Loading...
2001-6814 G/TE STATE OF CALIFORNIA -THE RESOURCES AGENCY CALIFORNIA COASTAL COMMISSION GRAY DAVIS, Governor SAN DIEGO AREA 7575 METROPOLITAN DRIVE, SUITE 103 '®► SAN DIEGO, CA 9210 8-4402 (619) 767 -2370 EMERGENCY PERMIT Applicants: Richard and Patricia Sorich Date: December 15, 2000 816 Neptune Avenue Encinitas, CA 92024 Agent: Bob Trettin/John Niven Emergency Permit No. 6 -00 -192 -G Location of emergency work: 816 Neptune Avenue, Encinitas, San Diego County. Work proposed: Construction of an approximately 50 ft. long steel reinforced, poured in place concrete seawall on the beach. The seawall will range in height from 17 ft. at its southern end to 20 ft. at the north and will incorporate two rows of tieback anchors approximately 55 ft. in length and will be colored and textured to match the adjacent natural bluff. This letter constitutes approval of the emergency work you or your representative has requested to be done at the location listed above. I understand from your information and our site inspection that an unexpected occurrence in the form of erosion and bluff collapse requires immediate action to prevent or mitigate loss or damage to life, health, property or essential public services. 14 Cal. Admin. Code Section 13009. The Executive Director of the Coastal Commission hereby finds that: (a) An emergency exists which requires action more quickly than permitted by the procedures for administrative or ordinary permits and the development can and will be completed within 30 days unless otherwise specified by the terms of this permit; (b) Public comment on the proposed emergency action has been reviewed if time allows; (c) As conditioned, the work proposed would be consistent with the requirements of the California Coastal Act of 1976. The work is hereby approved, subject to the conditions listed on the attached page. Sincerely, PETER M. DOUGLAS Executive Director ! i By: DEBORAH N. LEE Deputy Director Emergency Permit #6 -00 -192 -G December 15, 2000 Page 2 CONDITIONS OF APPROVAL: 1. The enclosed Emergency Permit Acceptance form must be signed by the PROPERTY OWNER and returned to our office within 15 days. 2. The work authorized by this permit must be completed within 60 days of the date of this permit (i.e., by February 15, 2001). This emergency permit is only for the above described seawall. No other work is approved by this emergency permit. The construction or placement of any accessory or protective structure, including but not limited to, stairways or other access structures, drainage structures or pipes, walls, fences, etc., are not authorized by this permit. If during construction, site conditions warrant changes to the approved plans, the San Diego District office of the Coastal Commission shall be contacted immediately prior to any changes to the project in the field. 3. The emergency work carried out under this permit is considered to be TEMPORARY work done in an emergency situation. In order to have the emergency work become a permanent development, a regular coastal development permit must be obtained. An application for regular Coastal Permit to have the emergency work remain as permanent shall be submitted within 60 days of the date of this permit (i.e., by February 15, 2001). If a regular coastal development permit is not received from the City of Encinitas and/or the Coastal Commission, the emergency work shall be removed in its entirety within 150 days of the above date unless waived by the Executive Director. 4. In exercising this permit, the applicant agrees to hold the California Coastal Commission harmless from any liabilities for damage to public or private properties or personal injury that may result from the project. 5. This permit does not obviate the need to obtain necessary authorizations and /or permits from other agencies (i.e., State Lands Commission, Army Corps of Engineers, California Department of Parks and Recreation, City of Encinitas). 6. Prior to the commencement of construction, the applicant shall submit to the Executive Director, for review and written approval, final plans for the seawall that have been reviewed and approved by the City of Encinitas Engineering Department. Said plans shall be in conformance with the plans titled "Repairs to Lower Bluff" Mr. Rick Sorich, dated 11/20/00 (revised) by Soil Engineering Construction, Inc. and include the following revisions: a. The proposed seawall shall conform as closely to the toe of the bluff as possible. b. No local sand, cobbles or shoreline rocks shall be used for backf ill or for any other purpose as construction material. If you have any questions about the provisions of this emergency permit, please contact Gary Cannon at the Commission's San Diego Coast Area Office at the address and telephone number listed on the first page. Emergency Permit #6 -00 -192 -G December 15, 2000 Page 3 EMERGENCY PERMIT ACCEPTANCE FORM TO: CALIFORNIA COASTAL COMMISSION SAN DIEGO COAST AREA 7575 METROPOLITAN DRIVE, SUITE 103 SAN DIEGO, CA 92108 -4402 (619) 767 -2370 RE: Emergency Permit No. 6 -00 -192 -G INSTRUCTIONS: After reading the attached Emergency Permit, please sign this form and return to the San Diego Coast Area Office within 15 working days from the permit's date. I hereby understand all of the conditions of the emergency permit being issued to me and agree to abide by them. I also understand that a regular Coastal Permit is necessary to permanently authorize the emergency work. I agree to apply for a regular Coastal Permit within 60 days of the date of the emergency permit (i.e., by February 15, 2001). Signature of property owner Name Address Date of Signing (GASan Diego\Emergency\6 -00 -192 -G Sorich EP.doc) SOIL monrcrcitine consviudion. December 19, 2000 TO: Director of Community Services Department, City of Encinitas FROM: John W. Niven Soil Engineering Construction, Inc. SUBJECT: Contractor Responsibility This correspondence is provided to acknowledge that Soil Engineering Construction, Inc. (SEC), will be liable for any costs to correct damages to the beach or adjacent areas resulting from permit work undertaken by SEC for Coastal Development Permit No. 6- 00- 192 -G, bluff repairs at 816 Neptune Avenue. In addition, SEC recognizes that construction debris washing onto the beaches (during the period of time that SEC is constructing this project) within one -mile north or south of the work site shall be the responsibility of SEC and shall be removed at no expense to the City of Encinitas. Construction debris is defined as any lumber, piling, crates, boxes, containers and other objects which, could be used for construction identical to that being used on the project site. Debris also includes any pre - existing items excavated at the site such as reinforcing steel, concrete and bricks. ohn W. Niven, P.E. Date Soil Engineering Construction, Inc. !'t yI F�N��ga I JES 927 Arguello Street, Redwood City, California 94063 -1310 (650) 367 -9595 • FAX (650) 367 -8139 CALIFORNIA ALL - PURPOSE ACKNOWLEDGMENT State of CALIFORNIA County of S AN DIEGO On DE 1 9 , 2000 before me , LAURA LYNNE, NOTARY PUBLIC Date Name and Title of Officer e. ' ( g., "Jane Doe, Notary Public ") r personally W. NIVEN� P.E. appeared �> Name(s) of Signer(s) ' �> L' personally known to me – � std} lib }I111�4SiS�11�s�dF�>�lIQ�1L��to be the person(s) whose name(g) is /are subscribed to the within instrument and acknowledged to me that he /§I"tA#y executed the same in his /IvAGQheA authorized capacity(*%), and that by his /00 1%* signature) on the instrument the person(9), LAURA LYNNE or the entity upon behalf of which the person(S) acted, executed the instrument. gal ��� WITNESS my hand and official seal. t LAURA LYNNE Si$r)8ture of Notary Public OPTIONAL Though the information below is not required by law, it may prove valuable to persons relying on the document and could prevent fraudulent removal and reattachment of this form to another document. S 'r5 Description of Attached Document Title or Type of Document: Document Date: Number of Pages: Signer(s) Other Than Named Above: Capacity(ies) Claimed by Signer(s) Signer's Name: g Signer's Name: ❑ Individual El Individual E. Corporate Officer ❑ Corporate Officer Title(s): Title(s): ❑ Partner — ❑ Limited ❑ General ❑ Partner — ❑ Limited ❑ General ?� ❑ Attorney -in -Fact ❑ Attorney -in -Fact ❑ Trustee _ ❑ Trustee ❑ Guardian or Conservator _ ❑ Guardian or Conservator ❑ Other: Top of thumb here ❑ Other: Top of thumb here Signer Is Representing: Signer Is Representing: % c> �z�C: `�t7�:`z't7�C>'�c`�E.`�^�tsc�; �•�>`�>�t;`�= c`�<>`�>`�C>`c c;` cZs��• Z> ct> �• �. ct> �> �C;` �c> �> �s�i` �> cc: �;` �Z.` �t>�:�ct,`�:cts�;`��.`�>�t>� =� ct>o'aS © 1995 National Notary Association • 8236 Remmet Ave., P.O. Box 7184 • Canoga Park, CA 91309 -7184 Prod. No. 5907 Reorder: Call Toll -Free 1- 800 - 876 -6827 SOIL cnclniainc consviucclon., 1 October 18, 2000 TO: Mr. Lee McEachern California Coastal Commission FROM: Mr. Bob Mahony & John Niven Soil Engineering Construction, Inc. RE: Preliminary Geotechnical Evaluation ' Proposed Lower and Upper Bluff Repairs Sorich Residence, 816 Neptune Avenue ' Encinitas California Soil Engineering Construction (SEC) has prepared the following, preliminary geotechnical evaluation in response to the following urgent concerns: * * Recent sudden and unexpected failures along sections of the lower coastal bluff on and immediately adjacent to the subject property; ** Ongoing mid and upper bluff failures on the adjacent property to the north (828 ' Neptune Avenue) which are now threatening the subject site. * * A sudden and unexpected fracturing of the upper bluff on the neighboring ' property at 808 Neptune Avenue. The visible portions of the tension crack is located on the slope just below the top of bluff and extends northward from the ' property line with Kimball (798 Neptune), encompassing approximately %2 the length of the southern and adjacent property (Brem, 808 Neptune). As noted in the conclusions of this review, the sudden and unexpected failures of the lower bluff, as well as the sudden and unexpected elements of failure occurring on, the mid and upper bluff of ' the adjacent properties to the north and south, has promoted a level of bluff instability that places the residence on the subject property under imminent threat of failure. ' This review includes the results of our bluff stability analyses, conclusions and recommendations for the emergency repairs to the lower and upper bluff. October 18, 2000 1 927 Arguello Street, Redwood Ciry, California 94063 -1310 (650) 367 -9595 • FAX (650) 367 -8139 ' This review utilizes, as a base for substantiating our analyses, information following reports, which have been previously submitted, to the Californi oastal Commiss on 1. "Geotechnical Report / Request for Emergency Processing, Proposed Lower Bluff ' Seawall, Johnson & Downing Properties, 788, 790 Neptune Avenue, Encinitas California ", prepared by SEC, dated July 29, 1996. ' 2. "ADDENDUM, Geotechnical Report / Request for Emergency Processing, Proposed Lower Bluff Seawall, Johnson & Downing Properties, 788, 790 Neptune Avenue, Encinitas, California. ", prepared by SEC, dated August 19, 1996. 3. "Addendum to Geotechnical Report, Johnson & Downing Lower Seawall, 788 & 790 ' Neptune Avenue, Encinitas, California ", prepared by SEC, dated May 20, 1997. 4. "Addendum No. 2, Geotechnical Report, Johnson & Downing Lower Seawall, 788 & 790 Neptune Avenue, Encinitas, California ", prepared by SEC, dated September 11, 1997. 5. "Updated Geotechnical Review / Request for Emergency Processing, Proposed Upper Bluff Retention System, Downing Residence, 790 Neptune Avenue, Encinitas, ' California", prepared by SEC, dated April 27, 1998. 6. "Updated Geotechnical Review / Request for Emergency Processing, Proposed Upper Bluff Retention System, Johnson Residence, 788 Neptune Avenue California ", prepared by SEC, dated May 29, 1998. p Encinitas, 7. "Preliminary Geotechnical cal Evaluation / Request for Emergency Processing, Proposed ' Lower Bluff Seawall & Upper Bluff Retention System, Mattingley Residence, 794 Neptune Avenue, Encinitas, California ", prepared by SEC, dated February 10, 1999. 