_ (D mmmmrnrnrnmmmmrnmmmmmm mmmm �7� r�a ' -'�-(D (Pr v (D O C+ n .. .. �. ... A A o m n , -1 M m V o O C O o 0 CD CD 0 CD CD 0 CD CD 0 CD 0 - r 0 0 O ' V C S (7 f7 ti cn v Cn cn co co A Cn 0'% CO v, (7 CO V rn O) W U rn M Cs m tD (D 'S � O A •• - O r C O In (D 3 ('� r - � W O V -O n i :3 O 0 0 CD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c rD ;10 D z° U, CD O o 0 0 0 CD 0 CD 0 0 0 CD CD CD CD CD CD CD 0 0 0 0 0 z o 0 0 0 0 0 0 o O o CD CD o O o CD CD 0 o O o D 3 0 0 0 D (n (D `° `� O O O V1 (n 70 ~' (D O O O O - -I (D pr d O O O (� Cl) N /-� F 1 I--' 1-' N N W W U 110 l0 (D r o o Cn -A A V 6 A W A Q) Q� l0 OD U o (O CO CO A l0 fJ (D c'+ a O r D A N r N f--� V A W W co W r--� W l0 r r tD W( D � O c'+ O r� Cr O N iD N CD m O � O A V lD m W co O V O O Cn W A (O CT, W Cn W .p J N N O Z W Cn A O C:) C+ O O Cn ~ ' 0 N O (-r O O o fD A A A W U crr, W N (.J w (n C..., W A A ci A A A W W A o J a t-- �O OD W Cn CO (O W N V C O N lO N U, Cn Ur V co (O W �l LD A O co l0 lD co N 1-' W (T CD A N U O O (D d CD N D W .. pl N) N3 =3 1 Z N r � N N r. V N N Ol N N I--+ N N I--' N 1--' N N N � 7 d N ( o N W (D d N F I-' t--' VI d O N O O U A A Q, A N N W N F-' Ul CT lD N U A O W C O N fT (D Gn A N Ol iD V A o W V O, - P W N W 1 W W n + / A CO _r, O N U O Ur 10 CO V lO N N U F A F--' co lO Ct Z co O c+ Cl) N d f ID C C C C C C C C C C C w (D :3 ::s =3 =s =5 o A =3 � U, = � D n = ::5 7 D CD CD 0 C7 0 0 W Cn D O Cn O CD C�l O CD C7 CD C7 0 W o n :3 O (D (D CD CD (D (D (D (D (D (D (D rD (D (D (D (D (D (D o, D C c C C c C C n C n C L D D O O O N N �D CD W 1 =7 O O -- CD CD O C7 B O O Z (D (D -- CD CD (D m (D CD CD -- (D (D rD cD N (D (D (D O v O -h -h -h --(+ -�, "fi O, m -41 -41 W -�, -h 1� -h fi -h -h - h -h -- h -h C+ <D C ^ S O O IV W O O O O O O V W O O V O O O O O O O O O O O oP O O O O O O A (O O O Cn 0 0 0 0 0 0 0 0 0 0 0 v ty fi C C C C C C C C C C C ^ 3 � 8 E D O D O C7 O D Q d d A A A A A f (D A A A A (D (D (3, (D (D (D (D (D (D (D (D (O t0 N N N -A - A -h O (D (D r C C C C C C C C C C C a- V� CT v v V n V V 2 =5= v co ::3 :3 OD �-• ^ C3 C7 CD OD W CD O A i--' C CD CD O lD N CD CD \ N CD (D (D (D (D • (D (D (D (D , CD rD Z co W N W O o rn rn CD 0 CD rn o CD 0 0 CD 0 0 0 0 CD 0 0 CD 0 0 CD 0 0 CD CD 0 CD CD CD 0 0 CD o O o 0 v N C=--3 c c C c c C c C c c (* 0 0 0 0 o o 23 : o o� Z n o o :3 o 0 0 CD o o o CD o Cl o CD -? U, W A (D (D (D W A M (D A A (D fD fD fD V (D [D U 3 (D OD U, W N Cn O O CD CD CD O CD (D O W M N � D CD ED CD O CD O rD 0 M O O CD (D (D (D CD (D fD - CD fD CD O O (D (D (D - O O, -fi fi lO --h '"h -h fi fi -h '-"ti O Z C C C C C C C C C C C C C r :3 � U, v, n ::3 V� C 7 C C � O C CD O O CD m m 0 A m C CT m m 0 D O CD m O m O m O fD (D -- rD -- (D (D m (D rD lD lD N CD !D (D (D m (D n -h -h -h -, -h M W 0� G> 01 Cyl 0� (T Cn Cn Ul m ul C� U -, U Cn A X- A A A W CO W W W W Co ( - 3 W W Co N N N3 N N N N N ^ p (7 ; Z7 G) .p W N r O Co OD V (T Cn A W N r o (U W V (3r) U' A W N r 0 Co Co V Ql (n A . N 1r r . . co V . . . W N ' `r - p - :3 (D W W A Un Ul (T Cn Ul Cn 6) 6l cy) m V V co m W Co W w CD Co Co Co (U Co ko O o O O O O to O N CV N W Un Ul W CD r W A (T - _j C0 O IV A Cn V co O r Co U O, co Co r N A Oi v kD O N A (D V Co CD r W Cn S J C) to U, Cn Cn U1 U (n Cn Cy, (P U7 U� Cn (n U Cn U (n Cn (n (n Cn U7 Ul U U" U (P U Cl U" (n U U1 Cn CTl Cn Cn U U, U U, (n Cn (n • . O O O O O O O O O O O O O O O O O O O o O O O O O O O O O O O O O O O O O O O O O o O O U O �• mmrnmmrnmrnmmmmmmfTlmrnmrnrnmr *lmfnmmmmmmmmrnmmrnmrnmmmmmm N �' �O � 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CD 0 0 CD 0 CD CD 0 CD (D o CD 0 0 0 CD (D o () o 0 0 (D () (D (D o 0 CD CD n o- WAA W C" A�(n(n A(n (n A Cn V oo(n(n 0 , U , C . ) ACn(nA A(n Cn Cn A Cn V Co 03 A J-1 A - P , Ul U,A � Ol� C v :5 o (� 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o O C) (D 0 CD 0 0 0 CD CD 0 CD CD CD 0 0 0 o O o 0 CD 0 0 0 o O o CD 0 CD (D 0 0 CD CD CD CD CD CD CD 0 CD (n r r r N r N r N N w w 1-' N N r r W Cl) N N W N r r N N r r r r r r r 1-' r N O O O O o O O O cn V co <D r W A N co - r V V W A r Cl O O(5 r O V C0 r Ql v Cl) V 61 --A E N N CD W O O (n r v r W v W A Co Ul r tV CD O O Ol CD o r 110 O V co N Cn r to r m co O1 V A co N 01 w0� co N V r Cn m V r v o r W Q1 r N r N r N r r W N N N N N r N 1-+ U, N N W N CD r r N r r N N W r N .A 0� A r r CD r r N W W TJ N r C, Co A U, Cn %0 Cn Co O O� Co tD A N W O V (n v Co CO CO CD W W O V U1 t--• r CO M N Co V .p A CO O (T W V O N CD - O, Cn co N O r r Ol co CD V W N CO CO A U r N N CO O CD Cn W CD W A co Cn O� V W Co Cn W r -1 -1 V V 6l V (T V 0" A -A 0� Vcr, Ol V M Cn M r 01 V M OT 0i V V M O� M 0� M r r r V V V v V M N r - _l Cn (n W 011 A CT, N IV N A W w A A r r N W r N Cn W N N W A W W N W N r N W Ui t w U) CO lD fJ V m V V N (n CD CD N W Co W N V O co V 0� O V (n (n Cn Ol A "o N N N Co w Cn U CD (D co . N N W CD (r O Ln A W Cn co (.31 r W r A W Ol O Go W A W CD V Co 0� co N� CT 0i O (n M O A (n CT W (n to r 0 CD W O Ul r z p c r r r r C C c r C (v U, r Cu A V r r W CD O w N O�� O N� O W CD W CO V W w r Co r C E Co Cn W 6� (n co V r C O M) r CD CO N W U, CO V m W A A o0 o r CD p V (J O N V V Ol m A A O O N . W p O N r W . . . (D N (D (D N V O CD m W 10 --h Z V l0 N O (D CD 0 co W W (n A N r m W - h N O - h A W co m Cn O O� r JA 0 0 lU - h - h --h A D N C C f- r C r r r r r r r r r r r C C C r r r N C (l N� W m N N N) 0� A r r (n (T 0� A CD :3 W (n N CD V w N o r 01 a1 A W A Y N (p m o CO W r- r l0 0o V Cn (DD U co m O Oi w v CD m r C7 0 A W CD co W CJ W W W N W O O N CD C7 CD V Cn m W Cn A CD fD (D CD V A C" W A Co A 10 OT A CD V m r A V -� --h O V --h O r r r N Qi Cn V O r Cn W --h -h fi W Co 0 CD r r r N N N .P N co N W A Cn A W A A W W O O A A O A N W W A N N W W A W� o O O W N r N N N N ^ O to C;� O W U, V N W N �A O O N O 0l O O f-' N O Cn O A 'D V UJ lD to V A N r O O O W V tU V lfl V Cn O ate° N CO (D U� (b Cn A A ' (31 O CD A 01 .p A r O O W r o O� O co to o r O N 41 N Co Ui o 0 0 Co r Cn V r O N 0 v C C C C C C C ^ p p p O D O D CD o' W W Go W W W co co (D GW C...1 W CO W W C.J (D (D W W CD Co Ci W W (J C.W W W W W CO W (D (D (D W W W W W W A A Ca CD Cb O) oo A co (T Ol 0, A N 00 A N N (t A A N .A A - "h A (7) Co CT ol W N A •� fD C C C C C C C N Cn Cn Cn W Cn A A A=3 W W A W CJ A A:5 =3 W W n W (n W W Cl) A -P W W W W W=3 n=5 co co ? A W Cn 0, co ^ tp O r lD W A V W( O O V a% A Ul r p CD O W CD CD 0 V 0 0 0 N Cn U O U r CD O CD r co Co N U O Ol 01 O co CO A O co I'D V O O O O> r N fi -- h O Ui -h O Ul A o O V A r N W CD W� - �+ V r Cy 41 W V l0 A r CD 0� 0 r 0) W W 0� 0-) W (T r r 0� (S r r (T 0) r (t w r t-- r r r r r O� O r � O O O O O O O O O O O O O O O O O o O O O O O o o O O O o O O O O O U Ul O O O O O O O O - 0 u) C C C=--5 i O C O O o O O O O O O (5-3 C C ( c+ O O O O O O O O 7 O O O O O O O 7 O � O O O O O O O O O O O O C:l m 0 0 r r r r r m O r r O r O r O r r r r O r (D (D (D O CD O N W A 3 lD A CT W A W 0� r N -h co S A N W A A -- h - W N fi 0 Co r cc) r to r W N W Lo N --i, -h -h 0o m O W to r Go r p C C C C C C C r r r r r r r r r r r Q C C W dl r r C r (T W O A V V CD N A W lD r W N Cn r (D C O N CD CD O r . W N N tD r(D(D ID A Co V N CO ( A r V 01 o CO M r W a> r l0 r U� Cn C o -h --h Cn O E CD A A a, r r V CD CD (n r -h -h �, W CO Z F C C C C C C C v N W N N N W N N N r r N N N N W= Z3 N N C3 N r N N - N N N N N N (v =5 �-' r r N r W U 01 U, r CD Co N Cn 0� 01 co V Co co m Cn V r CD CD r A p 0 CD N O CD r N Cn Cn r O N p O CD m m() N co A W CD O (D CD CD (D (D (D . n W C" C n N W Co W Cn V W W o W r r CT -h -h O r -h O N CD W CO O CCD Ul TI (9 � W fi -- h fi W V Do r N V W -h r r r r r r r CD V CD A W N Or O to (b Q1 Cn A W N r O ID CO OD ko OD w co 01 (D � w (D co m O Lo OD V CT U' A W N r O tD (X1 M (n - (D 'D . _0 - 1 :3 CD r W A CT � ID O N A (n V CO o co W M� Co to I (+.W A M� t0 O N A C71 W O r C.1 U1 CT W tD r N A (T V t0 v S FDl '- (� lD � U� (I1 U1 U1 U1 (J1 C" Cn Cn U1 C" (n Cn Cn Ctl CP U� CP U� Cn Ul C" (n U1 U1 (n U1 U1 (Ti C" CTS Cn Cn (n (T C1 U1 Ul Cn Cn U1 ul U1 (n .. N . (n O J mCD C D Cl °mmmmm OO m O O m O O m O 00 m O 000000 m m m m r, 7777 Om0 AO('t m c n o O O O O O O O O O O O O (Z) CD m OA ( O A A A o o w W co � 4 ci W A A . W? 0 W m m O01 CD CD 0 W W CT r pl vrn cn A 0� 4 W cnAA CD f) r . O o O O O O O O O O o O O o O o O O O O O O O O o o O O O O O O O O O o O o O O o 0 0 0 O Cn O I--• O O O O O O O O O O O O O O O O O O O O ( O ( O O l 0 O O O N O O O O O O N O OW rf ) N W N to O A Cl) N V N N A N N� m A Cn W W N N N co A U1 V Oo r N W W W r N W r r r r N N N W w (..7 W A W A (n A W A W A W A W N N r (J W D (T 0� cn r r OD A A Cn to A O r CD W (3 N t0 m A tO Cn W A O co N V W tO V N V Cn O W tD V U1 r J 0o r (n V V Oo O O A co t0 N J O� N O tD r W Cn t0 tD W W G) O� W J CO J r W OD A lfl O� to to N CD (n tD t0 N N r W r r W W N A N IV N N r N N r r r r r r r r r r r r w r W A W — - W !" ! ' Cn N r co O V N 0l O t0 (o O A N O N t0 r Ul V Co A W al N Uo r W U' V co S J co 61 O W (o N l0 o W W D r t0 to O r t0 Uo (T r t0 m J N W O1 W N to W U1 N N A V O to t0 Cn W W t0 tD W V r V W A co N co (n J O N r r r U1 y r V V O1 J V A A (T r CT Cn (3� O� V D\ (T V V V V V V V V V J V V r V (T r r V CT m V V r r r W A r (t (t W U1 (T IV rQ W N A A Cn al CT W W G) d> V Ch V O W m J CJ1 co (J' r co (n N r Cn A N Cn 0� D M A N W tO V V r Co W IV A V V Co AA (n co A co r N W A t0 V N W O� V t0 A OD A r W U1 W CD V V A W n . V N M Z N co co (n Cn co A r lD J r O cn N r (T V V A tD A W r� W CJ1 N Cn O1 N J U1 r r to W 61 (n t0 tO (D rr ' C C C r r C r r r r r C r r r r r r r C N C C r r � O O O O o D o (�J1 V W 41 A W V O A CO J U1 U' Obi W U r\.) t 6�1 co W J co O 0 ( A C) ( U CD t (D . (D (D (D (D (D (D -h -h - i1 r W -h (T tO CD N O Co o J -i1 Cn M t0 0� 0l M O r co U1 W a) N Co Oo OD Q1 v Cn V CD - A (n -f -h U1 N V r W Z D C C C N r C (V r r r r r r r C N N N N r r r r r r r r r F r r r r r C r N C C r r r r r fl 7 N LO r 01 (n to W o N co =5 A N r W 01 10 Ui W Cn W S W U' W Cn (T O1 0 0 CT+ r V W N N r p p [7 N W A W tp N N tO N Cn [7 W W r A r N O� A W N V W t0 N W (T t0 C7 A C o 0 0 W m W N n 01 co --+l r O V ko r Oo Cn co --h r W 0� O m N co N CJ al r A W A co A V N --h -- h r r W N t0 r r r r O O O A W O W N A co N Cn Cn A O W A W W N A ..pp N N N N N r N N N N N N O N W O O N W A N N O O O Cn O O O V (A r co co (T O O Cn O N r J N A U1 61 r O1 O m r C71 U' J N (P O N Q1 O O N . . . O O O (n N o J O r A r 00 O W cn Q1 Cn A (T V r tD Cn t0 co W t0 W O r tD CP O W N O o r r V O r .... cz C C C C C O (D S O D O C O D (D (D (D W W fD W Cl) W W W W W W CD W C.o W W W W W W W W W W A W W W W W W (D W W [D D W Co Co W W CO CD (D (D A 6� (D C 01 N w w O O N -h A A CT Co Co A N CO W co co W O OD W co co 00 O� -h co m -h --h CT 01 N m co .. C_- C C C W j � Z3 A (.n Cs CT W Cn U1 W W W :3 A A U1 (n Cn W W Cn Cn U1 Cn Cn 0� Ol Cn 01 U1 Oi (n 25 01 A D � A A W A (Sl C. CD C C7 0 CT Cn A N (T 0 0 bo C 0� A O 01 A tO W W A co m tO CA N Cn O� N r C7 r CO C] C7 V M O t0 A e�P C7 (D CD (D r N CD O tD O w O O t0 -h 0T N Cn A t0 tD to CT W CO t0 tD O O W r r W r r r r W W r 01 r CT r r r Ol 0 1 C.J r 01 01 W O Cn O O O O O O O o O O O O O O O O O O O O O o O O O O O O O O CD o O O O O o O O o O o Cn C C C' ' C C C" C C" O O 7 O O O O O O O o O O O O O O O O O O O O O O o O O O O O O O O O O O O O O D O D O (D D (D r r (D r r r r r o O r (D r r `--� r r r o r r r r r r r r r r r r (D r r N (D o r r r r 3 cD to o -h W (n A tD A W t0 r W N N (n -VI J J A -h - t1 tD W r r N O O =3 C D C7 C7 V Cn C7 0T tO N A A W to N O U� V CP J N U1 N V . W 61 V (b N N W Co N 0 Co r O O C, N O J 01 -i1 -i1 11 A O - U1 0T U' co W 0� 01 !--' --h to Cn U1 J V r N J 0 lO r C O N O CD J N J Cf1 -!1 A o "I � Ca (o co N V O Z r C C C C C C C C W W W N N W W r r N C W W Co A W W N N N N W N W N W W N W(D N A ( rD r N N N N O 0 0 O A Cl C D C O O1 Cn W M V tD A C7 r U' W O W o A N A U' Cy' U' N Po W W U+ CD r 0 CD N O D t0 (b r O N n (D (D (D <D �1 -i1 -i1 tD - -j j -h U1 O O tD Cn N N W --- V O J r - 00 r Cn tD U1 r J CT W U1 Cn O to W C" �+ W CD Cn V A W ' r r r r r r r 0 0 X4 O n �C1 G7 N r O (O co -fi Ul U U� U, V1 (0 W U (Y) 07 t0 S J O Z (Ll m Z5 (T Un U, Un C t .-. .. N n O O O O O ( r O 7 7 7 T 7 � F A Z :1 ( t N 00 O O O O O v () - C AArncr) m C> V O n r ul oorro (n r N N O CO (T V OD A N o (n A(n W A a, .o co c:> N N W U (P Q1 61 O (n oo) rA N W r o(n rrr O W N A CO r W A 00 Cn m Z 0 m M r N C C C a D W O O(D n CD m m r O N N C C C n ID U� O C) O Z m m m n U� co N W O O O 01 Ol O O co O o \° A O o O C C C C 7 C O D O O (D m W W m m m tD (n OD A --� -h -h •.• (D C C C A Q A 7 ::s =3 •-• Q' v o 0 0 0 o m m (D 0 r r r r W n O O (J, L� O v V7 CCC o c* 0 0 0 0 d (t N r m (D (D m N A fi h -h ID r r C Q C r OD V D QD D � m m m rn m A i o z r C C c (S W 25 =3 01 r A (D 0 (D o m m -- (� N N r r �--� r r r r r r r V U, U, .P W N r CD -h (D G C C/� O D D Cl F_ d 0 '� O J O s= r O CD CO V A W N r O CD U, � C (D J - i - - n c O fD r+ fD d (D C..,. (D (D U] r r r N N N N N N r r r r ' N W A , A -P A A A (D 3 3- (D t"t 7 J n c+ �_ U, W k r N 6 V U r A V CD O O O O CO (D ( r W A 2:r C C1 D - T Z (D O O '0 11 rD ID J C-t rt -i O lD (D (D (D C-t p - a Z S 7 C Cu 7 v N r r-• �. D �+ � Z O O as to U _ _ _ J r r N CT m A � Na Cn GP (T O U, 6, (T CD CD W �' < a C1 Q. -- a (D 3 U, r N 7C r) m m r l0 O t"f v o CD V o o Co D r o A r cn V OD V A N CD V C. A -. .. p -. A U, o m v --4 - rn_ v o 0 c vvCOAAO V �.Ct O OD r N V O r co U, U, CD V Oo OD A O A m 3 .. .. .. n O r �--� G7 r O m S Z V A Z V N N O r 0 C t Ell .. - -1 O O 3 (D C O W O ^ D O r;o r c A N r O N W W r r r N N N W W N W W W W W < D '� D Qo Cn c+ n C< C n O O r CD CD A W O V CO O, r -P m U (7, co r O O OD co V -h "T1 Z U, r r A V 0 lD CD U co A V V (J, CD CD V r IV Co V 00 r �� O v 0 0 0 N fD O O O N O .Z7 p� Q O O O n M (D a O r D d N Cn N U m U, A U, A A A A A W N CJ W A A W W N O r �- O N Oo N V v� -0 �. O. rn N CD N V V lD co Cl t CT O V V V ' co CJ N 00 A W A N N O Z W U CO N N CS co A V - O O V W N V ()D O, W CD V O U, Oo (P U, - h J , p O 1 O CD A r 71 N O + O O O :E 0- D d N N r -1, < O 7r W tD O N r r r r O . N. (_- O (D ^ fD - A tD lD O - N N r N 0 OD O r O V O r U, OD Oo m v d �^ cn -5 r r W a U, O, r (n Cn C7, V -I ( (D N =S d N c+ = _ tv O C In o A A n h r+ a co U, (T O, 0T A ON O U, CO OT CT (n U, U, O, W �. W � o r r r r o 0 0 o O o 0 0 0 o O o o O o 0 CD N ID 0 0 CD co Co V V m (T U A A W W N N N (T CD W V O C Cn D A CO W co N m CD ni o r r r r r 0 0 0 0 0 0 0 CD 0 0 CD 0 p CD 0 0 0 tn C1 N r r O O ' D --A 00 V V U, CT (P A A W W N N r O O N V r O, O (T CO W V O (r i0 A CTA W Oo N m O A� W In O O O o O O O O CD 0 O O O O O O O O O O O O O N O O O O O O O O O O O O O O O O O O O O O CD - fi - O O O O O O O O O O O O O O O O O O O O O CD `--' d d � O O O O r F-' r r r r h-' r - h-' F-' r r- N N N CD Cp CO CD O O O r r r N W W A (n U, V Co Cl 0 0 0 ::3 O W U, V O W CT -- A lD A O Q, A W W V U, O O O O r m C W U W N r r W W m N r N W w W A A N U W A W A Z -j CD Co N M U, CO W W U N ---j r A o W O, V W ^ o `-' U, U, V N W- W U N U, CA O A r A N W N N O, U O 0 r � Z A W N r r A W V Iv N N A A A V O, A r O, CO V 07 fi V U, U Cn lD O A W CD W (D N CO O, N V W W m W Cn O, O, U V W co W N V O lO N Cn CD W W A W CD W A N 1--' O v CD F C_- C C C O W Cn r t W [s, ::s C., W r A A Cn O W Cn Cn V V N N m r A N U, r-� A (D N N Co O W W (D U, r lD U, V W m -h C V W CD V W -h N o A Co CO W -h co Ul - W co A -- h O O o O O O O O o O O O o O O O O O O O O O c-) O O CJ 0 0 0 0 0 0 J� A O O O O O O O O O O O .Z7 O O A O O O O O O A O O O O O O O O O O O O -p W N 0 lD CD V C� U A W N r-' O lD co v 0� U' A W N O i0 W V . . W N r r CD 07 V Cn A W N --- (D '� C . �+ �i 7 (D W W A Cn Ul Cn U U Cn m m . (T .m (T V V V V V v CD W co (D (A Oo OD CD (D CD LD to CD o 0 CD CD 0 CD r r r r •.