Loading...
1993-3425 G/I/PE Street Address _~Lfl(2--- Category I 3~79 Serial # -r fl1 q I " () '-I tf Name /f!)Mt t}6fJ~r Description Year Plan cK. # I I I I I I I I I I I I I I I I I I I Drainage Study for ro") i~? I r ""~ ..:J :' ~ ~ i LL., APR 2 5 1994 ENGJi\1EEn!f\G SCQ'V'lL....'::::.'.::.'.. CITY l..1. . 'i ~ OFEf\I."""-r'.-'...''- J.......>l1\,[ ,.i-;':: ,~ If[XJ~ [XJ@um~ @~~@lf Precise Grading Plan Encinitas, California April, 1994 prepared by The Austin Hansen Group 9605 Scranton Road, Suite 300 San Diego, CA 92121 (619) 552-1010 By: ~..../C~ Date: tf-:2-2 -f'l Roburl C. Huynos, R 25503, Exp. 12131/07 I I I I I I I I I I I i I I I I I I I I DRAINAGE STUDY FOR THE ENCINITAS HOME DEPOT PRECISE GRADING PLAN PRO~ECT DESCRIPTI9N. The Home Depot site is proposed for development at the southeast corner of EI Camino Real and Olivenhain Road intersection. The developed portion of the site will cover approximately 9.3 acres with the balance of the 45 acre site being used for open space or new road right-of-way. The site is currently an open field which falls gradually toward Encinitas Creek. Encinitas Creek crosses the northerly end of the proposed commercial development. Moderately steep hillsides lie southerly of the project site. For the most part these hillsides will remain in a natural state and will be protected by an open space easement. The Encinitas Home Depot is to be graded in three distinct operations. The initial grading will be that which is necessary to generate the material for a surcharge fill on the Home Depot building pad. A separate grading operation will be that which is associated with the wetland enhancement program. The third grading operation will be the final "precise" grading. The wetland enhancement grading can occur independent of other site development grading, but will most likely take place in conjunction with the surcharge grading operation. The Encinitas Home Depot Surcharge & Wetland Mitigation Grading Plan approved February 28, 1994 incorporates both the surcharge grading and the wetland enhancement grading. A drainage study entitled Drainaae Study for The Home Depot dated May 17, 1993 and revised Sept. 23, 1993 has been prepared and approved for this surcharge plan. The grading plan for which this drainage study is being prepared is the Precise Grading Plan for the Home Depot. The previous surcharge grading plan drainage study is incorporated herein where applicable. The Encinitas Home Depot site drainage is divided into two types. The first is the storm runoff which will flow from the hillsides behind the Home Depot. This will be relatively clean, uncontaminated runoff once the slope planting on the graded hillside is reestablished. The second type of storm runoff is that which will be generated onsite from the parking lot and the Home Depot building. There is a potential for this runoff to be contaminated from oils and other pollutants associated with the automobile and the store operation. The Home Depot drainage system has been designed to keep the two types of runoff separated. The clean hillside runoff will be piped to a manufactured wetland area adjoining the Encinitas Creek drainage course. The parking lot and building runoff will be directed to a system of oil and sand interceptors and nuisance water treatment basins. This drainage study for the Encinitas Home Depot Precise Grading is comprised of two sections, the first being the offsite hillside drainage and the second being the onsite I I I I I I I I I I II I I I I I I I I drainage. The first section, Section One evaluates the hydrology and the hydraulics for the interceptor ditches and piping system associated with separating the hillside area from the onsite drainage system. Section Two, deals with the hydrology and hydraulics for the Precise Grading Plan onsite drainage, including the piping systems and the provisions for the oil and sand interceptors. This section incorporates an updated version of a previous report entitled "PRELIMINARY DESIGN FOR THE CONTROL AND TREATMENT OF URBAN RUNOFF RESULTING FROM THE DEVELOPMENT OF THE HOME DEPOT COMMERCIAL SITE". This report evaluates the "first flush" storm runoff potential and the required minimum capacity for the two nuisance water retention basins. Recent information regarding the actual roof drainage configuration for the Home Depot building has resulted in minor changes to the onsite drainage patterns and a reevaluation of the nuisance water treatment basin size for onsite Drainage Basin "G". The capacity of the overflow weir for this basin is also reevaluated. Potential infiltration rates for the two nuisance water retention basins were previously analyzed. A copy of this analysis is included at the end of the report. EROSIQN CONTBQL MEASVRE~ Graded areas for the Home Depot building site, as well as slopes along EI Camino Real, will be immediately landscaped and irrigated to reduce erosion potential. Portions of the landscaping