8. "Supplemental Geotechnical Information, 794 Neptune Avenue, Encinitas, California prepared by SEC, dated February 18, 1999. ' 9. "Preliminary Geotechnical Evaluation / Request for Emergency Processing, Lower Bluff Seawall, Funke & Kimball Residences, 796 and 798 Neptune Proposed en uneAvue, Encinitas, California ", prepared by SEC, dated October 5, 1999. ' 10. "Supplemental Recommendations for Repairs to Upper Bluff, Funke & Kimball Residences, 796 and 798 Neptune Avenue, Encinitas, California ", prepared by SEC, dated February 10, 2000. October 18, 2000 2 1 I L "Preliminary Geotechnical Evaluation, Proposed Lower and Upper Bluff Repairs, Brem ' Residence, 808 Neptune Avenue, Encinitas, California ", Prepared by SEC, dated August 7, 2000. ' SITE DESCRIPTION The project site is located at 816 Neptune Avenue in Encinitas. The site consists of relatively level ' building Pad areas (El. +92' + / -) and is occupied by a single story wood frame residential dwelling of standard construction with appurtenant PP miprovements. It appears that the structure is founded on ' shallow foundations. An approximately 9 foot high retaining wall exists along the westward portions of the lot and the said wall retains the relatively level building pad area. Adjacent to the bottom of the 9 -foot high retaining wall is a concrete slab on grade. Portions of the slab over hang portions of the failed bluff below. Below this area, there is a slab on a graded patio area that appears to be in disrepair. The northwestern portion of the lot has been adversely affected by the landslide, which occurred on the northern neighbor's property in 1996. ' The project site is bounded to the east by Neptune Avenues le ing family residences to the north and south, and on the west, by an approximately 90 foot high, steeply sloping, westerly facing sea bluff. Based on our observations of the subject site, and the results of this geotechnical evaluation, it is our opinion that the site conditions have degraded significantly during the past 120 days. ' As observed on the beach, large blocks of the lower Ardath formation have failed and are continuing to fail. Some of these blocks still exist in front of the bluff area on the southern half of the property and extend onto the neighboring property at 808 Neptune. Near the base of the b14 at approximately + 8' M.S.L., a clay seam exists across the property and appears to extend across the properties to the north. The northwestern portions of the property have been adversely affected by a landslide that occurred in 1996. Major landslides appear to have occurred on this clay seam on properties to the north and south of the subject site. In addition, an ongoing landslide failure exists ' on portions of the subject site and on the neighboring property to the north." On the adjacent property to the south a tension crack exists and threatens to extend onto the subject property. 1 October 18, 2000 3 i SUBSURFACE CONDITIONS i On August 1, 2000, SEC advanced a boring at 816 Neptune Avenue to a depth of approximately 97 feet. The approximate boring location is shown on Figure I. An engineer from this office ' logged the boring, collected disturbed and relatively `undisturbed" soil samples and oversaw the drilling operation. The boring was advanced, using a CME 75 High Torque truck mounted drilling rig, equipped with 8 -inch hollow -stem augers and an automatic trip hammer for soil i sampling. Tri- County Drilling, Inc. of San Diego, California, supplied the drill rig and operator. Subsurface soils were visually classified in the field in general accordance with the procedures of ASTM D2488 -84 and the Unified Soil Classification System (USCS). The boring was backfilled but not compacted, upon the completion of logging and sampling. Logs of the boring are attached. ' As encountered in the boring, the site is underlain by Terrace deposits to a depth of approximately 68.5 feet. Underlying the Terrace deposits is the Santiago formation, which consists of hard siltstone /claystone and dense silty fine sandstone. Underlying the Santiago at a ' depth of approximately 94feet is the Torrey sandstone consisting of very dense silty medium sandstone. The Santiago formation was continuously sampled, using a continuous core barrel to observe an Y clay seams or shear zones. In addition, a few relatively undisturbed drive samples were obtained ' for direct shear testing. No clay seams or shear zones were observed from the recovered samples. A trace of groundwater was observed perched over the Santiago formation. r SLOPE STABILITY ANALYSES 1 Presented herein are the results of our bluff slope stability analyses for the subject site. The ' purpose of the analyses was to find the minimum factors of safety with respect to sliding for the existing (before construction of the seawall and upper bluff retention system) and the post i construction conditions. The analyses were performed for both static and seismic conditions utilizing the Modified Bishops Method of Slices (GSTABL7 computer program) and the results are discussed herein. The location of the assumed most critical bluff cross - section A -A', shown ' on Figure 1 and the cross - section, is shown on Figure 2, and represents the bluff slope used in our analyses. Cross section B -B', through the northern part of the lot, is depicted on Figure 3. The computer printouts are included in this review and are attached. Assumed design soil parameters used for our analysis were based on laboratory testing (attached), and on our past experience working in the area, and are presented in the table on the following page: October 18, 2000 4 air ar a■r ass m s m o m m m m m r m m r ou lm on D CO O O m pm 0 �! °� So - m - T1� j0_ - - -- - -- N 0 — - z0 ! mp - z mD Oz 30 20 0 „ _- -- Woo -OSEE ETA IIL SEE DETAIL B/ �- -_ - - m � o I m�m D OC I �mr o m <o m O DD j > m r D * -4 r I D Z IF r O , i I t o�� - - - 11'-0" (MAX. TYP. -- 0 � m o - - D - -- x _ - v r r O - �D m _ _ �Z I 1 _ T I � ( - - 00 _ Oi CJ I t I - o - - - - -- 1m I p� a � t / D _ z z y l " � 0 4 } DO CD I I I C I I FT1 Z me II I ? ' I I 1 ; o z m0 z n D u - I m _9 < Z7 00 O z z Z i 00 C � cc Z O - m Z C - ! Z O I 1 m Z m - - i � m _ o I; FT1 CU l C m n 1 FTi m I _ i -- / - - -=1-I I---- --- ---- --- - -� J i it r s r r �r r r m=mom r. ul D DO Z Z7 V ox �o tam O X ,�,0 - � N CA � Cn 0i J DO (.0 O O O O O O O O O O D 0 O m z I ti O D m U 0 D y 0 O hrh 0 r x F U) 00 F D o L/I m r I+ D N � \ �Z n m m0 o m �Ap O - u m ��f In O 7. T �m Zo \ J o r m O O \ r m m OT. D FF z m D Z C) V J D z o m Fri 0 D 0 0 m z c) z . CO 0 - V CM ;u FTI mr - ^ 0 0 rn m \ - C J\ z 0 m n m o w z o i > D D D cm D Z n 0 ? O C) C) 0 Z � r \ z ;1 0 0 0 om m m m r o cn D D O 7 0 .�i Ul 0 0 - 0 O D z r 0 0 OD D rn m z m D m z c m C mm xo Z 0 C) K m ®O V µ N > 0 Z A 0A x I< O O m O m O o J N C4 (J O) J OD Cfl X 0 O. O O O O O O O O > ° 0 " z 1 1 \. o W > -u 1 f O > O O N x I r � O O D > 0 zi NO O O � N r � F+ m \ \ \ \ m •� 0 > m / V Z G7 O O O m �m III - a� m > z° \ _ t�ii r m C7 \ NO W 7] D µ > Fri n I z CD V z Lux Xr0 O MO O Z � Ul m I Z I z Z O T7 > / m D D D O> r O ° O O 00 r m y a K m m Z �1 rn ° = II c O� D L JV z > N N T` ` > (n z D cn ° I I TI S z 00 rn z rrn c z m D ^� m V C �C7 CA ' Material Total Unit Cohesion Friction Weight (pcf) (psf) Angle ' (degrees) Terrace Deposits (Upper- 120 150 38 ' Bluff) Santiago Formation 110 100 31 (Peak Strength) Santiago Formation 110 100 26 (Ultimate Strength) ' Santiago Formation/Clay 100 100 24 Seam (Residual Strength) Torrey Sandstone 125 1000 40 Seismic criteria are included in the slope stability analyses.. The slope stability analysis uses a ' pseudo - static method with a Seismic Coefficient of 0.15 gravity. The calculated factor of safety with respect to sliding for each load case are presented below: Bluff Condition Minimum ' X- Section A -A' Calculated Factor of Safety ' Existing Bluff Analysis Before Seawall Construction Static Analysis- ' Pseudo-Static Analysis- 1.07 0.83 Bluff Analysis After Construction of Seawall ' Static Analysis- 1.64 Pseudo-Static Analysis- 1.23 ' Existing Upper Bluff Analysis Before Upper Bluff Retention System Static Analysis- 1.27 ' Pseudo-Static Analysis- 0.97 Bluff Analysis After Construction of Upper Bluff Retention System Static Analysis- 1.53 Pseudo-Static Analysis- 1.20 October 18, 2000 5 CONCLUSIONS AND RECOMMENDATIONS Conclusions: Based on the findings presented in this geotechnical evaluation of 816 Neptune Avenue, it is ' clear that the primary residence at the subject site is imminently threatened, in part or whole, by the existing bluff conditions both on the subject property and on adjacent properties to the north and south. It is recommended that emergency repairs, consisting of the construction of a lower bluff seawall and buried upper bluff retention system, proceed immediately. ' It is our opinion that a primary threat to the subject residence consists of the imminent, comprehensive failure of the coastal bluff, in a large volume slide, along the clay seam identified and addressed in this evaluation. The emergency construction of a lower coastal seawall is the ' only viable method of initiating mitigation for this urgent concern. The seawall will act to both counteract the slide and to prevent erosion from wave actions. ' It is our further opinion that the over - steepened upper bluff materials (caused, in art, b recent P Y failures on the mid and upper areas of the bluff) and failures extending from the 808 and 828 properties are factors that must also be addressed on an emergency basis if the primary residence is to be protected from imminent damage / failure. The proposed upper bluff retention system ' will mitigate these concerns. Recommendations: It is recommended, based on our slope stability analyses, that the proposed seawall be designed to resist a force of 45 kips per lineal foot. Tiebacks for the lower wall should be designed accordingly, using a minimum bond stress of 20 pounds per square inch within the bonded zone. ' The bonded zone for the tiebacks should be considered that portion of the anchor, which is embedded into the underlying Torrey sandstone. It is recommended that the diameter of the borehole for the tiebacks be a minimum of 8 inches in diameter. The bottom of the wall should ' extend to a minim elevation of 0' M.S.L. It is anticipated that a portion (northern 20 feet + / -) of the proposed seawall will be constructed using drilled piers and tiebacks with a pored in place ' or a shotcrete wall facing. This portion of the wall should be designed using an assumed driving force of 45 kips per lineal foot. Tiebacks for this portion of the wall should be designed as previously recommended. Caissons should be drilled to extend a minimum depth of 4 feet into October 18, 2000 6 r 1 the underlying Torrey sandstone formation. It is recommended that three hydroaugers be installed across the property. The said hydroaugers should be installed at various locations along the proposed seawall's length. The hydroaugers ' should be installed in three -inch +/- diameter borings, drilled at a slope of about +2% and be a minimum of 50 feet in length. The outer ten feet of the hydroauger should not be perforated. In order to protect the residential structures at the site from imminent damage or loss due to an upper bluff failure, it is recommended that a buried upper bluff retention system, consisting of caissons/grade beam and tiebacks, be constructed across the residential lot fronting the sea bluff. The purpose of the buried upper bluff retention system is to interrupt the upper bluff failures and the expected flattening of the Terrace deposits and to protect the residential structure against ' otherwise expected underminement and failure. It is recommended that a buried upper bluff retention system be constructed across the width of the subject lot, approximately 50 feet. At this time, an end return is not recommended because the property owner at 808 has initiated construction work for the repairs to the 808 