• V CD O N A U V Oo O r W U T N CO r N A O1 --j CO O N A U V m O r W U 3 Jl z to O N N N W (n Q` (D tD r W A U1 O _ (D 3 r r r r r r N tD <' W V CD CD �1 V Cn V V co W A to � co Cn (n Cn W r r N N N N A N N Ui A W A (n O A (n m V N co W Cn W CD ' (t < (n O (T N cn co r V N A 0-) (n CD Q1 O O A V r U lD C W W W W W r (n A V O O (n W V (T O / lD t0 A (n r r fi D oD O C O N A co �-' a) Ul co (T (n r 01 C3 CD N V m Ol Cn V ko M r A N V (b W (D M O r N 61 N 0� Co Q1 Q> m V N N O �. C v O f1 r D CD 0 0 � O O O O O O r r O r W N N W CT . . W O A' N C0 O V V W r W O r N N (n W A N r W A (n W N to V V r Cn W W V A m 0 0 co Ul Un A r co N V 0, U, r A r' -+, - n ' T CT N CO U, W N U W O to V co N cn N CO 0� N CD r Cn W N r Cp r r r m co CD O V V O w O Cn (.o r A O W A C7 Ol O1 (D D r N r r r r N r r r W W r) N N N W A A W A N W r W r r N W r N W (n Cn A A Cn C, A cn A N ^< fl N W A W V A O (T O1 CD Co M CO 0� V V U al (T A o (D r r 01 N Ol N N Q1 l0 (D A O (n V Cn r O r N Cn r `-� O f--• W r I'D r W r A (n r A N r V Cn W A CD A CD m M A O r Ql cn (D A A CD W o U' V r N D c — h < r r h D N N N r 0 o r r r N A A 0l (n A C, v m O r V (n A A U, Cn U W W A U � V co (T V V CD O� V a1 W O C W M W CSC W r W �D A W Co A W Co Cn Cn co r o . D W �D V N Cr) A Cn V Cl) O W fV CD �D r o W p m CD CD r N (1 Cn r co m co w V V V v V V n (n ( 0� V V m 0� (n W W (n W� Cn V U V� (n m m CT W r A Cn N r r r r r r r r r r r r r r r r W r r W W W W W CD A o O v V V V V --A A A A v v A A A A r r A r A A V A A v A A A A A r o A A o 0 0 0 0 V i to (T O Co Oo O 0o co m m OM m CS W W . m m m A A m A C� Col W a> Ol CD m (T Q1 (T A Cn m M (n Ul Cn Cl Cn CO (n c W W W W W W W W W W W W W W N N N N N N N N N N N N N N N N N N r . r r r r . r r r r 0(D V V m (n Ul A A W W N r �-- O O Co 110 co V V m C� U Cn A A W N" r r O o CO Co co V V Ol CT C" A A W (al CD Cn to A Uo N (T O Ui Co W w N T O Cn to W CC) N V r Qi CD A CD W V N� O Cn O W co r 0, O W A r A co m n C N N N N N N N N N N N N N N N N N N N N N N N N N N — r r (D (T d> Cn (n Cn U, A A W W W W N N N N r r r r 0 0 0 0 to CO <D � ' co co CD 00 V V V Ol m U A A W N fi N 0� W r Co U N O V N Co m A �--' co M Cl) �" co m W CD M W O CO Cn W O V (n N o V A r m O co V r A co O O O O O O O O O O o O O o O o O O o O o o O O o O o O O o O o O o o O O O o o N CD x 0 0 0 110 �D Co OD CD ' CO ' CO V V V m CT m Cn Cn (n A A A A w W W N N iv r r r O O o 0 0 0 0 0 CD 0 CD fi O V A N co U, N to m W O V A �-` co U, N CD Cn N CO m W O -_I A r co Cn N Co Cn N lD CT W Cp CD O CD (D CD CD O CL O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O (D . C7 a CT m m M 0T m m V V co m CD co co 3 r N N N W W W A A A Cn (-n Cn (T m V V V OD co Co CD �D O O r r N N W W A A U, (r 0� m OD CD r N A m co N CL r r r r N W N N N N N r fV N IV r r N r N C D (V r r r r r N r r r r Co -" L, N W A Cn W W N) co AW 0� N V N r A N co W W V al CO Lfl Cn O N CD v (D (T r N W . O V A r . A Co A A. ^ CD Q1 V (b co CO co A N W Ol CD (n V N (T CD O w O to N W r 0 (n m A Co Cn N A A N v N N CD W N (T O Ol (n O CT O N N r r r r r r r r r r r r r r r r r r r r r r r r r r r N O W A N N CD A O N 1p CC)' O V A W Cn A r A (;l V O N A N CS W JA W r N r V Cn (T l0 r V V IV (.o r Cn to A r CD � W C""F O r r IV (T A M CD N CC) Co V N M CO Co oo W Cn t0 r W W C (n O A F-' M N U+ W V 6i (D O m 0) N Ol U, A N CD v 0 C C C C C C C C C C C C C C C C C C ^ U, 3 3 3 3 3 3 3 3 1V W A 3 3 A A W ry r r r r r N O r r= W N W A CO W o A C� 0 0 0 0 :5 D N (n D Cl 0 0 0 C7 0 0 0. . 0 0 (D A CD CD CD (D (D (D (D CD Cn O N (D (D r W CO Q1 W r M 6 0� O CD Cn Co CD Co, N O N r (T fD v [n CD (D CD N CD O --h co -h -41 -h -- h - +, -h -fi -h (n O 0, -h A 00 r N (T , co A Co (T -+, 0� CD -h A W Cn 0) A W --+, W CO �, -+, --4, -h 0 0 CD 0 0 0 0 0 0 C D CD 0 0 CD 0 0 CD 0 0 0 O O O O O CD O O O CD 0 0 0 0 0 0 0 0 0 O O O O O A W O N N W N O W W W O O O O N O O O O O O O O r r W O r r O O W O O O O O O O O O O O O Z7 r o CD W dl V O Cn r o C D o CD W o o O O CD O O O W 0) C' o Cn m o o CT o 0 0 o O o 0 0 0 0 0 0 r r r — ,:::3 F--' r V V V V V V V V V V Q� �� Ol Q\ ^ O (7 ;lu G7 00( 0000 r o�nF,Uo�wro- C rr(D - ice co V 0� Cn A W N (--� O �D W V d, U, A W N — O (O W V . A W co N O W Q, . A co N r O W d, (n -h 0 "D C ct to r W A 6N ON m O N A Cn V co O N W al Oo (D W A 0� (O o N A U' oV 07 O r W (n Q� Cu iD r N A V v T T DZ (O (D r C r rr r r (n N i0 m CTi Ut W W Qi co O W V Co N lD A (D Cn M C" A CD LD V V 07 co V to V Cn � CSi C A �O V N W V A c+ < U, Ch 0 0� m r A r 0 r V r W o V V V 0� W A (T o Ut W W V tD o . V A Ut o W V (O t-� N cf] A O c+ D Co c Cl) V D1 r C" --4 Q� A U, O V W O N U't $� C, W Q\ CTt N N A A c" W� V r A V O CO O W O Co Co O Co lD a LO V ('>' C7 O- V r � n r W W W W N r r r r ci N N r 1-' N N r N N r N r W W N N N N r r N W W A A A N r W A N r �'' ' O V m A A O W W O to V O N N Q� CO A V A 0' O N O (O O (1) 0� Cl) �D 01 to (n W W N W r,3 A V V r N W (O W --h O W A co m O Cr) O Cn r 0� V W I'D OD Ut 110 W W N r lO tO Ut OD N — lD A A r N Cn CD W A Cn 'D (P Cn r A O V W CD co 07 D W W ,p A A W W N N W N N N N r N W N N N co W N N N r r Cl) (V N N r N N N N r r A W r N !\3 r ^< . \ D W Cn O ul O W CO y r Co N A l0 Co O Ql O N O ul r o V W O, CD r r A i0 O Ut V V i0 lO r A A N A N O N 1--' N O 01 A hQ W I'D iv (n Cl) r co 0i (O V�D N V W W�o A A Cn 0D r W iD 0', r O A O N ^ D i Cn Cn A N r 0 0 r r r r r N W W W W W W W W W A N W W W W . A W W W W W W W W W W N N N N . N A A W N r r N N A N N m V co (P ON O1 U� V CO W r o ul V CO N O r CD LJ V V V OD V r l0 r G� m O N W (n Cn (n Cn Cn V al (n V 0i V Cn V 0i G� Q> V O> M Ul V V a> W OD M V V V W V V V v V M 01 W -i r r r r r r r r r r r r r rr 4 - - r r r r rA A A v v A o o h v --4 o - - v V V V � A o ' t, o n A A A A A A A A V A A V A V A V A A A. 0') ON (ON m Q1 Q\ Co m 07 .m OD .m co m 0� 0� m Oi 0m 0� W W .m CO to 0� - co Co 07 �o co co co OD W - co 0� (01) CO Q� Co -- i Cn cr O� CY, 0\ (n Cn cn cn Ut cn cn cn cn (n Cs C) , C" U (n Cn cnAAAA AAAAAAAAAAAAA W W W W ' ' N N r r 0 0 110 CD O V V m 0� (j A A Cl) Cl) N N r 0 0 to I co Co V m Ql U) Ut A A W N N (O co W co W V r O A �D W V N m c::, Ut iO W V N 0', O Cn 10 W M N (Di O (n t0 W V r M O A Co N r U' tD A aD N ._. m C..) CJ GJ (J W W W W W W W W W W W W W W W N N N N N N N N N N N N (DD OD Op V V V V m Ol 0� � (St � Cn A A A A W W W Cl) N N N IV r r r 0 CD o O �D CD t0 "0 co 07 co V V V V dl -h N W p OD (n W O V (n N O V A N lD Ql A r l0 6i w r W m W O W (n N V A r W 0') W O V Cn N t0 V N N N N N N N N N N N N N N N r r r r r r r r r r r �'' r r r r r r r r r r r r r r r (-' r N N A A W W W W Iv Iv N r r r O o 0 CO (D � tO W W ' Co V V V Oi m (n (n Cn U' A A A W W W N Iv N U" N (O m W o V A r OD (n N lD Cn N (O M W o V A r co Cn N i0 01 N i0 M W o V A r CO Cn N (O M W lO Oi W d LQ o O O O O O O O O O O O O O O O o O O O O O O O O O O O O . . O O o O O O O O O O O . O D ul Ut Ut (T . a , Ul (T CD ul ul Ut C � LT ul CP CTt CP Ut ul Ul CIt (31 Ui of U (P C" V V V V W co W co ul Lo � O O O O Ol a1 =3 r r r N N N N N w W W W W A A A A A T Cn C" Ut U'+ m m m d> co ,y (v A W Cl) W N N r N N W w w (v co A W r W W Na N N A Cn W A A Cl) N N W A C." ul A (n A N W A (.W W W Z r V V DD r co A Q� W (O A r W O O V co V r r m m m r m r r Cl) co N O N O W �O N Ql co m V N O C..7 ^ o N Cn O W W F-' V (n O O r W O A 07 V O tD A r Ut r O A N (n m ' al A (n 01 W C..) V A IV lO N V W C� t0 CO C O E _ N � Z N N N N N r r r r N N w N W N r N N r r N �+ r O A 10 10 Ol A N W W N O W M N Ol r o 0 0 V r A A U W o W co to .m W V A i0 r Co r V V r co (D W O �+ Co (n O OD Ui 0i CO Ql v r V N Qi (n Ol "0 O W A r OD A A co ' M Ut A Un o W 0 Ut Cn Cn N iD N A r V Cn tO V v 0 C C C C C C C C C C C C C C C C C C C C C ^ W (D V Cn A A W N A Qi O1 � V p . W A (n W CD �p V p CD p p p p C7 CD Cl CD O CD 0 61 p to N p p p � A N lD Co N m N (D W O (D O (D O (D N (P W (D O O lD (D (D N (D (D Cn lD (D (D (D (D (D fD (D (D fD V (3 (D O lD C N W co N W N Ut Co W A -h O l0 N to -+1 CD Cn (11 fi - A -41 --h lD -fi --h -fi -h fi fi -'h -h fi -h A �D fi co -h 0 0 0 0 0 0 0 0 0 0 0 CD 0 0 CD 0 0 0 0 0 0 0 o O o CD CD CD 0 0 0 0 0 0 0 0 ......... C-) W O O O O O O O O w O O O O O 2 O lD O O o 0 CD 0 0 CD .A O O O O O O O o 0 CD 0 0 CD 0 O N r r r r r r rr r r r r r o o ^ O n v L7 .A W N r O l0 Cn "O --A n o N Cl) ul 6i W tD J O Z fD r ^ D N CD V N N Ql 0 10 Co N lO A O t"r A OD A O (P D r - D 0:1 C r A CC) O l0 0) V v rt V O c7vn o n ^ < u Ol -p N CA W CD w v Q� ul Q� po V N 61 Oo W O 0:) _ D N r ul A N N W C, W rr otor V Ol Ol N O �O W v C N U� V Cn l0 Q1 W fl- N co V V W W V Cn m —1 r r r r r r r c W co A A do m m N a', C3i O� 0" N Co W ul 41 W N m r Ui O A m N ^ c-r A W W W W W W I [D O �D l0 l0 t0 W co 1n r Co m W r CO T N N N N N N N N Cn Cn O� (P U1 C � V A r W Ul N lD a O O O O O O O O C CP (T (T Cn CT Ul ul 0 0 o Orr r o, W N N r N W w Z W U W t0 r A to ^ o N O W N O O r 6 O � Z rrr rrr -ry CJ� N r lD O V V v� pll C" to V Cn N l0 O C C C (D CJ cD fD 0> � co o (D W v � - CJ -fi Co Cn W O O o O O O o 0 0 0 0 0 0 0 . O O O O O O O p m m z C C C7 r - ' O CO V U A W N r O CO CD V W N O C C (!� O v D Cn L (D It Cn fD . W - c., O (m N N N W A A A A A A A � It O O . S J J Cl p (-t (D Z Z - T (n 07 Co N A O� V iD �--� A Cn V O O O W A l0 S n, -� 'O _ ct (t -i O II (D fD .. 7 C ct Lo Cn U U, U, Ln Cn U, r U U, Cn U (n Cn U, Cn Cn r-' Cn Cn Cn Cn •-• O N S S 7 C d 0000000000000000000000 m (D 3 r �� -°-�Q� 3 �� rn (�mmrioo ct mmrnmrnrnmm7T71 mmmrn r m (D ,- •- U, o m - v . - gy m _ Voo c OOOOOOOr�000000000r 0000 o c+ � v0D •• ` <-inc� (n Oo Cn m CC) co � (n V rn CO V V a, A (n cn Cn Q, m (n A cn '7 3 n o r .-, � m C - , o zr - S (D v A Z V N N 2 0 r O o f 3 (D o w O l� ( � po O r r c 000000000000000. . . . 0 CN (t D Sp cn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Z o 0 0 o r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o N 9 o 0 o D a (D (n • 7 000 (D 0 0 0 o rn CD rn r r � a 0 0 0 _ m r D W N N N W O O C ;:o D (L (A Cn Cn W co O C-) A OD o A A OD O O TJ �' O .� to (31 Co N CT N N m V m N Oo Cn Cn �-- r 1 N O O O �' O r C O N co m (D "O - N r Cn V N N co (T 0> ' CO W N N Cn Cn A Cn V 0 0 0 J N N O Z (D W (J, 4, F, O O t O O A 7 O t - O O O N f N (T N W N W co A A W W N [1 N to r J � � Co A W cy) r W0� co m A N W A A V CL -- h - . (D Cn r - W N A U 0� O m O Cn N W to W r - ' W N V ID 0� Cn 0 0 (D CO N D rM O� O� r r N N N N N N N ::5 (D a p N (D n (D d !--' N — — — F N 1 N 'S N fL O N W O1 N V— N W co co Cn fJ ' CS iO Cl V O Cn A A r r 1V o IV O, V CD r C W A V N --4 r O M (o U, N V O m CO co O A M Cr, W r z co p r* W (D c+ z C C C C N) C L• C C V 7 V n 7 N Cn O N n 7 7 n n Cn O V p C p (3' p (O to O p p p p p p p p p p p f) (D (D CD (D (D (D (D (D (D (D O (D o (D N O t O CD a O r C r G C C r-• C N r r C C C C C C C C C C C n io 7 A n 7 n ko 7 O U, U, n 7 7 7 n 7 7 n 7 F n- Ol p O p p p V p CT, V O O p p p p p p p p p p Z CD (D (D O (D - - (D (D (D (D (D (D O (D (D (D (D n O Cn - A --h -h --h A -h V N Co S CD (D r O N O O O N W W W to O (.3 CD 0 p (o o A t-' (O 0 0 0 0 0 0 0 0 0 0 0 o�P __q � W O N O O o O 0 0 0 0 0 0 0 0 0 0 0 0 N (t N C C C C C C C C C C C C C ^ J O p O p p p p p O O p O p N J (n A m A m CD (D fD A (D O O [D (D O A A A A (D (D Cn Cn (n [D N -h O -41 W M M O, N � C C C C C C C C C C C C C C V 7 (P n 7 n 7 U 7 7 n 7 7 7 CO M v V 7 7 CO CO •-• ^ N p A p CD p p m p p p p p p O N O N p p Cn (n p Ln CD (D CD CD CD - (D (D (D CD CD (D (D (D - � U7 w --h co U V -h -h O O -i O O (or) 6i (T O r 0 0 m 0 0 0 r O O r 0 0 O O O O O O O O O O O O O O O O O O O O O O - 0 Cn C i C C C C C C C C C C I I ' C C O 7 O 7 n 7 n O n n 7 n 7 n o 0 0 0 7 n O O CD p O p p- p p p p p p. p p- W CD N (D CD (D CD (r (D (D (D CD (D (D A Cr A CTI (D (D CT M 3 (D (n --h m -h -h -h -h I'D - -- h -- h W U, Co -+, --h CO O p O C C C C C C C C C C C C C C C C 7 7 n 7 n A p N CD O p W p co co (O p p O p p O p p p p p (D - CD CD (D (D . - (D (D (D (D (D (D (D (D (D (D (D (o - h l0 - h - 6 - t, N -h W O U - h - h -h - h -h - h --+, O Z F-� C C C C C C C C C C C C C C C C M n W n 7 7 U n Cn A U 7 7 7 7 7 n 7 7 7 7 7 N p w p p p V p co r Co O p p p p p p p p p p O (D - (D (D (D (D . (D (D (D (D (D (D (D (D (D N (D n A -h N -h -h -h t0 -� N N r-• --h -h -h -h �, -h -h -h -h �+ -h m0� Cn (n U, CT, Cn U Cn U U Ur A A A A A -P A A A A W W W W W W W W W W W N N N N N N N N ^ C, C Z7 ,G') A W N ,--• O (D W V 0, � A W N r O� CC) M (n A W N r O CO M V . A W N 1-' r O . V . A W N. . U U U CJ O U 0 O D 0, V V V V V V CD co co Oo co co co CD (0 �D CO CO CO O o O o O O r r r r rt t0 O N N. W Cn m co CO r w A� V LO O N A C" V m O r W Cn m co LD r N A Q, V CD O N A Cn V CD O r W (n r , J C) CD U Cn U CJ Cn Cn Cn Cn Cn U (n Cn Cn Cn U U U. U Cn U Cn Cn (n C" G3 U U Ur U U U Cn Ur (n CD r Cn Cn r r r r r Cn n V1 O O O O O O O O O o 0 0 0 0 0 0 0 CD CD 0 0 0 0 CD 0 0 0 Cl 0 0 0 0<D 0 0 0 0 0 0 0 0 0 0 0 U O m rn m m rn m rn rn m m m m m m rn m m m m m m rn m m m rn m m m m m m m m m m rn m m m rn m m m N Cl CO 0 0 0 CD 0 CD CD 0 CD 0 CD 0(D CD CD 0 CD CD 0 0 0 CD CD 0 0 0 0 0 0 0 0 0 0 0 0 o o �-.� o V o- W Cn W Co ? � A A A A O, O, Cn A A U U U 0, Co CU 0T 6o (n CT -P 0, (P A Cn m U U (n W U, V O, Cn W U Ul Ul -P (-, V R) O n O O O O O O O O O O o O O O O o O O O O O O O O O O O O O O O O O O O O O O O O O O O O p O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O CD O O O O O C O O O O O O U1 N r r✓ r r CD r r O CD 0 CD CD CD CD CD 0 0 0 0 0 0 0 0 ,O 6, co co r r r r r A N W W N N N N N W r r N N W N N N r r r r N r N N N N N (n N W W A Oo N l0 O V A D CO 0, (n W C9 V r Ul CO A W U N A w N A N Cn V 0, O CO O N Cl) l0 N V A A o CO Cr) CP r A N O N 0 CO r go C V o N O N O V r N ul ? CO CO V co CO U. r 0 l0 V O CD ry V r W r-' W O CD m N m O, A Cn N r M V A A N r N r r r r N r r r A W N N r N N N W U Cn W U, N W W r N W N N W . A A . A A N W U, U, W V CD U, r V O, CD W (O N O ---I Co Co V CD W N A A A A V O, v N W CO O CD Cn N V CO M N r r N C" r W N r Cn O A V co r O A co C r O W n r (n U, Cn V W A m A N (n m m N) L.0 -P r W r W Cn O, r 0, V CO co (/, W r r r r r A r r r r r r W A Cn (n A A W -A A Cn N N w W U w W w ry r r r r r r W r r CJ W N N A V W A A Cn o -P o lv CO m D r W V A V A (n (n A N Cn O, co r U, V A W W r Cn Cn CT Co W . . W r W (n A r A O . W . . Fn-+ 0, O, Co r l0 r 0S W V A N CO N M C9 0, V O (n r ci CO (T o W V r CD 6, Co .A co O O, V t0 A A A W m r A N Z (D rr r r C C r r r r-� r C C C C C r C r C r r r C C r N) C C C C G a Ul V �l O, CO Cb A CD OD CD == A W V A (n W n 73 n O V O V U, W r 0, Cl) � co r �� C D W O N N V V O E C A V V N 0 0, C O C C C W V Oo C N" C= C" C Cn O Cn O C r V C O C) O C O n (D (D (D (D (D - (D 0 . (D (D (D (D (D (D N r (J, W (J A W V J> O, 0o r -h -h Co r N U, W r -h CD W N --h r\3 V W �, A r W - -h co CT -41 f.� C of N N n C C C C C N V A W co - N V m V 7 7 V CD A (O lO O A CD r N V C C C r r U V 00 OD (n m CA W A C C r U, CO co W O C C C C C Co 0, r C 0 0, tD C o r C C V N C C C C C Cn Z D (D (D (D rD (D (D - CD . CD (D (D (D (D (D CD [D - n N W W Cn N V O O (T O, --+, - h O (7] r r Cn r - t, �, - fi - h - h (O V �O - h N O - h - h Cn r r r r r r r r r CD r ^ r W 1V N W N W W N N O O w w N A W A O o CD 0 0 Cn Cn W O A N W O W W N O O A W '"' lD 6, Cn (J, O (O V O to co O O V A V O co O O O O O O A U W O Q, V m O V Q, CO O O 0 0 0 r V 0 0 G., d P Oo N 0, W r 41 N 01 A W O O r N A N (O 0 0 0 0 0 0 Cn r O, O r A co O co A O o O N w O CD 0 0 0 m v C C C C C C C C C C C C C ^ n :3 n = =5 O C C C D C C C C7 CD O C C ( D J N W W W W W Cl) Cl) W W W W W W W W W lD (D CD (D CD W (D W (D W W W (D W W A fD W lD (D A A A A A A CO Ca W O, co 0 0, O, A O, CT Co - fi A A 0l A A A -h �, - h �, -h o -T A -�, O 6, A - A 0 O -h 0, -h --h N N N N A A CD C C C C C C C C C C C N O, A CJ, A -A A W A A A�� W A A W W W n :3 :3 W Z3 W� W -A C.) :3 co A U, =5 :3 0, V 6, V 07 Do ^ r W r (O 01 W V A Cr, CD CD C co O Go V to 0, O C C C C O O (T C O O m CD r r CD O N O C V co (D A 0 r o 2 C fD (D - - (D CD (D (D (D CD - (D . (D . (D . CD (D . .