and irrigation installation will be accomplished with the surcharge grading plan. A silt fence or anchored straw bale barrier is to be constructed the full width of the area to be disturbed from the west property line along the northern edge of the future parking lot and westerly to the EI Camino Real right-of-way. To minimize silt transport to Encinitas Creek it is recommend that this silt fence/straw bale barrier be installed prior to commencement of any grading operations. Localized silt retention measures are recommended during construction. These include sandbags, silt fences, temporary desilting basins and dust control. In addition, localized silt retention measures may be provided by placing single sandbags at approximately 10' to 15' intervals in the terrace drainage ditches and brow ditches. The property owner will be instructed to monitor and maintain the drainage and erosion control measures installed in conjunction with the surcharge grading plan and the precise grading plan. Site inspections will be expected after each significant storm. The desilting basins and nuisance water retention basins are to be cleaned as necessary. Excess silt trapped by the silt fence, straw bales, sandbags or other entrapment devices is to be removed and stockpiled for use in the final grading of the site. .'.,.' I .:,'t,\ ,;..:. "61 5' "56 ~ ~ ~ ~ \;: ~ 2'30" I I ~ I I I I I I I I I I I I I I I I I @)~cgIfQ@OO @OO~ .tW-LSI.DE I2.RAINAG~ I I I I I I I I I I I I I I I I I I- I ,!;1IJ.L~IDE HypRQLOGY The following hydrology analysis is based on County of San Diego Design & Procedure Manual for Flood Control and Drainage using the rational method. A 100- year frequency storm is used for all calcualtions. For the purpose of this study a time of concentration (tc) of 10 minutes has been assumed for all drainage basins. County of San Diego isopluvial charts for the 100-year, 6-hour and the 100-year, 24-hour storms are used to determine the adjusted 6 hour precipitation factor of 2.7 inches. From these values an intensity factor (I) of 4.55 inches per hour was derived. The soil group classification is assumed to be D. A runoff coefficient (C) of .45 has been assigned for undeveloped land per County Appendix IX. A composite runoff coefficient (C) of .5 is used for Basin D to allow for existing residential development. To summarize: Selected frequency storm = Time of concentraion (tc) = Intensity (I) = Soil type = Runoff coefficient (C) = 100 year 10 minutes 4.55 in/hr. "0" 0.45 (.50 for Basin D) The peak runoff for each sub-basin using the equation Q=CIA is shown below. Basin Area (A) Q100 A1 2.23 acs 4.7 cfs A2 0.25 acs 0.5 cfs A3 0.30 acs 0.6 cfs B1 1.93 acs 4.0 cfs B2 0.41 acs 0.8 cfs B3 0.14 acs 0.3 cfs B4 0.09 acs 0.2 cfs B5 0.33 acs 0.7 cfs B6 0.34 acs 0.7 cfs B7 0.09 acs 0.2 cfs C 1.00 acs 2.1 cfs D 13.67 acs 31.1 cfs E 1.69 acs 3.5 cfs F 4.20 acs 8.6 cfs ",~" ... Stm~I "'''~ . .. ... .V:J 'SBHuputI lodaQ aruoH.alll dn01J~) NTsNVH Nil S n '" :I II 1 mOl l"G I6IQl lurl'lY.JD")'lICl~ r~NQl..N"OS~~ ""'''''''''' tlll"Il:)~IHYJVldV:)!;l)'N'1 W'.Y]I()l>I~It.,f'<:NlljJ~J ',"'I"i'dld':JUn1:)~l~~)/N ... SNISVB 3~VNIV~a ( "'-- I I c I I I I I -I I I I I I I : o M .... I O~ CJM "'''''. Me( ""II) I Z.....-J -- c( 0 0 <n....~ l&.. :z ..._ o uJO :>::u I ~~O _<0;0 ~__ 3 ~ ~ - . --:0 ~...-- o - f- .c:t E- - ~ - c:..:3 f.!aI @: Q.. ..c.! :';:) Q '"\"" - J c:.':) ~ c::t Lr.J >- J o Q "... I . \0 c::: :::l C ~ - '^ - - C"j o "" - - , CD =: < ~ > , C) o - -, L.I- o . .... - - en ..-I ct - :::- :::l ...: C- o en U'\ - - '\ c::> C"-.I ~ .. u > .. .. . .. !:! z;: 0< t:= ~.. ~ ~~ ~ 7._ W:l!( :; ~ z ::;: u >= " Ou-o "0 .... 100 l&.. = 0 .. O:l.1X ? :.... ~:: . Z ..,; = - .:- ~ < '-- '^ . i: ..c.,o 0 ~ .... z'" I O::Cu t < u;: t a.. i'" . W < Q Ow-: ui go "...7- :J <( ~ >:" !:!~ .... < - z~ .. . .. < ;:; .. .. . o "" o "" ~ u Z ;\ U'\ 0:' co - - U'\ .:t - o "" U'\ - . "" "" II-A-7 .. , . .~ . I .~ c: I ~ 0 :::l - Q to- - -'- c:::: I II o;:::r to- N - c.. c::: II - c:: c.,:) UJ . r..:.J >- e:: I II I'::.. Q Q v' - s...~_ - <;;::l II 0 - (I) -'- I -I 11 ~ ~ - N ::::> :::l c::: -I t.::'- II < Q l.l..J (.') >- - '\ II I 0 c::> 0 C"ol \ - II II 04 . % 0 .... ill .... o~ I .".... .....z .- ",' ....<C II Cl VI z..."" <coo on c::: ...1-.... '" I o :z::z UJO .or >-~u I-C:::O I z<a 60..0 UJ -' <.>0'" I ~._\J I ~ u z ~ f l - a M '" . M M. . ..::J - .... .0 ..... . ,... l.- .. u > .. " . - o ..... '" .or .. " zj: 0< -" ~.. C:.1 ~ ~ (.) ~ z Q: '" 0 t:J 2 ~ ::;: Q < :; -< z ou>= (J i U .. Cl.. ~ 3 : 0 ~ g . :... 0 Q . Z "=-r :- :.IJ t- = .. _ < lao L ~ Q 0 0:: Z;:&I <u <.. - Q. :::.1. t.:JfI::" o~~ ,u= V> 0 u ::i .J7. < ~ z 0" - " ..." < - ZO " ... " ~ l."\ - a M .. < u .. .. " II-A.13 1 1 - ) 1 1 1 1 'I 1 ~ c: <: = <.> z <.0 - '" .... Q J8 ..... .~ a . >- I- - '" :z: .... l- z: -- 1 1 1 1 1 1 1 1 1 1 I ) I '" c:: en ~ .. >,..: Cl+' o "0 ~e: c . o~ ftS >,~ u"O"O .e:>,.. s-m:c"'C ":::1 ::I \0 g" ~'U ...e:e: CU4l-::I..... e: 0 _"'OU VI E~..