property and the repairs will be tied into the repairs at the 816 property. Also, it is unlikely that a return at the north end of the property will be necessary. SEC is currently preparing preliminary geotechnical review and design information to address the massive failures that impact the 828 property (Okun). This site has suffered tremendous impacts, and continues to experience ongoing bluff failures that have already caused portions of the primary residence to fail. The necessary ' emergency repairs at 828 Neptune will be tied into the work proposed for the subject property at 816 Neptune (Sorich). ' It is recommended that the caissons for the buried upper bluff retention system be a minimum of 35 feet in depth. Caissons should not be spaced greater than 8 feet center to center. Minimum diameter of the caissons should not be less than 30 inches. It is recommended that drill spoils (sand) be deposited onto the landslide debris located on and adjacent (north) to the subject property. It is our opinion that the deposition of these sand materials onto the landslide debris will not have an adverse affect on the bluff or on the debris pile. ' The buried retention system should be restrained at the top using tiebacks. It is recommended that tiebacks be drilled in a borehole of 8 inches and be a minimum of 40 feet in length. The said ' tiebacks should be designed assuming a minimum unbonded length of 16 feet and a minimum bonded length of 24 feet. Tiebacks for the buried upper bluff retention system should be ' designed using a minimum bond stress of 12.5 pounds per square inch. It is recommended that up to five tiebacks be installed along the length of the existing 9 foot high r October 18, 2000 7 r retaining wall. The purpose of these additional tiebacks is to provide the retaining wall additional lateral support during the construction of the upper bluff retention system The tiebacks should be a minimum of 30 feet in length, installed in a borehole a minimum of 4 inches in diameter and may be designed using a minimum bond stress of 12.5 pounds per square inch. It is recommended that the tieback plate at the face of the wall be a minimum of 18- inches square. No performance testing of these tiebacks is necessary. ' It is recommended that all surface drainage be directed away form the top of bluff and drained to Neptune Avenue in non - eroding subsurface drainage pipes. All permanent irrigation systems should be removed and capped a minimum of 40 feet from the bluff face. It is also recommended that the owner of the property provide drought resistant vegetation on the ' bluff face materials in order to prevent future erosion. A landscape contractor or architect should be retained for specific recommendations on planting. It is recommended that foot traffic be kept ' to a minim on the fragile bluff face and, if possible, the planting should be performed by hydroseeding. PROJECT DESCRIPTION The proposed project will consist of approximately 50 lineal feet of lower bluff seawall consisting of steel reinforced, poured -in -place wall with two rows of tiebacks approximately 50 to 55 feet in length. The proposed seawall will match the height and appearance of the neighboring seawalls located to the south and will extend to a height of +20' M.S.L. at the northern end of the wall. The height of +20' M.S.L. was chosen so that it will blend into the ' wall proposed for the 828 property (Okun). The exposed surfaces of the seawall will be textured and colored to resemble, to the extent possible, the surrounding bluff areas. The foundation of the proposed seawall will extend down to an elevation of approximately 0' M.S.L or lower. In addition, a buried upper bluff retention system consisting of drilled piers to a depth of approximately 35 feet will be constructed immediately seaward of the existing 9' high retaining wall, extending across the width of the property. The caissons will be connected at the top with a ' grade beam and surface counter - balance steel reinforced slab. It will be retained at the top with tiebacks up to 40' in length. All existing structural materials seaward of the upper bluff retention system should be removed as an element of the project's discussion. This would include a concrete slab, on grade, adjacent to the retention system, portions of a concrete stairway extending from the building pad to the referenced concrete pad, and an additional slab on a grade area that is sited below the proposed location of the retention system October 18, 2000 8 r Thank you, in advance, for providing your immediate attention, review and comments to this review. If the proposed project is delayed, we recommend that the California Coastal Commission provide SEC and the property owner assurance that these present site conditions ' will not adversely affect the subject property as well as the neighboring properties. If you have any questions, require additional materials, or would desire an on -site meeting, please call us at (760) 633 -3470. Sincerely, SOIL ENGINEERING CONSTRUCITON, Inc. John W. Niven, R.C.E. 57517 Robert D. Mahony, G.E. 554, C.E.G. 847 i 1 October 18, 2000 9 1 1 1 1 1 1 1 1 1 1 BORING LOG 1 DrdNng company Tri- County Drilling BORING DIAMETER: 8 Inch HoNaw Stem DATE: 08 /01/00 Blow Dry Moisture Sal Class. Depth (ft) Counts Density Content ( %) (U.S.C.S) Boring No. 1 SOIL DESCRIPTION Elevation 92 ft. 0 PCC: PAVEMENT @ 2 in. +/-THICKNESS SM / SP @ 2 lo. TERRACE DEPOSITS: BROWN, SLIGHTLY SILTY FINE, SAND, DAMP TO SLIGHTLY MOIST MEDIUM DENSE ' S ' RINGS 10 56 SM / SP @ 10 Ft. SAME AS ABOVE, MEDIUM DENSE ' 15 SPT 20 45 SM @ 20 ft. LIGHT BROWN AND GREY, SILTY FINE SAND, DRY, DENSE 25 ' RINGS 301 83 SP I SM @ 30 ft. LIGHT BROWN, SLIGHTLY SILTY FINE SAND, DRY, DENSE LOG OF BORING Plate No. 1 SOIL ENGINEERING CONSTRUCTION 927 Arguello Street, Redwood City, CA 94063 ' RINGS: SPLIT BARREL SAMPLER SPT: STANDARD PENETRATION TEST 56: BLOWS LAST 12" C.C.: CONTINUOUS CORE BARREL Drilling company Tri- County Drilling BORING DIAMETER: Sin. Hollow Stem DATE: 08/01/00 Blow Dry Moisture Soil Class. Depth (ft) Counts Density Content ( %) (U.S.C.S) Boring No. conrd SOIL DESCRIPTION Elevation 92 R +h 30 ' SEE PREVIOUS SHEET 35 SPT 4 56 SP / SM ` SAME AS ABOVE 45 RINGS 5 69 SP LIGHT BROWN AND GREY, FINE SAND, DRY TO DAMP, DENSE 55 SPT 60 68 SM BROWN, SILTY SAND, DAMP, VERY DENSE LOG OF BORING Plate No. 2 SOIL ENGINEERING CONSTRUCTIOI' 927 Arguello Street, Redwood City, CA 94063 RINGS: SPLIT BARREL SAMPLER SPT: STANDARD PENETRATION TEST ' 56: BLOWS LAST 12" C.C.: CONTINUOUS CORE BARREL I Drilling company Tri- County Drilling, Inc. BORING DIAMETER: 8 Inch Hollow Stem DATE: 08/01/00 Blow Dry Moisture Soil Class. Depth (ft) Counts Density Content ( %) (U.S.C.S) Boring No. cont d SOIL DESCRIPTION Elevation 92 ft +/- SPT 60 ' SEE PREVIOUS SHEET 65 t 68.5 ft SANTIAGO FORMATION: GREY AND YELLOW ! BROWN, SANDY CLAYEY SILTSTONE, HARD RINGS 125 H2O PERCHED OVER SANTIAGO for 9" 70 @ 69-74 ft. C.C. RECOVERY, 3 ft. RECOVERED, YELLLOW / BROWN, SILTY FINE SAND STONE; 2 R RECOVERED, DARK GREY, SILTY FINE SAND STONE, NO CLAY SEAMS 74 -79 ft. C.C. RECOVERY, 4 ft. RECOVERED, GREY, SILTY FINE SAND STONE, SHELL FRAGMENTS VERY DENSE 75 79-84 ft. C.C. RECOVERY, 5 ft. RECOVERED, * SAME AS ABOVE; HARD COP 80 (8 84-89 ft. C.C. RECOVERY, 4 ft. +/- RECOVERED; ` SAME AS ABOVE 85 89-94 ft.; * SEE SUBSEQUENT SHEET 90 LOG OF BORING Plate No. 3 SOIL ENGINEERING CONSTRUCTIO? 927 Arguello Street, Redwood City, CA 94063 IRINGS:. SPLIT BARREL SAMPLER SPT: STANDARD PENETRATION TEST ' 56: BLOWS LAST 12" C.C.: CONTINUOUS CORE BARREL Drilling company Tri- County Drilling, Inc. BORING DIAMETER: 8 in. Hollow Stem DATE: 08/01/00 Blow Dry Moisture Soil Class. pth (ft) Counts Density Content ( %) (U.S.C.S) Boring No. conrd SOIL DESCRIPTION Elevation 92 ft. +/- 90 89-94 ft., C.C. RECOVERY, 5 +/- ft. RECOVERED; . SAME AS ABOVE W/ EXCEPTION OF BOTTOM 1 ft., CLAYEY SILTSTONE, VERY HARD @ 9497 TORREY FORMATION: RECOVERED 3 +/- FT., GREY, SLIGHTLY SILTY SANDSTONE, VERY DENSE, HARD CORING 85 , 001 BORING ENDED @ 97 ft. GROUNDWATER PERCHED cQ 68.5 ft 105 110 115 120 LOG OF BORING Plate No. 4 SOIL ENGINEERING CONSTRUCTIOP 927 Arguello Street, Redwood City, CA 94063 R INGS: SPLIT BARREL SAMPLER SPIT: STANDARD PENETRATION TEST BLOWS LAST 12" • C.: CONTINUOUS CORE BARREL 1 1 1 1 1 1 1 DIRECT SHEAR TEST RESULTS 1 1 1 1 . • .. !..l..lr1! !l... ...... .ii .. ON !!:-aeew- =a:� sale: MOB l:: _ M ----- !1!-= =w = - -- a!--- ae -!• mm p = �:��� = =::� -- ��' --m �i...= MMM OWN Naa = { -:: In �mmm •••• !.. ....w!!!! .! -!N! MISS on IN .122manicr .W..Q ....��C =�Q =• ■s:.��.. MOT N o M MMMM IS i wiiai = =�CiCi�ia�•� om� Mvp on ME .. • C� o � 022 .!._W._�!_ IN WIN a.l.lr•!.!!!! • ... ... :•.. :... fell ,. ® • . Shear Cohesion Frict Strength L (deg) �=M= DIRECT SHEAR TEST RESULTS PROJECT NO. .- SLOPE STABILITY ANALYSES ' (Computer Printouts) � � Cl) i I � C4 e V) � � I v ' � I o � � I r o �� e � �^ � a � @ � ■ 2 y 2 0 s J§ - m $ I in 2 i Z . t §I R o I � $ _ N � t £ LL im _j ` ` C-4 co 8 ____ �■ 04 ƒ{kkkkk cm f 2 2 ■� � �2 ^ogoo �® w § / /ik;;%$ \ o / 0 © %%$§ " ■ -000 T 2 LL Lo (D $2 U) 2 X � _ � LU k04 § 2 z e\� 0 m�z� z w RI� _d w < � LU< 0 $ ƒ % §�������f a eMu'0(D tM _ 0 CD k k C4 Co L � co CM co co cc 11 \\�\ CD Z C4 •, LU LU cm o LU z co ui Go CD co C4 Go LU L : h ' GSTABL7 C: \STED \SORI0.OUT Page 1 * ** * ** ** GSTABL7 by Garry H. Gregory, P.E. ** ' ** Version 1.0, January 1996; Version 1.15, April 2000 ** - -Slope Stability Analysis- - Simplified Janbu, Modified Bishop or Spencer's Method of Slices ' (Based on STABL6 -1986, by Purdue University) Run Date: 10/18/00 Time of Run: 10:48AM Run By: JWN ' Input Data Filename: C:SOR10. Output Filename: C:SORI0.OUT Unit System: English Plotted Output Filename: C:SORI0.PLT PROBLEM DESCRIPTION 816 NEPTUNE X- Section A -A' ExistingLower Bluff Before Repairs Static Analysis BOUNDARY COORDINATES 15 Top Boundaries 19 Total Boundaries ' Boundary X -Left Y -Left X -Right Y -Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 100.00 30.00 156.00 35.00 2 2 156.00 35.00 161.00 37.00 2 ' 3 161.00 37.00 164.00 38.00 3 4 164.00 38.00 170.00 40.00 2 5 170.00 40.00 176.00 53.00 2 6 176.00 53.00 183.00 60.00 1 ' 7 183.00 60.00 190.00 70.00 1 8 190.00 70.00 199.00 74.00 1 9 199.00 74.00 210.00 90.00 1 10 210.00 90.00 223.00 90.00 1 ' 11 223.00 90.00 230.00 105.00 1 12 230.00 105.00 232.00 112.30 1 13 232.00 112.30 245.00 112.30 1 14 245.00 112.30 245.10 121.00 1 15 245.10 121.00 360.00 121.00 1 16 176.00 53.00 360.00 53.00 2 17 164.00 38.00 360.00 38.00 3 18 161.00 37.00 360.00 37.00 2 19 100.00 27.00 360.00 27.00 4 ' ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface ' No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 125.0 150.0 38.0 0.00 0.0 1 2 110.0 120.0 100.0 31.0 0.00 0.0 1 3 100.0 110.0 100.0 24.0 0.00 0.0 1 4 125.0 130.0 1000.0 40.0 0.00 0.0 1 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 2 Coordinate Points Point X -Water Y -Water ' No. (ft) (ft) 1 176.00 53.00 2 360.00 53.00 A Critical Failure Surface Searching Method, Using A Random ' Technique For Generating Circular Surfaces, Has Been Specified. 400 Trial Surfaces Have Been Generated. 100 Surfaces Initiate From Each Of 4 Points Equally Spaced Along The Ground Surface Between X = 161.00(ft) and X = 164.00(ft) Each Surface Terminates Between X = 255.00(ft) and X = 360.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation ' At Which A Surface Extends Is Y = 0.00(ft) ' 20.00(ft) Line Segments Define Each Trial Failure Surface C: \STED \SORI0.OUT Page 2 . Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf ' No. (ft) (ft) 1 161.00 37.00 2 180.60 40.97 3 199.17 48.40 ' 4 216.10 59.05 5 230.83 72.58 6 242.89 88.53 7 251.88 106.40 8 256.17 121.00 Circle Center At X = 149.2 ; Y = 146.2 and Radius, 109.9 * ** 1.068 * ** Individual data on the 21 slices ' Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) ' 1 3.0 64.7 3058.0 2997.4 0.0 0.0 0.0 0.0 0.0 2 1.9 117.0 1871.2 1875.3 0.0 0.0 0.0 0.0 0.0 3 4.1 444.4 3653.9 3772.5 0.0 0.0 0.0 0.0 0.0 4 6.0 5090.5 5807.3 5183.8 0.0 0.0 0.0 0.0 0.0 5 4.6 8173.3 0.0 3662.0 0.0 0.0 0.0 0.0 0.0 ' 6 2.4 4991.9 0.0 1861.2 0.0 0.0 0.0 0.0 0.0 7 7.0 18203.1 0.0 4549.8 0.0 0.0 0.0 0.0 0.0 8 9.0 27505.8 0.0 3912.8 0.0 0.0 0.0 0.0 0.0 9 0.2 527.4 0.0 53.1 0.0 0.0 0.0 0.0 0.0 ' 10 7.3 25313.3 0.0 1239.0 0.0 0.0 0.0 0.0 0.0 11 3.5 14082.