� Cn Cn Q, V N W V Q, Cn 10 -h -h N O U V W A -, - h �, -h -�+ O r O O N --h QT O W --+, A A CD V A (n V r � (T ON O r r (T 0 CT U W W W W W 0, r W w r O U, c, 0 O O r m 0 r r r r r r O O O O O O O O O o O O O O O O O o O o O O O o O O O O O O O o O O O o O O O O O O O O C C=--3 C C C C C C C r C C C, 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 7 O O 0 0 0� O O O O O O . . . . . . r r r r r r r r r r M M r r r r r r C C C C C o C o M o O r (D r r W m A (D (D (n Q A m U W (D Ul C7 W r N O r N N N r W (.r Cn W -h -h -h -h -h W -h CD -h W CO W -h O CO O �, r --h -h A O N r CO N C CD C C C C C C C C C C C C C C C C r r r r r r 73 r r r r r r 7=3 r r r r r 7 n N rQ 7 Z r O, V V 0, r (D r r o r C 0 A N O W A W - C C C C m (O O C V V W C . �O O O i0 O, O O C O(D CD rD [D (D rD fD CD (D CD CD CD (D CD (D (D (D (D O, O r A CO W CO 0, O Cn A --+, �+ N O r l0 Oo W --h -h -h -h '�, W Cn C --+l r Cn N --+l W V (p -h 'ti, O, 01 O Z r C C C C C C C C C C G C G C C C. N W N N N IN N N N N� =3 N N N N N N :3 :3 :3 r r N r N N 7 N C.3 41 7= Cn U =3 73 =3 O a U A r CD m A W Cn U, CO O C co A V V lD O, C C C C C N oo r C .A O (T C N r CD C C CO W C C C C C GJ O (D rD (D (D rD . (D . rD . (D (D - - (D CD (D (D (D n 0, r Cn r i0 Cl) N W Co r - --+, W 0T r CD Cn 0, -h -h fi -h --+l Cn CO O -h r N U -+, 0, W A -h - h W N --j --j V V V V V V V V V (T O 01 C7 W 0 0 0 0 0 o O o CO i0 Co CD CD Co w to CD CO w w w w U, w w w w w w (D ct - (D —I o V (T C D A W N r O� w V ko Cn A W N F O lfl w V Q1 U - t A W W N r 0 tD w V O1 U A W N F O l0 w V 61 (n -h '1 C CD r W A a1 V lfl O N A (n V w O w wW (A Ul w w CD co A 0 CD o N A Cn V w O r Cl) Cn m w CD I--' N 41 (31 O V to v m Z t0 _ (D � U U1 Cn (P Cn Cn U1 (T Cn U1 Cn U1 CP U1 Cn (P w U CT CP U U Cn Cn (T Cn Cn Cn U1 Cn Cn Cn Cn Cn Cn U Ul Ui U (P Cn Cn Cn (P • • (n . - CP O J O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O ,A O rn m rn m m rn rn rn m m m m m m m m rn rn m m m m m m m m m m m m m m m r(m rn m m m m m rn m m N -() It It CD o- O O O o o O o O o O o o O O o 0 o O o 0 CD CD CD 0 0 � CD (D O O OA W A A . ? Q 0 W (0..1 V N CT (P U1 CT m m CT CT A (n U1 A A A CT A ul (n CT A U1 Cn (T A A r F-� O n Cn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o O o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L . o 0 0 CD 0 CD 0 0 0 CD 0 0 0 CD CD 0 o O o 0 0 0 CD 0 CD 0 0 0 CD 0 0 0 0 CD 0 0 0 0 0 CD 0 0 o O CD Cn N N W A -A Cn w W A W N W W ci N N Cn N N A W A r r N r 1 N IV N N r r r r r F N N F-' �--' IV O m U1 Co N N N w N N A A N U1 Cn N N N W Cn 01 Cn Cn Cn A W N A A N U1 ' p' W Co O1 -A N V o U� r w r CD r (n m C„) V V Cn CD U1 Co w w W A V. O V N U' r Q` CD O U1 W w w �-' w N CD -,1 N W A CO to r W V A A V U V O U, V A N N (n (T Ui w r 01 01 w o w W m Ol N A (T V W V O W W W W -p .A -A co W N W A N W N N N W W N N N W W N N N r . N N N r N N N N N A W N Cn O co m I'D <D V Ul N O N O A U1 O O W co F Cn W CD N r w A V N N W w lD O w w V CD O W U1 V Cn W -P V U1 V V w U1 O N (31 A A A w Co A O V A w N N cn o W w N A r m O O m Co U1 A w A A W N lD N' C/1 O -- I A O1 m r r r r r 01 A A 61 01 w w V w A M 01 01 (31 r V V CT v V (T w m 01 V V V v V V V A w v 01 V N 0T A A W N N r A W A Cn A W A Q1 U1 N cn U CJ Co IV V w Cn to CD A Cn W w O Co t.0 w Co w Cn .A V w V N w O W l0 01 V r r N Cn N Co N V r w N N o 0l to Co V N Cy, w w O CD W O O U1 CO Cn A N A N r V A n r V m 01 A V I'D W M Co o w w C..W A CJ N N N F-' W N W Cn N w W V N Cn O V (T N U 61 U1 V O (.31 A lD W CP 61 Z c+ N 1 --' r F C r r F N �-' I f... U1 Cp CT N O1 O1 61 Cn 01 r O O O 01 N A T O CD O Ol V Co w OD CD w CD r W N w CD V r V w C-J .CD 0 o J> (7 0 C7 C7 C7 V W Co V Co W CD m A A w r O V C7 Co CD CD o Cn Co Cn w r r o w W W A w V O r CD W Fn-+ CD CD (D (D (D m W D1 -h -h --h --h -h v w W A r A W o Cn w A V CD A -- fi r O1 A V O CD V w W CD V w r CD O Co M 01 w CD r Z fJ r w N C C C C C N r N N N i--' N C �' r N r N N r N F F N N N f --• �' N N r N F n W r A75 O Cn r N r CD r co Cn W w F U w= w w 01 U1 V A r CD t w w r N 1-� 61 V N w co N W [7 O C7 (7 (7 Co A r co r r r W (n r o A t✓ A O w V r w r N w .A N r A r (D CO r N W W V V n (D CD (D CD CD to W CD r -C, yi -fi -h -(, O1 Co w r A w V N w �--' Cn O W V (n N W V (n lD O r A w w O W O Cn r A al r r W C - r r CD U CJ A O O O O O A (P A W A A W N co U W W A A O N N W r N o W W W N N N N N N W A W N W cn 0 0 0 0 0 0 0 O1 W N r w w A 01 01 (n O A CD c...W w A F W Cn V w W r A N N w CD (n W n W Co CD O O O O O r Ci CD r W N w V N 1--` CD W O V O V LD Cn Cn A N w r W w V O Cn w CT W A v C C C C C C C C CD O 0 CD C7 D O O - tL] W W W (D (D m CD (D W W m W W W W W W W W W W W W W W A A W W W W A W A W A W W N W W W W tD N m A - h -h - fi -h - h A N -h O1 A A A w w N m 61 N N --h w w CT O O m m A O1 O w O w O w w--b w w 01 w V .. C C C C C C C .-. W CT W Cr1 A� n�� A W E Cn A W A Cn A W A A W W w al A w w A A A A 01 (T O1 01 w (T A Cn 01 A d O W p1 C7 0 0 (7 [z:) N W CD O N Co N Cn w 0 w w W w O O W w o1 w w V O tD V A m W O1 N co C7 CO r Cn N aP O (D (D (D (D CD • - N A w CT A V --h Cn M w al to O O Q\ V O Cn V O N Cn A Co A W A O w O W w --+, N W Co Cn O M 61 CT T 01 M W W a r- ;' O O O O O O O O O O O o O O O O o o O O O O O O O o o O O o CD CD 0 0 o O o CD 0 0 0 c O O � V1 C ' ' 0 0 0 7 0 0 7 O O O O O O O O O O O O O O o 0 0 0 0 0 0 0 0 0 0 0 0 � 0 0 . 0 h �D O C:7 CD C, - O . r r N r r r r F r m F--� t✓ F F O F N N N N N (D CD CD (D (D (D (D F r -- h V V m U co 61 -J O V A CD Cn �, lD O V 61 CO CO A N V O 0 A A (P CD A - O (D C C C C C _ C v r N r n = r r N — r — — I--` N F N /-� F-' � F F N W O A Co O C7 ED O O W N O 01 m N m A O o 0 U r A CD A A CD V w CD U1 W� Co W O1 V V N W r A w CO . lD CD CD (D (D O w Cn o -h -h -h --h -h V r V r (S Cn w A O W A W w A -+, V W CT, Cn CD O r O V O1 Cn cn A o Cn r V w W 01 01 Z C C C C C C N A W N N A W W N Cl) W A N A W N N A A A W W W W N (+ W w A 0T w LD O W w w V V O 0 C D V A r A W U, W m (D 0 o N W w O o N r o N V 1 cn A A W_ - - - - • V o r -h -+, -h -h - h Cl) N A W F CD t✓ W o Cn w W V w --+, Cn CD O CO A �O A CD N r O V N N Co N U1 W r N W �^ 1 r r r r r 0 0 A W N r 0 CO W Cwt (D UP UP (P (P Ui Ui C" O N W CTS Ql M UD ' OZ to .. H 23 U Ui CP (P C" U1 CT (n CD 0 0 0 0 0 0 (' O m 7 T 7777 0000 000 coo- 41 ACnOD4 V r n V � O C� -0 o O O r r O O O CT N W r A W W D O� Ol 07 N r r N N f) A N A W Cn r N W O(3� A N N r N N m 01 N W W V O Co O N r A C/1 --I Cn W r W A p O (YJ N CD N A r lfl A N CO m O V Z CD C't N r C C c) O C, :3 V W .O W W 1 C O CD CD . N A OD � fi U� N CO Z D N r C C r N N (1 (r CO Z3 7 Ol N N r C, N O (D W O W n W r r W A o o J� co W W ^ 000 ww en Ui r O O �o O C C ^ O O O ca w W CD CD w W W II CD AN--h -h G C A A W � :3 W V tO O O U� W O D CD to to --h -h N co W O 0 0 U" CTS 0 0 0 C C O O O O O O O r O CD CD O r r E3 CD n�cnv o rD c c rr:3 C> r T N C) Cr) O V V m Ql CP -h - h Gl N to O Z r C C w N N W W wcn CD . . . n N r fi -fi W Cn Co m m Z 7 l C C7 r N 0 J L' �' 'n a C v - O - C7 - C C 7 z r o (D Co V (n A W N r o (D W V (P A W N r o t cN+ O < C a p to '7 O 0 -i -i --I - cp. [7 ca v N N N N N r r r r N W A A A A A A A DT C Cl I f 3 � (D 7 . � J I J 'O O C-t •• (D 7 Z Z Z (n (T Co CD r N A (" V r A (n V (D O O O r W A� 0 to 2 J . a -+ C1 r+ O O _ ( C lD CD 'D to 01 C to 3 C'+ O c+ p �• d T S C w O tD fD (D O .. a J r r r r r r r r N N r 1v lv r r r r r W r � < - s O O cf] to CT . N (n A V co N 1D Cn W V w N V W A V (n N V V O C� �+ < a [1 a r [1 fD (n r 0 7� C� m m r lD O - � C'* rt N m A 0:) Cn (T Cn � CD tD O (n O r (T r W V V r A V N t0 r .. .. .. A 0T O m_0 - i - i m V O O C (D CD 7 CD — C -i C7 n r i i 7- CT) Cn W O V N (p V CD N (O l0 (T CO N V N O W V O W O C Cl .. .. .. C7 M /-� O m La O CD CD O O r C p to 3 (D ( ,-+ 07 Z � 'S 7 0 .Z7 D C It (n CO OD V A ? N r W V O1 V W . . . (T U� Q` W (A Cn v (n C ((➢ _ D Cn fi C" Cn CO V (3l (n CT O O N W (D W r Cn - fi �l N Z O' W N .� (A D O O O D O� A O Cn O 61 r to m W C� r V A V N CJ N A co r W W (D (D' Cn . 7 0 0 0 N r (D Cp O O O co p� p_ O O O C7 H (S fD O a O r D (n C a A T A N W N N N A N W Cr N N W A A W A N W ^< CD c+ N o P C1 r O N O ( m (D W N O N N Ql Ol V Cn W to A O co O (P O Ol (D co m W .Z7 N N O - S W Cn O (n Cn A V r A• (n O lD A W O O r m A r (S O N A co W �` � . O O c 0 0 0 r 7� N O (D - :3 O ^ < a N n r -h < O r r N r W 6, .A r W A W N r r W CO V V (S� 0� r C O (D CZ CD N O V A co (O - N D O O CO W A CD O Cn W V A r (P v C1 N It (1 d rrrr � rr rrrrr (A °' Cu V N r V Co N r r N r V (T - � cn :3 It 7 0 (D 0- 7 n o r r r r r r r r r r r r r r r r r r r r r r C W W W W r r r r r W r N W r N N W W N W r r ct r 0 0 0 0 V A ? A V o V O O V O O O O CD O V A (n Cn Cn (n co 0� m m W (n co (D Cn CO (D (D vn En (D v, CO M c-r W co � tL N � r r r r r o p CD 0 CD 0 0 CD 0 CD 0 0 0 0 0 , m W N r r CD CD (D m W V CT m Cn Cn 1� A W N N r 0 0 O w V r (n (D W co r Cn lD W V O Cn o W V r U (O W rn o, N _ c* O O O O O O O O O O O CD O O O O O O O O O O N -3 L1. (T (71 Cn Cn Cn A A A A W W W N N N N r r r 0 0 0 -h N p 41 CD V A• r co 0� C O V A r M Cn N O V W O V A r �--� Z It fD S O O O O O O O O O CD O O O O O O O O O O O O C CT M m Cn CS" On A A A W W W N N N N r r r 0 0 0 -h It CT W O V -A r CA (n r co Cn N (D CT W o V A r w Cn N CD d [L � r r r r r r r r r r r r r N N N N N N N N N J fD n c+ Iv N W W -A A• � (n U, m V co CD 0 0 0 0 0 0 0 0 0 7 �< Cn (D N m O A W W m Cn N O (D 0 0 0 0 0 0 0 0 0 CD r _ CL co r r r r w r U W V Cn -A W N A V Cn co A N M 01 (D m Z V O aD o (D Cb I r W Co W A (D N o r (n A V A ^ o A O N Cn W W V V W V \I N w O (O N V 01 r A O w O" r r r N N r r W r r r N N r W r r Z A' (D co C.3 co C3, C, W V bD N (D O A r m (D A V N (O N -h r V N IV Iv W (D A W O N CT A (D CO V A W W O CO A CO O co CO ' Cl N V-r r 0 (O co Cl) N O lD A A N N (D r Cn v 0 C C C C C r C C C C C C C C C C C 7 7 7 O V A 7 7 7 7 7 7 7 7 7 7 W h 0 0 0 O CD . C7 O O O C7 CD 0 CD CD C] C7 (D CD CD (D CD O Cn A (D CD CD (D CD (D CD (D CD CD (D (D (D A -h C -h -h -h -- h -h N (O C� - h -h -h - - h -h -h -- h -h - -- fi - -h N CD O O O O O O O O O O O O O O CD O O O O O O c O O O O O O O N O O O O O O O O O O O O O O zJ O O O O O O O V O O O O O O O O O O O O O O 1 W W W W N N N N N N N N ^ (7 n T1 C7 N r r . l0 CO V . A W N —i 7(D ko io 0 0 0 0 0 o r r r r c 10 V CO o N A (P V CD O r w U, 737 1 p (o .. H lD � VI V W O r CT W N A N W (I r c+ < (T O A W V to A N (0 OD O w 0 A N t, Q 41 o C N r W N V V N A V A r r C7 O- C7D r C V o n N . r W 0rn 0T co V 0r V (r U (o Cr ' c o CA .p A N CO U, N Cn Cn W r r v N O V? m m w 0 (0 A r A r Cn W U, n 0-) (T m U (n C A cn cn A M Cn (< V r O N w V w O A W O w ;lD V r A W CO O N U V co V (A -h D N N N N N N r '< V N O A U N O N r r O O v C ( CT l0 (-1 V O N N O N , o L V, �rrrrrr��r - err C 0 0 0 0 0 O O O O O � c�'f U U UP CT. (P (P (T C" U U U (T c+ C I D 0 0 to co co V (T 0T (n A A C,) v (^ -_j A ao (Y' C,3 N 0T 'o w (T m c+ - r o o o 0 O O O O O O N-3 O O ,o �o �o (D CA (b V V V (T v to A �-- V A r V A r v A r V N r r 0 0 0 0 0 0 0 0 0 0 N O O (o Co Co w co co V V V m v-0 W O V A r bo CT r 0o U N 10 d to ko 0 0 0 0 0 0 r r r r N co O r W Cn V (o r A M (o N N N r W C: r r r r r r r r rD (T W O r CT N N A r N A 0 Z (T N N A V V W N (T V W l0 ^ O CO W V r V r V r Cn (D CO w O N r W C- o , rrrrrrrr �z w W r (T CT V W W W W A W '{, v r A V CT Cn co (A r (%J r W v (T U, Co r CD V O r A CJ, V N W O C C C C C C C C C C C C :3 :5 7 :z c+ O C:3 C7 O O O O C 0 C C C fn N fD lD CD (D O CD CD lD CD (D (D (D v s= O O O O O O O O O O O O O O O O O O O O O O O O ,S7 O O O O O O O O O O O O ' C� _ m mzn nn rN V J �-j G) N N I �• C-- r H r' r--' H H r V cP A W N r � p �, 0 G C V O � N a O v O C 'z r O CO OD V 6� CP A W N r O CD (7� 5 < C N N N - z -I - -i [�. N (D CD N N N H C F N W A A A A A A A ct lD N -� -'. -3 (D �" J J p �"�' n fi O O 1 (T (D CO N A CT V r A CP V CD O o O r W A O� GD i0 , CD n- (D 3 3 - 71 -1 0 r }. .. .. .. -z I--I to C (D CD Ca C- �. C0 Z3 c't O (D O �. p = ::r C N 0 to (+ CPC M Cn Ul CP 1 U f-+ C" C" H I t-� H r CP (P n O O CO Cn Cu N d [1 O fD J 0000 0 00000000000000000 3 r � 3 � �� _ 3 U�rp� o--I ArCDO -F ct mmm rnm Tmmmrnmmmrnmrnmrnrnrnmm N .. „ � .. ,.m oC�i mvoo c I I I I p �. (+ ("1 .. .. .. C7 o - t r � 0 0 0 0 o r O f--� t-' O O C� C� r � ` 0 0 rn CO N Z 3 U CP � U, CP CP A (n A CP U' A w U CP CP (P cn A Cn .. Co (71 z W N N S o H_ O I--I kD - C D CD O V 1 n O 3 (p CD r C77 Z =3 O " C �� y Qo CP C+ O O O O . o . . . . . . 0 . . . . . . . . . C to J Z p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o D rn N O O CD o H 1---' F-' O O O O O O O O O O O O o C7 (D �' N ' -i, - - 0 CD o O U'I (D _ fl a o 0 CD p w V CT l0 O W CO LO O O O O "Z H F--+ N N W W N N F-' W A O> d O CP (D r D d Ln LO CP U, N � m p N C W N O w O �J N m CD CD 0 0 t (D C O (T O lO W O CD Co A H CO O O �' A O O O O O -0 O H 2 CT O N O m (D N ko CD O CD W W co W m O V W V O V N CT O O O O J Cn N O - S W CP O �.. O_ O (+ O O O C 7r n O (+ O O p A U1 Ol -A. N Co N N N A N W CP N N Cl) A A w A N W 1V Cn r , - h I O 7' =5 D A N C--' N N O� (T OD CP A to A O m O CP o M CD O� M W O (D C1 O Oo N A UT co W A U, CD I --` O W Co A N V W A UJ w - (n ' C7 W m N) N H N N N N N N N N N (n D Cv (D C - 1---' r N N F - r-• N N W W W A w N N W W CP W °1 O U l0 CO W C, �l W (p C CD (p l0 I-� V N CO A A N W N f� Cn O V (T V C- QD Oo A A CD OD V cP r w w CO o C O N H �, N O co (T A N CP LD N A Z d co p c+ W O � C C C C C C C C C C C C C C C C C C C C Cv (D W A :3 :3 ::, O C3 7 fJ CD p C D p p p V N D O O O C7 O 27 0 0 C7 C7 0 C.7 (W O fD (D (D (D CD (D (D (D CD (D CD (D (D (D (D N (D O (D - (D N fi ... -fi -h a C C C C C C C C C C C O C n d 0 7 V N = O 7 O C3 C Z O D D C.7 D C7 fT (T D O W O (7 W O O C� D O O D ['1 --t, (D (D (D (D CD CD - (D (D O I (D CD (D (D (D (D (D CD (D (D N O (t S (D 0 0 0 0 0 CZ) � j V o o o o o 0 0 0 0 0 0 0 0 0 � � 3 p o CD CD 0 0 0 U CD 0 CD CD 0 0 0 O C, 0 0 CD CD 0 v C v CD v O (D S CL tD A -A -t�- -A A A A A A CP (P CP CP - (P (P (P - - CP (P CO � (D O� CT CA CO (S CT m m O O O O O O 0 0 CD CD CD 0 It D r iT m co CO %,o co V 0T co io Co io io Co CD �o CO Co Co Co CD 'D ^ •-• 00 (T CP N - W m N Co Cn CP CP Ui (P CP CP CP Up Cn (P CP (P C W co V CP N O O O O O O O O o CD 0 CD CD v F-' H N F-` F-' O O O F-' /-� F-' !-' H 1-' F--' H L•-' V-' F-+ F-' 1-' O � I O O O O O O O O O O O O O O O O O O O O O O � N I I I a ct O O H O O O O O O O O O O O O O CD O O O O O fi cnvo rn J�cnAw� CDCn 3 (D V CD W .A C. W O (T CP W V A o O N m V CO (T CP to V CD O C C C C C C C C C C C C C C C C C C � :3 � � Z =5 7 O 23 =5 =5 O � � = n ..i O C D 0 (=) C0 C7 (D m O O O C7 17 O C7 CCD QD O O � C D O (D (D (D CD CD (D (D (D (D N CD (D (D (D (D (D (D (D , lD �O Z r C C C C C C C C C C C C C C C C C C C C C� :::5 N) A CCS C C C3 C- CS C 7 C D m O C-DD C O N r� p p O(D(D(D C 0 C.7 (D O p O O O -h - A -- h -h -h -h C7 CD -h -4, -- h -- h -h fi -- fi -h W W W W N N N N N N N N C C7 Z7 +m N r r O �D m VO� (n A W N c 'O � (D iD tD O O O O O O r r r r `-' (D V lD O N A U" V W O F-' W (n S J O Z (D (D � r r r r r r r r r r r n 0 0 0 0 0 0 0 0 0 0 0 0 <n o mmmmmmmmmmmm �� CO v m c r r C, cn rr r (n cn r U, UI c(51 cn cn v cn (n cn cn cn m � .-- n v o n 0 0 0 0 0 0 0 0 0 0 0 0 w cn a o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o r r r o r r cn m r r r r r r r r r r N r Ql W O N V (n CP W Ul V r m U, co A to O N N A co O It I A N N Co co O O IV N Ol W W al al (n U, Cn A C" Ul A Q� W ;o CO ro r W A v O3 r (n A r A pl O Cn N (n co lD r A W W A N W r r r r r r r r r r r r Oj W O N Q W W W u V W D V A O . . r A r A. rn-� r V A W W O O OD A lD lD N Z p t C C C C C C C C C C C C o' (D p p p p p p p O O p n RI (D (D (D (D (D (D (D (D (D (D fD r -- h -h -Al 'fi Z D C C C C C n :3 5 7 7 E � 7 N p p p p p p p p p p 0 Z (D (D (D (D (D (D (D (D (D (D (D (D n O O O O O O O O O O O O v O O O O O O O O O O O O Lo D o, A A N A A A A A A A A N pJ V m V co �! V co V V 07 V ^ CT N Ui A N N 0� 01 r L" lD W M \ p O co r Ql A V U r V W W r O r r r r r r r r r r r r .Z-7 O O O O o O O o O O O O N 01 r O O O O O O O O O O O �� N cD OD V V Q1 D� V (n m V =3 (D U, �D r U Cn lD r co A -- j OD A p (D C C C C C C C C C C C C �:5 p 7 v p p p p QD p p p p p p p fD (D (D (D (D (D (D (D (D (D (D (D o h -- h -h fi h Z r C C C C C C C C C C C C 7 =5 7 p p p p p p CD p p O p 0 O (D (D (D (D (D (D (D (D (D (D (D (D n o m mznnn r(nv J C- c� I--• O CO l0 07 V dl CT A W N 1 O (A V U CIS A co N F O -- h CD G C N C7 D [n Cip d NtS S < d D In Z — I 1 — U. (D (DD v O N � . (D ID < J C+ J .. (D :5 Z Z "S lD r . '-+ N N fv N N N r- �-+ N N CO A A A A A A S C Q- c+ a fi O S m J a A C" V �O CD O O O r W cc) lfl .� Cv O c+ O O co tD - O H N C CD W CD CD CD c'+ - t0 rt O �' O :. a S S C a O 10 CD CD fD fD d (/ _ _ �+ Z O O tD (D CS _ _ _ J CD U, N N --h V N A? O O V 07 r� W A V c'+ < a Ll. L ( r--� d (D P O 7C C7 rn m r CO O c'+ Cp Cp W O 1--` O (r A O C .. A pl O m - 0 — m - �1 CD 0 C A r N V N O> O W lfl Co W lD O r (T W A r O O W O In lD r .. .. \ C --i f7 (, -+ C v D O ID 07 O ( n �-• �-' V co O U" O O N N V m (D ( N N N N U� O d> co D - 3 (7 W A �"� ' ' 'C7 Lo S ,� (D W Z l0 N N S o r� O -i O C 7 crt E3 .. � p V 0 (D r. D C n r C ¢o C, c o O Co CD O 6, U V co V V. O. V .. W 01 a1 A A v t0 C� Z O (, V C-1 W N cJi V W v CO to W V Co � tD W �--+ V OD 3 - h -T1 to o 0 O D N CD � N O CP W m — C" U A N Ca W A O F-' c o A V A N (D CD O O o V) N 7;0 --1' N O O O 0 N O O O U (D y o (n C" Cn A W W A Cn A A W A W A U, A N N < to 0 41 CP A A CL] O �--� CT O N O m CD N -A N CD Um V U� N l0 A V W CO CC) V V CO W •� .m - O CD (n (T OD CO O V !