~ . GJu.;::e- +JCU",", r"""' cu.... . ftS "'gcucs-:s In.... >'\ c: III '" c..cu-o o:&: fO..cCUO E~~- GJ e: ... es.._"'O ::I oos...c:~ -~'c.tC cu +' U rG"'aJO' 0 ~...... s.. L.") l- _CIQ c.. 0.::1 - -0 VI 0 -a U E c....- C CUllOfO-fG ... IS CL.. _ c: s.. CU IG en E..c: VI ~_ o GJCIII s..~.cfOCU Ll..NI-:::O ..: u ... '" :;: .. e: o .... +' '" U .... ~ 0. 0. < ... .e III e: o .... +' U .. ... .... Cl ...... ~ !: -:: .. t: roo c: ... 'oJ .11> .... ,"" . I Q "" e>. ... ... . ... roo . '" :l; ..... c: ... .... e: o ... .. oS .. ... Po ... o .. '" e>. >, .. ... .. c: .. .. c: ... . '" :l; "" ~ . . "" ... Po ... t. I.. t 'n:" ~:---i. I. '11' " ~o\.,,.., .. o~ ono Ql ......... ~ >,.... .0 ..."" '" '" u en 0'_ on+'~ Ql .:.. u... <:. 4un .. e:.... ... ~~ 0 _0:::::: ~ ~ Ql CO> o e: . ...."'e: +'10.0 '" .... ...Ql.... ......: '" c.+' ... .... .... ucc. Ql.... .... ....<: u c..... Ql ....... s.:);Ca .c UI .- ........... \0 .c'S-, .... Ql """_IId"'VI on N Ql ::I+' Cl ...,,,,OJ "'O.c.co <....~.... ...... N ,.. c: .... e c: o ... .. oS' f.<. ::I Q . .. ., Ql "0 .... III ... ~ c> .... I. Ql ..: ... e o e: o .... .... '" ... .... 0. .... U Ql I. . c.... I. . '" .....: ..:u "".. ..: ...... o ...~ ... 0 ...... ... .. ..: +' .s ... Ql ~ ~ '" ... '" 0. .... e .... o 0. Ql .c ... .c en ::I o ... ..: . ...on .. Qle: e: .... .... ... ... "0 ",Ql .... 3:.... "'0 ...... Cl 0. ...... .... ... o ~ .. > ... ::I U e: o .... .... '" ... ::I "0 . 1"0 >,Ql ....N ....>, on ... e'" ..e: +'''' e: .... en e Ql'~ .c.. +' .0 one .... 0 .... Ql'" e:", .... u ~o ... on ....Ql .c .c ........ E o ... c o .... ... '" u .... ~ 0. 0. < . ~I . . ....c ""I "'.... ... ... . . ~1. ~\ ~ "t- . .... N ... ~ C Ql ::I CT Ql I. ... "0 Ql ... U Ql ~ Ql '" e: ;\ . "" ... ...... .., ............ ...... Cl... N 6-Hour Precipitation (inches) '. t!) , . . L..,--~ ~--r- IC-:--:-, I I ---,' ; i; rf rl .; - ~~t-- J ~--'- -To-" ~ ;Z-+':::::H -.- ;;:l - ' 7~. - r~: , -+- , .. , ,. ...a C7\... _. ... "'". .1 ,. (.lnoll/sa4:lUO ^Hsua~uI "l to... ~ . e: .... IS """ ... .. "0 .. ... on ::I ..., "0 < ~ ...... . u ... ...... ... .... Cl '" .., ~ T '. ':,:1 ,.. :1" .': t,'; I',i I' . II ; ~ I 111 II I ,. :111:: ~ ~ . ... .c ..... e: .... e o .... co Ql cc ... I. Ql on .. Cl o ... Ql ~ .0 '" U .... ... 0. 0. < ... o z . .... >< >< ....... "'.... %' 0.1< "'" ""> <.... . . .... ...... .... Cl . ... <0 Lt> .... .., N on ... ::I o :r: ... e o .... .... '" ... :::> Cl o Lt> o .... o ... o N '" Ql ... :::> e i: , I on ... ; I I o - ... IV-A-14 ... "t N APPENDIX XI I ~ I I I I I I I I I I I I I I I \ I I RUNOFF COEFFICIENTS (RATIONAL METHOD) LAND USE Coefficient, C Soil Group (1) A B C 0 Undeveloped .50 .35 .40 e Residential: Rural .30 .35 .40 .~3 Sing 1 e Family .40 .45 .50 .55 ~Iulti-Units .45 . SO .60 .70 Mobile Homes (2) .45 .50 .55 .65 Commercial (2) .70 .75 .80 .35 80% Impervious Industrial (2) .80 .85 .90 .95 90% Impervious NOTES: (1) Obtain soil group from maps on file with the Department of Sanitat:on and Flood Control. (2) Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficier.: C, may be revised by multiplying 80% or 90% by the ratio of ac:ual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Consiuer commercial property on D soil group. Actual imperviousness " 50% Tabulated imperviousness = 80% , Revised C = ~ X 0.85 = 0.53 APPE:\DIX IX I I I I I I I I I I I I I , I I I I I I I I HILLSlpE !:I'lDRAY~ ~ The hydraulic analysis for this hillside drainage primarily involves confirming the capacity of the brow ditches, terrace drains and interceptor pipe system. For this purpose tabulation charts are attached which show depth of flow for vaious ditch types for differing grades and flows. For the brow ditches and downdrains a standard Type "B" ditch per Regional Standard Drawing (RSD) No. D-75 was assumed. For the terrace drains a Type "D" ditch per RSD D-75 was assumed. The brow ditch intercepting runoff from Basin D will require a special detail to assure adequate capacity. A modified RSD D-75 brow ditch with a depth of 2' and a top width of 4' is proposed for this purpose. Type "F" inlets (See RSD D-7) are used for the interceptor system which collects the storm runoff from the hillsides. The "F" INLET CAPACITY calcualtion sheet shows the maximum potential inlet capacity for each opening. In most cases the "F" inlets will have 2 openings and in one case 3 openings where Basins "AN and "B" confluence. Pipe sizing is based on the Mannings equation using an "n" value of 0.013. I ~.l ":. ." 1 i,: '. , ~..; .~ . :, :~;~ :. ~I ," .-: I . , I I I I t...., ~ , :"1' (. .' , .... ... .r.: '~ "'0 11', i:,; '. .' '. : :,1 . "I .' ,I '1,1 ,.' I:: .. , . I " ',," I '1. " \ . 1':1 -2'1' ". , .. '.;/.,. !".:' .~, '.' ~~ ..: .; z ,..,. rp;,~ ,:'0 . . f'" . .~"c ...,,)0 . 5.10 .. ~ "'" . .' : )Of 1. a 1 . 0,9 0.' I --.1-.. I:l\AMPLE:: GIVfN DIS,,'''.f'';E (j. 4." c,l,s. I'R,Clln:.: rt.GT(,fl n . 