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 6.1 24050.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 6.9 23007.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ' 14 7.0 24275.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 0.8 3429.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 1.2 5158.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17 10.9 40486.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ' 18 2.1 5481.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19 0.1 286.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20 6.8 17377.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 21 4.3 3754.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Failure Surface Specified By 8 Coordinate Points ' Point X -Surf Y -Surf No. (ft) (ft) 1 162.00 37.33 2 181.46 41.95 3 199.94 49.61 4 216.95 60.13 5 232.06 73.22 6 244.89 88.57 7 255.10 105.77 8 261.10 121.00 Circle Center At X = 143.3 ; Y = 160.0 and Radius, 124.0 * ** 1.078 * ** ' Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 164.00 38.00 2 183.70 41.45 ' 3 202.52 48.22 4 219.91 58.09 5 235.37 70.79 6 248.43 85.94 ' 7 258.71 103.09 C: \STED \SORI0.OUT Page 3 8 265.63 121.00 ' Circle Center At X = 153.8 ; Y = 154.2 and Radius, 116.6 * ** 1.121 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 161.00 37.00 2 180.89 39.07 3 200.06 44.77 4 217.85 53.91 5 233.65 66.18 6 246.92 81.14 7 257.20 98.30 8 264.15 117.05 9 264.82 121.00 Circle Center At X = 159.8 ; Y = 145.0 and Radius, 108.0 * ** 1.124 * ** Failure Surface Specified By 9 Coordinate Points ' Point X -Surf Y -Surf No. (ft) (ft) 1 162.00 37.33 2 181.91 39.21 3 201.08 44.90 4 218.79 54.20 5 234.36 66.75 6 247.21 82.08 7 256.85 99.60 ' 8 262.91 118.66 9 263.17 121.00 Circle Center At X = 162.4 ; Y = 140.1 and Radius, 102.8 * ** 1.128 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 162.00 37.33 2 181.97 38.51 3 201.25 43.80 4 219.02 52.99 5 234.49 65.66 ' 6 246.99 81.28 7 255.97 99.15 8 261.05 118.49 9 261.16 121.00 Circle Center At X = 166.4 ; Y = 133.0 and Radius, 95.7 ' * ** 1.134 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 161.00 37.00 2 180.49 41.49 3 199.20 48.55 4 216.80 58.05 5 232.97 69.82 6 247.42 83.65 7 259.90 99.28 8 270.16 116.44 ' 9 272.12 121.00 Circle Center At X = 137.3 ; Y = 184.3 and Radius, 149.2 * ** 1.135 * ** Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 163.00 37.67 2 182.98 38.58 3 202.23 43.99 ' 4 219.77 53.62 C: \STED \SORI0.OUT Page 4 5 234.67 66.95 ' 6 246.17 83.32 7 253.67 101.86 8 256.69 121.00 Circle Center At X = 169.0 ; Y = 125.2 and Radius, 87.8 * ** 1.139 * ** ' Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 164.00 38.00 2 183.77 41.00 3 202.75 47.31 4 220.38 56.75 5 236.16 69.04 ' 6 249.62 83.84 7 260.37 100.70 8 268.10 119.15 9 268.53 121.00 ' Circle Center At X = 156.4 ; Y = 155.2 and Radius, 117.4 * ** 1.143 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf ' No. (ft) (ft) 1 161.00 37.00 2 180.95 38.46 3 200.28 43.58 ' 4 218.33 52.19 5 234.48 63.99 6 248.17 78.57 7 258.93 95.43 8 266.39 113.98 ' 9 267.78 121.00 Circle Center At X = 163,1 ; Y 144.7 and Radius, 107.7 * ** 1.149 * ** r f 0 3 M I .ia M O � I . 3 N CL o ' N •o • cc L L N CL o 0 . a N W _ O ,, m CO °o mrn m y � ao W tn _ M :a o >o ° C co C N C 0 y Z -a w � H 1 0 LL CD 0 51 C cr r9 ! 6 - -- - M ° Q ea 'v J a�z�33� `" v ' CO) 0 W N O ^ 0000 u CO O cr -a C'o 0(�7N� LL Q _ Q , yy Q 0 2 Q" ,j0000 G W O (n G m W )00 °00 N C u. V O O O O cc N O O O O O z i •c .rte � ° `r � CL W aoM Z o� oa�� t0 wo wz w ��UO C co to 1- f-- Go G0 00 0 0) co co co 400 co GO GO GO GD GD V'p000000000 �k IO.a V '8 m w d1L • - •� cm coo � ° W N N y \ \1 co I ; cm • „ N co w C4 ui ui co C4 C4 ca tl �„ j.. i'Jr GSTABL7 C: \STED \SORI2.OUT Page 1 * ** * ** ** GSTABL7 by Garry H. Gregory, P.E. ** ' ** Version 1.0, January 1996; Version 1.15, April 2000 ** - -Slope Stability Analysis- - Simplified Janbu, Modified Bishop or Spencer's Method of Slices (Based on STABL6 -1986, by Purdue University) Run Date: 10/18/00 Time of Run: 11:09AM Run By: JWN Input Data Filename: C:SOR12. ' Output Filename: C:SORI2.OUT Unit System: English Plotted Output Filename: C:SORI2.PLT PROBLEM DESCRIPTION 816 NEPTUNE X- Section A -A' ExistingLower Bluff Before Repairs Pseudo Static BOUNDARY COORDINATES 15 Top Boundaries 19 Total Boundaries Boundary X -Left Y -Left X -Right Y -Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 100.00 30.00 156.00 35.00 2 2 156.00 35.00 161.00 37.00 2 ' 3 161.00 37.00 164.00 38.00 3 4 164.00 38.00 170.00 40.00 2 5 170.00 40.00 176.00 53.00 2 6 176.00 53.00 183.00 60.00 1 7 183.00 60.00 190.00 70.00 1 8 190.00 70.00 199.00 74.00 1 9 199.00 74.00 210.00 90.00 1 10 210.00 90.00 223.00 90.00 1 11 223.00 90.00 230.00 105.00 1 ' 12 230.00 105.00 232.00 112.30 1 13 232.00 112.30 245.00 112.30 1 14 245.00 112.30 245.10 121.00 1 15 245.10 121.00 360.00 121.00 1 ' 16 176.00 53.00 360.00 53.00 2 17 164.00 38.00 360.00 38.00 3 18 161.00 37.00 360.00 37.00 2 19 100.00 27.00 360.00 27.00 4 ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. ' 1 120.0 125.0 150.0 38.0 0.00 0.0 1 2 110.0 120.0 100.0 31.0 0.00 0.0 1 3 100.0 110.0 100.0 24.0 0.00 0.0 1 4 125.0 130.0 1000.0 40.0 0.00 0.0 1 ' 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 2 Coordinate Points Point X -Water Y -Water ' No. (ft) (ft) 1 176.00 53.00 2 360.00 53.00 A Horizontal Earthquake Loading Coefficient ' Of0.150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of0.000 Has Been Assigned Cavitation Pressure = 0.0(psf) ' A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 400 Trial Surfaces Have Been Generated. 100 Surfaces Initiate From Each Of 4 Points Equally Spaced Along The Ground Surface Between X = 161.00(ft) ' and X = 164.00(ft) C: \STED \SORI2.OUT Page 2 Each Surface Terminates Between X = 255.00(ft) ' and X = 360.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 20.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial ' Failure Surfaces Examined. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Failure Surface Specified By 8 Coordinate Points ' Point X -Surf Y -Surf No. (ft) (ft) 1 161.00 37.00 2 180.60 40.97 3 199.17 48.40 4 216.10 59.05 5 230.83 72.58 6 242.89 88.53 ' 7 251.88 106.40 8 256.17 121.00 Circle Center At X = 149.2 ; Y = 146.2 and Radius, 109.9 * ** 0.826 * ** Individual data on the 21 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) ' 1 3.0 64.7 3058.0 2997.4 0.0 0.0 9.7 0.0 0.0 2 1.9 117.0 1871.2 1875.3 0.0 0.0 17.5 0.0 0.0 3 4.1 444.4 3653.9 3772.5 0.0 0.0 66.7 0.0 0.0 4 6.0 5090.5 5807.3 5183.8 0.0 0.0 763.6 0.0 0.0 t 5 4.6 8173.3 0.0 3662.0 0.0 0.0 1226.0 0.0 0.0 6 2.4 4991.9 0.0 1861.2 0.0 0.0 748.8 0.0 0.0 7 7.0 18203.1 0.0 4549.8 0.0 0.0 2730.5 0.0 0.0 8 9.0 27505.8 0.0 3912.8 0.0 0.0 4125.9 0.0 0.0 9 0.2 527.4 0.0 53.1 0.0 0.0 79.1 0.0 0.0 10 7.3 25313.3 0.0 1239.0 0.0 0.0 3797.0 0.0 0.0 11 3.5 14082.8 0.0 0.0 0.0 0.0 2112.4 0.0 0.0 12 6.1 24050.4 0.0 0.0 0.0 0.0 3607.6 0.0 0.0 13 6.9 23007.8 0.0 0.0 0.0 0.0 3451.2 0.0 0.0 14 7.0 24275.8 0.0 0.0 0.0 0.0 3641.4 0.0 0.0 15 0.8 3429.0 0.0 0.0 0.0 0.0 514.4 0.0 0.0 16 1.2 5158.5 0.0 0.0 0.0 0.0 773.8 0.0 0.0 17 10.9 40486.3 0.0 0.0 0.0 0.0 6072.9 0.0 0.0 ' 18 2.1 5481.2 0.0 0.0 0.0 0.0 822.2 0.0 0.0 19 0.1 286.0 0.0 0.0 0.0 0.0 42.9 0.0 0.0 20 6.8 17377.9 0.0 0.0 0.0 0.0 2606.7 0.0 0.0 21 4.3 3754.6 0.0 0.0 0.0 0.0 563.2 0.0 0.0 Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 162.00 37.33 2 181.46 41.95 3 199.94 49.61 4 216.95 60.13 5 232.06 73.22 ' 6 244.89 88.57 7 255.10 105.77 8 261.10 121.00 Circle Center At X = 143.3 ; Y = 160.0 and Radius, 124.0 * ** 0.831 * ** ' Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 164.00 38.00 ' 2 183.70 41.45 C: \STED \SORI2.OUT Page 3 3 202.52 48.22 ' 4 219.91 58.09 5 235.37 70.79 6 248.43 85.94 7 258.71 103.09 ' 8 265.63 121.00 Circle Center At X = 153.8 ; Y = 154.2 and Radius, 116.6 * ** 0.866 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf ' No. (ft) (ft) 1 161.00 37.00 2 180.49 41.49 3 199.20 48.55 ' 4 216.80 58.05 5 232.97 69.82 6 247.42 83.65 7 259.90 99.28 ' 8 270.16 116.44 9 272.12 121.00 Circle Center At X = 137.3 ; Y = 184.3 and Radius, 149.2 * ** 0.868 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 161.00 37.00 ' 2 180.89 39.07 3 200.06 44.77 4 217.85 53.91 5 233.65 66.18 6 246.92 81.14 7 257.20 98.30 8 264.15 117.05 9 264.82 121.00 Circle Center At X = 159.8 ; Y = 145.0 and Radius, 108.0 * ** 0.871 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) ' 1 162.00 37.33 2 181.91 39.21 3 201.08 44.90 4 218.79 54.20 ' 5 234.36 66.75 6 247.21 82.08 7 256.85 99.60 8 262.91 118.66 9 263.17 121.00 ' Circle Center At X = 162.4 ; Y = 140.1 and Radius, 102.8 * ** 0.876 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf ' No. (ft) (ft) 1 164.00 38.00 2 183.77 41.00 3 202.75 47.31 ' 4 220.38 56.75 5 236.16 69.04 6 249.62 83.84 7 260.37 100.70 8 268.10 119.15 9 268.53 121.00 Circle Center At X = 156.4 ; Y = 155.2 and Radius, 117.4 * ** 0.882 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf C: \STED \SORI2.OUT Page 4 No. (ft) (ft) ' 1 162.00 37.33 2 181.97 38.51 3 201.25 43.80 4 219.02 52.99 ' 5 234.49 65.66 6 246.99 81.28 7 255.97 99.15 8 261.05 118.49 9 261.16 121.00 ' Circle Center At X = 166.4 ; Y = 133.0 and Radius, 95.7 * ** 0.885 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf ' No. (ft) (ft) 1 161.00 37.00 2 180.95 38.46 3 200.28 43.58 4 218.33 52.19 5 234.48 63.99 6 248.17 78.57 7 258.93 95.43 ' 8 266.39 113.98 9 267.78 121.00 Circle Center At X = 163.1 ; Y = 144.7 and Radius, 107.7 * ** 0.891 * ** ' Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 163.00 37.67 2 182.98 38.58 3 202.23 43.99 4 219.77 53.62 5 234.67 66.95 6 246.17 83.32 7 253.67 101.86 8 256.69 121.00 Circle Center At X = 169.0 ; Y = 125.2 and Radius, 87.8 * ** 0.893 * ** t i 0 3 I I N �N tQ Q � O a.+ V� r N 0 rq CL N ar •CL N N s ° 0 m moo m w > � � ' 3z !� N c0 O 0 � �� U . � m � w +' Q � 4) C14 C14 .1 v ' N -i (n Q � 0— � V �O LL aMMN� GI L _ O O O V L Q.)LO00O N O O O U ��r� N v (/� U � t0 LL �ilti000 W 7•- Q.NN—('O d co L � L �� OOOO O ' r �,-N ON co CL H n f 0 TZrNCOT W ~ CL 0 W Q W 00 0 (a a Z Q�m cno �r� 0 F Co 0 Lo (D aoao LL ao co co co coo n n 0 co co cfl co rl.� l6 U 'O N w Olt •- O Q 0 o O o 0 0 o W N N � ~ � 6 • I � y, cn CL Ix a. CD cm CL co co Go V CD C4 LU C C4 '. ' GSTASL7 C: \sted \sor6.OUT Page 1 * ** * ** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Version 1.0, January 1996; Version 1.15, April 2000 ** - -Slope Stability Analysis- - Simplified Janbu, Modified Bishop or Spencer's Method of Slices ' (Based on STABL6 -1986, by Purdue University) Run Date: 10 /18 /00 Time of Run: 10:24AM Run By: JWN ' Input Data Filename: C:sor6. Output Filename: C:sor6.OUT Unit System: English Plotted Output Filename: C:sor6.PLT PROBLEM DESCRIPTION 816 NEPTUNE X- Section A -A' After Lower ' Bluff Repairs Static Analysis BOUNDARY COORDINATES 15 Top Boundaries 19 Total Boundaries ' Boundary X -Left Y -Left X -Right Y -Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 100.00 30.00 156.00 35.00 2 2 156.00 35.00 161.00 37.00 2 ' 3 161.00 37.00 164.00 38.00 3 4 164.00 38.00 170.00 40.00 2 5 170.00 40.00 176.00 53.00 2 6 176.00 53.00 183.00 60.00 1 7 183.00 60.00 190.00 70.00 1 8 190.00 70.00 199.00 74.00 1 9 199.00 74.00 210.00 90.00 1 10 210.00 90.00 223.00 90.00 1 11 223.00 90.00 230.00 105.00 1 12 230.00 105.00 232.00 112.30 1 13 232.00 112.30 245.00 112.30 1 14 245.00 112.30 245.10 121.00 1 15 245.10 121.00 360.00 121.00 1 ' 16 176.00 53.00 360.00 53.00 2 17 164.00 38.00 360.00 38.00 3 18 161.00 37.00 360.00 37.00 2 19 100.00 27.00 360.00 27.00 4 ' ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface ' No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 125.0 150.0 38.0 0.00 0.0 1 2 110.0 120.0 100.0 31.0 0.00 0.0 1 3 100.0 110.0 100.0 24.0 0.00 0.0 1 4 125.0 130.0 1000.0 40.0 0.00 0.0 1 ' 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 2 Coordinate Points Point X -Water Y -Water ' No. (ft) (ft) 1 176.00 53.00 2 360.00 53.00 TIEBACK LOAD(S) 2 Tieback Load(s) Specified Tieback X -Pos Y -Pos Load Spacing Inclination Length No. (ft) (ft) (lbs) (ft) (deg) (ft) 1 172.77 46.00 180000.0 8.0 30.00 50.0 2 170.46 41.00 180000.0 8.0 30.00 50.0 NOTE - An Equivalent Line Load Is Calculated For Each Row Of Tiebacks Assuming A Uniform Distribution Of Load Horizontally Between Individual Tiebacks. A Critical Failure Surface Searching Method, Using A Random ' C: \sted \sor6.OUT Page 2 Technique For Generating Circular Surfaces, Has Been Specified. 