-� V A 1 A CD -h J Vl N O 1 W CTS 0 1 A OD CD r--+ A W Ul CD W 01 � O O c O O o 0 0 (D O — O O d N ^ < O � CD W N N W N N F-� N N t-� i-- I-- v lD (D O CO W O CT O to N O V V CJ1 A W W Cv O W 0 0 C O CD CI- V Qi A N A .A CD W N W C7 a D a N - 1 - - o OD w a N 1-� V V —I (D [�D C o CD O- J 3 n d o O O O O O O O O O O O O O O O O O O O O V V S a Cn Cn T Cn (T Cn cD ( (P CD l CF, CT CP Cn Cn tD C CD CT (n U co 07 W �. W Cv (/7 Z c (D O O o 0 0 CD CD CD CD 0 CD 0 0 0 c l�D W N N r O O tD (0 W V V Cn Ul A A W N r (J.� CD CD A OD N U� CO W 0-) O w V r� A co I--' m O A N Ln ^ r+ O O O O O O O O O O O O (=> O O O O O O O O O N n- D1 6� CP U� C' A A A CO W W N N N N v 0 0 0 �' O m CP N l0 C" N CD CT1 N lD o N I'D Q) W CD v "S M CD O O O O O O O O o O O O O O O O O O O O O O N C (T Dl dl CJi U� (5 A A A W W W N N N N — F-' F- O O O v -D � W O V A• I-' OD Ul 1--' 00 CP N co 0� W o Oo CP N cl CL v fD N IV fV N fV N N C c N N N W W W A A UI V W tD 0 0 0 0 0 0 0 0 W .A O V CP U V 0 0 0 0 0 0 0 0 (D f a Cn r-• r r- r- F-- r--• r r-z v A LO CD O N W W �D Cn V O N 41 CT V W W W dl tD CD [P W A CI1 co W A W C L" A V A .-. O LP O lD .CO N O W 07 N m l0 V CO W W M A co U" (n (P S O v ^ N N N N N N N — W ( i A lfl O �+ CD N W A CIS CD co _ O CT OD O W V V W CD V V tD 6� CD W r to A tD � Cn CO N V Co Oo W t0 CD Cr) I A Ul N t0 '-- 0-) f-' CD O v O C C C C C C C C C C C C C C C C C C C C C C ^ p p g p p O D O 0 0 CD O O CD CD CD 0 0 0 C7 CO (D CD CD CD CD (D CD CD fD CD CD CD CD CD fD CD O CD N lD CD O O O O O O O O O O O O O O O o O O O O O O C7 O O O O O O O O O O O O O O O O O O O O O O ;;o O O O O O O O O O O O O O O O O O O O O o O N N N N N N N N ^ c3 (7 .O +n l0 CO . Cl� . A W . — :3 (D O O O O r r r r fi 10 A U1 V co O r W Cm ' 3' -T1 OZ tf] (D r r r r r r O - - < N r W Cn V c w 0 C7� V to t0 A O rr W W Ql N A --h D CO C A(,i V (i NA pct C O F _ C o n fi r C O CO r r N w 0 �-'� N l< o O V m N N�o Cn CO v N l0 W (O A r r t0 r N A N Cn D O� 0, < (n l0 A V C;i M O Cn �! .� Cn o r (P Cn t0 W V - A A A A W W W W Ct< N W A N (O V A w Ct C ' r N W Cn U 00 O W d' N r r r r r r r r W rrrrrrrr - r r r r r r r r C' W (J (J W W W W W' 'O 0 0 0 0 0 0 0 Cn Ui C� (P Ui Cn Cn Cn --I N r r r r r r r r N(D O (D W o A p 4 FM to 0 0 0 0 0 0 0 0 tp 'D Co CO co V V V v (P N bO CP N W Cn N N O O O O O O O O , [o Co co Co V V V 0 v r CO (P r CO U' N to d c� C7 W A Oi CO r W Cn 07 N d r r r r W A V V CO cP rn r 0 (P O Cn CD CTi V ^ O Cn O1 N m lD O W O CT O to r W CP CO (O r V i0 - fi A rn A A A N lD v v� W ci W CO CJ� N W r o O C C C C G C C C 0 0 0 CD cl CD c) C) to N (D (D fD lD fD (D (D (D v t✓ O o O O O O O O (7 ,T7 O O O O O O O O O O o O O O O O ^a m z c>C r(nv J C-; 1 0 � V 61 Cn A W N H O -r, (D G C V O D N ° O v -� O O H o to Oo v O� ul A W N H o (Y� - �, to , , - < C n fD (n 0 , —I —I n c+ O -'- CT D ct (D . N (D �,. O (D (0 uo N N N r,> N N IV N N r-� H '--� N W A A A d J. [D d - J 0 ct n c+ 0 0 1 Q1 co UD `--� N A 01 V r� A (n V CO O O CD r� W A m vo to � (D (D 3 3 m � -3 c -' .. .. to C (D (D O I to 7 't H J O ct rt _, : O tD (D (D (D •• (D .z �3'D i D a -. ct Cn U( n �-{ - 1 O O to 0 C"' w . - m d d O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 H F . 3 Q (D (n F.. O 7� C m m r l0 O `+ rnmm rn mmmmm(nmmmrnmmmmmrnmm N ID ��rnCDm a �m C? o o ... o CD n .. .. .. c" W A r-. G� O Cn cn (S (T (n (n cn ul (n cn Cn Cn Cn (T (n Cn Cn Cn Cn U, A A m D (D 3 p W .. Z LD N N 2 O H O �-. O N 3 (D n H W O r c 000(:D 000000000000000000 � G)> cD 0 0 0 0 0 0 CD 0 0 0 CD 0 0 0 0 0 0 CD 0 0 0 0 (^ o 0 o D Q` ' O O O O O O o O O o O O O O O O O O O O o O O ( N M : -• O O O C/) N 70 (p O O O C D A (D d O O O (7 N H Cn fD N N GJ A W N N Co Cn Cn A W A Cn CO O O 0 0 0 0 (D O� H D w W to O O C3-1 N O W W W co to W A lD O O co O O O O CD Q O N O --A 0 Cl) �..� CD W W O A Cn to t-' H v( r-' U CO O O V O O o O 't O- N m O Cn W W V --J m CD Lo w Cn H V O (T A O O to O O O O 0 0 ct 0 0 0 H n CD t O O O O� (n Cn A. Cn Cn Cn A W W A (n A A W A W A vl A N N h O 7 d V W O N A N to Cn V Cn co lfl A V ci W W V V to W D D ^ (D O N H H A 1.0 W [n N W V N Cn W 01 W N to Cn r-' A lfl O (D a. n C7 N N N N H H N N N N /-' H N N N � � N:3 (D o L (t D O (D d �-+ N IV (.J (V H t- N w W N N N N W C) W N N N W �' O lD C C O Ol U( A N V N co N Cn V CD CIO W Cn 1-` A 07 N D N A H tD W V O N (n 6i W t� (n O W CD W� V l0 W l0 C, N W m V H r co `-' U� O N V H a1 Z d co O t W O � c+ � C C C C C C C C C C C C C C C C C C C C C C 2 (D Z3 =3 :3 Z5 D:3 D 7:3 : D O:3 7:3= D O O O O D O C7 O O O O O O O O O O O O C7 C7 O O (D (D CD (D (D 0 (D (D N (D (D (D N N (D (D (D O (D O N (D Z 0 (v D C C C C C C C C C C C C C C C C G C C C:- C C n -' D 7 7 D 7 H d O O O p D O O O O O 0 0 0 0 0 0 0 0 O (D CD (D CD (D lD fD O (D O (D (D O (D O O N O CD CD (D N to O -h !D O O O O O O O O O O O O O O O O o 0 0 o O O - 3 O O O O O O O O O O O O O O O O O O O O O O v fv ID (? 'S 'D D d O (31 M 00 M M� Co p CO 00 CD M 0 0 0 O O Cl O O O "D (D H W Co 'D ko l0 (D V �o to CO to 1.0 Co Co to �o (D co �o CD lD �o ^ ^ N C' CT O V O Cn Cn Cn O A Cn Cn Cn Cn lD (n (n U, (n p A W O O N F --' N O O O F-+ H O O O O N O O O O v -� 1 . H . 1--' . . . H H . H H F--` H . Y-� H H H H . 0 0 CD 0 0 0 0(D CD 0 0 0 0 0 0 0 0 0 0 0 0 0 v (n n, r r 0 0 0 0 0 0 0 o C� o N co V (T CO (D V V Oi (S V co co V V co V- N CO (T Cn 3 CD W N M U, v, o A V N A CT W A M N A A O� W O ID C C C C C C C C C C C C C C C C C C C C c C O O O D O O O O O O O (Z:l O O O O O O O O 0 0 CD (D fD fD (D (D O (D (D O O CD fD lD fD (D O O (D fD (D fD CD O Z H C C G C C C C C C C C C C C C- :3 =3 z D : Z3 :3 D 7 = n n D 7 ON O O D D Cz:) O O O O O D 0 0 0 C7 ( 3 CD O O CD (] O O O (D (D (D (D O (D (D (D (D (D (D (D (D (D (D (D (D (D (D (D (D N t t o O p p p p p p p z O - 4 p (71 O =) p p 0 0 v ID N E CO r--1 lD N N Cl) O N rp L � r1 r . ri N •--I ri N d O O O O O O O O O L ^ p v Co co 47 O p co co co c)o co r` N lD l0 t V N ol o a1 O O O O O O O O V ^ W � 0 0 0 0 0 0 0 0 4- 4-- 4- (� U1 N N 41 N N Q1 Z p p p p p p p p u U =D =D O O O CJ 4- 4- 4- 4- 4- 4- .--1 N 41 41 D N v u p p p p p p p m D C C C D a> 4 p 1 Z L N m 00 01 W V CD Or O CO CT) 00 LD Cl) .--� co N CO � O 4— - .}.> r-1 Ir N N fD O lD O d •-i � O lD ? N N N N N u7 N N 0 0 0 0 0 0 0 0 �p CD cD 0 0 0 0 0 0 CD 0 . LO CO O O O O O O O O ..-4 C) U O -4 01 W i1 if1 co U J-� O d I Y\ W W W W W W W W O L-0 E 0 0 0 0 0 0 0 0 � N C'T Z Li t Ln m . O to V 6) 4 . , r . .--i O O O O - L N N N N N N N N Co al I Es timation of Ground Water Table I from CPT Dissipation Tests I Dissipation of Pore Pressure (u) in NC Gay I U e Q O � U - equilibrium pore pressure 0 time G round Dissipation of Pore Pressure (u) in Sand Surface u Ue Wat er Table o U - equilibrium pore pressure Dcone time H water Dissipation of Pore Pressure (u) in Dense Sand, u Dilative Silt and Heavily OC Clay Pore Pressure (u) Ue - ---- -- -- - measured here Dcone -Depth of Cone U - equilibrium pore pressure Dwater - Depth to Water Table 0-1 time Hwater - Head of Water Water Table Calculation Dwate =p _H cone water where Hwater = Ue (depth units) Useful Conversion Factors: 1 psi = 0.704m = 2.31 feet (water) 1 tsf = 0.958 bar = 13.9 psi I 1 m = 3.28 feet I _ QREGG Gregg In Situ, Inc. Z C OQ co ''',• O O *� O O In O U00 co t O I . • In 0 ►+ a to *•1 N W O N ....1 " I CO ^ ^ 0 L ++ I E ++ C I • In v 4. 0 .. . IA ., ., .. c C in 0 O �4 - M � � a 7 f £ a m LL G G » t7 d O ------------------- :--- ----- --,------- ------ - - - - -- - - - - - -- - - - - - -- O C4 : - I % ;---- - - - --- - O CL U t N U I•• - - •- -- - - - -- - -- 4 CS C I• 0 Z N O W ' .. O +a - - -- r-- - - - - i - O ++ U 0 : U --- - - - - -- ---------%---------;-------- h 0 v W O E W O `" W Ul a W O � CL O O O O O O O O° I aAnssaad aJ8d REFERENCES Robertson, P.K. and Campanella, R.G. and Wightman, A., 1983 "SPT -CPT Correlations ", Journal of the Geotechnical Division, ASCE, Vol. 109, No. GT11, Nov., pp. 1449 -1460. Robertson, P.K. and Wride C.E., 1998 "Evaluating Cyclic Liquefaction Potential Using The Cone Penetration Test ", Journal of Geotechnical Division, Mar. 1998, pp. 442 -459. Robertson, P.K. and Campanella, R.G., Gillespie, D. and Grieg, J., 1986, "Use of Piezometer Cone Data ", Proceedings of In Situ 86, ASCE Specialty Conference, Blacksburg, Virginia. Robertson, P.K. and Campanella, R.G., 1988, "Guidelines for Use, Interpretation and Application of the CPT and CPTU ", UBC, Soil Mechanics Series No. 105, Civil Eng. Dept., Vancouver, B.C., V6T 1W5, Canada; also available from Hogentogler and Co., P.O. Box 385, Gaithersburg, MD 20877, 3rd Edition, 197 pp. Robertson, P.K., Campanella, R.G., Gillespie, D. and Rice, A., 1986, "Seismic CPT to Measure In Situ Shear Wave Velocity ", Journal of Geotechnical Engineering, ASCE, Vol. 112, No. 8, pp. 791 -803. CONE PENETRATION TESTING BY OTHERS INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE RATIO ( %) SOIL DESCRIPTION (FEET) (feet) (tsf) ( ) 0 8 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill ?: SILTY SAND (SM) dense 1 15 INTERBEDDED SILTY SAND (SM) ..:.........:........ i ..... ..........:...... 5 dens interbedded medium 10 AND CLAYEY SA dense to e, i lenses 10 ............... ...................... .. .. dense 12 f dense to very 05 � 6 5 to feet, d e 12 to 25 feet, very dense 15 .......... ......:................. ........ :........ :..... ... 00 . ................:........ :..... ... 20 5 ............. ..............................; . AND 25 CLAY (CL) AND CLAYEY S (SC) hard and dense Natural ?: SAND (SP /SVV) very dense, interbedded sandy silt lens 5 Refusal at 33 feet .. ................ ... 35 0 ........:........:...... _ ... 40 ....... 5 .... ... .... ... 45 0 50 .................:.. ...... ...........;........;..... .... .... 55 ........ ................. :........;........:...... 60 ...............:.............. _ .... _. 5 65 ....:........:...... .... .... ... ... 0 70 _..;........;...... .............. ................ .... . ...:..........:................ . 5 75.... ..... .. ..... ............ ........... 80 Date performed:10 -25 -00 cone penetration PROJECT NO.: 1680.1 This summary applies only at the location of this EXPO - ENCINITAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may charge at this location with the passage of time. The interpreted soil description is derived from the friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C -1 conditions encountered. FIGURE A -2 DEPTH FRICTION CONE RESISTANCE RATIO FRICTION INTERPRETED °/) SOILDESCR PT ON (FE T) (feet) (tsf) 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 0 8 6 Fill?: SILTY SAND (SM) dense to very dense .......... ......:........:........:...... . ..... 10 CLAY (CL) AND CLAYEY SAND 05 10 ......... ........ interbedded d silty edi sand lenses :. .......:........:.......:...... .... 00 .... 5 .... 20 .... .. .... .... 25 Terminated at 25 feet T 30 35 :........ ......... :.................. ...... .... ... ................. ... ........:........:........ _........:...... _ 5 45 ........... .............:........:........ _...... 0 :... .....:........;.........;...... ... 50 5 ...... ..... ...... :.......... ........ 55 ............... :........... ....... :...... ... .... ........:.. ......:........_........:...... _ .... 5 65 ..................:..... 0 ................:...._... ......;._ .. 5 70 0 75 .....: ... ..... .......... ...............:........:...... 80 Date performed: 10-26-00 PROJECT N0.:1680.1 This summary applies only at the location of this cone penetration EXPO - ENCINITAS test and at the time of the exploration. Subsurface conditions may _ E differ at other locations and may change at this location with the passage of time. The interpreted soil description is derived from the friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C- 2 conditions encountered. FIGURE A -3 DEPTH FRICTION CONE RESISTANCE RATIO FRICTION (feet) (tsf) ( °/) SOIL DESCR PT ON (FEET) 0 50 100 150 20 0 g g 4 2 0 250 300 350 0 2 4 6 8 Fill ?: CLAYEY SAND (SC) very dense 10 SILTY SAND (SM) dense to very 5 ....... .... .... ... erase 05 10 00 15 ........ _.... CLAYEY SAND (SC) medium CLAY (CL) hard dense 5 SILTY SAND (SM) AND CLAYEY 20 ............._ .. ...._..._............`......... _ ....- .... interbedded _ .... cl erases y SAND (SC) dense to very dense, a I 25 _ ......... .... . ..... ....:.... ..... ........:.... 5 Natural ?: SILTY SAND (SM) dense ...... .. ................... ........:........:...... ...:.........:.............. ............ ... LAYEY SAN ( ) C D SC ve ry dense 0 LA (CL) and CLAY 5 ....... ...:........:........- ........: .......... :.. ..:........ ... ...... 40 CLAYEY SAND (SC) /CLAY (CL) 70 medium dense to very dense and 45 rd .... ... ..... ... 50 Refusal at 50 feet ..... .... ..:... R ... .... 55- .... 5 _ .... 0 ....... ... .... 65 ... ... ... .... 5 70 _......... ... ... _.. 0 5 80 Date performed: 10-26-00 PROJECT NO.:1680.1 This summary applies only at the location of this cone penetration EXPO - ENCINITAS test and at the time of the exploration. Subsurface conditions may _ differ at other locations and may change at this location with the passage of time. The interpreted soil description is derived from the friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C- 3 conditions encountered. FIGURE A -4 DEPTH FRICTION CONE RESISTANCE FRICTION SOIL DESCRIPTION ETE (FEET) (feet) (tsf) (tsf) RATIO ( %) 8 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill ?: SILTY SAND (SM) dense to 0 very dense 415 .. .. CLAY (CL) AND CLAYEY SAND 5 (SC) hard and medium dense to 0 1 very dense, interbedded silty sand lens ...............:.................. 10 05 SILTY SAND (SM) dense to very dense, interbedded clay lens ... ........ :........ ........ : ........:........_........:..._ 15 00 CLAY (CL) AND CLAYEY SAND ..... _ . and dense to v dense 20 ............... .:........:........ ... ) and very (SC) h e d 5 l........t...... .... .... 25 Terminated at 25 feet 30 ........ ........:.. ....... >....................... ..............:.. ......:........:........:...... ......... ......:........:........_...... _ ... ...... ...... 5 45 ........ :........ :........ ...... .... .... .... ... 0 .... .... ... .. . ... 50 . .... 55 ....... ..... ............:.........;...... ...:.............. 60 ........... . _ .... 5 ........ ...... ..:........:........:...... 0 70 ......:...... ..........:................;... _.. 5 75 ........................ .................:............. .... 0 80 Date performed: 1 G-26-00 PROJECT N0.:1680.1 This summary applies only at the location of this cone penetration r ®' EXPO - ENCINITAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The interpreted soil description is derived from the friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C- 5 conditions encountered. FIGURE A -6 FRICTION INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE RATIO I(%) SOIL DESCRIPTION (FEET) (feet) (tsf) (tsf) O 8 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill?: SILTY SAND (SM) medium dense to dense 10 ................:. .......:..............:........ 5 05 10 ...,. 00 CLAY (CL) hard ................... ............:...... 15- 5 .. _ .... .. _.... to 20 ens ith clay lenses SILTY SAND (SM) dense e d e w' a I 25 _ .... T erminated at 25 feet ... . .. :.. ..:... 30 ......... ...... .... .... .. ......... . 35 ......... ......E........:........;...... ........:.........:....... . .. 5 ..... ...............:........ _...... 40 0 45 :........:......... >...... .... ... .... 50 ................ .... ... ............. .. 55 5 ..... :........ :........ _...... ...... 0 65 .............. .............:........:........ <...... ...... 5 70 .......................;...... .... 0 75 ......... ...............:........:...... ... 5 80 Date performed:10 -26 -00 �' PROJECT NO.:1680.1 This summary applies only at the location of this cone penetration EXPO - ENCINITAS test and at the time of the exploration. Subsurface conditions may _ differ at other locations and may change at this location with the passage of time. The Interpreted soil description is derived from the friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C- 7 conditions encountered. FIGURE A -8 INTERPRETED ELEV, DEPTH FRICTION CONE RESISTANCE RATIO (% SOIL DESCRIPTION (FEET) (feet) (tsf) (tsf) 2 0 50 100 150 200 250 300 350 0 2 4 6 8 0 8 6 4 Fill ?: SILTY SAND (SM) dense to very dense, interbedded clay lenses 5 ................ ..................:......... .. .... 