0.013 SLOPE OF OY.l14' PER rOOT fIND O:AII.ETER 15 1I;('''E5 MlO VELOCITY Of :,5 FT. PER SECONO . BY FOLLlWilNG CAStlEO LINE ' ..0001 .~Ol- :::;'1.0001 .".,).0002 .~.o. f'CCC' .0010-. .000. .0006 ..... '.ot'~.O<I01 0 . CO:!' -:.mo 0 . C040 . N ~ .'OG .0020 .' C"L' T o .... "-:-'-:OJ)O : ]~.:: . /.O~ '" . ~\5 f' :..0000 a. " Moo .O~ '_--=..OJ~O g /:: .~lIOO . III '" II) ."....._ .~~ o . iil .0600 120 101 ... . >:.'I~:"':"'" . . '... ". CIl '" :z: u z z z a a: " ... 0 .~ ';;il '!~ .~ .~~ ( -". ~,i,t ~ ~. r'- -_._~. --- ." :-_~__~:<).f, :1'-'---'-"- . .--- ___l.__.__.._,.~..' L - ~ --.-----..,... )r-:::' ---:_'-:.::1r-"-'~;;~' or S~'j ;:~-;~'~'t~';~'''~I:''~::'~''~-;~~!;~~~~;-'- .-. "F~--- . -. iI,' ........ . --..---.1 fo:or:C"ClA;'ti r( ~.tc.,.'puT.~.r, "r.';UII-'[O !tll[ OF ,--' .,.~' '" ':.'\"::'.' ".I ..._____.___1, CIHCUL..;.r, C:";:.:~~ tLO\'iI!..~ fL,ll I a ~.<'" l .\' l ------- I I -. ";'~;'~"Il" . ,. .. 0.0'3 OIl C..::~2 i' ',.:':" ~f':. ~:.~::.:-.'. _ d t. <" ~ i.,~:.:..~~~, ----...-.. --~---' ---'. -...-." .- ~ i _~. fie . 'f '.' ..,.-. b-,. . 9 . , "'<...':.:: -./..,. '. "'. :,..., '. ":.~~~)~'~'~' ~- ~,' >. . . .. ,. ~ . ':1" .. ,",' " ',' , "", '" .' .... '" .:l! .04 Q . . ,". . ";.'.,." /1' ,:"t. " ," . ~i'~ , " . V r., ' .:i "" '..~ . :',' (, I';'~'i ~ ", . ..... r=. '. o - . -, .. . t' ,/ ,/ ,,/ ,/ . -, .' '" o ... .0"0 -.0'100 .0600 .0_ -; 1000 2000 .. .,.~ ~~o .~, a.;":~ I t.w':-:. ...l.C'~:'"O !'""..,~...l_, :~'O' 1 .. .', 1. ...:..~.,..I '. ., " ! -i .} '. .'~ . .' , ..t .] ." ~ 1 .y on,. .! .' .. 1 . " ~. { ~ i: I ., ')f '. ,. ':,.4 ~ :.\ '1 .J, ) A '1 .~ .. .. '1' '.$ t '" j.! ." 1 <f,: . ":",.' ., ,"'io'" .., ,"' .. :..::....~.;: . .. ,;;,. .", ::~~.~~~~~~" , . . .,' " " Z 0 U "' . III a: .... ... .... LJ .... ... Z >- .... U 0 I ... > . , 10 11 11 , ." :. " ,- \6 " . .~" I I I ~ I ci z I ::::;; W f- Ul >- Ul I c::: 0 f- a. w I u c::: W f- Z I ~ 0 ~ I 0 z ~ I ) I I I c I I I I I ) I 0 0 0 f- 0 Ai, 0 Wi.. 0 0 W 0 0 0 0 W ~ ~~~ 0 0 ~ ~ 0 ~ Ltl U *---;- 0 ~ 0 a ~ ::> 'iii! ~... ~ ,....~".., ..~ ""O'l(nl)~ _ . .toe: .68T'U - ~ _(;?l) .. ... ~ - ! -- -'I"as ..: ., , I. ..:~ :. "," i V'l.."'o.'O~ 11;:; I . :.I ..- ~: '~~lYori NI_ - --- ~:~- -.... ----t- i"( Ii; III ~ 1l1~ ~ o t:,,_ <t') &. l;:~ ;;; ,,... m 41 ::~ .g ~ ~ r ... ~ I ~ 1 ~:t: J~ w;-:l r~.. N- I \.... c:J .~:. :;i .., g~ - '" ...:: "~ ~ 'l' ~~ -..Q tr) . . "J "- '- '- ':~~:f4\: e W .;jet ,.:~0~~ t: -::: t >,., .. ~ ',"o/U"IP!'" "','..,,, ""," ...ti W\Y;') _.' ~~~ :? ;:;<<<-i~ Ul f- Z <l: l- [/) Z 0 U W 0:: t:> [/) I <l: w "- Z I- Z <l: ~ 0:: Z Lf'l 0 :::i: Lf'l Lf'l v W 0 v 0 ~ ci II' [/) II --1 II 0 --1 0 I 1-(.) U [/) I- Z <l: l- [/) Z 0 U 0:: W [/) I t:> W "- <l: I- Z Z ~ <l: Z ~ 0:: :::!: ~ 0 m ,.... Lf'l W 0 II l- II [/) II 0 Z 1-(.) 0 0 U "- "-. '- - I ~~ I I I I I I I l_ I I I I I I I IL- I Manhole frame and cover. See drawing M.2. \ Ele. shown on plans '.' ':.' -r,.: II" unle.. shown . T::r.. ________ .~ -L otherwise on Plans~ ~ lil'l # 4 Iil 6both weys . i5 Ii" .. -' ... 12 :1 rB '" -- 1. f~ ..i 4.#4 around pipe I:==Q Rounded pipe ends See drawing 0-61 -- Q . .'~ '" .... .:;;--'- -r :." .; s . :...,....;.: '" . ',,:. ,'. .: > Elev shown on plans I --LL l~T~ Slope floor 12 : 1 IOwerds outlet ...jT~ SECTION A-A 4. # 4 around opening ~ .. I 2' A L ... . -- A ~ - ... 4' PLAN NOTES 1. See Standard Drawing 0.11 for additional notes and details. 2. When V exceeds 4' stlpS shall be installed. See Standard Drawing 0.11 for details. 3. Exposed edges of con crate shall be rounded with a radius of 1/2". 4. Openings on both sides unless oth,lWise shown on plans. 5. Maintain 1 1/2" clt.r spacing bltwttn reinforcing and surface. R.vision Rebar Approved Oatl ... f SECTION B-B LEGEND ON PLANS ----I?i1---- ---....c:::...J"'-.....- SAN DIEGO REGIONAL STANDARD DRAWING IIfCOllllfJIOfD IV THE UN DIEGO IIIEGIGfilAL STNlOAIlDi COMMITTEE Cl/t.../t?~ ~,"".111$ c-.-. II.I:.L 19101 O.N CA TCH BASIN - TYPE F DRAWING 0-7 NUMBER III' I I ( I I I I I I ,. I, I fiSStJMEO r INLET OPEIV,Wq FC'A' /#L..ET C/'J?fiC/7Y E.5T1/W.4T/O/V .1 .. we//? FLOW Q = CLIi 3/z. ( 4'n.JSIf[:ltJJ) II Ld c:::: J. l<j (;,(/"15, IqJ/~ ~~]) L;, :1 II =. t/ Q = 4..s-ib c-f.5" THE A U S TIN HANSEN GROUP JOB ''r If lA/LET C/!?~C/7Y OF SCALE (2IxI-- DATE 11/;1.1/9'1 , # SHEET NO CH.CULATEO BY 'OCJ~~S':"''''<QO.1C ~~~::':'~2'2' IO'Ql ~~l'':'O CHECKED BY DATE ~Lt r-L 3'-tJ II t _J L ~ ,:t 0-- ;Jna I. 94 It - I' " 7YjJ/C/}L.. r /JVLET OPEN/Ni7 L~. _ Area = j,83 It" ~T J, 2'-0 ~ } I I ORF/CE FLOW I I I I ~' I ;:/ a,.s-I h"edcl aa:we hI' of o;~JI/~ Q = CO /Zc;f/ (~~/(4-ltJJ) Let c:::: . ~4 C. ~/"f31 {;J/" 4-~j7 1I<:.J-r1:=.8 Q =. B,J8 d's 1!IiI ' I I I I I I I I I I I I I I I I I I I I Page 1 of 4 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: HOME DEPOT Description: BROW DITCH CAPACITY Solve For Actual Depth Given Constant Data; Diameter... ........ 2.00 Mannings n.. ... .... 