400 Trial Surfaces Have Been Generated. 100 Surfaces Initiate From Each Of 4 Points Equally Spaced Along The Ground Surface Between X = 161.00(ft) and X = 164.00(ft) Each Surface Terminates Between X = 255.00(ft) and X = 360.00(ft) ' Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 20.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Failure Surface Specified By 9 Coordinate Points ' Point X -Surf Y -Surf No. (ft) (ft) 1 161.00 37.00 2 180.97 38.06 3 200.43 42.66 4 218.76 50.67 5 235.36 61.82 6 249.71 75.76 ' 7 261.33 92.04 8 269.86 110.13 9 272.77 121.00 Circle Center At X = 165.1 ; Y = 148.5 and Radius, 111.5 * ** 1.639 * ** ' Individual data on the 22 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load ' No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 1 3.0 138.7 3058.0 2984.0 0.0 0.0 0.0 0.0 0.0 2 6.0 1170.3 5525.1 5879.6 1.0 -0.5 0.0 0.0 0.0 3 6.0 6360.6 5807.3 5760.6 10638.9 4852.8 0.0 0.0 0.0 ' 4 3.9 7946.9 0.0 3668.2 4144.0 4455.4 0.0 0.0 0.0 5 1.1 2527.5 0.0 1015.6 861.1 1189.6 0.0 0.0 0.0 6 2.0 5033.5 0.0 1911.5 1714.6 1918.2 0.0 0.0 0.0 7 7.0 21532.7 0.0 6120.0 3518.5 5811.1 0.0 0.0 0.0 ' 8 9.0 33199.7 0.0 6775.6 2002.8 5327.5 0.0 0.0 0.0 9 1.4 5603.8 0.0 966.5 207.9 693.3 0.0 0.0 0.0 10 9.6 43949.6 0.0 5371.1 1579.3 3808.3 0.0 0.0 0.0 11 8.8 43360.1 0.0 2530.7 829.9 2656.9 0.0 0.0 0.0 12 3.5 15867.0 0.0 303.1 427.3 923.7 0.0 0.0 0.0 ' 13 0.8 3412.0 0.0 0.0 85.6 195.5 0.0 0.0 0.0 14 7.0 34968.4 0.0 0.0 639.8 1607.7 0.0 0.0 0.0 15 2.0 11941.5 0.0 0.0 149.0 413.7 0.0 0.0 0.0 16 3.4 20828.1 0.0 0.0 223.5 655.6 0.0 0.0 0.0 17 9.6 52954.8 0.0 0.0 845.6 1735.7 0.0 0.0 0.0 18 0.1 545.0 0.0 0.0 7.1 16.2 0.0 0.0 0.0 19 4.6 26246.4 0.0 0.0 298.2 707.6 0.0 0.0 0.0 20 11.6 51750.1 0.0 0.0 919.4 1660.2 0.0 0.0 0.0 ' 21 8.5 20389.7 0.0 0.0 747.6 1133.0 0.0 0.0 0.0 22 2.9 1895.5 0.0 0.0 371.4 453.7 0.0 0.0 0.0 Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf ' No. (ft) (ft) 1 161.00 37.00 2 180.95 38.46 3 200.28 43.58 4 218.33 52.19 5 234.48 63.99 6 248.17 78.57 7 258.93 95.43 8 266.39 113.98 r 1 ' C: \sted \sor6.OUT Page 3 9 267.78 121.00 Circle Center At X = 163.1 ; Y = 144.7 and Radius, 107.7 * ** 1.652 * ** ' Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 162.00 37.33 r 2 182.00 37.05 3 201.70 40.49 4 220.42 47.53 5 237.49 57.94 ' 6 252.34 71.35 7 264.42 87.29 8 273.33 105.19 9 277.77 121.00 Circle Center At X = 173.5 ; Y = 143.7 and Radius, 106.9 * ** 1.658 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf ' No. (ft) (ft) 1 161.00 37.00 2 180.82 39.68 3 200.04 45.22 ' 4 218.24 53.51 5 235.03 64.37 6 250.06 77.57 7 263.00 92.81 8 273.58 109.79 ' 9 278.46 121.00 Circle Center At X = 152.7 ; Y = 173.3 and Radius, 136.6 * ** 1.664 * ** Failure Surface Specified By 10 Coordinate Points ' Point X -Surf Y -Surf No. (ft) (ft) 1 161.00 37.00 2 181.00 37.46 ' 3 200.66 41.13 4 219.47 47.91 5 236.95 57.63 6 252.64 70.04 7 266.13 84.80 8 277.07 101.54 9 285.17 119.83 10 285.48 121.00 Circle Center At X = 168.2 ; Y = 160.5 and Radius, 123.7 ' * ** 1.664 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) ' 1 162.00 37.33 2 181.97 38.49 3 201.45 42.99 4 219.91 50.70 ' S 236.81 61.40 6 251.66 74.79 7 264.06 90.48 8 273.64 108.04 ' 9 278.10 121.00 Circle Center At X = 165.1 ; Y = 155.9 and Radius, 118.6 * ** 1.671 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 162.00 37.33 2 181.93 38.99 3 201.33 43.85 r r 4 219.70 51.77 C: \sted \sor6.OUT Page 4 5 236.54 62.56 6 251.41 75.93 7 263.93 91.53 8 273.77 108.94 9 278.20 121.00 Circle Center At X = 161.8 ; Y = 160.7 and Radius, 123.4 * ** 1.674 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 161.00 37.00 2 180.89 39.07 3 200.06 44.77 4 217.85 53.91 ' S 233.65 66.18 6 246.92 81.14 7 257.20 98.30 8 264.15 117.05 ' 9 264.82 121.00 Circle Center At X = 159.8 ; Y = 145.0 and Radius, 108.0 * ** 1.680 * ** Failure Surface Specified By 9 Coordinate Points ' Point X -Surf Y -Surf No. (ft) (ft) 1 161.00 37.00 2 180.99 36.24 3 200.75 39.28 ' 4 219.58 46.03 5 236.79 56.22 6 251.75 69.50 7 263.91 85.37 ' 8 272.84 103.27 9 277.79 121.00 Circle Center At X = 175.0 ; Y = 140.9 and Radius, 104.9 * ** 1.685 * ** ' Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 162.00 37.33 2 181.73 40.62 3 200.79 46.69 4 218.78 55.41 5 235.36 66.61 6 250.16 80.05 7 262.90 95.47 8 273.31 112.55 9 276.93 121.00 Circle Center At X = 148.9 ; Y = 176.7 and Radius, 140.0 * ** 1.697 * ** r r 0 3 Cl) 1 I 1 M 1 T v z O r N . N � I O N c N N G r d� a a ° L_ N N fA OD as V N � Cl m -- O ~ H d Go f0 0 0 3 0 0 - ! c 'a _O O r O z c N L � Or-r.N � 3 m J = Um 1 ;� ____ 3 L -i �� Z��i N Q !0 Goa aco N� r Q � o �"ooOO U' cc �00 Co UJ U '_0 0 0 N L _ t a�oOOOO N O O v- �r LL V oOOO d �iui000 CO) NN:t) w �j` -����- l4 N �� 0000 W OM, CLN ON Q r Z H=er ��� D U -CM d to ~ � N I�t Z CL 0 r Z woaw cc � a`� o F - <Up er c v T Lo In u Lo co co co LL N N N N N N N N r Cf L .- ' O 0 N N to N co O W r �j r CL CM CO . 0 r_ 04 w ob LU LU C4 C4 GSTABL7 C: \sted \sor6a.OUT Page 1 * ** * ** ** GSTABL7 by Garry H. Gregory, P.E. ** ' ** Version 1.0, January 1996; Version 1.15, April 2000 ** - -Slope Stability Analysis- - Simplified Janbu, Modified Bishop or Spencer's Method of Slices (Based on STABLE -1986, by Purdue University) 1 Run Date: 10/18/00 Time of Run: 10:26AM Run By: JWN Input Data Filename: C:sor6a. Output Filename: C:sor6a.OUT Unit System: English Plotted Output Filename: C:sor6a.PLT PROBLEM DESCRIPTION 816 NEPTUNE X- Section A -A' After Lower Bluff Repairs Pseudo Static Analysis BOUNDARY COORDINATES 15 Top Boundaries 19 Total Boundaries ' Boundary X -Left Y -Left X -Right Y -Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 100.00 30.00 156.00 35.00 2 2 156.00 35.00 161.00 37.00 2 3 161.00 37.00 164.00 38.00 3 4 164.00 38.00 170.00 40.00 2 5 170.00 40.00 176.00 53.00 2 6 176.00 53.00 183.00 60.00 1 7 183.00 60.00 190.00 70.00 1 ' 8 190.00 70.00 199.00 74.00 1 9 199.00 74.00 210.00 90.00 1 10 210.00 90.00 223.00 90.00 1 11 223.00 90.00 230.00 105.00 1 12 230.00 105.00 232.00 112.30 1 13 232.00 112.30 245.00 112.30 1 14 245.00 112.30 245.10 121.00 1 15 245.10 121.00 360.00 121.00 1 16 176.00 53.00 360.00 53.00 2 17 164.00 38.00 360.00 38.00 3 18 161.00 37.00 360.00 37.00 2 19 100.00 27.00 360.00 27.00 4 ' ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. ' 1 120.0 125.0 150.0 38.0 0.00 0.0 1 2 110.0 120.0 100.0 31.0 0.00 0.0 1 3 100.0 110.0 100.0 24.0 0.00 0.0 1 4 125.0 130.0 1000.0 40.0 0.00 0.0 1 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 2 Coordinate Points Point X -Water Y -Water No. (ft) (ft) 1 176.00 53.00 2 360.00 53.00 A Horizontal Earthquake Loading Coefficient Of0.150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of0.000 Has Been Assigned Cavitation Pressure = 0.0(psf) TIEBACK LOAD(S) ' 2 Tieback Load(s) Specified Tieback X -Pos Y -Pos Load Spacing Inclination Length No. (ft) (ft) (lbs) (ft) (deg) (ft) 1 172.77 46.00 180000.0 8.0 30.00 50.0 1 ' C: \sted \sor6a.OUT Page 2 2 170.46 41.00 180000.0 8.0 30.00 50.0 NOTE - An Equivalent Line Load Is Calculated For Each Row Of Tiebacks Assuming A Uniform Distribution Of Load Horizontally Between Individual Tiebacks. A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 400 Trial Surfaces Have Been Generated. 100 Surfaces Initiate From Each Of 4 Points Equally Spaced Along The Ground Surface Between X = 161.00(ft) and X = 164.00(ft) Each Surface Terminates Between X = 255.00(ft) ' and X = 360.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 20.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 161.00 37.00 2 180.97 38.06 3 200.43 42.66 4 218.76 50.67 5 235.36 61.82 6 249.71 75.76 7 261.33 92.04 8 269.86 110.13 9 272.77 121.00 Circle Center At X = 165.1 ; Y = 148.5 and Radius, 111.5 ' * ** 1.232 * ** Individual data on the 22 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 1 3.0 138.7 3058.0 2984.0 0.0 0.0 20.8 0.0 0.0 2 6.0 1170.3 5525.1 5879.6 1.0 -0.5 175.5 0.0 0.0 3 6.0 6360.6 5807.3 5760.6 10638.9 4852.8 954.1 0.0 0.0 4 3.9 7946.9 0.0 3668.2 4144.0 4455.4 1192.0 0.0 0.0 5 1.1 2527.5 0.0 1015.6 861.1 1189.6 379.1 0.0 0.0 6 2.0 5033.5 0.0 1911.5 1714.6 1918.2 755.0 0.0 0.0 7 7.0 21532.7 0.0 6120.0 3518.5 5811.1 3229.9 0.0 0.0 8 9.0 33199.7 0.0 6775.6 2002.8 5327.5 4980.0 0.0 0.0 9 1.4 5603.8 0.0 966.5 207.9 693.3 840.6 0.0 0.0 10 9.6 43949.6 0.0 5371.1 1579.3 3808.3 6592.4 0.0 0.0 11 8.8 43360.1 0.0 2530.7 829.9 2656.9 6504.0 0.0 0.0 12 3.5 15867.0 0.0 303.1 427.3 923.7 2380.1 0.0 0.0 13 0.8 3412.0 0.0 0.0 85.6 195.5 511.8 0.0 0.0 14 7.0 34968.4 0.0 0.0 639.8 1607.7 5245.3 0.0 0.0 15 2.0 11941.5 0.0 0.0 149.0 413.7 1791.2 0.0 0.0 16 3.4 20828.1 0.0 0.0 223.5 655.6 3124.2 0.0 0.0 17 9.6 52954.8 0.0 0.0 845.6 1735.7 7943.2 0.0 0.0 18 0.1 545.0 0.0 0.0 7.1 16.2 81.7 0.0 0.0 19 4.6 26246.4 0.0 0.0 298.2 707.6 3937.0 0.0 0.0 20 11.6 51750.1 0.0 0.0 919.4 1660.2 7762.5 0.0 0.0 21 8.5 20389.7 0.0 0.0 747.6 1133.0 3058.5 0.0 0.0 22 2.9 1895.5 0.0 0.0 371.4 453.7 284.3 0.0 0.0 Failure Surface Specified By 10 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 161.00 37.00 2 181.00 37.46 3 200.66 41.13 r 4 219.47 47.91 C: \sted \sor6a.OUT Page 3 5 236.95 57.63 ' 6 252.64 70.04 7 266.13 84.80 8 277.07 101.54 9 285.17 119.83 10 285.48 121.00 Circle Center At X = 168.2 ; Y = 160.5 and Radius, 123.7 * ** 1.238 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 161.00 37.00 2 180.82 39.68 3 200.04 45.22 ' 4 218.24 53.51 5 235.03 64.37 6 250.06 77.57 7 263.00 92.81 8 273.58 109.79 9 278.46 121.00 Circle Center At X = 152.7 ; Y = 173.3 and Radius, 136.6 * ** 1.238 * ** ' Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 161.00 37.00 2 180.95 38.46 3 200.28 43.58 4 218.33 52.19 5 234.48 63.99 6 248.17 78.57 7 258.93 95.43 8 266.39 113.98 9 267.78 121.00 Circle Center At X = 163.1 ; Y = 144.7 and Radius, 107.7 * ** 1.246 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 162.00 37.33 2 182.00 37.05 3 201.70 40.49 4 220.42 47.53 5 237.49 57.94 ' 6 252.34 71.35 7 264.42 87.29 8 273.33 105.19 9 277.77 121.00 Circle Center At X = 173.5 ; Y = 143.7 and Radius, 106.9 * ** 1.247 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 162.00 37.33 2 181.93 38.99 3 201.33 43.85 4 219.70 51.77 5 236.54 62.56 6 251.41 75.93 7 263.93 91.53 8 273.77 108.94 ' 9 278.20 121.00 Circle Center At X = 161.8 ; Y = 160.7 and Radius, 123.4 * ** 1.251 * ** Failure Surface Specified By 9 Coordinate Points ' Point X -Surf Y -Surf C: \sted \sor6a.0UT Page 4 No. (ft) (ft) ' 1 162.00 37.33 2 181.97 38.49 3 201.45 42.99 4 219.91 50.70 5 236.81 61.40 6 251.66 74.79 7 264.06 90.48 8 273.64 108.04 9 278.10 121.00 Circle Center At X = 165.1 ; Y = 155.9 and Radius, 118.6 * ** 1.251 * ** Failure Surface Specified By 10 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 162.00 37.33 2 181.97 38.48 3 201.53 42.63 4 220.25 49.68 5 237.69 59.46 6 253.46 71.76 7 267.20 86.30 8 278.59 102.74 9 287.37 120.71 10 287.46 121.00 Circle Center At X = 164.4 ; Y = 169.6 and Radius, 132.3 * ** 1.259 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 162.00 37.33 2 181.73 40.62 3 200.79 46.69 4 218.78 55.41 5 235.36 66.61 6 250.16 80.05 7 262.90 95.47 8 273.31 112.55 9 276.93 121.00 Circle Center At X = 148.9 ; Y = 176.7 and Radius, 140.0 * ** 1.259 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 163.00 37.67 2 182.88 39.82 3 202.27 44.73 4 220.79 52.30 5 238.06 62.37 6 253.76 74.76 7 267.58 89.22 8 279.25 105.47 ' 9 287.39 121.00 Circle Center At X = 157.6 ; Y = 180.5 and Radius, 143.0 * ** 1.261 * ** 0 M I N M � I I I . I Q I N V e0 N N = N \ N 3 0 0 T M 3 00 co > 00 N •Q 4 r Cs N ° 2 in Z C d 0 � m LL m c A 'a 3 m ++ aN a z���� ° Q 3 N CL N o o ^0000 V' V O c �0�v0 c LL Q� Cl) Cl) N w 41 �OOOO N U _0�0.