15 ..... ... ..... ... ... ..........:.... .... ....... CLAYEY SAND (SC) AND CLAY (CL) medium dense to) very dense 10 and hard 15 . .......:....................... .... .... ._ ...... _ _.. SILTY SAND (SM) medium dense to very dense, interbedded clay lens 05 _ .... CLAYEY SAND (SC) AND CLAY A 20 ............................. ........:.......... ... .... .... ... .... and hard (CL )dense 00 .. 25 .............. ........ i........ ........f... Terminated at 25 feet 5 .........:...... ... .... .... 35 ......... ......:................:....... 5 40 ........ ........ :.... .... :........_........:...... 45 ................................ ..............:........ >...... ................ .... .... ... 5 50 ................ ............................... .......... .... 0 55 .................:................ ........ : ........ ........ ........ :...... .... 60 . _ .... ...... ... .... .... ... 65 5 70 _...... ...... ;...._ ....... _ .... ... .... .... 0 75 5 80 Date performed :10 -26 -00 PROJECT NO.: .1 This summary applies only at the location of this cone penetration EXPO - ENCINITA TAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The interpreted soil description is derived from the friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C- 8 conditions encountered. FIGURE A -9 FRICTION INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE RATIO (% SOIL DESCRIPTION (FEET) (feet) (tsf) (tsf) 0 8 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill ?: SILTY SAND (SM) dense INTERBEDDED SILTY SAND (SM), 115 CLAYEY SAND (SC), AND CLAY .... .... ) dense to very dense and hard (CL d e d 10 10 _ ... _ ......:...................._ 05 .... ... 00 20 _.......- :...... ... .... .. 5 .... ... 25 ....... ...................... ........ .. . . ... 30 to 41 feet, medium dense to ..;... 30 dense .... .... .... 35 40 - SAN ens ._............ Natural ?: SILTY D (SM) dense, with clay lens 75 ........' ..................... ... _ .... ... ... .... 45 • SANDY SILT (ML) very stiff CLAY (CL) ha rd 0 SAND (SP /SW) very dense ................... .. .. ...:..... Terminated erminated at 50 feet ........; ........:...... ... .... _ .... 55 ........ . ...... .... ... _ .... 5 .......:........:........ . ............<................. ... .... 65 0 70 5 .......... ........:...... ... .... .... .... ... 0 80 Date performed: 10-26-00 RE] PROJECT N0 .1 This summary applies only at the location of this cone penetration EXPO 0 - ENCINITA TAS test and at the Ume of the exploration. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The interpreted soil description is derived from the LOG OF CPT NO. C- 9 friction ratio and cone resistance and is a simplification of actual conditions encountered. FIGURE A -10 ERPRETED ELEV., DEPTH FRICTION CONE RESISTANCE RATIO FRICTION ) SOIL PTION (FEET) (feet) (tsf) ( ) 0 8 g q 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill ?: SILTY SAND (SM) /CLAYEY SAND (SC) loose to medium 110 de .......' ...... ..........:...... N ( ) edium dense 5 to dense SA 5 DSMm medium CLAYEY SAND (SC) AND CLAY _.. ..... tiff 10 medium dense (CL) medium dense to SILTY SAND (SM) m p0 CLAY (CL) hard (SC) medium 15 _ .... dense o dense interbedded clay lens 5 - ... _ .... 20 SILTY SAND (SM) very dense CLAYEY SAND (SC) /CLAY (CL) .... .... medium dense to dense and hard .... ... 25 ................. 30 .................: -: INTERBEDDED CLAYEY SANG (SC), SILTY SAND (SM), AND CLAY (CL) medium dense to ................ 35 ........ ... ... dense and hard 5 40- ..................... ... ... .... _ .... o medium dense AN Dose 0 .:... ..:... . ( ) stiff to hard, SAND CL very s i d, interbedded silty sand lens 5 ......:.......... ......:......:.........;....... .... ... 50 SILTY SAND (SM) AND CLAY ( CL ) dense to very dense and hard 55 ............... ... .... ... Refusal at 54.5 feet 5 60 .......................... ............................. _ .... .... ... .... .... _ .... 0 65 ... ... 5 70 .. ........ . 0 .... ... .... .... .... 75 5 80 Date performed: 10-25-00 PROJECT N0 .1 This summary applies only at the location of this cone penetration EXPO - ENCINITA TAS test and at the time of the exploration. Subsurface conditions may 6 differ at other locations and may change at this location with the passage of time. The interpreted soil description is derived from the LOG O F CPT N O. C -10 friction ratio and cone resistance and is a simplification of actual conditions encountered. FIGURE A-11 DEPTH FRICTION CONE RESISTANCE RATIO FRICTION (feet) (tsf) ( ) °/) SOIL DESCRIPTION (FEET) O g 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill ?: INTERBEDDED SILTY SAND (SM) AND CLAYEY SAND (SC) dense to very dense, interbedded lay 0 ca lenses 1 = 5 ....................: ...... .... C 5 to 10 feet, medium d ense 05 .... 10 00 . I ........ :........ :......... :........ .... .... 5 .... ........ :........ .... ._........-...... _ .... .......... 20 :........ .................... .... ... .... 25 Terminated at 26 feet 5 30 ........ ......... :................ ........ ........:............... .. ... .... 0 35 ...............: ........ ........ ........ :...... 40 ........_ ........:...... ... .... _ .... 5 0 .............: ................:........:..... 45 .......... 5 0- ................ ................ ............................... 0 55 .......... .......................:;...... 60 ........:.. ......:........_........:...... _ . -.. 5 65 .........:...... ........ .... ... .... 0 5 70 ...... .... .... .... ..... _...;........ ........ .... _ 0 75 .......... ............. ... .... ... 80 Date performed:10 -26-00 location of this cone penetration PROJECT NO.: 1680.1 This summary applies only at the EXPO - ENCINITAS test and at the time of the exploration. Subsurface conditions may _ differ at other locations and may change at this location with the passage of time. The interpreted soil description is derived from the LOG OF CPT NO. C -12 Iriction ratio and cone resistance and is a simplification of actual conditions encountered. FIGURE A -13 DEPTH FRICTION CONE RESISTANCE FRICTION SOIL DESCRIPTION (FEET) (feet) (ts) RATIO ( %) g 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 O Fill?: INTERBEDDED SILTY SAND (SM) AND CLAYEY SAND (SC) medium dense to dense, 110 interbedded clay lenses 5 05 10 ........ :........ ........ ... 00 .... 15 5 .................:........ ........................_...... - _ .... 20 to 21.5 f very dense _.... feet, ve d 25 ...........i ............. Terminated at 25 feet ....:.......:... ......:.. T 5 .. 30 35 :. ........................:...... ... ................. ... _ .... 5 _ ... .....:...... .... _ .... 0 ........:........:....... .... .... ... _ .... 5 50 ... .... .... 55 ...............:. ...............;........;...... 5 ....... ........ _ .... 0 65 . ........ :.................. :...... ..... .... 5 70 _i ... ...........i........ ............... ... _ _. 0 .........; ............... .... .... ... .... 75 5 80 Date performed: 10-26-00 1 0. 0.:168 This summary applies only at the location of this cone penetration EXPO EN PROJECT N O.:168 test and at the time of the exploration. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The interpreted soil description is derived from the LOG OF CPT NO. C -13 friction ratio and cone resistance and is a simplification of actual conditions encountered. - FIGURE A -14 DEPTH FRICTION CONE RESISTANCE FRICTION SOIL DESCRIPTION (FEET) (feet) (tsf) ( tsf ) RATIO ( %) O g 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill ?: SAND (SP /SVUJ very dense CLAY (CL) hard 20 5 _ .... 5 .. CLAYEY INTERBEDDED SILTY SAND (SM), CLAYEY SAND (SC), AND CLAY 1 (CL) dense to very dense/hard 10 _ .......... .... ........:...._ 10 ........... 05 Natural ?: SILTY SAND (SM) s, medium dense to den e, 20 ................:........:... rb ded silt ilt le ns interbedded 00 SANDY SILT (ML) hard 25 .... ... ... .... T erminated at 25 feet 5 30 .................................. .......:....................... ... ... .... :.. ......:........;........;...... .... 40 ........ _ ........:...... ................:........ ........:...... 45 5 50 .... ........................ i- .......;...... 0 55 ................ :........:.........:...... :.. ......:......... ........ :...... ... .... .... ... .... 65 ... .....:........:........<....... - 5 70 ....... .............. >............. 75 ............... 5 80 Date performed: 10-26-00 _ PROJECT N0.:1680.1 This summa applies only at the location of this cone penetration �(pp - ENC ry INITAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may change at this location with the Passage of time. The interpreted soil description Is derived from the friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C -14 conditions encountered. FIGURE A -15 DEPTH FRICTION CONE RESISTANCE RATIO ( FRICTION °/) SOIL T DESCRIPTION (FEET) (feet) ( ) 0 8 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill ?: SILTY SAND (SM) AND CLAYEY SAND (SC) dense to very 15 dense, interbedded clay lenses .... 5 10 10 ................... .... 05 .... ............. ............................... .. .... ... .... 00 20 _......_.......:..._ ........ ... _ .... Natural ?: SAND (SP /SVV) very 5 dense 25 - ................:......... .......................:....... Refusal at 24 feet R 30 .......................... ........... ........................ >...... ..<... .. 5 35 ................. ..... ...: ....... .......... ......... :...... _ .... 0 _ .... 5 45 ...... .... .... 0 50 ................................. ............................... 5 55 ........ ........ :.. . ..... ......... ... .......... ..... 60 .........................................:.. ......:........_........:...... _ .... 5 65 ............... ... .... 0 .... ... .... 70 i 5 75 ......................... ............................... .... .... .... ... .... I 0 80 Date performed: 10-25-00 1 00.:168. This summary applies only at the location of this cone penetration PROJECT N EXPO - EN O.:168 test and at the time of the exploration. Subsurface conditions may E_. ---_- differ at other locations and may change at this location with the pas sage of time. The interpreted soil description is derived from the LOG OF CPT NO. C -15 friction ratio and cone resistance and is a simplification of actual conditions encountered. FIGURE A -16 INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE RATIOO ) SOIL DESCRIPTION (FEET) (feet) (tsf) (tsf) O g 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill ?: SILTY SAND (SM) AND CLAYEY SAND (SC) very dense, 05 interbedded clay lenses 5 very dense feet, medium dense to ' 00 10 Terminated at 10 feet .. 5 ........ _........ - ...... .... .... 20 ............ ..:... ...... ..............:. .......:................:...... 30 - ................................. ............................... 5 ... ....... ......... . .......:........;........:..... 0 40 ....... ....... .:.. ......:........_........:...... ... .... 45 50 .................................. .......................'....... . .. .. :... ...... .. : . 5 55 .......................... ... .... ........ ........ :.............. 0 ........ .......:....................... _ ... 5 65 : ........:...................... ... .... .... 0 70 ......_..._....` ............... ............................... 5 75 ...... ........ :........ :........ :........ ...... ... 80 Date performed: 10 -26-00 PROJECT N0.:1680.1 This summary applies only at the location of this cone penetration EXPO ENCINITAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may charge at this location with the passage of time. The interpreted soil description is derived from the friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C -16 conditions encountered. FIGURE A -17 INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE RATIO ( /) SOIL DESCRIPTION (FEET) (feet) (tsf) (tsf) 0 8 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill?: INTERBEDDED CLAY (CL) 00 AND SILTY SAND (SM) hard and medium dense .. .......... SILTY SAN ( ) dense ..;... ..<.. .. � S D SM d .. 5 5 10 _ ...............` ..........._...... 9.5 to 10.5 feet, medium dense ..... ..;... 15 ..... _. rbedded silty and lenses 5 CLAY (CL) very stiff to hard inte sil s 20 t........ _........ :...... .... 25 ... ... ... _ i.. ..... .... .... INTERBEDDED CLAYEY SAND (SC) AND CLAY (CL) medium dense and hard d p Natural ?: SAND (SP /SW) /SILTY SAND (SM) medium dense, ....... interbedded clay and silt lenses .. .............................. i a a 5 35 . 40 ... .......:.......:........_...... .... .... Zzi 5 ................... ... .... .... 50 ... .... ..... . Terminated at 50 feet 0 ..:. . 55 ....... ............................... 5 60 ........................ ............................... _ .... _ .... 0 65 :........:........ <.........:........: .... .... .... .... 70 ....................... 75 ...... ............................... .... ... .......... .:... 5 80 Date performed: 10-26-00 ' PROJECT NO.:1680.1 This summary applies only at the location of this cone penetration EXPO - ENCINITAS test and at the time of the exploration. Subsurface conditions may _ c differ at other locations and may change at this location with the passage of time. The Interpreted soil description is derived from the friction ratio and cone resistance and is a simpiification of actual LOG OF CPT NO. C -17 conditions encountered. FIGURE A -18 DEPTH FRICTION CONE RESISTANCE FRICTION INTERPRETED ELEV. . (feet) (tsf) (tsf) RATIO M SOIL DESCRIPTION (FEET) 0 8 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill ?: SILTY SAND (SM) medium dense to dense, interbedded clay lenses 05 00 _.. 10 T erminated at 10 feet 5 : ........:...... .. ... ......... .... :.. 20 ....... ................. .... .... _ .... ...............:... .....: ................... :.... ... ... ... ... 30 .... .... .... .... ... ...:..................:........ 5 35 .. ......:........;........;...... .... ... . .... ... _ .... 0 40 .. ...............:........_...... ... .... .... ... _ .... 45 .................. ..............<.........:...... ... .... .... ... .............. .... 50 ...... ..:... ...... `:......... ........ ....... .................;......... .. 5 55 ........................ .. ..... .................:...... 0 ........:.. ......:........:........:...... _ .... 5 65 .............. ... .... .................. ... .... 0 .. .... 5 75- :........_.......... ............:. ...............;........:...... 80 Date performed:10 -26 -00 PROJECT NO.:1680.1 This summary applies only at the location of this cone penetration EXPO - ENCINfTAS test and at the time of the exploration. Subsurface conditions may B differ at other locations and may change at this location with the ppaassage of time. The interpreted soil description is derived from the I6ction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C -18 conditions encountered. FIGURE A -19 DEPTH FRICTION CONE RFRICTION ts;STANCE RATIO (%) SOIL DESCRIPTION (FEET) (feet) (tsf) O g 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 00 Fill ?: SILTY SAND (SM) medium dense 5 sa d lens) h ar terbedded si ry ' din 'I 5 ... ... AN (SP/SW) ense 10 S D CLAY (CL) stiff, interbedded silty ..:.........:...... 15 - 16 to 19 5 feet, hard SILT sand lenses 20 _ - .._. _ ... dense, mterbeddedc ay lenses ... 5 25 CLAY (CL) very stiff 0 30 ........` ...... ..:.....................:...... Natura1?: SA D (SP /sw) /SILTY SAND (SM) medium dense, interbedded clay and silt lenses 5 35 ....... :......:................:...... ... .... .... 0 .... ... .... 40 SAND (SP /S) medium dense 45 SAND (SM) 5 ......:... ... ..:.. SAND (SP /SV1� /SILTY medium dense, interbedded clay lens 0 50 erminated at 50 feet .. 55. ..................... .. .... _ .... ...:.. 60 ................. ........'...................... _.... _.... 0 65 ;.. 5 75 ................ ............................... .... .... '.. 0 80 Date performed:10.26 -00 PROJECT NO.:1680.1 This summary applies only at the location of this cone penetration EXPO - ENCINITAS test and at the time of the exploration. Subsurface conditions may _ differ at other locations and may change at this location with the passage of time. The interpreted soil description is derived from the friction rata and cone resistance and Is a simplification of actual LOG OF CPT NO. C-19 conditions encountered. FIGURE A -20 RESISTANCE FRICTION INTERPRETED ELEV. DEPTH FRICTION CONERE SOIL DESCRIPTION (FEET) (feet) (tsf) (tsf) RATIO M 8 6 4 2 0 So 1 150 200 250 300 350 2 4 6 8 O ED SILTY SAND Fill?: INTERBEDDED (SM) AND CLAY (CL) medium 410 dense and hard ....... . ........ ........ ........ .... SILTY SAND (SM) dense 05 ........... .... ........ ........ ........ ........ ........ 1 . . ........ ... .... ... -.- ........ .. ........ ........ ............... .......... ........ Terminated at 10 feet 10 00 ........ ........ ........ ....... . ..... ....... ........ ........ ...................... 15 .................. ........ 5 . ......... ....... ........ . ...... ........ .............. .. .. ..... .... ...... 20 ........ ..... .. ........ ........ 25 .. ..... ........ ........ ........ 85 .. .............. ........ ........ ................... . ....... q ........ .................. 30 . ...... so ................. M ........ ........ 35 . ... ... 75 . ................. ........ ........ ........ ........ ........ ........ .................. ....... 40 ........ ............ -70 ...... ........ . . .... ........ ........ ........ ........ .... .. ............... ........ ..... .. 45 . ..... :: ........ ................. .. .... 50 ..... ................. ....... ....... ................... ..... .60 . ................. ........ ........ ...... ........ .............. ........ ........ 55 .. ..... :-- 5 ................. 60 ...... .. ........ ................. ........ ....... ........ . ........ ........ ........ ........ 0 . . ..... ........ ...... -W ........ 65 . ........ ......... ...... .... ........ 45 ... ......... ......... .......... ........ ........ 70 . .... ... 0 ..................... .................. ...... ..... ... ........ ........... ........ 75 5 90 Date performed: 10-26-00 PROJECT NO.1680-1 This summary applies only at the location of this cone penetration EXPO - ENCINITAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may chan at this location with the 0. C 0 passage of time. The interpreted soil description is derived from the r N C-20 friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO conditions encountered. FIGURE A•21 DEPTH FRICTION CONE RESISTANCE RATIO (M SOIL DESCRIPTION (FEET) (feet) (tsf) 0 g 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill ?: INTERBEDDED SILTY SAND (Sfvf) AND CLAY (CL) loose to medium dense and stiff to hard 00 5 : ........:...... .... 5 10 .................... `.........................;.... D IS Terminated atSO ffeet de nse 15 ..... ............................... _ ..... ...:................:........:. _... ....... .. . ... 5 .......:.. ................ ........ :...... ... .... .. ... .... ... 25 5 30 ........................ 0 35 5 ........ . ........:...... ................... .... _ .... ........ ..... . .... .... ... .... ... 5 50 .... .... .... .... 0 55 ..... .... ....:. ...............;........:...... 5 60 _ ........:...... .... .... _ .... 0 ............... ........:...............:...... ..... 5 0 75 : ...............:.........:..... _ 25 80 Date performed: 10-26-00 PROJECT NO.: 1680.1 This summary applies only at the location of this cone penetration , EXPO - ENCINITAS test and at the time of the exploration. Subsurface conditions may E differ at other locations and may change at this location with the passage of time. The interpreted soil description is derived from the friction ratio and cone resistance and is a simpldication of actual LOG OF CPT NO. C -21 conditions encountered. FIGURE A -22 INTERPRETED ELEV. DEPTH FRICTION CONE RESISTANCE (STANCE RATIO (O°/) SOIL DESCRIPTION (FEET) (feet) (tsf) ( ) 0 g 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill ?: SILTY SAND (SM) medium 05 dense CLAY (CL) hard, interbedded silty and lens ......... ... .... SILTY SAND (SM) dense 10 ... Terminated at 10 feet S .......:........:........ . ........:...... _ ... .... .... ... _ .... .. .... 5 25 :.. ......:........:........:...... ... .... .... .... _ ........ ............................... ........ ... .... .... .. .. ...:... 5 ... .... .... .... ... _ .... ........:.................... .... ...;.. 0 35 40 .... .... _ 45 ....:................:...... .... .... .... 50 .................? .......... ..............i........':...... 5 55 60 .............. _ .... 5 65 ..... ............................... ..... ..... 0 70- .................:.................. ..............:......... >...... .... .... .... 5 75 } ............................... 0 80 Date performed:10 -26 -00 PROJECT N0.:1680.1 This summary applies only at the location of this cone penetration EXPO - ENCINITAS test and at the time of the exploration. Subsurface conditions may differ at other locations and may change at this location with the ra passage of time. The interpreted soil description is derived from the friction ratio and cone resistance and is a simplification of actual LOG OF CPT NO. C -22 conditions encountered. _ FIGURE A -23 DEPTH FRICTION CONE RESISTANCE RATIO (%) SOIL DESCRIPTION (FEET) (feet) (tsf) 0 8 6 4 2 0 50 100 150 200 250 300 350 0 2 4 6 8 Fill ?: INTERBEDDED SILTY SAND (SM), CLAYEY SAND (SC), AND CLAY (CL) medium dense to denselstiff to hard G5 .... .......... .....:.................:....... 10 15 0 20 5 25- .................i.. ...... Natural ?: SAND (SP /SW) AND SILTY SAND (SM) loose to silt lenses interbedded clay .... .. n It ....:..... ............................... d 30 .. ...... .:.........:............... i.. medium dense, a 0 35 40 ... _ . 5 45 ................ .. >.. ..:.. Terminated at 50 feet 55 ................. ...............:........;...... _ .... 5 . ............... .... .... .... _ .... 65 ........ .......... ....... :........ ........ :........ ... .... .... ... 70 ......... .......................<...... ................ 5 75 0 80 Date performed: 10-26-00 PROJECT NO.:1680.1 This summary applies only at the location of this cone penetration EXPO - ENCINITAS test and at the Ume of the exploration. Subsurface conditions may _ differ at other locations and may change at this location with the passage of time. The Interpreted soil description is derived from the friction rata and cone resistance and is a simplification of actual LOG OF CPT NO. C -23 conditions encountered. _ FIGURE A -24 940028 -027 APPENDIX C Laboratory Testing Procedures and Test Results Atterberg Limits The Atterberg Limits were determined in accordance with ASTM Test Method D423 for engineering classification of the fine - grained materials and presented in the table below: Atterberg Limits Plastic Plastic USCS Sample Location Liquid Limit ( %) Limit ( %) Index ( %) Soil Classification M -1, 31 Feet 27 19 8 Sc M -1, 34 Feet NP NP NP SM M -1, 37 Feet NP NP NP SM M -1, 40 Feet NP NP NP SM M -1, 43 Feet NP NP NP SM M -1, 55 Feet NP NP NP SM M -1, 80 Feet 36 15 21 CL M-2,31 Feet NP NP NP SM M -2, 37 Feet 26 20 6 SP -SC M-2,46 Feet NP NP NP SM M -3, 40 Feet NP NP NP SM M-4,49 Feet NP NP NP SM C -1 940028 -027 APPENDIX C Laboratory Testing? Procedures (Continued) Classification or Grain Size Tests Typical materials were subjected to mechanical grain -size analysis by sieving from U.S. Standard brass screens (ASTM Test Method D422). Hydrometer analyses were performed where appreciable quantities of fines were encountered. The data were evaluated in determining the classification of the materials. The grain -size distribution curves are presented in the test data and the Unified Soil Classification (USCS) is presented in both the test data and the boring and /or trench logs. Grain -Size Analysis Sample Location Sample Description :1%. G Sand % Fines M -1, 28 Feet Clayey SAND 0 72 28 M -1, 31 Feet Clayey SAND 0 70 30 M -1, 34 Feet Silty, clayey SAND 0 76 24 M -1, 37 Feet Silty SAND 0 84 16 M -1, 40 Feet Silty SAND 0 81 19 M -1,43 Feet Silty SAND 0 81 19 M -1, 46 Feet Clayey, silty SAND 0 75 29 M -1, 49 Feet Silty, clayey SAND 0 67 33 M -1, 55 Feet Silty SAND 0 74 26 M- 1, 60 Feet Silty SAND 0 78 22 M -1, 65 Feet Sandy, silty CLAY to Silty SAND 0 71 29 M -1, 70 Feet Clayey, silty SAND 0 57 43 M- 1, 75 Feet Clayey, silty SAND 0 75 25 M -1, 80 Feet Silty, sandy CLAY 0 43 57 M -1, 90 Feet Clayey, silty SAND 0 56 44 M-2,31 Feet Silty SAND 0 82 18 M-2,34 Feet Silty SAND 0 82 18 M -2, 37 Feet Poorly - graded medium SAND with 0 73 27 silty clay M -2, 40 Feet Silty SAND 5 82 13 M-2,43 Feet Silty SAND 0 84 16 M-2,46 Feet Clayey, silty SAND 0 73 27 M-2,49 Feet Silty SAND 0 85 15 C -2 940028 -027 APPENDIX C Laboratory Testing Procedures (Continued) Grain Size Analysis Sample Location Sample Description % Gravel % Sand % Fines M -2, 55 Feet Silty SAND 0 79 21 M -2, 60 Feet Clayey, silty SAND 0 73 27 M -3, 40 Feet Silty SAND 0 82 18 M -3, 46 Feet Clayey, silty SAND 0 76 24 M -4, 34 Feet Silty, clayey SAND 0 72 28 M -4, 37 Feet Silty SAND 0 82 18 M -4, 49 Feet Silty SAND to sandy CLAY 0 79 21 Grain Size Analysis Sample Location Sample Description % Passing #200 Sieve M -3, 37 Feet Silty SAND 24 M -3, 43 Feet Silty SAND 24 M -3, 55 Feet Sandy, silty CLAY 75 M -3, 56 Feet Clayey, silty SAND 33 M -4, 40 Feet Silty SAND 19 M-4,43 Feet Silty SAND 20 M-4,46 Feet Clayey, silty SAND 21 C -3 60 For classification of fine - So grained soils and fine - grained fraction of CH or OH a 40 coarse - grained soils "A" LINE CU 30 v c T , ..6 CL or OL 20 MH or OH a 10 " -W ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE —+-- CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 (D 60 w m 50 w z E40-- z w U w 30 CL 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -1 2A 28.0 SC 0:72:28 N/A 1£RitJf,E < r -.>! Project No.: 940028 -027 Sample Description: Encinitas Ranch Olive clayey sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM 0 4318, D 422 02-00 60 For classification of fine - 50 grained soils and fine- / grained fraction of CH or OH / K 40 coarse- grained soils A" LINE v c T 30 CL or OL U V 20 O MH or OH a 10 CL ML ML or 0 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE I FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 H- � 60 w m 50 w z u- 40 z w x 30 w 20. 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -1 3 31.0 SC 0:70:30 27,19,8 Project No.: 940028 -027 Sample Description: Encinitas Ranch Yellowish brown clayey sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 60 For classification or fine- / 50 grained soils and fine - grained fraction of CH or OH / x 0- coarse - grained soils "A" LINE a � o j 30 / .� CL or 'L n 20 nm MH or OH 10 ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 F— 60 w m 50. Of w z E 40 z W U w 30 --- LU (L I ' _ 20 I 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI I LL,PL,PI No. No. (ft.) ( %) M -1 4 34.0 SM 0:76:24 I NP Project No.: 940028 -027 Sample Description: " -' '' Encinitas Ranch Olive brown silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 60 For classification of fine- So grained soils and fine- " grained fraction of CH or OH / 4. coarse - grained soils X 40 "A" LINE v - 2: 1 30 CL or OIL C4 20 CL / MH or OH 10 ML or OL 0 0 10 20 30 40 So 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 - 70 60 w m 50 w z U- 40 t-- z w cc 30 w a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -1 5 37.0 SM 0:84:16 NP I'Fn f s _� n.ti, l,�.:. Project No.: 940028 -027 Sample Description: y r < >!_ T Encinitas Ranch Olive brown silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 60 � LFa ion of fine - 50 nd fine- n of CH or OH L 40 soils "A" LINE v c i T 30 CL or OL 1% 20 f° MH or OH a 10 ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE I MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 318" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 t-- 60 w n 50 of w z LL 40 r-- z w U w 30 w CL 20 10 0 IL Li 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -1 6 40.0 SM 0:81:19 N/A 7FR i` <r =L.:ins, /,mac Project No.: 940028 -027 Tt Sample Description: V Encinitas Ranch Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 60 For classification of fine- / 50 grained soils and fine- / grained fraction of CH or OH ' CL 40 coarse - grained soils / A" LINE x d w 30 .2 CL or OL in 20 R MH or OH a 10 « -� ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" 44 #10 #20 #40 #60 4100 #200 100 90 80 70 F- 60 w m 50 o! w z E 40 F- z w v Qf 30 w o_ - 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft .) ( %) M -1 7 43.0 SM 0:81:19 NP 7�tt i t r -! i rr. r, lvc. Project No.: 940028 -027 Sample Description: r Encinitas Ranch Olive brown silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 n3 -00 60 For classification of fine- / So grained soils and fine- i grained fraction of / CH or OH a 40 coarse - grained soils / q LINE a) j T •a / 30 . S2 CL or OL n 20 CL MH or OH 10 ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE I FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0•• 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 - III N 70 60 w m 50 o! w z U- 40 H z W w 30 w a _ 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( % M -1 8 46.0 SM 0:75:25 NP Project No.: 940028 -027 Sample Description: - -.,— ..,, r_...:.. P P � Encinitas Ranch Olive brown silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 60 For classification of fine- SO grained soils and fine- j grained fraction of CH or OH / L 40 coarse - grained soils "A" LINE v v / � 30 � CL or OL 20 ZZ MH or OH a. 10 "` ML or OL 0 , 0 10 20 30 40 s0 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE I MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 H 60 w >- So m ir uJ z U 40 F z w of 30 w a I 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -1 9 49.0 SC 0:67:33 N/A Zcrt sir <I .,n. tir, 1,� Project No.: 940028 -027 Sample Description: - Encinitas Ranch Olive brown clayey sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 02 -00 60 For classification of fine- / 50 grained soils and fine - grained fraction of CH or OH C coarse- grained soils x / A" LINE v c T 30 .0 CL or OL in 20 MH or OH 10 " ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER - HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 -100 90 80 70 F- 60 w m 50 w z u- 40 z w U w 30 a -20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -1 10 55.0 SM 0:74:26 NP Project No.: 940028 -027 Sample Description: Encinitas Ranch Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 02 -00 60 For classification of fine- 50 grained soils and fine- i grained fraction of CH or OH / coarse- grained soils v 40 / /" LINE 30 i CL or OL N 20 a MH or OH 10 ML orOL 0 � 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 60 w m 50 w z u- 40 I— z w U w 30 a- 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M - 11 60.0 SM 0:78:22 N/A Project No.: 940028 -027 Sample Description: - ••• - -••- -••• Encinitas Ranch Olive brown silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 60 For classification of fine - 50 grained soils and fine- a grainedgrained fraction ac 40 coarse- grain_ ed_ soils CH or OH 30 v "A" LINE a j / U � .N 20 CL or OL CL 10 MH or OH a .rq I 0 ML or OL 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND COARSE FINE CRSE MEDIUM FINES U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER SILT CLAY 100 3.0" 11/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 HYDROMETER 90 80 70 t— 60 w m 50 w z Ll- 40 z W U ix 30 w a 20 I 10 I 0 100.000 10.000 1.000 0.100 PARTICLE - SIZE (mm) 0.010 0.001 I Hole Sample Depth No. No p Soil Type GR:SA:FI LL,PL,PI M -1 12 N 65.0 SC 071:29 N/A Sample Description: 5 , 01 �n r._ Project No.: 940028 -027 Olive brown clayey sand (SC) Encinitas Ranch ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 60 For classification of fine- / i 50 grained soils and fine- / grained fraction of CH or OH a coarse- grained soils a) /A" LINE v .0 30 / Z CL or OL in 20 a MH or OH 10 " "` ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 H 60 w m 50 w z LL 40 H z w U w 30 w LL 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -1 13 70.0 Sc 0:57:43 NIA TF ic sr f,:�rr. l,� Project No.: 940028 -027 Sample Description: Encinitas Ranch Olive clayey sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 02 -00 60 For classification of fine - 50 grained soils and fine - grained fraction of / CL CH or OH / coarse - grained soils K / " A" LINE v T 30 or OL 20 a MH or OH 10 Z CL ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE I MEDIUM I FINE SILT CLAY U.S. STD, SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 F- = 60 w m 50 w z LL 40 t-- z w U W 30 n- 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -1 14 75.0 Sc 0:75:25 N/A 7Fn it rr Inn 1"r_ Project No.: 940028 -027 Sample Description: Encinitas Ranch Pale olive clayey sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 n:?