0.016 variabl e Input Data Minimum Maximum Increment By ------------------- ------- ------- ------------ ------------------- ------- ------- ------------ Slope 0.0100 o .HOO 0.0100 Discharge LOO 10.00 l.00 3" 47D-C.2000 contret. or 3" 2500 psi. air placad concrete with lY"'xly,," 17 gag. stUCCO natting. 24" min ~'t " 'e BROW DITCH TYPE B Open Channel Flow Module. Version 3.11 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 'I I I Page 2 of 4 I VARIABLE VARIABLE COMPUTED COMPUTED COMPUTED --------- ------------------------------------ --------- ------------------------------------ I Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' efs ft fps Full ftl ft cfs ------------------------------------------------------------------- ------------------------------------------------------------------- I 2.00 0.0100 0.016 1.00 0.32 3.13 18.38 2.00 0.0200 0.016 LOO 0.27 3.99 25.99 2.00 0.0300 0.016 1.00 0.24 4.60 31. 84 I 2.00 0.0400 0.016 1.00 0.23 5.08 36.76 2.00 0.0500 0.016 1.00 0.22 5.50 41.10 2.00 0.0600 0.016 1.00 0.21 5.86 45.02 2.00 0.0700 0.016 1.00 0.20 6.18 48.63 I 2.00 0.0800 0.016 1.00 0.19 6.48 51.99 2.00 0.0900 0.016 1.00 0.19 6.75 55.14 2.00 0.1000 0.016 LOO 0.18 7.00 58.12 I 2.00 0.1100 0.016 1.00 0.18 7.24 60.96 2.00 0.1200 0.016 LOO 0.17 7.46 63.67 2.00 0.0100 0.016 2.00 0.45 3.83 18.38 I 2.00 0.0200 0.016 2.00 0.38 4.90 25.99 2.00 0.0300 0.016 2.00 0.34 5.65 31.84 2.00 0.0400 0.016 2.00 0.32 6.25 36.76 2.00 0.0500 0.016 2.00 0.30 6.76 41.10 I 2.00 0.0600 0.016 2.00 0.29 7.21 45.02 2.00 0.0700 0.016 2.00 0.28 7.61 48.63 2.00 0.0800 0.016 2.00 0.27 7.98 51.99 I 2.00 0.0900 0.016 2.00 0.26 8.31 55.14 2.00 0.1000 0.016 2.00 0.25 8.62 58.12 2.00 0.1100 0.016 2.00 0.25 8.92 60.96 I 2.00 0.1200 0.016 2.00 0.24 9.19 63.67 2.00 0.0100 0.016 3.00 0.55 4.31 18.38 2.00 0.0200 0.016 3.00 0.46 5.52 25.99 2.00 0.0300 0.016 3.00 0.41 6.37 31.84 I 2.00 0.0400 0.016 3.00 0.39 7.05 36.76 2.00 0.0500 0.016 3.00 0.37 7.63 41.10 2.00 0.0600 0.016 3.00 0.35 8.13 45.02 I 2.00 0.0700 0.016 3.00 0.34 8.59 48.63 2.00 0.0800 0.016 3.00 0.33 9.00 51.99 2.00 0.0900 0.016 3.00 0.32 9.38 55.14 I 2.00 0.1000 0.016 3.00 0.31 9.73 58.12 2.00 o .1100 0.016 3.00 0.30 10.06 60.96 2.00 0.1200 0.016 3.00 0.30 10.38 63.67 2.00 0.0100 0.016 4.00 0.63 4.68 18.38 I 2.00 0.0200 0.016 4.00 0.53 6.00 25.9' 2.00 0.0300 0.016 4.00 0.48 6.93 31.84 2.00 0.0400 0.016 4.00 0.45 7.67 36.76 I I Open Channel Flow Module, Version 3.~1 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I \.. I I Page 3 of 4 I VARIABLE VARIABLE COMPUTED COMPUTED COMPUTED --------- ------------------------------------ --------- ------------------------------------ I Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' cfs ft fps Full ft/ft ds ------------------------------------------------------------------- ------------------------------------------------------------------- I 2.00 0.0500 0.016 4.00 0.42 8.30 41.10 2.00 0.0600 0.016 4.00 0.40 8.85 45.02 2.00 0.0100 0.016 4.00 0.39 9.35 48.63 I 2.00 0.0800 0.016 4.00 0.38 9.80 51.99 2.00 0.0900 0.016 4.00 0.36 10.21 55.14 2.00 0.1000 0.016 4.00 0.36 10.60 58.12 I 2.00 0.1100 0.016 4.00 0.35 10.96 60.96 2.00 0.1200 0.016 4.00 0.34 11.30 63.61 2.00 0.0100 0.016 5.00 0.11 4.98 18.38 2.00 0.0200 0.016 5.00 0.59 6.39 25.99 I 2.00 0.0300 0.016 5.00 0.54 1.39 31.84 2.00 0.0400 0.016 5.00 0.50 8.18 36.16 2.00 0.0500 0.016 5.00 0.41 8.86 41.10 I 2.00 0.0600 0.016 5.00 0.45 9.45 45.02 2.00 0.0100 0.016 5.00 0.43 9.98 48.63 2.00 0.0800 0.016 5.00 0.42 10.46 51.99 2.00 0.0900 0.016 5.00 0.41 10.91 55.14 I 2.00 0.1000 0.016 5.00 0.40 11.32 58.12 2.00 0.1100 0.016 5.00 0.39 11.11 60.96 2.00 0.1200 0.016 5.00 0.38 12.01 63.61 I 2.00 0.0100 0.016 6.00 0.19 5.23 18.38 2.00 0.0200 0.016 6.00 0.65 6.13 25.99 2.00 0.0300 0.016 6.00 0.59 1.18 31.84 I 2.00 0.0400 0.016 6.00 0.55 8.62 36.16 2.00 0.0500 0.016 6.00 0.52 9.34 41.10 2.00 0.0600 0.016 6.00 0.49 9.96 45.02 2.00 0.0100 0.016 6.00 0.47 10.52 48.63 I 2.00 0.0800 0.016 6.00 0.46 11.03 51.99 2.00 0.0900 0.016 6.00 0.45 11.50 55.14 2.00 0.1000 0.016 6.00 0.43 11.94 58.12 I 2.00 0.1100 0.016 6.00 0.42 12.35 60.96 2.00 0.1200 0.016 6.00 0.41 12.14 63.61 2.00 0.0100 0.016 1.00 0.86 5.45 18.38 I 2.00 0.0200 0.016 1.00 0.11 1.02 25.99 2.00 0.0300 0.016 1.00 0.64 8.13 31.84 2.00 0.0400 0.016 1.00 0.59 9.01 36.16 2.00 0.0500 0.016 1.00 0.56 9.16 41.10 I 2.00 0.0600 0.016 1.00 0.53 10.41 45.02 2.00 0.0100 0.016 1.00 0.51 11.00 48.63 2.00 0.0800 0.016 1.00 0.50 11.54 51.99 I I Open Channel Flow Module, Version 3.11 (c) Haestad Methods. Inc. * 31 Brookside Rd * waterbury, ct 06108 I I I Page 4 of 4 I VARIABLE VARIABLE COMPUTED COMPUTED COMPUTED --------- ------------------------------------ --------- ------------------------------------ Diameter Channel Mannings Discharge Depth Velocity Capacity I ft Slope 'n' cfs ft fps Full ft/ft cfs ------------------------------------------------------------------- ------------------------------------------------------------------- I 2.00 0.0900 0.016 7.00 0.48 12.03 55.14 2.00 0.1000 0.016 7.00 0.47 12.49 58.12 2.00 0.1100 0.016 7.00 0.46 12.92 60.96 I 2.00 0.1200 0.016 7.00 0.45 13.32 63.67 2.00 0.0100 0.016 8.00 0.92 5.65 18.38 2.00 0.0200 0.016 8.00 0.76 7.28 25.99 2.00 0.0300 0.016 8.00 0.68 8.44 31.84 I 2.00 0.0400 0.016 8.00 0.63 9.36 36.76 2.00 0.0500 0.016 8.00 0.60 10.14 41.10 2.00 0.0600 0.016 8.00 0.57 10.82 45.02 I 2.00 0.0700 0.016 8.00 0.55 11. 