�00p - N w Lo W V` r R W� 0000 Z 3� NC4 d W ^�TTTT C? W U c N ON Z ^ ��T T T r Z 6 T 04 CV) W i Go W 0 Q W o� OQ w LLJ WHw O A f-- w dD CA O N -n Ln LO �NNNNNV CV (V (hVh LL T T T T T T T T r cm L •- o Q CD CD N N 40 N ° W N q \� r to cn do — co _ _ cL CL 9 CD LU Lu IL LU co 0 to C co ui �, i i C: \sted \sor7.OUT Page 1 * ** GSTABL7 * ** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Version 1.0, January 1996; Version 1.15, April 2000 ** - -Slope Stability Analysis- - Simplified Janbu, Modified Bishop or Spencer's Method of Slices i (Based on STABL6 -1986, by Purdue University) Run Date: 10/18/00 Time of Run: 11:12AM Run By: JWN Input Data Filename: C:sor7. Output Filename: C:sor7.OUT Unit System: English Plotted Output Filename: C:sor7.PLT PROBLEM DESCRIPTION 816 NEPTUNE Existing Upper Bluff Before Repairs Static Analysis BOUNDARY COORDINATES 15 Top Boundaries 19 Total Boundaries Boundary X -Left Y -Left X -Right Y -Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 100.00 30.00 156.00 35.00 2 2 156.00 35.00 161.00 37.00 2 3 161.00 37.00 164.00 38.00 3 4 164.00 38.00 170.00 40.00 2 5 170.00 40.00 176.00 53.00 2 6 176.00 53.00 183.00 60.00 1 7 183.00 60.00 190.00 70.00 1 8 190.00 70.00 199.00 74.00 1 9 199.00 74.00 210.00 90.00 1 10 210.00 90.00 223.00 90.00 1 11 223.00 90.00 230.00 105.00 1 12 230.00 105.00 232.00 112.30 1 13 232.00 112.30 245.00 112.30 1 14 245.00 112.30 245.10 121.00 1 15 245.10 121.00 360.00 121.00 1 i 16 176.00 53.00 360.00 53.00 2 17 164.00 38.00 360.00 38.00 3 18 161.00 37.00 360.00 37.00 2 19 100.00 27.00 360.00 27.00 4 ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 125.0 150.0 38.0 0.00 0.0 1 2 110.0 120.0 100.0 31.0 0.00 0.0 1 3 100.0 110.0 100.0 24.0 0.00 0.0 1 4 125.0 130.0 1000.0 40.0 0.00 0.0 1 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 2 Coordinate Points Point X -Water Y -Water i No. (ft) (ft) 1 176.00 53.00 2 360.00 53.00 TIEBACK LOAD(S) 2 Tieback Load(s) Specified Tieback X -Pos Y -Pos Load Spacing Inclination Length No. (ft) (ft) (lbs) (ft) (deg) (ft) 1 172.77 46.00 180000.0 8.0 30.00 50.0 2 170.46 41.00 180000.0 8.0 30.00 50.0 NOTE - An Equivalent Line Load Is Calculated For Each Row Of Tiebacks Assuming A Uniform Distribution Of Load Horizontally Between Individual Tiebacks. A Critical Failure Surface Searching Method, Using A Random C: \sted \sor7.OUT Page 2 Technique For Generating Circular Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 100 Surfaces Initiate From Each Of 5 Points Equally Spaced Along The Ground Surface Between X = 176.00(ft) and X = 210.00(ft) Each Surface Terminates Between X = 255.00(ft) and X = 360.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 17.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 191.76 59.38 3 206.90 67.12 4 221.30 76.14 5 234.87 86.38 6 247.49 97.77 1 7 259.07 110.22 8 267.47 121.00 Circle Center At X = 111.4 ; Y = 235.4 and Radius, 193.5 * ** 1.267 * ** Individual data on the 16 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 1 7.0 1748.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 7.0 6507.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 1.8 2395.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 7.2 9698.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 7.9 13876.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 3.1 7319.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7 11.3 23605.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8 1.7 2690.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9 7.0 14647.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10 2.0 6045.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11 2.9 9298.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 10.1 25946.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 13 0.1 253.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 14 2.4 6972.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 15 11.6 23625.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 16 8.4 5432.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.29 57.88 3 207.80 64.82 4 222.28 73.73 5 235.48 84.44 6 247.18 96.77 7 257.18 110.52 8 262.89 121.00 Circle Center At X = 147.2 ; Y = 179.3 and Radius, 129.5 * ** 1.273 * ** Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.36 57.62 i ' 3 207.92 64.47 C: \sted \sor7.OUT Page 3 4 222.38 73.41 ' S 235.46 84.27 6 246.90 96.84 7 256.49 110.88 8 261.50 121.00 Circle Center At X = 151.5 ; Y = 171.5 and Radius, 121.0 * ** 1.276 * ** Failure Surface Specified By 7 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 1 184.50 62.14 2 200.19 68.69 3 215.03 76.98 4 228.85 86.89 5 241.45 98.29 6 252.68 111.06 7 259.61 121.00 Circle Center At X = 134.6 ; Y = 203.6 and Radius, 150.0 * ** 1.280 * ** Failure Surface Specified By 7 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 184.50 62.14 2 199.92 69.29 3 214.62 77.84 4 228.46 87.71 5 241.32 98.83 6 253.10 111.08 7 261.00 121.00 Circle Center At X = 115.3 ; Y = 231.7 and Radius, 183.2 * ** 1.288 * ** Failure Surface Specified By 7 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 184.50 62.14 2 199.60 69.95 3 214.05 78.91 4 227.77 88.95 5 240.66 100.03 6 252.66 112.07 7 260.27 121.00 Circle Center At X = 91.4 ; Y = 260.8 and Radius, 219.4 * ** 1.296 * ** Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.56 56.86 3 208.38 63.08 4 223.12 71.55 5 236.47 82.08 6 248.14 94.44 7 257.89 108.37 8 264.21 121.00 Circle Center At X = 158.2 ; Y = 167.3 and Radius, 115.7 * ** 1.316 * ** Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 189.87 62.83 3 203.54 72.93 4 217.00 83.32 5 230.25 93.97 6 243.28 104.89 7 256.08 116.08 C: \sted \sor7.OUT Page 4 8 261.49 121.00 ' Circle Center At X = -294.7 ; Y = 732.6 and Radius, 826.7 * ** 1.327 * ** Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 184.50 62.14 2 200.26 68.52 3 215.41 76.24 4 229.83 85.24 5 243.42 95.45 6 256.08 106.80 7 267.70 119.20 8 269.12 121.00 ' Circle Center At X = 119.3 ; Y = 246.1 and Radius, 195.2 * ** 1.347 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 191.16 60.69 3 206.00 68.99 4 220.49 77.89 5 234.60 87.36 6 248.31 97.41 7 261.61 108.00 8 274.46 119.13 9 276.45 121.00 Circle Center At X = -5.3 Y = 429.4 and Radius, 417.8 * ** 1.347 * ** 0 � M 1 ' N M I M C Q ' W N +r a c m C CL m O 0 C N 1 r r e®r m :2 V O N -- m HF d O m000 r Q Go 300U.) 0017 o o Z Q N L L ' m _ �m Z Orrrr 0 m m a a ����� N �- H C7 t L � o� ^0000 C1 CL lLa� C'S MNw ` ' W - °-0000° N Q a�N°oog N o f+ V 0 , r r ' N 0000 LL W c�c ° � °r d w W= r y Z 0000 0 N Cl N D a a W 0 � NfM Z ~ a LLJ r U O Q � � 00 , 2 0~ 'oW � <UO LLOf())00000000 LL QC) 0 0 0 r r r r r O 0 i N co N N QO O W y i pp n cc cm co cm CM CL • • . LU C4 •+ JE LU co CL LU CD a Q CD N C4 s k y , t ;+ e ,% GSTABL7 C: \sted \sor7a.OUT Page 1 * ** * ** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Version 1.0, January 1996; Version 1.15, April 2000 ** - -Slope Stability Analysis- - Simplified Janbu, Modified Bishop or Spencer's Method of Slices (Based on STABLE -1986, by Purdue University) Run Date: 10/18/00 Time of Run: 11:14AM Run By: JWN ' Input Data Filename: C:sor7a. Output Filename: C:sor7a.OUT Unit System: English Plotted Output Filename: C:sor7a.PLT PROBLEM DESCRIPTION 816 NEPTUNE Existing Upper Bluff Before ' Repairs Pseudo Static Analysis BOUNDARY COORDINATES 15 Top Boundaries 19 Total Boundaries ' Boundary X -Left Y -Left X -Right Y -Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 100.00 30.00 156.00 35.00 2 2 156.00 35.00 161.00 37.00 2 3 161.00 37.00 164.00 38.00 3 4 164.00 38.00 170.00 40.00 2 5 170.00 40.00 176.00 53.00 2 6 176.00 53.00 183.00 60.00 1 ' 7 183.00 60.00 190.00 70.00 1 8 190.00 70.00 199.00 74.00 1 9 199.00 74.00 210.00 90.00 1 10 210.00 90.00 223.00 90.00 1 11 223.00 90.00 230.00 105.00 1 12 230.00 105.00 232.00 112.30 1 13 232.00 112.30 245.00 112.30 1 14 245.00 112.30 245.10 121.00 1 15 245.10 121.00 360.00 121.00 1 16 176.00 53.00 360.00 53.00 2 17 164.00 38.00 360.00 38.00 3 18 161.00 37.00 360.00 37.00 2 19 100.00 27.00 360.00 27.00 4 ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 125.0 150.0 38.0 0.00 0.0 1 2 110.0 120.0 100.0 31.0 0.00 0.0 1 3 100.0 110.0 100.0 24.0 0.00 0.0 1 ' 4 125.0 130.0 1000.0 40.0 0.00 0.0 1 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 2 Coordinate Points Point X -Water Y -Water ' No. (ft) (ft) 1 176.00 53.00 2 360.00 53.00 A Horizontal Earthquake Loading Coefficient ' Of0.150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of0.000 Has Been Assigned Cavitation Pressure = 0.0(psf) ' TIEBACK LOAD(S) 2 Tieback Load(s) Specified Tieback X -Pos Y -Pos Load Spacing Inclination Length No. (ft) (ft) (lbs) (ft) (deg) (ft) 1 172.77 46.00 180000.0 8.0 30.00 50.0 r ' C: \sted \sor7a.OUT Page 2 2 170.46 41.00 180000.0 8.0 30.00 50.0 NOTE - An Equivalent Line Load Is Calculated For Each Row Of Tiebacks ' Assuming A Uniform Distribution Of Load Horizontally Between Individual Tiebacks. A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. ' 500 Trial Surfaces Have Been Generated. 100 Surfaces Initiate From Each Of 5 Points Equally Spaced Along The Ground Surface Between X = 176.00(ft) and X = 210.00(ft) Each Surface Terminates Between X = 255.00(ft) and X = 360.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 17.00(ft) Line Segments Define Each Trial Failure Surface. ' Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 191.76 59.38 3 206.90 67.12 4 221.30 76.14 5 234.87 86.38 ' 6 247.49 97.77 7 259.07 110.22 8 267.47 121.00 Circle Center At X = 111.4 ; Y = 235.4 and Radius, 193.5 * ** 0.973 * ** ' Individual data on the 16 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 1 7.0 1748.8 0.0 0.0 0.0 0.0 262.3 0.0 0.0 2 7.0 6507.0 0.0 0.0 0.0 0.0 976.1 0.0 0.0 3 1.8 2395.7 0.0 0.0 0.0 0.0 359.4 0.0 0.0 4 7.2 9698.1 0.0 0.0 0.0 0.0 1454.7 0.0 0.0 5 7.9 13876.9 0.0 0.0 0.0 0.0 2081.5 0.0 0.0 6 3.1 7319.9 0.0 0.0 0.0 0.0 1098.0 0.0 0.0 7 11.3 23605.1 0.0 0.0 0.0 0.0 3540.8 0.0 0.0 ' 8 1.7 2690.3 0.0 0.0 0.0 0.0 403.5 0.0 0.0 9 7.0 14647.4 0.0 0.0 0.0 0.0 2197.1 0.0 0.0 10 2.0 6045.3 0.0 0.0 0.0 0.0 906.8 0.0 0.0 11 2.9 9298.8 0.0 0.0 0.0 0.0 1394.8 0.0 0.0 12 10.1 25946.8 0.0 0.0 0.0 0.0 3892.0 0.0 0.0 ' 13 0.1 253.0 0.0 0.0 0.0 0.0 37.9 0.0 0.0 14 2.4 6972.1 0.0 0.0 0.0 0.0 1045.8 0.0 0.0 15 11.6 23625.2 0.0 0.0 0.0 0.0 3543.8 0.0 0.0 16 8.4 5432.8 0.0 0.0 0.0 0.0 814.9 0.0 0.0 Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 ' 2 192.29 57.88 3 207.80 64.82 4 222.28 73.73 5 235.48 84.44 ' 6 247.18 96.77 7 257.18 110.52 8 262.89 121.00 Circle Center At X = 147.2 ; Y = 179.3 and Radius, 129.5 * ** 0.989 * ** Failure Surface Specified By 7 Coordinate Points C: \sted \sor7a.0UT Page 3 Point X -Surf Y -Surf ' No. (ft) (ft) 1 184.50 62.14 2 200.19 68.69 3 215.03 76.98 ' 4 228.85 86.89 5 241.45 98.29 6 252.68 111.06 7 259.61 121.00 Circle Center At X = 134.6 ; Y = 203.6 and Radius, 150.0 * ** 0.991 * ** Failure Surface Specified By 7 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) ' 1 184.50 62.14 2 199.92 69.29 3 214.62 77.84 4 228.46 87.71 5 241.32 96.83 6 253.10 111.08 7 261.00 121.00 Circle Center At X = 115.3 ; Y = 231.7 and Radius, 183.2 * ** 0.994 * ** ' Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.36 57.62 3 207.92 64.47 4 222.38 73.41 5 235.46 84.27 ' 6 246.90 96.84 7 256.49 110.88 8 261.50 121.00 Circle Center At X = 151.5 ; Y = 171.5 and Radius, 121.0 * ** 0.994 * ** Failure Surface Specified By 7 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 184.50 62.14 2 199.60 69.95 3 214.05 78.91 4 227.77 88.95 ' 5 240.66 100.03 6 252.66 112.07 7 260.27 121.00 Circle Center At X = 91.4 ; Y = 260.8 and Radius, 219.4 * ** 1.000 * ** ' Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 191.16 60.69 3 206.00 68.99 4 220.49 77.89 5 234.60 87.36 6 248.31 97.41 7 261.61 108.00 8 274.46 119.13 9 276.45 121.00 ' Circle Center At X = -5.3 ; Y 429.4 and Radius, 417.8 * ** 1.017 * ** Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 