_00 60 / For classification of fine - 50 grained soils and fine - grained fraction of CH or OH a coarse - grained soils x 40 CU v c T 30 CL or OL U N 20 .T MH or OH 10 a -W ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE I FINE CRSE MEDIUM I FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 f- 60 w m 50 w z LL 40 z w U W 30 uJ a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -1 15 80.0 s(CL) 0:43:57 36,15,21 Z£Ri1'LE.S1' >l...ia. l,��:. Project No.: 940028 -027 Sample Description: Encinitas Ranch Pale olive sandy lean clay s(CL) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 60 For classification of fine- / 50 grained soils and fine- ' ap CH or OH d v �� "A" LINE 30 a c T ' ` L in 20 ° MH or OH a 10 or OL 0 . 0 10 20 30 40 50 60 70 80 90 100 Liquid Lim it (LL) GRAVEL SAND FINES COARSE I FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 F 60 w m 50 , w j z LL. 40 z w U w 30 a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -1 17 90.0 SC 0:56:44 N/A 7)z 2 k r 1 i n ti•, Project No.: 940028 -027 Sample Description: Encinitas Ranch Gray clayey sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 60 For classification of fine - 50 grained soils and fine - grained traction of CH of OH a coarse - grained soils x LINE CU T 30 CL or OIL N 20 a MH or OH 10 " "` ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 too- 90- 80 70 H 60 w m 50 of w z U 40 I— z w U w 30 a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -2 3 31.0 SM 0:82:18 NP Project No.: 940028 -027 Sample Description: Encinitas Ranch Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 60 For classification of fine - 50 grained soils and fine - grained fraction of CH or OH a coarse- grained soils ax, "A" LINE i 30 / ZLorOL .N 20 a MH or OH 10 "" ML orOL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE I MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 112" 3/4" 3/8" #4 .#10 #20 #40 #60 #100 #200 100 90 80 70 f— 60 w m 50 w w z 40 f— z w w 30 w a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M -2 4 34.0 SM 0:82:18 N/A Project No.: 940028 -027 Sample Description: Encinitas Ranch Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318. D 422 02-00 60 For classification of fine- X 50 grained soils and fine - grained fraction of a CH or OH coarse - grained soils x 40 A" LINE W a C T 30 CL or OL 20 CL / MH or OH 10 " ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE I FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 f- 60 w a 50 Of w z U- 40 l'- z w U W 30 ry 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M -2 5 37.0 SC -SM 0:73:27 26,20,6 Project No.: 940028 -027 Sample Description: - - r Encinitas Ranch Olive brown silty, clayey sand (SC -SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 60 For classification of fiine- 50 grained soils and fine - grained fraction of CH or OH CL coarse- grained soils x 40 / "A" LINE a c 3 / _T 0 � .2 CL or OL 20 a / i MH or OH 10 MLorOL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 H 60 w m 50 w z iL 40 z w w 30 w IL 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI TL L,PL,PI No. No. (ft.) N M -2 6 40.0 SM 5:82:13 N/A Project No. 940028 -027 Sample Description: Encinitas Ranch Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 01-00 60 / For classification of fine - 50 grained soils and fine - grained fraction of CH or OH / d coarse grained soils d 4 /'A" LINE T 30 CL or OL / .N 20 CL MH or OH 10 CLML MLor OL 0 i 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE I MEDIUM I FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 F- 60 w m 50 w z U- 40 I— z w U af 30 w a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -2 7 43.0 SM 0:84:16 N/A 7E2f� it >! in s, I,� Project No.: 940028 -027 Sample Description: Encinitas Ranch Yellowish brown silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 60 For classification of fine- / 50 grained soils and fine - grained fraction of CH or OH a coarse - grained soils x 4,0 "A" LINE a� a c T 30 CL or OL in 20 CL / MH or OH 10 CL -ML ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE I FINE CRSE I MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 f- 60 w m 50 of w z LL 40 t- z w U w 30 a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft .) ( %) M -2 8 46.0 S 0:73:27 NP Project No.: 940028 -027 Sample Description: - r Encinitas Ranch Olive brown silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03-00 60 For classification of fine - 50 grained soils and fine - grained fraction of a coarse - grained soils CH or OH / x 40 � "A" LINE c w 30 `—' CL or OL in 20 A a MH or OH 10 ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE I FINE CRSE I MEDIUM T FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3 /4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 2 :60 w m 50 w w z L 40 I— z w U w 30 ui a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No (ft.) ( %) M -2 9 49.0 SM 0:85:15 N/A Project No.: 940028 -027 Sample Description: - Encinitas Ranch Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 60 For classification of fine - 50 grained soils and fine - grained fraction of CH or OH a coarse- grained soils a< '� j "A" LINE T 30 CL or OL w 20 O MH or OH a 10 17 1 " " ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE I FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 10" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 f- 60 w m 50 w z LL 40 F- z w w 30 a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M -2 10 55.0 SM 0:79:21 N/A TEn trsr ! ia. tir, l,�c. Project No.: 940028 -027 Sample Description: Encinitas Ranch Olive silty sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 60 For classification of fine - 50 grained soils and fine- j grained fraction of CH or OH / d coarse - grained soils x /� "A" LINE v T 30 CL or OL in 20 .5 MH or OH 10 1 " -" ML or OL 0 0 10 20 30 40 5o 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE I FINE CRSE I MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 E- 60 W >- 50 m W W z LL - 40 - z W m 30 W a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %) M -2 11 60.0 SC 0:73:27 N/A Project No.: '940028 -027 Sample Description: Encinitas Ranch Olive brown clayey sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 02-00 60 For classification of fine - 50 grained soils and fine - grained fraction of CH or OH x coarse - grained soils "A" LINE d C 30 CL or OL .N 20 1 ° MH or OH a 10 7 CL -M1 ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE I MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/7' 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 H 60 w 3 m SO rr w z LL 40 t— z w U of 30 n. 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft .) ( M -3 6 40 S 0:82:18 N/A aetS'._L Proiect No.: 940028-027 Sample Descrip " ° "'"" "� P P ���� Encinitas Ranch Brown Silty Sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 60 For classification of fine - 50 grained soils and fine - gr 7CL CH or OH K c "A" LINE d T 30 or OL 1n 20 m MH or OH a 10 r "` ML o r OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE I FINE CRSE I MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/2" 314" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 F- 60 w >- 50 M of w z LL 40 I— z w U W 30 CL 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) ( %g) M -3 8 46 SM 0:76:24 N/A Ti f4t:�•ti`i:>:L.�rss, Lam. Protect No.: 940028 -027 Sample Description: ' °" ""' ' ` " "`"" Encinitas Ranch Brown Silty Sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 60 For classification of fine- d grained soils and fine - grained fraction of CH or OH d arse orained soils 40 "A" LINE x 30 co a c T CL or OIL 20 a MH or OH 10 CL.- ML or OL 1z 0 i I I 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1/7' 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 - 1� 90 80 70 t— = 60 W m w z L 40 z W Of U W 30 a 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) N M -4 4 34 Sc 0:72:28 N/A Ti :YS >�a tir<;L.��rs. Lyc. Proiect No.: 940028-027 Sample Description: Encinitas Ranch Brown Clayey Sand (SC) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318_. D 422 03 -00 60 For classification of fine - 50 7CL rained soils and fine - CH or OH K "A" LINE v C 30 _T .5 or OL vi 20 a 9 MH or OH 10 ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE I MEDIUM r FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 112" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 60 W >- 50 m W z U: 40 F- z W U W o- 1 T I 7 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) N M -4 5 37 S 0:82:18 N/A INC. Sam Project No.: 940028-027 Sample Description: """ "` "` "' " P P ����� _W...o Encinitas Ranch Brown Silty Sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318. D 422 03 -00 60 For classification of fine- r grained soils and fine - grained fraction of CH or OH G. coarse - grained soils K 40 "A" LINE d c 30 _T Y CL or OL V 20 a MH or OH 10 " -W ML or OL 0 0 10 20 30 40 50 60 70 80 90 100 Liquid Limit (LL) GRAVEL SAND FINES COARSE FINE CRSE MEDIUM FINE SILT CLAY U.S. STD. SIEVE OPENING U.S. STANDARD SIEVE NUMBER HYDROMETER 3.0" 1 1 /2" 3/4" 3/8" #4 #10 #20 #40 #60 #100 #200 100 90 80 70 = 60 C7 W m x W z U- 40 F- z w U w30 d 20 10 0 100.000 10.000 1.000 0.100 0.010 0.001 PARTICLE - SIZE (mm) Hole Sample Depth Soil Type GR:SA:FI LL,PL,PI No. No. (ft.) (%) M -4 9 49 SM 0:79:21 N/A Tira- s'r>L.4xs. Lam•-. Proiect No.: 940028-027 Sample Description: -- •- -�».t- Encinitas Ranch Brown Silty Sand (SM) ATTERBERG LIMITS, PARTICLE - SIZE CURVE ASTM D 4318, D 422 03 -00 Leighton and Associates, Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 1 of 6 LEIGHTON AND ASSOCIATES, INC. GENERAL EARTHWORK AND GRADING SPECIFICATIONS FOR ROUGH GRADING 1.0 General 1.1 Intent These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s). 1.2 The Geotechnical Consultant of Record Prior to commencement of work, the owner shall employ the Geotechnical Consultant of Record ( Geotechnical Consultant). The Geotechnical Consultants shall be responsible for reviewing the approved geotechnical report(s) and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading. Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor (Contractor) and schedule sufficient personnel to perform the appropriate level of observation, mapping, and compaction testing. During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required. Subsurface areas to be geotechnically observed, mapped, elevations recorded, and/or tested include natural ground after it has been cleared for receiving fill but before fill is placed, bottoms of all "remedial removal" areas, all key bottoms, and benches made on sloping ground to receive fill. The Geotechnical Consultant shall observe the moisture - conditioning and processing of the subgrade and fill materials and perform relative compaction testing of fill to determine the attained level of compaction. The Geotechnical Consultant shall provide the test results to the owner and the Contractor on a routine and frequent basis. 3030.1094 Leighton and Associates, Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 2 of 6 1.3 The Earthwork Contractor The Earthwork Contractor (Contractor) shall be qualified, experienced, and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moisture- conditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Specifications prior to commencement of grading. The Contractor shall be solely responsible for performing the grading in accordance with the plans and specifications. The Contractor shall prepare and submit to the owner and the Geotechnical Consultant a work plan that indicates the sequence of earthwork grading, the number of "spreads" of work and the estimated quantities of daily earthwork contemplated for the site prior to commencement of grading. The Contractor shall inform the owner and the Geotechnical Consultant of changes in work schedules and updates to the work plan at least 24 hours in advance of such changes so that appropriate observations and tests can be planned and accomplished. The Contractor shall not assume that the Geotechnical Consultant is aware of all grading operations. The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish the earthwork in accordance with the applicable grading codes and agency ordinances, these Specifications, and the recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of the Geotechnical Consultant, unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, insufficient buttress key size, adverse weather, etc., are resulting in a quality of work less than required in these specifications, the Geotechnical Consultant shall reject the work and may recommend to the owner that construction be stopped until the conditions are rectified. 2.0 Preparation of Areas to be Filled 2.1 Clearing and Grubbing Vegetation, such as brush, grass, roots, and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner, governing agencies, and the Geotechnical Consultant. The Geotechnical Consultant shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 1 percent of organic materials (by volume). No fill lift shall contain more than 5 percent of organic matter. Nesting of the organic materials shall not be allowed. If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area. As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed. 3030.1094 Leighton and Associates, Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 3 of 6 2.2 Processing Existing ground that has been declared satisfactory for support of fill by the Geotechnical Consultant shall be scarified to a minimum depth of 6 inches. Existing ground that is not satisfactory shall be overexcavated as specified in the following section. Scarification shall continue until soils are broken down and free of large clay lumps or clods and the working surface is reasonably uniform, flat, and free of uneven features that would inhibit uniform compaction. 2.3 Overexcavation In addition to removals and overexcavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organic -rich, highly fractured or otherwise unsuitable ground shall be overexcavated to competent ground as evaluated by the Geotechnical Consultant during grading. 2.4 Benching Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), the ground shall be stepped or benched. Please see the Standard Details for a graphic illustration. The lowest bench or key shall be a minimum of 15 feet wide and at least 2 feet deep, into competent material as evaluated by the Geotechnical Consultant. Other benches shall be excavated a minimum height of 4 feet into competent material or as otherwise recommended by the Geotechnical Consultant. Fill placed on ground sloping flatter than 5:1 shall also be benched or otherwise overexcavated to provide a flat subgrade for the fill. 2.5 Evaluation/Acceptance of Fill Areas All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations recorded, and/or tested prior to being accepted by the Geotechnical Consultant as suitable to receive fill. The Contractor shall obtain a written acceptance from the Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas, keys, and benches. 3.0 Fill Material 3.1 General Material to be used as fill shall be essentially free of organic matter and other deleterious substances evaluated and accepted by the Geotechnical Consultant prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to the Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material. 3.2 Oversize Oversize material defined as rock, or other irreducible material with a maximum dimension greater than 8 inches, shall not be buried or placed in fill unless location, materials, and placement methods are specifically accepted by the Geotechnical Consultant. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 vertical feet of finish grade or within 2 feet of future utilities or underground construction. 3030.1094 Leighton and Associates, Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 4 of 6 3.3 Import If importing of fill material is required for grading, proposed import material shall meet the requirements of Section 3.1. The potential import source shall be given to the Geotechnical Consultant at least 48 hours (2 working days) before importing begins so that its suitability can be determined and appropriate tests performed. 