43 48.63 2.00 0.0800 0.016 8.00 0.53 11.99 51.99 2.00 0.0900 0.016 8.00 0.51 12.50 55.14 2.00 0.1000 0.016 8.00 0.50 12.98 58.12 I 2.00 0.1100 0.016 8.00 0.49 13.43 60.96 2.00 0.1200 0.016 8.00 0.48 13.85 63.67 2.00 0.0100 0.016 9.00 0.99 5.82 18.38 I 2.00 0.0200 0.016 9.00 0.81 7.52 25.99 2.00 0.0300 0.016 9.00 0.73 8.72 31.84 2.00 0.0400 0.016 9.00 0.67 9.67 36.76 I 2.00 0.0500 0.016 9.00 0.64 10.48 41.10 2.00 0.0600 0.016 9.00 0.61 11.19 45.02 2.00 0.0700 0.016 9.00 0.58 11.82 48.63 2.00 0.0800 0.016 9.00 0.56 12.40 51.99 I 2.00 0.0900 0.016 9.00 0.55 12.93 55.14 2.00 0.1000 0.016 9.00 0.53 13.43 58.12 2.00 0.1100 0.016 9.00 0.52 13.89 60.96 I 2.00 0.1200 0.016 9.00 0.51 14.33 63.67 2.00 0.0100 0.016 10.00 1.05 5.97 18.38 2.00 0.0200 0.016 10.00 0.86 7.73 25.99 I 2.00 0.0300 0.016 10.00 0.77 8.97 31.84 2.00 0.0400 0.016 10.00 0.71 9.96 36.76 2.00 0.0500 0.016 10.00 0.67 10.79 41.10 2.00 0.0600 0.016 10.00 0.64 11.53 45.02 I 2.00 0.0700 0.016 10.00 0.62 12.18 48.63 2.00 0.0800 0.016 10.00 0.59 12.78 51.99 2.00 0.0900 0.016 10.00 0.58 13.33 55.14 I 2.00 0.1000 0.016 10.00 0.56 13.84 58.12 2.00 0.1100 0.016 10.00 0.55 14.32 60.96 2.00 0.1200 0.016 10.00 0.54 14.77 63.67 I I Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I ----------- I I ~ I I I I I I I I I I I I I I I I I Page 1 of 4 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: HOME DEPOT Description: BROW DITCH CAPACITY Solve For Actual Depth Given Constant Data; Diameter. . . . . . . . . . . Mannings n..... .... 2.00 -reo ~) I -1:n..(2. ~...~ . ",O.OICI"'1 ~ Q.OI ~V,J(rl2:.. Variable Input Data Slope Discharge Minimum Maximum Increment By ------- ------- ------------ ------- ------- ------------ 0.0100 0.1000 0.0100 1.00 10.00 1.00 ------------------- ------------------- -- !["'" I '01 ; ~ co ... ~ ... , 24" min 3" 470.C.2000 concrete or 3" 2500 p~. air placed concrete with JJ>"xlW' 17 gage stucco netting. ~l " 'e BROW DITCH TYPE B Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I I ,- Page 2 of 4 I VARIABLE VARIABLE COMPUTED COMPUTED COMPUTED I --------- ------------------------------------ --------- ------------------------------------ Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' cfs ft fps Full I ft/ft cfs ------------------------------------------------------------------- ------------------------------------------------------------------- 2.00 0.0100 0.013 1.00 0.29 3.62 22.62 I 2.00 0.0200 0.013 1.00 0.24 4.61 31.99 2.00 0.0300 0.013 1.00 0.22 5.32 39.18 2.00 0.0400 0.013 1.00 0.21 5.88 45.24 2.00 0.0500 0.013 1.00 0.19 6.35 50.59 I 2.00 0.0600 0.013 1.00 0.19 6.77 55.41 2.00 0.0700 0.013 1.00 0.18 7.15 59.85 2.00 0.0800 0.013 1.00 0.17 7.49 63.99 I 2.00 0.0900 0.013 1.00 0.17 7.80 67.87 2.00 0.1000 0.013 1.00 0.17 8.09 71. 54 2.00 0.1100 0.013 1.00 0.16 8.37 75.03 I 2.00 0.0100 0.013 2.00 0.40 4.44 22.62 2.00 0.0200 0.013 2.00 0.34 5.67 31.99 2.00 0.0300 0.013 2.00 0.31 6.54 39.18 2.00 0.0400 0.013 2.00 0.29 7.24 45.24 I 2.00 0.0500 0.013 2.00 0.27 7.82 50.59 2.00 0.0600 0.013 2.00 0.26 8.34 55.41 2.00 0.0700 0.013 2.00 0.25 8.80 59.85 I 2.00 0.0800 0.013 2.00 0.24 9.22 63.99 2.00 0.0900 0.013 2.00 0.24 9.61 67.87 2.00 0.1000 0.013 2.00 0.23 9.97 71.54 2.00 0.1100 0.013 2.00 0.22 10.31 75.03 I 2.00 0.0100 0.013 3.00 0.49 5.00 22.62 2.00 0.0200 0.013 3.00 0.41 6.39 31. 99 2.00 0.0300 0.013 3.00 0.37 7.37 39.18 I 2.00 0.0400 0.013 3.00 0.35 8.16 45.24 2.00 0.0500 0.013 3.00 0.33 8.83 50.59 2.00 0.0600 0.013 3.00 0.32 9.41 55.41 I 2.00 0.0700 0.013 3.00 0.30 9.94 59.85 2.00 0.0800 0.013 3.00 0.29 10.41 63.99 2.00 0.0900 0.013 3.00 0.29 10.85 67.87 2.00 0.1000 0.013 3.00 0.28 11. 26 71.54 I 2.00 0.1100 0.013 3.00 0.27 11. 64 75.03 2.00 0.0100 0.013 4.00 0.57 5.43 22.62 2.00 0.0200 0.013 4.00 0.48 6.95 31. 99 I 2.00 0.0300 0.013 4.00 0.43 8.02 39.18 2.00 0.0400 0.013 4.00 0.40 8.88 45.24 2.00 0.0500 0.013 4.00 0.38 9.61 50.59 1 2.00 0.0600 0.013 4.00 0.36 10.25 55.41 2.00 0.0700 0.013 4.00 0.35 10.82 59.85 I. Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 1 I I Page 3 of 4 I i I VARIABLE VARIABLE COMPUTED COMPUTED COMPUTED --------- ------------------------------------ --------- ------------------------------------ Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' cfs ft fps Full I ft/ft cfs ------------------------------------------------------------------- ------------------------------------------------------------------- 2.00 0.0800 0.013 4.00 0.34 11. 34 63.99 I 2.00 0.0900 0.013 4.00 0.33 11.82 67.87 2.00 0.1000 0.013 4.00 0.32 12.27 71. 54 2.00 0.1100 0.013 4.00 0.31 12.69 75.03 2.00 0.0100 0.013 5.00 0.64 5.78 22.62 I 2.00 0.0200 0.013 5.00 0.53 7.41 31. 