C: \sted \sor7a.0UT Page 4 2 189.87 62.83 ' 3 203.54 72.93 4 217.00 83.32 5 230.25 93.97 6 243.28 104.89 7 256.08 116.08 8 261.49 121.00 Circle Center At X = -294.7 ; Y = 732.6 and Radius, 826.7 * ** 1.023 * ** Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.56 56.86 ' 3 208.38 63.08 4 223.12 71.55 5 236.47 82.08 6 248.14 94.44 7 257.89 108.37 8 264.21 121.00 Circle Center At X = 158.2 ; Y = 167.3 and Radius, 115.7 * ** 1.026 * ** ' Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 184.50 62.14 ' 2 200.26 68.52 3 215.41 76.24 4 229.83 85.24 5 243.42 95.45 6 256.08 106.80 7 267.70 119.20 8 269.12 121.00 Circle Center At X = 119.3 ; Y = 246.1 and Radius, 195.2 * ** 1.028 * ** r i 0 3 V) I I O N M •� a OD ° coo N a N N cc� � C N r O d O N t ' • ` Y N_ r r � W CL V o =00 r oo C>00 �o o0 ac> r O d o Q — o u Z ■. N C m ql m . F- F- •�, m U m cc cu a J d 7 N 1 3 a cc � G) o� ^0000 V 0 2i c �Go 46 U CQ_CMMN�t ` V _ Q~ -0 fl•�a0o� N ' o Lo 0 ( H) co N r LL Z� F — c10n eo W 0000 O N ' Z �•�N�ON Go �`�v- r j,Zr NMSY W a W C0 wz H�V� r lr1 tp CO Of Of V e- N to 4k cu a a m » ci t •- ' O Q N N N COD Cl O u U) r 1 1 0 3 M r 1 ° N M r y coo N V r O N rn �00 cli CD Q1 ~ O L � r a Z N N i a Of ai m O L 1 a W "' CL 0 w 1 a ' z m oo 1 ' Co CD C4 co r r GSTABL7 C: \sted \sor9.OUT Page 1 * ** * ** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Version 1.0, January 1996; Version 1.15, April 2000 ** - -Slope Stability Analysis- - Simplified Janbu, Modified Bishop or Spencer's Method of Slices (Based on STABLE -1986, by Purdue University) Run Date: 10/18/00 Time of Run: 11:29AM Run By: JWN Input Data Filename: C:sor9. Output Filename: C:sor9.OUT Unit System: English Plotted Output Filename: C:sor9.PLT PROBLEM DESCRIPTION 816 NEPTUNE Upper Bluff Analysis After Repairs Static Analysis BOUNDARY COORDINATES 15 Top Boundaries 19 Total Boundaries ' Boundary X -Left Y -Left X -Right Y -Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 100.00 30.00 156.00 35.00 2 2 156.00 35.00 161.00 37.00 2 3 161.00 37.00 164.00 38.00 3 4 164.00 38.00 170.00 40.00 2 5 170.00 40.00 176.00 53.00 2 6 176.00 53.00 183.00 60.00 1 7 183.00 60.00 190.00 70.00 1 8 190.00 70.00 199.00 74.00 1 9 199.00 74.00 210.00 90.00 1 10 210.00 90.00 223.00 90.00 1 11 223.00 90.00 230.00 105.00 1 12 230.00 105.00 232.00 112.30 1 13 232.00 112.30 245.00 112.30 1 14 245.00 112.30 245.10 121.00 1 15 245.10 121.00 360.00 121.00 1 16 176.00 53.00 360.00 53.00 2 17 164.00 38.00 360.00 38.00 3 18 161.00 37.00 360.00 37.00 2 19 100.00 27.00 360.00 27.00 4 ' ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 125.0 150.0 38.0 0.00 0.0 1 2 110.0 120.0 100.0 31.0 0.00 0.0 1 3 100.0 110.0 100.0 24.0 0.00 0.0 1 4 125.0 130.0 1000.0 40.0 0.00 0.0 1 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 2 Coordinate Points Point X -Water Y -Water No. (ft) (ft) 1 176.00 53.00 2 360.00 53.00 Searching Routine Will Be Limited To An Area Defined By 1 Boundaries Of Which The First 0 Boundaries Will Deflect Surfaces Upward Boundary X -Left Y -Left X -Right Y -Right No. (ft) (ft) (ft) (ft) 1 238.00 77.00 238.10 112.20 TIEBACK LOAD(S) 3 Tieback Load(s) Specified Tieback X -Pos Y -Pos Load Spacing Inclination Length No. (ft) (ft) (lbs) (ft) (deg) (ft) 1 172.77 46.00 180000.0 8.0 30.00 50.0 C: \sted \sor9.OUT Page 2 2 170.46 41.00 180000.0 8.0 30.00 50.0 3 238.00 112.30 72000.0 8.0 30.00 40.0 NOTE - An Equivalent Line Load Is Calculated For Each Row Of Tiebacks Assuming A Uniform Distribution Of Load Horizontally Between Individual Tiebacks. A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 100 Surfaces Initiate From Each Of 5 Points Equally Spaced Along The Ground Surface Between X = 176.00(ft) and X = 210.00(ft) ' Each Surface Terminates Between X = 255.00(ft) and X = 360.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 17.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) ' 1 176.00 53.00 2 193.00 53.38 3 209.57 57.15 4 225.05 64.17 5 238.82 74.15 6 250.30 86.69 7 259.04 101.27 8 264.68 117.31 9 265.19 121.00 Circle Center At X = 182.6 ; Y = 137.2 and Radius, 84.4 * ** 1.531 * ** Individual data on the 17 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 1 7.0 2874.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2 7.0 9883.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3 3.0 6228.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 4 6.0 13403.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5 10.6 32653.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6 0.4 1666.6 0.0 0.0 1.4 -1.7 0.0 0.0 0.0 7 13.0 46341.4 0.0 0.0 134.0 -142.9 0.0 0.0 0.0 8 2.1 7026.4 0.0 0.0 48.2 -41.1 0.0 0.0 0.0 9 4.9 20019.5 0.0 0.0 148.3 -168.7 0.0 0.0 0.0 10 2.0 9639.9 0.0 0.0 82.7 -82.8 0.0 0.0 0.0 11 6.8 33230.3 0.0 0.0 416.5 -344.5 0.0 0.0 0.0 12 6.2 25798.9 0.0 0.0 688.7 -600.6 0.0 0.0 0.0 13 0.1 428.4 0.0 0.0 15.1 -10.5 0.0 0.0 0.0 14 5.2 23188.0 0.0 0.0 995.6 -544.6 0.0 0.0 0.0 15 8.7 28338.8 0.0 0.0 3684.5 - 1110.0 0.0 0.0 0.0 16 5.6 7927.9 0.0 0.0 3748.9 809.3 0.0 0.0 0.0 17 0.5 112.5 0.0 0.0 1628.4 - 1855.0 0.0 0.0 0.0 Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 193.00 52.79 3 209.71 55.93 4 225.47 62.29 5 239.68 71.62 6 251.78 83.56 7 261.30 97.65 8 267.86 113.33 C: \sted \sor9.OUT Page 3 9 269.40 121.00 Circle Center At X = 185.5 ; Y = 138.6 and Radius, 86.1 * ** 1.554 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) ( 1 176.00 53.00 2 192.89 54.92 3 209.37 59.11 4 225.12 65.51 5 239.85 73.98 6 253.30 84.39 7 265.21 96.52 8 275.36 110.16 9 281.33 121.00 Circle Center At X = 170.4 ; Y = 177.7 and Radius, 124.8 * ** 1.559 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.63 56.54 3 208.85 61.63 4 224.52 68.23 5 239.49 76.27 6 253.64 85.70 7 266.84 96.42 8 278.96 108.33 9 289.63 121.00 Circle Center At X = 146.9 ; Y = 230.6 and Radius, 180.0 * ** 1.585 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.89 51.06 3 209.77 53.05 4 225.75 58.86 5 239.97 68.18 6 251.67 80.51 7 260.23 95.20 8 265.20 111.45 9 265.82 121.00 Circle Center At X = 192.8 ; Y = 124.7 and Radius, 73.6 ' * ** 1.591 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.99 52.29 3 209.82 54.69 4 225.92 60.13 5 240.77 68.41 6 253.85 79.27 7 264.74 92.32 8 273.05 107.15 ' 9 277.76 121.00 Circle Center At X = 188.3 ; Y = 144.9 and Radius, 92.8 * ** 1.637 * ** Failure Surface Specified By 10 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.77 50.19 3 209.75 50.95 4 226.19 55.26 C: \sted \sor9.OUT Page 4 5 241.37 62.92 6 254.61 73.59 7 265.31 86.79 8 273.01 101.95 9 277.36 118.38 10 277.49 121.00 Circle Center At X = 197.7 ; Y = 130.3 and Radius, 80.3 * ** 1.705 * ** Failure Surface Specified By 8 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 184.50 62.14 2 201.49 61.71 3 218.22 64.77 4 233.95 71.20 5 248.04 80.72 6 259.87 92.93 7 268.94 107.30 8 274.04 121.00 Circle Center At X = 195.2 ; Y = 143.5 and Radius, 82.0 * ** 1.719 * ** Failure Surface Specified By 10 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.93 54.58 3 209.59 57.94 4 225.81 63.03 5 241.40 69.80 6 256.20 78.18 7 270.03 88.07 8 282.74 99.35 9 294.19 111.92 10 300.86 121.00 Circle Center At X = 169.7 ; Y = 213.2 and Radius, 160.3 * ** 1.735 * ** Failure Surface Specified By 10 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.76 50.18 3 209.76 50.71 4 226.31 54.59 5 241.77 61.65 6 255.54 71.62 7 267.07 84.11 8 275.91 98.63 9 281.72 114.61 10 282.68 121.00 Circle Center At X = 198.7 ; Y = 135.1 and Radius, 85.2 * ** 1.746 * ** r r 0 3 � I r N H I CO) . to _ cc r 00 N O N m O CO) M N W OD r m L -7 - V r c� O m--- v) H d O 70 M > o N Q� p > a O § C, J0 r O r e .. O r � r N C d m W E ��F.� W T r a m LL C. a 3 Z3 : 3: N Q r Rf a N r N V 0 { Q � -�° �F fn Ll. Q `''M M N O V r Q W m L'r`0000 N I G m Lmnvr !�?o N G CI r ' If) C00 d 7•- aNN fO r W �j� -rrr 'c' cc Z r CO) o 0 0 o O a LO r C NON CL H j- r ; Z a TZrNMV co 0- 02 } 00 0 oa�W COa wZ }� HNV� r O N M 1- OD O N LL NNNCqC4C'!(I ��'� e rr rr r 4t •- O N N m N O O W ca r i 0 . M r P � N N � M . r '' C � N r r ° 0 N aM 90 L O ~ F- QO ° N m Z r �m i � J N co G Q Q � 0 3 'o N m F- L N fl.. W Z r co W Z co Co 1 °o ° IV ° o too N Goo le Co W r GSTABL7 C: \sted \sor9a.OUT Page 1 * ** * ** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Version 1.0, January 1996; Version 1.15, April 2000 ** - -Slope Stability Analysis- - Simplified Janbu, Modified Bishop or Spencer's Method of Slices (Based on STABLE -1986, by Purdue University) Run Date: 10/18/00 Time of Run: 11:31AM Run By: JWN Input Data Filename: C:sor9a. Output Filename: C:sor9a.OUT Unit System: English Plotted Output Filename: C:sor9a.PLT PROBLEM DESCRIPTION 816 NEPTUNE Upper Bluff Analysis After Repairs Pseudo Static Analysis BOUNDARY COORDINATES 15 Top Boundaries 19 Total Boundaries Boundary X -Left Y -Left X -Right Y -Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 100.00 30.00 156.00 35.00 2 2 156.00 35.00 161.00 37.00 2 ' 3 161.00 37.00 164.00 38.00 3 4 164.00 38.00 170.00 40.00 2 5 170.00 40.00 176.00 53.00 2 6 176.00 53.00 183.00 60.00 1 7 183.00 60.00 190.00 70.00 1 8 190.00 70.00 199.00 74.00 1 9 199.00 74.00 210.00 90.00 1 10 210.00 90.00 223.00 90.00 1 11 223.00 90.00 230.00 105.00 1 12 230.00 105.00 232.00 112.30 1 13 232.00 112.30 245.00 112.30 1 14 245.00 112.30 245.10 121.00 1 15 245.10 121.00 360.00 121.00 1 16 176.00 53.00 360.00 53.00 2 17 164.00 38.00 360.00 38.00 3 18 161.00 37.00 360.00 37.00 2 19 100.00 27.00 360.00 27.00 4 ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 120.0 125.0 150.0 38.0 0.00 0.0 1 2 110.0 120.0 100.0 31.0 0.00 0.0 1 3 100.0 110.0 100.0 24.0 0.00 0.0 1 4 125.0 130.0 1000.0 40.0 0.00 0.0 1 1 PIEZOMETRIC SURFACE(S) HAVE BEEN SPECIFIED Unit Weight of Water = 62.40 Piezometric Surface No. 1 Specified by 2 Coordinate Points Point X -Water Y -Water No. (ft) (ft) 1 176.00 53.00 2 360.00 53.00 Searching Routine Will Be Limited To An Area Defined By 1 Boundaries Of Which The First 0 Boundaries Will Deflect Surfaces Upward Boundary X -Left Y -Left X -Right Y -Right No. (ft) (ft) (ft) (ft) 1 238.00 77.00 238.10 112.20 A Horizontal Earthquake Loading Coefficient Of0.150 Has Been Assigned A Vertical Earthquake Loading Coefficient Of0.000 Has Been Assigned Cavitation Pressure = 0.0(psf) i TIEBACK LOAD(S) C: \sted \sor9a.0UT Page 2 3 Tieback Load(s) Specified Tieback X -Pos Y -Pos Load Spacing Inclination Length No. (ft) (ft) (lbs) (ft) (deg) (ft) 1 172.77 46.00 180000.0 8.0 30.00 50.0 2 170.46 41.00 180000.0 8.0 30.00 50.0 3 238.00 112.30 72000.0 8.0 30.00 40.0 NOTE - An Equivalent Line Load Is Calculated For Each Row Of Tiebacks Assuming A Uniform Distribution Of Load Horizontally Between Individual Tiebacks. A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 100 Surfaces Initiate From Each Of 5 Points Equally Spaced Along The Ground Surface Between X = 176.00(ft) and X = 210.00 (ft) Each Surface Terminates Between X = 255.00(ft) and X = 360.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 17.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Examined. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.63 56.54 3 208.85 61.63 4 224.52 68.23 5 239.49 76.27 6 253.64 85.70 7 266.84 96.42 8 278.96 108.33 9 289.63 121.00 Circle Center At X = 146.9 ; Y = 230.6 and Radius, 180.0 * ** 1.199 * ** Individual data on the 17 slices 1 Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 1 7.0 2314.2 0.0 0.0 0.0 0.0 347.1 0.0 0.0 2 7.0 8203.2 0.0 0.0 0.0 0.0 1230.5 0.0 0.0 3 2.6 4518.3 0.0 0.0 0.0 0.0 677.7 0.0 0.0 4 6.4 11504.2 0.0 0.0 0.0 0.0 1725.6 0.0 0.0 5 9.8 24911.1 0.0 0.0 0.0 0.0 3736.7 0.0 0.0 6 1.2 3771.8 0.0 0.0 0.7 -1.0 565.8 0.0 0.0 7 13.0 39232.0 0.0 0.0 125.1 -135.1 5884.8 0.0 0.0 8 1.5 4313.0 0.0 0.0 39.3 -33.7 646.9 0.0 0.0 9 5.5 19364.5 0.0 0.0 198.3 -181.1 2904.7 0.0 0.0 10 2.0 8865.2 0.0 0.0 104.1 -81.4 1329.8 0.0 0.0 11 7.5 34190.4 0.0 0.0 590.4 -363.9 5128.6 0.0 0.0 12 5.5 22605.8 0.0 0.0 718.8 -359.8 3390.9 0.0 0.0 13 0.1 440.1 0.0 0.0 15.8 -6.2 66.0 0.0 0.0 14 8.5 39087.4 0.0 0.0 1713.7 -381.6 5863.1 0.0 0.0 15 13.2 47417.6 0.0 0.0 3697.3 469.0 7112.6 0.0 0.0 16 12.1 27106.7 0.0 0.0 2740.8 1558.7 4066.0 0.0 0.0 17 10.7 8109.2 0.0 0.0 3441.4 -957.1 1216.4 0.0 0.0 Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.89 54.92 l C: \sted \sor9a.OUT Page 3 3 209.37 59.11 4 225.12 65.51 5 239.85 73.98 6 253.30 84.39 7 265.21 96.52 8 275.36 110.16 9 281.33 121.00 Circle Center At X = 170.4 ; Y = 177.7 and Radius, 124.8 * ** 1.205 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 193.00 53.38 3 209.57 57.15 4 225.05 64.17 5 238.82 74.15 6 250.30 86.69 7 259.04 101.27 8 264.68 117.31 9 265.19 121.00 Circle Center At X = 182.6 ; Y = 137.2 and Radius, 84.4 * ** 1.222 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 193.00 52.79 3 209.71 55.93 4 225.47 62.29 5 239.68 71.62 6 251.78 83.56 7 261.30 97.65 8 267.86 113.33 9 269.40 121.00 Circle Center At X = 185.5 ; Y = 138.6 and Radius, 86.1 * ** 1.233 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 1 176.00 53.00 2 192.89 51.06 3 209.77 53.05 4 225.75 58.86 5 239.97 68.18 ' 6 251.67 80.51 7 260.23 95.20 8 265.20 111.45 9 265.82 121.00 Circle Center At X = 192.8 ; Y = 124.7 and Radius, 73.6 * ** 1.274 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.99 52.29 3 209.82 54.69 4 225.92 60.13 5 240.77 68.41 6 253.85 79.27 7 264.74 92.32 8 273.05 107.15 9 277.76 121.00 Circle Center At X = 188.3 ; Y = 144.9 and Radius, 92.8 * ** 1.284 * ** Failure Surface Specified By 10 Coordinate Points Point X -Surf Y -Surf C: \sted \sor9a.0UT Page 4 No. (ft) (ft) 1 176.00 53.00 2 192.93 54.58 3 209.59 57.94 4 225.81 63.03 5 241.40 69.80 6 256.20 78.18 7 270.03 88.07 8 282.74 99.35 9 294.19 111.92 10 300.86 121.00 Circle Center At X = 169.7 ; Y = 213.2 and Radius, 160.3 * ** 1.296 * ** Failure Surface Specified By 10 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.94 54.47 3 209.64 57.66 4 225.93 62.51 5 241.65 68.99 6 256.63 77.02 7 270.72 86.53 8 283.78 97.42 9 295.67 109.57 10 304.78 121.00 Circle Center At X = 170.0 ; Y = 220.2 and Radius, 167.3 * ** 1.324 * ** Failure Surface Specified By 9 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 184.50 62.14 2 201.46 63.28 3 218.04 67.06 4 233.82 73.39 5 248.41 82.10 6 261.46 93.00 7 272.64 105.81 8 281.68 120.20 9 282.02 121.00 Circle Center At X = 185.8 ; Y = 170.4 and Radius, 108.2 * ** 1.338 * ** Failure Surface Specified By 11 Coordinate Points Point X -Surf Y -Surf No. (ft) (ft) 1 176.00 53.00 2 192.62 56.58 3 209.02 61.05 4 225.15 66.41 5 240.97 72.64 6 256.43 79.72 7 271.48 87.63 8 286.07 96.34 9 300.17 105.84 10 313.73 116.09 11 319.53 121.00 Circle Center At X = 118.7 ; Y = 360.1 and Radius, 312.4 * ** 1.344 * ** t v r s - LL � VINO3i�V 21 - st -E£9 (091) XVJ OLVE -£E9 <09L> 31OHd ti SViINION3 L W 1 � Q 4 4 - Aj 2 taazs VJ 'Stli IN i3fJ3 >ti 3 1 I ns t ot AdnH9 IH •N 099 � � 3 (1 N3AV 3 N (lld 3 N 9 l B H � I c} 0 280892- � 3sH33 W � , 0 �N1 NOIlO N011o(l�JiSN0� y n8iSNOO ONI�133NION3 `110S d o a ° ° ON12�33NION3 p � , zz P NV� d IiIS �-j n1 ,o �:imo� oirS�jVd� 110S s103ti x'1/1 � ■w_ Ph 3` it u • ' rH > h . � Z A 0) h jV ^V1 u H o NEPTUNE AVEN °� ,� z Aspha „� Co ~ °' O ` k ,� k k, o o N Asphalt k CY) o� M J D ar, U ' o �• ^ �' k X _ m _ _ _ u cu f w o f k _ _ — I .� 0 Z w w o —~ ti d j P J ¢ ¢ _ 7 1 Cr 0 w u��� - -- i n ~-+ W cn A¢ i - -_,_�— 1 o •Z Z m 1 I _ Qo M o ! ( Z �( i I z 4 I I I W. r: I A _ I f , 1 r o , - T k f o, • �' I LLJ w 0 � i W w I z z k M Lj Lij 0) i L,_, Q i k I w zW , I I O Z o _ F-- ^ ,� z W of O ry C] Q z Z Z O °0 Lij >�> LL- o I W °�¢ I � Z I I w O w m}� i [, , I U Z z } } } Ct W Q U m 00 ! _ I �Z } z3 u 0 W L.Li t _ t 0 Z i I in C 4- d d + W U1 L _ ' 4 F 0 O4•++ I r i w CV k (� 1 �W / d f kn $ I �Z W '" ; Oj C ° N r-- �m 0 oo i o,� 4J 01 I ' I � U ram. o � Deck ` - C5� >, O O Cr Cj 4.1 Y 3 U O.-.00 Cuv Ln 4 O c3 Cb W 0j C.3 . a i s o 0 Cc `'' O X CD 1 � t Z O o 3 O �-' z k - O z �{ Q ti �^ Q r 1 0 C14 M M X W 'del e Cl) o ,� u— J. O r' k � Q X� o J Z m - J 1 - a= ►- w a s y: I w y W Z W y Uj rya Ll go a Z 1(� Z� 1:3 ix s A Jam_ y O .�> d� Li 0 DOW Uw Q' z u � J C] LA- CY Z Q ui a 4T � • / / O� O LL. 0 A�Z Q.. A W H y 33S t► /d 13Q 33S C- 1..O ao y > ¢ a o Co K. TIO 106 z ¢ V v QW t-ca Z L3 �` J OC Q •-• v oU / } y Z W U A W W J A d t r+�� F aD °. W C2 Ui L- '► J 3 r7U ��-' t j ►_- Q VJ U j m CL QHG7 >K ' t 0 0 z m 5 „ C,L O Q A F- J 4 V (�l \ ✓ l7 y V —i Z Vf WQS 3 / N H O a OC W I R1 W Z. W 0 W W J / --- / a VfA U E M ¢F- ZF;► - Q W N V T� T�'dd CLQ�yw ICL OC J W y � a a z z > CX x W :a y I R0W 1 O ") 44 La C3 Z Z W I n -%Ro i / I H 4 z 2 A ° U 1- i " M7 �. 1,J ,_'. 7 7 7 , t 3 ..d: -.. f y :. :s , :. .,.� , t"ar - _.: -:.:: 5�': v A :?"G •, .ifi,.�„�yy t e � � NEER . b 2LK - EE9 (090 XVJ OZtE -EE9 (09L) 3NOHd �' X�, �tid A , o cow° 2 ti J O b(N�JOJI bD `SblINION3 g a ~2026 b3 SVl IN Ia1V3 ti 311t1S IO 1 �1dMH'3 N 099 co o ` S Ln 4 2808'92 -V N - to Q '-� M Q uj � - ��� — n V—V fnN3AV 3Nnid3N 9l8 H�IdOS NOPi *HiN Nouon8ISNOO ONI�133NPDN3 -1100 N011�f12�1SN0� °d U. x �' o G N d 4 �1 ONI�133NION3 zzw� � 0 J I SNOU31S, �J OL 4d ] J ' 110S .1 St932� uj 0 U.: - " a _ 0 F— a t� 0 LJ it , w 1: •,c rrnn J 0 VJ Q w s O Z U J 00 W N x v 4 r 4 tL T 3 IC I .n . ♦ - IJL 0 IL .' `_ l �. cill W w Z W uj Z > w a Z > Li �W ►-+ W A Q Z 0 Z .. _ O fY F ° H Z LLJ V3 2 W Q � ° Z r U Z (/) n Q Q' Q.� �0 UZ r to LLJ U) F .-� ... O Q° a a cn Cl CD a o d Q Q 0 0 =, a w p O O O ... O QO 0 (D O WZ O O O L'' .� wz z z F- Q <U Q a Q LLJ / o o f-" N / Q w� F- � 1 ' 1 �< I z z O �Q Z V)o / iJ cr. O J � a a o Y a o m -H �° Of w _ w v;� a_ o m orn W — k. z 0 C) 0) f J < _ rte.._ :s_. .. ?y ., a. .. ... ,.. �' -. ZN _ "a� - s - F �. g ,.� < e' - .. P. 'r z:•.'cP` »;.� .,,«: - : {€ ''� n':,se s - a r �^ „ . Z � , tie. > • � '..� 6- J r F a 2 0 F a z Z � z g t sc T} - 1 Q u . w W +I D ONO W N O W 000 N V) Ir Z 111 t` y. W 'rl V) F- V)t_- � Y O O V) " CL o 6' 4-, w O o af w w a I�h O w WU Z LLI ' 1 z w d Q F- ° 3 3• Vi S w _ 4 o M f / w I / , < - u r v '�- M , O O O o 3 z J m o O zo O rn LL- x - p -� -1 3 v c ~" w z O oQ a� z° a - 0 o a- ¢ o w X � ti w w w a � o� Q o f :. ' J } . O w t U- Z O C) 0 rn 00 © ° o W ° ° O 0 o a M o c� ao cfl LO d r� N o ow O 0 o x wo EL o Q off, V- Q h o n a- (r Q o a��' , : r �. sj: y Y s 6� a EN GINEER * b �. Ne �, o VINdO _ w WT (09L) Xb'3 01D£ -££9 (09L) 3NOHd P -1 v� � - i x cf• � � 3 � o ,� ; o z a t' ° ti y v �I�`d� Sb'lINI�N3 o g 1►ZOL6 V3 S/11NI�iV3 f 311f1S 101 ld ,MH91H 'N 095 r co W � ° — vi 3nN3nb 3Nnid3N 9 t 8 `HOQJOS A3I� '�IW m CS 4 �I zeossz -r 3sNrn I a au C-7 ca W �r ' NOuon8iSN00 ;. .3N1 `N011omISN00 ONI2133NION3 "1105 o. zz ° ON1833NION3 0��' � P C NV s _jj I i 1 q a� /Vt� I oi s�jivdi�j o . r 1iOS VSIJ3 �'d g r J J 3 0 Q Z w w N ; 4 (' n s v uj f V) W Z m 1 cn _o • W • NO �• x Z ¢ J �.. UU > t � J � }- a ••� QU i L!. uj o ��wQ a .: ,. ,. e::.x .. ..gym ::. -., y . -. -.t, -. , . '. -. .., . ... _... .. ems.. ., >. ,._, v k,... � ,.4`;. r . .> a: .: .. .. �... �.. a -. .....- tin ,Y .,.„ -.. -.... .. .rec n r w ,, . ,... U u �.... C�::, -. 2 .._. • . O W U t- W .. _ - I _ Z W , ID LLJ Z W �• d Z U Q Cj �J 1 LLJ Z :D W 8 UJ m „9 S318V/1 F • uj O I , i = - I _ U ° LAJ Li- Q 0 O Y Z oW D! N r s4 _ w o_ o ,.. ° o o �. Uw o v,oQ Z = U Z F_ Z M U Q \UZCL Qo it a�� a b w � Y z a b wZ r'? 0w U 00 M pw N U. V OW - U: 0 cr U Q ISL 00Q (n QpUt+J 11 M L} la. Z LA_ U (n W U _ It CO . d U (n WU�a Z U t,J 1 ? �UQO zV W Z 201-0 og U PC) D � V ZZ Z r ZZ ZZ _ 00 !R ! U O OQQQ + = Q , N co E � 0 Q N D0 M ( n < 0 _ 3g ® .�� 3 O Ln It _ „tiZ °° n Ca 1 _ In MyZ oo p m - - I ; ,,_ { , x -.. _ .. a.� � . -.^..# . z•d. _ .';ter , ... n .. qt , ! • � ! _ -� - �' - �=-�". .. �. � . � z. 4 -� , �-� a�, >< r .,,-�- ;cep � j : • , F ,. • • • • 1 N r • • • • • • • • v r- • • • • • • — N N I _ j sr { { ►I = N ! Lii I W Q !4! W J (n f LJ En W� Z = J W Q J N OZ C-) Ix p X N O �p LLJ Q J LLJ . 'm p 4 J. � U 1-- = 3 � O 3 O U Z z M z o Of _j X W OU = Z 0 J J cr ! {� O U H W 6 W m w V) b O In o ! J� Z Q cn 2 OT p N W cr o w W W. W w V) W cr p W O W U _j U Q Z U Z 0 = C U �,� Q O5 ¢ -� o ¢ d W 3 Lis 0 Ow W . - Q d W es' d Z W - z_ 'd p M Z oJ, N � Z U Q W -� 0_ 0' O p Z 0! w LAJ Y = W F_ Q �U _0 ?c fn o Z)O Cr �f- - .tea cr Z �O _ �pQ� W V) LLJ Z) O U) nTOQO? a� �m ~o LLJ LA_ � p w -H Z L? w v3 - 0 tij z w ,. U0� •� p Z W r- N .- Z W 0 ® h 1 Q .� li N N Lr) QMZw M O O K �OO :DCNWZ • t7 m- Z • w _ a� LL) II 3 O a J z Q f Q Y > I► o 3 O w O d -J J Z o� L M a - wo „ I— o 0 o-� Qo W W a l m Z —, - z � v °m ! N o °� .. o J 1,A V) `- o (] r'. �t }> f r. - r ..i ' Y. :'L' - r Z 1- • a m 4... -.. _ :.X a.rpp K' :P, _.. .. -.. ». ....: -.: c+. ,. .. I! -.> . ..: s- .. s -.w3' ::. • '. r , r � >+ •4. . r- , t M ib a tib - - �^r „�: :. . , hSrt � _. �r .. s.. _ '^'k:. SA P ^R .._ .. § .. . ... . . Na . . A ,. nve _ - >. .n.. W. .. 4” i- . - e':.. n , - ♦. U �") .,..�_ ._.��'• .�., �Q> o = oo -W �i 0 :D U _j M. U I �'�QH 0 Z Z w► 3, ? I to t- W qt :ry z o dnod ode Nnod ONZ 800d is 0 a o W_ z --H eJ C ) tj X _ I aC 0 Ila _ LC) U w �.. Q -p p Q t o N I h , __— J Z I� —�_ -- _ — =b U of ",* l 0 �. } M r = 1 •f-I W t U I. o I J L , +, Z 0 r n ! Li Ul Li r - - _ - -- - Z U 0 CC 0 i — I w ►- L.J W Z j r _ V p �w� � z Q ' 2 z N ` I - w w w0 Uj U LLI O o = ( W �- O C) O # o = m -a °a I { I ° w� :3:2 o 0 0� w z U I c" 1 i> N r i vs 0 cch c { L ,, Z v"_'i O O }> z O w J �� _j m 2 � 2 2 m m H Q Z Ow W1= Z Q - J J O J o = w 0:5 Z o! W U') M V) Gp t� st cv F w m- O w (] Q Q is Q Q LJ Q: 0 • 'S' `� •- :- g N z I g 0 1i z O, = W * Q. w O 0 w Z Q0 Li Q�� - cw J O W ~ Ox Q �w V) K- Li m a woQ , Al _ ,X Pi r, 4 _ x U N X. , ti: t ` k- LL' OINEER '. ZLi£-£V9 (09L) XVj OLD£ - ££9 (09L) 3NQHd v �� �2 \' 1 VV _ L o ? z`� o �ydo vv p 4ZOZ6 va • S11111J1'JN3 'ti 3cInS • t01 A11MI 191H 'N 09S O dI N a 0J l Sbl I N I N 3 L9099Z -V 3SN30f1 A u o Ln cn ,� I Q •ONI `NOjI�(1 f1�N NOIlO(12�1SNOO o �. ""a ,� �� �d�� Q 3nN3nd 3Nnid3N 9 L8 `HOI'dOS >10Q] s o 00 ONI?�33NION3 BIOS o, C Gx o o :Y a ONIN33NION3 d �, ZZw �•��, s >, TOS S��3b 0 NV SNOUOIS nno� 01 S�JlVd� o �, w,r z W W O y I 1 �o w i V) LLJ I W �v) a z w� Q a ,.._ z ,o N 0 o w O. -cc 0 a J AC n w Q 1 0 O Z L LJ Z x • * F- W Q 2 Q d W M= / U m D LL- O V . A O 0 O i W O N LO � w a2 I o /Q :D (Q z Y v a m o U w _ t co O J 0 V) w a oJo Lli v w z W U iv g v �' I cn O Z J U Y Q J z � -. W w LO w 0 _ J O U v �' o / `� U = F -- E A. MOW •� ma I �� a � _ r D --� J v o ` r Q Ld Z d •t L O T. Z S318VA (n II M Z o - I w Ln W U- N ( \ i w o ° a z W O I W N rr 0 W (n Z Q Q Z �• - _ o ° I W � WQ 3 z i I w �, 0 ; > Q I w I > O� =O_J L'i O a0 W I ! UOZ �(/)mw(i 00 Z: W �j�w U V r0V) O�N� I w I CU I CWOwp� I Opp } z 0 = W Q I = U o: O O Cr 1= U O LJ C� -j �} Z U o �1 m C r , o �XQ Wo JO ��U I U I N I 3�m 1 m�aoo Q Z p ZQ' QU Z .— =OJ .— 3 O I 44 ® ® WF-a0 �woCw W o t� cn w_z W � q?w � En Lr) 43, a aw -� zw� z I o ►z I _3 �� U3 V - 0 ¢( w i) N g �QUd? C) C)Q 0 =w --� �WaW U) (f) U N C9 O Q O h LO ► " g -� a w,_._ O < Q Z Q W 0 Q O • O� g O 0 W V) N ® Z� f],� y�j N Q Z J O Q QM OD -N � 3 W � � ° zwwt,J � ® w U D! I J � F— NZ N wmwaQ 2, a� ") xcn N �Q I _ Q cn LO I m = L(') r Z ���O • w ap© L) ♦ e , ' i ' ♦ a = U W O N Om� L • a 0 CN F- • / _ cc O ,ri3 -- - -- -- �Z W 4 W 3 ►� 3 0 V) Q . U : Q r _. { x... y f <.._. tij Of ...._ , , t 3q, yt pxF._c...v .!.. , .� ... . ; . _. �e• d f, -, .. .. U , Via* - i i P CN ® O .. z 1O .— H 4' p a_ ^ W O -� Q O O ~ Z U =x U O fn cx = ¢ p O O °� fl Q 0 V C� W U . z L,J w Q h N Q o m o 3 0 / C Y Z F a W W W cn o- h— gZ 0 X = Q Q uj Ow O x � \ O Z / o¢ � J O 3a V) 3: 3� O w ° . F— !6 PO I UO to CIO _ • • • z. • O c0 � if x _ W w ( a O W et = 3 3� ^ O =i o O w Z W • J � O x v v a (� o j U 3�m _ U N Id- W 3 p Uz W.31 N m o is 3 0 U W Q Z Z Qi m wl Z LLLJ 0.� Z J < Q O� ,._N� Q a ►- w 2a_ X30 O` a Z r i4 T : _,>;.:. av, •c x:9 ,., .±,. 3 8 i.. x a ss - U _ .. ': t[ Z _ Z U cr V0 U ^ W Of Q Q x _ O0 !! U m ~ N oa Z y a O w d U W Q Q O Q3 as o a Q ► "� U U z � z° z o (f) Q m a ~o LAJ _ (n O z N V D ®Q� 3 0_ w ✓ U W Z (n (n N ° W W C9 III J w N t0 O J 0 (n A ¢ QZ ~ YU w O - a OQ Qw ^ O 3a Z v _ to ►7 �i j . 1 w I • 0 Q °, . I • a a I �H OJ�wm L l J •. , VI cli :x • Y'M39 83 Y 313 N 03080.3N138 C131V30NO 30 Alm T „ZS Li N 4� > O • O J W Z Q x J O s U W r Q O N s 2 O 0 U � r- to a = LA- Q _ z ® ® O O O U �w ! 2 = J � ui 0' O C � ; F7 o� A