4.0 Fill Placement and Compaction 4.1 Fill Lam Approved fill material shall be placed in areas prepared to receive fill (per Section 3.0) in near- horizontal layers not exceeding 8 inches in loose thickness. The Geotechnical Consultant may accept thicker layers if testing indicates the grading procedures can adequately compact the thicker layers. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout. 4.2 Fill Moisture Conditioning Fill soils shall be watered, dried back, blended, and/or mixed, as necessary to attain a- relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM Test Method D1557 -91). 4.3 Compaction of Fill After each layer has been moisture- conditioned, mixed, and evenly spread, it shall be uniformly compacted to not less than 90 percent of maximum dry density (ASTM Test Method D1557 -91). Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity. 4.4 Compaction of Fill Slopes In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods producing satisfactory results acceptable to the Geotechnical Consultant. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of maximum density per ASTM Test Method D1557-91. 4.5 Compaction Testing Field tests for moisture content and relative compaction of the fill soils shall be performed by the Geotechnical Consultant. Location and frequency of tests shall be at the Consultant's discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction (such as close to slope faces and at the fill/bedrock benches). 3030.1094 Leighton and Associates, Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 5 of 6 4.6 Frequency of Compaction Testing Tests shall be taken at intervals not exceeding 2 feet in vertical rise and/or 1,000 cubic yards of compacted fill soils embankment. In addition, as a guideline, at least one test shall be taken on slope faces for each 5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The Contractor shall assure that fill construction is such that the testing schedule can be accomplished by the Geotechnical Consultant. The Contractor shall stop or slow down the earthwork construction if these minimum standards are not met. 4.7 Compaction Test Locations The Geotechnical Consultant shall document the approximate elevation and horizontal coordinates of each test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that the Geotechnical Consultant can determine the test locations with sufficient accuracy. At a minimum, two grade stakes within a horizontal distance of 100 feet and vertically less than 5 feet apart from potential test locations shall be provided. 5.0 Subdrain Installation Subdrain systems shall be installed in accordance with the approved geotechnical report(s), the grading plan, and the Standard Details. The Geotechnical Consultant may recommend additional subdrains and/or changes in subdrain extent, location, grade, or material depending on conditions encountered during grading. All subdrains shall be surveyed by a land surveyor /civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the Contractor for these surveys. 6.0 Excavation Excavations, as well as over- excavation for remedial purposes, shall be evaluated by the Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by the Geotechnical Consultant based on the field evaluation of exposed conditions during grading. Where fill- over -cut slopes are to be graded, the cut portion of the slope shall be made, evaluated, and accepted by the Geotechnical Consultant prior to placement of materials for construction of the fill portion of the slope, unless otherwise recommended by the Geotechnical Consultant. 3030.1094 Leighton and Associates, Inc. GENERAL EARTHWORK AND GRADING SPECIFICATIONS Page 6 of 6 7.0 Trench Backfills 7.1 The Contractor shall follow all OHSA and CaUOSHA requirements for safety of trench excavations. 7.2 All bedding and backfill of utility trenches shall be done in accordance with the applicable provisions of Standard Specifications of Public Works Construction. Bedding material shall have a Sand Equivalent greater than 30 (SE>30). The bedding shall be placed to 1 foot over the top of the conduit and densified by jetting. Backfill shall be placed and densified to a minimum of 90 percent of maximum from 1 foot above the top of the conduit to the surface. 7.3 The jetting of the bedding around the conduits shall be observed by the Geotechnical Consultant. 7.4 The Geotechnical Consultant shall test the trench backfill for relative compaction. At least one test should be made for every 300 feet of trench and 2 feet of fill. 7.5 Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can demonstrate to the Geotechnical Consultant that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method. 3030.1094 BUTTRESS OR REPLACEMENT 15' MIN. FILL SUBDRAINS 4" 0 NONPERFORATED PIPE, -.7 -7 BACK CUT 100' MAX, O.C. HORIZONTALLY, 1: 1 OR FLATTER 30' MAX O.C. VERTICALLY -7- BENCH -7 LOWEST SUBDRAIN SHOULD -7 POSSIBLE TO ALLOW SUITABLE OUTLET EACH SIDE PERFORATED PIPE KEY WIDTH OUTLET PIPE AS NOTED ON GRADING PLANS C'nON DETAIL 12" MIN. OVERLAP FROM THE TOP HOG SEE T-CONNECTION RING TIED EVERY DETAIL FOR COLLECTOR SPECIFICATIONS FOR CALTRANS 6 FEET PIPE TO OUTLET PIPE CLASS 2 PERMEABLE MATERIAL I CALTRANS CLASS 11 U.S. Standard PERMEABLE OR #2 Sieve Size % Passing WRAPPED IN FILTER COVER 1 1. FABRIC 100 NON-PERFORATED PERFORATED 3/8" 40-100 PIPE No. 4 25-40 OUTLET PIPE No. B 18-33 . _T__4" MIN. No. 50 - 0-7 PROVIDE POSITIVE FILTER FABRIC BEDDING No. 200 0-3 SEAL AT THE ENVELOPE (MIRAFl JOINT 140 OR APPROVED Sand Equivalent > 75 SUBDRAIN TRENCH DETAIL SUBDRAIN INSTALLATION - subdroin collector pipe shall be installed with perforation down or, unless otherwise designated by the geotechnicol consultant. Outlet pipes shall be non-perforated pipe. The subdrain pipe shall hove at least 8 perforations uniformly spaced per foot. Perforation shall be 1/4" to 1/2" if drill holes ore used. All subdrain pipes shall have a gradient of at least 2% towards the outlet. SUBDRAIN PIPE - Subdroin pipe shall be ASTM D2751, SDR 23.5 or ASTM D1527, Schedule 40, or ASTM D3034, SDR 23.5. Schedule 40 Polyvinyl Chloride Plastic (PVC) pipe. All outlet pipe shall be placed in a trench no wide than twice the subdrain pipe. Pipe shall be in soil of SE >/=30 jetted or flooded in place except for the outside 5 feet which shall be native soil backfill. - - ----'- OVERSIZE ROCK DISPOSAL DETAIL FINISH GRADE ----------- -------------------------- ------------------------- SLOPE FACE 1 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - --- --- - - - - - - - - - - - - - - - - - - - - ------------- :-: K ------------ ---- ----------------- --- -------------------- --- --- --------------- --- 7:..7 7 -7-% -7-7.: -:-7-:.� ------------------------ r M I N. '-7-7 - -7 ---- _ -------------- 7 ----------- .7..7..7 -7- --- ----------------------- - - - --- ------------------------ ------------------- --------------------- - -------------------- ------------------- -------------- -- -- OVERSIZE WINDROW -C" MA • OVERSIZE ROCK IS LARGER THAN 8 INCHES IN LARGEST DIMENSION. • EXCAVATE A TRENCH IN THE COMPACTED FILL DEEP ENOUGH TO BURY ALL THE GRANULAR MATERIAL TO BE ROCK. DENSIFIED IN PLACE BY DETAIL • BACKFILL WITH GRANULAR SOIL JETTED FLOODING OR JETTING. OR FLOODED IN PLACE TO FILL ALL THE VOIDS. • DO NOT BURY ROCK WITHIN 10 FEET OF FINISH GRADE. • WINDROW OF BURIED ROCK SHALL BE PARALLEL TO THE FINISHED SLOPE. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - JETTED OR FLOODED - - - - - GRANULAR MATERIAL TYPICAL PROFILE ALONG WINDROW CANYON SUBDRAIN DETAILS .�EXISTING GROUND SURFACE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ----- - - - - - ----------- -:7-:7 - - - - - - - - - 7 : -- - - - - - - - - --- - - --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -------- - P ACTED FILC ------------- - - - - - - ----- - - - 7- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-7-1 - - - - - - - - - - - - 7 - - - - - - - - - - - - - - - - - - - 7 BENCHING - - - - - - - - - - - - - - - - - - - - - - 7 -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - REMOVE -------------- ------------- --- - ---------- ---- UNSUITABLE ------- MATERIAL SUBDRAIN TRENCH FILTER FABRIC ENVELOPE SEE BELOW (MIRAFI 140N OR APPROVED EQUIVALENT)* 6" MIN. OVERLAP 6" MIN. OVERLA 3/4"-1-1/2' CLEAN GRAVEL 6" MIN. 6' MIN. COVER (9 FT MIN.) COVER -0— /4"-1-1/2" CLEAN GRA VEL (9ft. MIN.) 4" MIN. BEDDING 6" 0 MIN. IF CALTRIANS CLASS 2 PERMEABLE MATERIAL IS USED IN PLACE OF ERFORATED 3/4"-1-1/2" GRAVEL, FILTER FABRIC PIPE MAY BE DELETED DETAIL OF CANYON SUBDRAIN OUMET SPECIFICATIONS FOR CALTRANS CLASS 2 PERMEABLE MATERIAL SUBDRAIN U.S. Standard DESIGN FINISH TRENCH Sieve Size % Passing GRADE - 7- - SEE ABOVE - ----------- 1 100 3/4" 90-100 ------------- I- 3/8" 40-100 No. 4 25-40 --------- No. 8 18-33 ---------- No. 30 5-15 No. 50 0-7 � 5' M IN. 1 5' MIN PERFORATED No. 200 0-3 6" 0 MIN. PIPE NONPERFORATED 6"0 MIN. Sand Equivalent > 75 Subdrain should be constructed only on competent material as evaluated by the geotechnicol consultant SUBDRAIN INSTALLATION— Subdrain pipe should be installed with perforations down as depicted. At locations recommended by the geotechnical consultant, nonperforated pipe should be installed. SUBDRAIN TYPE—Subdrain type should be Acrylonitrile Butodiene Styrene (A.B.S.), Polyvinyl Chloride (PVC) or apporved equivalent. Class 125, SDR 32.5 should be used for maximum fill depth of 35 feet. Class 200, SDR 21 should be used for maximum fill depths of 100 f—eet. KEY AND BENCHING DETAILS PROJECTED PLANE 1 TO 1 MAXIMUM FROM TOE OF SLOPE TO APPROVED GROUND REMOVE EXISTING UNSUITABLE GROUND SURFACE I BENCH - TBENCH HEIGHT 2' M 11 LOWEST KEY BENCH DEPTH (KEY) F9LL-OVER-CLJT SLOPE EXISTING GROUND SURFACE � HEIGHT 4 TYPICAL) LOWEST REMOVE 2 MIN BENCH UNSUITABLE KEY (KEY) MATERIAL DEPTH CUT FACE SHALL BE CONSTRUCTED PRIOR TO FILL PLACEMENT TO ASSURE ADEQUATE GEOLOGIC CONDITIONS UT FACE SHALL BE GROUND CONSTRUCTED PRIOR CUT-OVER-FILL SLOPE SURFACE TO FILL PLACEMENT OVERBUILD AND TRIM BACK -7 UNSUITABLE PROJECTED PLANE -7 F111 MATERIAL 1 TO 1 MAXIMUM FROM TOE OF SLOPE FOR SLNODRANS TO APPROVED GROUND BENCH SEE CANYON SLJBDRAIN --7- tBENCH HEIGHT SPECIF=ICAT)ONS (4' TYPICAL) 2 1 MIN. LOWEST BENCHING SHALL BE DONE WHEN SLOPE'S KEY BENCH ANLGE IS EQUAL TO OR GREATER THAN 5: 1. DEPTH (KEY) MINIMUM BENCH HEIGHT SHALL BE 4 FEET AND MINIMUM FILL WIDTH SHALL BE 9 FEET. - 4940028 -027 APPENDIX E STABILITY ANALYSIS FOR HOMOGENEOUS EARTH SLOPES Design Parameters and Assumptions Type of Slope: Fill slope to 30 feet in height Type of Soil Materials: Fill soils derived from onsite soils H = Height of Slope = 30 feet p = Angle of Slope = 26 degrees y, = Total (wet) Unit Weight = 130 pcf � = Angle of Internal Friction = 34 degrees C = Cohesion = 100 psf • No seepage forces • Total shear strength parameters are used in lieu of effective strength Analysis y�•H•tan0 Dimensionless Parameters = Af = 1 S 1 C Stability Number (from Figure 10 of Reference 2) = N�f = 43 2 C = 2.03( >1.5 0. K.) Minimum Factor of Safety = F.S. (min.) = N • H y• References 1. Bell, J.M., Dimensionless Parameters for Homogeneous Earth Slopes, Journal Soil Mechanics and Foundation Division, American Society of Civil Engineers, No. SM5, September 1966. 2. Janbu, N., Discussion for (Reference - 1), Journal Soil Mechanics and Foundation Division, American Society of Civil Engineers, No. SSM6, November 1967. 3. Leighton and Associates, Inc., 1995c, see Appendix A. E -1 4940028 -027 APPENDIX E SURFICIAL SLOPE STABILITY ANALYSIS ASSUMED PARAMETERS Z = Depth of Saturation = 4 ft. i = Slope Angle = 26 degrees Y W = Unit Weight of Water = 62.4 pcf Yt = Saturated Unit Weight of Soil = 130 pcf = Apparent Angle of Internal Friction = 34 degrees C = Apparent Cohesion = 150 pcf FS= C +atan _C +(y- ,vjZ Cos 2 i tan � T y , Z sin i cos i FS = 1.5 (?1.5; O.K.) Slope Configuration ❑ Fill Slope ❑ 2:1 (horizontal to vertical) E -2 0 0 0 0 0 0 0 0 0 0 ° o III I I I I I I I I i a Q. fn O.chN NNN. —�.� o m av aaaaaao � 0 ° o 77 m m m d d m m w m °—' _ awo- cri cncn0)0)0) D ?� d N N A Cn Cn Cn O) O) N CL OD a N --� W V A Cn = i Cn— CD W W w W W W W W W W W (n W 0 N OOO 0000 000 cn0 Cn 3 d N O O) O Cn CO V Q) A Co A A O O 0000000000 0 O 0 00000000'^ O cn -- OA O W 000000w0�� S O O O O O O O O O O O O O c N O (.n oc oc oo OOOOOOO .Z7 O C r N _ 1 V I_ O N O r — k — I CD 0 C) j CD a i CD U)i h N O O n \� CD N O Cl SD V M Cp (j D 0 0 0 Cl 0 0 0 o O o 0 d p h M O C, t 11� c c d � o R) v, u C v ee c - m � c r w CIO, C :' x c m o Q u a, o d o E aa) E Z a y o M _ _ c a ar a► dr rn ar« c °' ::� v a c v z a � a E us Eto E A „ a> - M0 a ° � O L 7D U ,p .0. cc C .�,, J 9 C d Y O C O O I E us r E , O r c c c p c c C O c c C c CY rJ 7 L, ca 11 M a D) s r ti cz ro I I CL ' E c " M Y " " " " c C v " 7 7 _ N L O O O O d O G O y O cL O J O t p O .... th .. A ` L O — U — J 7> , 0 V to U c0 f0 to `-' m T ' m W R s } Q E ry E" E" _E d E v E m E tT E E a, E ,•P . b tE .r- ' C: T �. U) TJ x d x (jt (p x C7 x x x C x x M x T x - _ I UO �_ .J. u .�-.. . .� y a' O` O C tD c O > O ` Z, d u - J O a O a a z a U a U a p a 7 a U A a / �! i .' L _. N _a 7 y L ti U p a a 0 a G Cl x a x a p a 0 a x a s a � Q; 7 a a _. a a c, a s a m a h a d a Y a k e ui 0 uj Q 0 _ [ - r 0 ' tn'I 4 m w g - W o- o f CL u W� < j w / 1 fi t CY M � • t 1 / r � �l H., ll j I r 11 CK N — - - - -- - -- e s ' --� N fl 1 l !�� it • °� ` ` Mal R /�TMf i fi f! R f 1111fffiiitiiRRfwIRRH {tRNRtt ilifl/fUltRIRRRti(1 feffffiNiii Hf1 i Nf lHif IffR1iR ►� / f f N • if ftt f ■ fleNit�f+tfel3lN ill lfll ---- - -- Q , - - � 1 t i I - s � � _. -_--i r ----_- � - -fi -- - -- - mac, j �.•. ` Je 1 , LT Y �r � � _ _ - r te-; ---- '�`�' -- •t y x , yt _ � l � ` � � � '��-.. � _ I` . t i TT 1 1111 11 _ ; k i !fit• � , i r / r •0 1 6 t f CV 1 ss M 4F 4 CL. _.___.___ r K :rAiErtffaafacelfff terse,- .,a+r�•r,�,�ef!lleat� :n� ;le• efflir + #i _ ✓° $ ;'eT'r9 i eTi 4"u-1 $ __._ -_ _- "••�... ,- , . p p yy tffarrfefa "re los e>s••.ei / R! l e ia! ■le _ z , f ; t — 0. Ad st l A; 91 • 4i --- t m -46 <011� �J N. OdX3 f f ! l • ' �'' ii 831N30 NJtS40 r If o / I f I i Z► / ' A lm- P J J J ; 1NM7aaaaa7 b . ' � � � •� �� lj / I If N If if • 1 i s. it w 0� - — -- - -_ - - -- 1 ! > c a / ' o - -- y - I / � � I ( ( l r ! noose i f if , !>r 1 { 1 r z W '- Q O LIP -- - - -- -� t • ; Y CL U Of f- 16 � VN0790 -377V,9 t � Q u - ~ '' -'_ N�y • + I.L - ` --� _ ___"` - - fit• ,,'Z^^ Q to n j W Q o if Q � 1 v ~ 1 W c� a •a +! t ,/ UJ O Z Z N f- r' V - x 0. W U �' e w Z ui W Z uj z IL Ju I MMIN j all r t fr, maw i b � t i a W r p I t'7ALLE BARCELONA �► x. ; It It Lin 1 rn ✓ N moo Ln dodo . 000 so �,,, CA �... --- -- -- T r t , i j 1 1 1 0 � o, �o' � � v t o �� 1 1 1 I ti N w .� ! � o� i 61 it 2 00 oo O It 1 Fi; 'tV �- �� /II • , . r r / t. • � I � i �� � w �, �`\ , ` � "; mI I� I T OD p0-4 (� "•a 1 �� 44 o i" n "•,,, t'+ 1 i 1 tv z 1 r Q i 1i o 'A / .�, �► t i i r n,....r r. w �! �"" on" maw r"' �"' mow. �rs•� . >� y y A �, y j - 1 I , �1 t f a PA I ! NS ), 31 � y " i ' IF .. � - oa a » , M m. „�'•! Z - i 11 IT co r - cn >~,m SCALE. 1' - 50' Z first ` �' `~ r► cJvI _ t7D y . r o =mow t r oom ch 1 /� t j , m ern —' moo Moo y I:t M ji i y Ito g ' n c � rn r' , 1 � , Ln , yUl Co -. E � W l m ,• j ; J V l N - ; r ' t {� on m� i >,� 9 �i.1� �� ' IM, W ' 1 �: i 1 t 1 ; fret `.ltS+ # t ,__- 1 y _, 1 ! ;'{ i :� ., : (°'- L ,_. ; �-. .., . �tt ,, ..., 1 : � „_ t. I �. � ; •�. � .;':.. f . 1 I '.v � `�i " ` � 9 � � 3 _ - _ I °s ,.�. ,� _ !{ ,.�. r'`-. ._ - ..a . Fi;., �rJ? 4 � ' °ate ' �• ' - i �'--, { }:` �(' � '? '..f'. j { 1 �_, . ^` : ' � aw,� \' - , I ! ` r C � , t - .,y . a� 7 , f,t ':. ...,'2 1 s..... i * i -�,.. i .�-*' t �..- { :. ".� i,,:. 1 `:.-' � ( Q r ., , t , . .,f i .a- : s.t -Nw :: 4`y - i t _ 1 i` • t > - 1 t W LT'! ( tY 5^ `t . .p i ` I _ t +'.Y, ?3..,_ � °".1 ; �i ' �..- `s- i � , f+. , } 4i) i+ � l/✓ 1 � - " ._ -.. _ r - - - - _ _..�- ._...� _-.- -i - r ,._ -.-_ -• \ '�._ - 1- - �._ - � �•' _ t .- , T r j- �"' j �-'��° t + t i _ i : r �' �iJ`{, } � � k i.C.• + co , y t (." 4� 1:.. .� v. - ,.. �, ' \- tXi - '`° _ f �-^ i 1 j� 1� , � �.! � i,.' .. 'it . i ,A �. •: , n' n5 ' t ',,' ?1i (� V I -.j ._ t ?t ;,L. , . >i a•i .. ,. _ :{ �! �..)� �, ti , T } w - y i Pa_ QD , s { .Ji , >. v ; } ;, w s f , ie ts! �-� a , 0:7 C y r , 1 t l I z 1A CPi 1 C« y � t i I 1 I < f �, ,