99 2.00 0.0300 0.013 5.00 0.48 8.56 39.18 2.00 0.0400 0.013 5.00 0.45 9.48 45.24 I 2.00 0.0500 0.013 5.00 0.42 10.26 50.59 2.00 o .0600 0.013 5.00 0.41 10.94 55.41 2.00 0.0700 0.013 5.00 0.39 11.56 59.85 I 2.00 0.0800 0.013 5.00 0.38 12.11 63.99 2.00 0.0900 0.013 5.00 0.37 12.63 67.87 2.00 0.1000 0.013 5.00 0.36 13.11 71.54 2.00 0.1100 0.013 5.00 0.35 13.55 75.03 I 2.00 0.0100 0.013 6.00 0.70 6.08 22.62 2.00 0.0200 0.013 6.00 0.59 7.81 31. 99 2.00 0.0300 0.013 6.00 0.53 9.02 39.18 I 2.00 0.0400 0.013 6.00 0.49 10.00 45.24 2.00 0.0500 0.013 6.00 0.47 10.82 50.59 2.00 0.0600 0.013 6.00 0.44 11. 54 55.41 I 2.00 0.0700 0.013 6.00 0.43 12.19 59.85 2.00 0.0800 0.013 6.00 0.41 12.78 63.99 2.00 0.0900 0.013 6.00 0.40 13.32 67.87 2.00 0.1000 0.013 6.00 0.39 13.83 71.54 I 2.00 0.1100 0.013 6.00 0.38 14.30 75.03 2.00 0.0100 0.013 7.00 0.76 6.35 22.62 2.00 0.0200 0.013 7.00 0.64 8.16 31. 99 I 2.00 0.0300 0.013 7.00 0.57 9.43 39.18 2.00 0.0400 0.013 7.00 0.53 10.45 45.24 2.00 0.0500 0.013 7.00 0.50 11. 32 50.59 2.00 0.0600 0.013 7.00 0.48 12.07 55.41 I 2.00 0.0700 0.013 7.00 0.46 12.75 59.85 2.00 0.0800 0.013 7.00 0.45 13.37 63.99 2.00 o . 0900 0.013 7.00 0.43 13.94 67.87 I 2.00 0.1000 0.013 7.00 0.42 14.47 71.54 2.00 0.1100 0.013 7.00 0.41 14.96 75.03 2.00 0.0100 0.013 8.00 0.82 6.58 22.62 I 2.00 0.0200 0.013 8.00 0.68 8.47 31.99 2.00 0.0300 0.013 8.00 0.61 9.80 39.18 I Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I I I I I I I I I I I I I I I I I I I I Page 4 of 4 VARIABLE VARIABLE COMPUTED COMPUTED COMPUTED --------- ------------------------------------ --------- ------------------------------------ Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' cfs ft fps Full ft/ft cfs ------------------------------------------------------------------- ------------------------------------------------------------------- 2.00 0.0400 0.013 8.00 0.57 10.86 45.24 2.00 0.0500 0.013 8.00 0.54 11. 76 50.59 2.00 0.0600 0.013 8.00 0.51 12.55 55.41 2.00 0.0700 0.013 8.00 0.49 13.25 59.85 2.00 0.0800 0.013 8.00 0.48 13.90 63.99 2.00 0.0900 0.013 8.00 0.46 14.49 67.87 2.00 0.1000 0.013 8.00 0.45 15.04 71. 54 2.00 0.1100 0.013 8.00 0.44 15.56 75.03 2.00 0.0100 0.013 9.00 0.88 6.79 22.62 2.00 0.0200 0.013 9.00 0.73 8.75 31.99 2.00 0.0300 0.013 9.00 0.65 10.13 39.18 2.00 0.0400 0.013 9.00 0.60 11.23 45.24 2.00 0.0500 0.013 9.00 0.57 12.16 50.59 2.00 0.0600 0.013 9.00 0.55 12.98 55.41 2.00 0.0700 0.013 9.00 0.52 13.71 59.85 2.00 0.0800 0.013 9.00 0.51 14.38 63.99 2.00 0.0900 0.013 9.00 0.49 15.00 67.87 2.00 0.1000 0.013 9.00 0.48 15.57 71. 54 2.00 0.1100 0.013 9.00 0.47 16.10 75.03 2.00 0.0100 0.013 10.00 0.93 6.98 22.62 2.00 0.0200 0.013 10.00 0.77 9.00 31. 99 2.00 0.0300 0.013 10.00 0.69 10.43 39.18 2.00 0.0400 0.013 10.00 0.64 11.57 45.24 2.00 0.0500 0.013 10.00 0.60 12.53 50.59 2.00 0.0600 0.013 10.00 0.58 13.38 55.41 2.00 0.0700 0.013 10.00 0.55 14.13 59.85 2.00 0.0800 0.013 10.00 0.53 14.82 63.99 2.00 o .0900 0.013 10.00 0.52 15.46 67.87 2.00 0.1000 0.013 10.00 0.51 16.05 71.54 2.00 0.1100 0.013 10.00 0.49 16.60 75.03 Open Channel Flow Module, Version 3.21 (cl Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I I I I I I I I I I I I I I I I I I I Page 1 of 2 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow worksheet Name: HOME DEPOT Description: BROW DITCH CAPACITY Solve For Actual Depth Given Constant Data; Diameter..... ...... 3.26 Mannings n... ...... 0.016 Variable Input Data Minimum Maximum Increment By ------------------- ------- .------ ------------ ------------------- ------- ------- ------------ Slope 0.0100 0.0500 0.0100 Discharge 1.00 5.00 1.00 = = 'i; = " f! . Q, " -;; T min 3. min 6" ,', - "1' ~~G"~ lM or fill .o~~~ .3" 470-C.2DDD concrete or "/ 3" 2500 psi. air placed conC"lI with l~"xl~" 17 gage. stucco neni",. = '5 N TERRACE DITCH TYPE D Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside.~d * Waterbury, ct 06708 I I I I I I I I I I I I I I I I I I I \~ Page 2 of 2 VARIABLE VARIABLE COMPUTED COMPUTED COMPUTED --------- ------------------------------------ --------- ------------------------------------ Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' cfs ft fps Full ft/it cfs ------------------------------------------------------------------- ------------------------------------------------------------------- 3.26 0.0100 0.016 1.00 0.28 2.93 67.64 3.26 0.0200 0.016 LOO 0.23 3.73 95.66 3.26 0.0300 0.016 1.00 0.21 4.30 117.l5 3.26 0.0400 0.016 1.00 0.20 4.75 135.2 8 3.26 0.0500 0.016 1.00 0.19 5.13 151.24 3.26 0.0100 0.016 2.00 0.38 3.61 67.64 3.26 0.0200 0.016 2.00 0.33 4.60 95.66 3.26 0.0300 0.016 2.00 0.30 5.30 117.l5 3.26 0.0400 0.016 2.00 0.28 5.86 135.28 3.26 0.0500 0.016 2.00 0.26 6.33 151.24 3.26 0.0100 0.016 3.00 0.47 4.08 67.64 3.26 0.0200 0.016 3.00 0.40 5.20 95.66 3.26 0.0300 0.016 3.00 0.36 5.99 117.l5 3.26 0.0400 0.016 3.00 0.34 6.62 135.28 3.26 0.0500 0.016 3.00 0.32 7.16 151.24 3.26 0.0100 0.016 4.00 0.54 4.44 67.64 3.26 0.0200 0.016 4.00 0.45 5.66 95.66 3.26 0.0300 0.016 4.00 0.41 6.53 117 .15 3.26 0.0400 0.016 4.00 0.38 7.22 135.28 3.26 0.0500 0.016 4.00 0.36 7.81 151.24 3.26 0.0100 0.016 5.00 0.60 4.74 67.64 3.26 0.0200 0.016 5.00 0.51 6.05 95.66 3.26 0.0300 0.016 5.00 0.46 6.98 117.l5 3.26 0.0400 0.016 5.00 0.43 7.72 135.28 3.26 0.0500 0.016 5.00 0.41 8.35 151.24 Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I I I I I I I I I I I I I I I I I I I Page 1 of 2 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: HOME DEPOT Description: TERRACE DRAINAGE DITCH TABULATION Solve For Actual Depth Given Constant Data; Diameter. . . . . . . . . . . Mannings n......... _3.26 OS.-.o=-.I,W5 ~. II _ 1"T"1"-" ce;,I\/\~~ Minimum Maximum Increment By Variable Input Data ------------------- ------------------- ------- ------- ------- ------- ------------ ------------ Slope Discharge 0.0100 1.00 0.0500 5.00 0.0100 1.00 Q C :;; C ~ e i!. " ... l., . .. .:" .3" 470-C.2000 concrete or / 3" 2500 psi. air placed concrat. with lW'xl%" 17 gage stucco netting. 2' min 3' min 6" ~f /GI.r. ~-~ , , , , c 'IE TERRACE DITCH TYPE 0 Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I I I I I I I I I I I I I I I I I I I Page 2 of 2 VARIABLE VARIABLE COMPUTED COMPUTED COMPUTED --------- ------------------------------------ --------- ------------------------------------ Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' cfs ft fps Full ft/ ft cfs ------------------------------------------------------------------- ------------------------------------------------------------------- 3.26 0.0100 0.013 1.00 0.25 3.39 83.25 3.26 0.0200 0.013 1.00 0.21 4.31 117.73 3.26 0.0300 0.013 1.00 0.19 4.96 144.19 3.26 0.0400 0.013 1.00 0.18 5.49 166.50 3.26 0.0500 0.013 1.00 0.17 5.93 186.15 3.26 0.0100 0.013 2.00 0.35 4.17 83.25 3.26 0.0200 0.013 2.00 0.30 5.32 117.73 3.26 0.0300 0.013 2.00 0.27 6.12 144.19 3.26 o .0400 0.013 2.00 0.25 6.77 166.50 3.26 0.0500 0.013 2.00 0.24 7.32 186.15 3.26 0.0100 0.013 3.00 0.42 4.71 83.25 3.26 0.0200 0.013 3.00 0.36 6.01 117.73 3.26 0.0300 0.013 3.00 0.33 6.92 144.19 3.26 0.0400 0.013 3.00 0.30 7.65 166.50 3.26 0.0500 0.013 3.00 0.29 8.27 186.15 3.26 0.0100 0.013 4.00 0.49 5.14 83.25 3.26 0.0200 0.013 4.00 0.41 6.55 117.73 3.26 0.0300 0.013 4.00 0.37 7.55 144.19 3.26 0.0400 0.013 4.00 0.35 8.35 166.50 3.26 0.0500 0.013 4.00 0.33 9.02 186.15 3.26 0.0100 0.013 5.00 0.54 5.49 83.25 3.26 0.0200 0.013 5.00 0.46 7.00 117.73 3.26 0.0300 0.013 5.00 0.42 8.07 144.19 3.26 0.0400 0.013 5.00 0.39 8.93 166.50 3.26 0.0500 0.013 5.00 0.37 9.65 186.15 Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I I I I I I I I I I I I I I I I I I I Page 1 of 2 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: HOME DEPOT Description: BROW DITCH CAPACITY Solve For Actual Discharge Given Constant Data; Diameter.... ....... 4.00 Mannings n..... .... 0.016 Variable Input Data Minimum Maximum Increment By ------------------- ------- ------- ------------ ------------------- ------- ------- ------------ Slope 0.0100 0.0500 0.0100 Depth 0.50 2.00 0.50 i[1 " 40/1 6" CJ min U ~E~ .~:~ ...... " 3" 470.C.2000 concrete or / 3" 2500 psi. air placed concrete , w;th l%"xlY2" 17 gage stucco . nett~ftt> ~c BROW DITCH TYPE S Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I I I I I I I I I I I I I I I I I I I Page 2 of 2 VARIABLE VARIABLE COMPUTED COMPUTED --------- --------------------------- --------- --------------------------- Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' cfs ft fps Full ft/ft cfs ------------------------------------------------------------------- ------------------------------------------------------------------- 4.00 0.0100 0.016 3.89 0.50 4.29 116.71 4.00 0.0200 0.016 5.50 0.50 6.06 165.05 4.00 0.0300 0.016 6.73 0.50 7.43 202.15 4.00 0.0400 0.016 7.77 0.50 8.57 233.42 4.00 0.0500 0.016 8.69 0.50 9.59 260.97 4.00 0.0100 0.016 15.99 1.00 6.51 116.71 4.00 0.0200 0.016 22.61 1.00 9.20 165.05 4.00 0.0300 0.016 27.69 1.00 11.27 202.15 4.00 0.0400 0.016 31.97 1.00 13 .01 233.42 4.00 0.0500 0.016 35.75 1.00 14.55 260.97 4.00 0.0100 0.016 34.92 1.50 8.11 116.71 4.00 0.0200 0.016 49.38 1.50 11. 47 165.05 4.00 0.0300 0.016 60.48 1.50 14.05 202.15 4.00 0.0400 0.016 69.84 1.50 16.22 233.42 4.00 0.0500 0.016 78.08 1.50 18.14 260.97 4.00 0.0100 0.016 58.36 2.00 9.29 116.71 4.00 0.0200 0.016 82.53 2.00 13.13 165.05 4.00 0.0300 0.016 101.07 2.00 16.09 202.15 4.00 0.0400 0.016 116 . 71 2.00 18.58 233.42 4.00 0.0500 0.016 130.49 2.00 20.77 260.97 Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I I I I I I I I I I I I I I I I I I- I Page 1 of 2 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: HOME DEPOT Description: BASIN "D" BROW DITCH ANALYSIS Solve For Actual Discharge Given Constant Data; Diameter.......... . Mannings n......... ~ Variable Input Data Minimum Maximum Increment By ------------------- ------------------- ------- ------- ------- ------- ------------ ------------ Slope Depth 0.0100 0.50 0.0500 2.00 0.0100 0.50 5" .. ;,:,. .....'. 3" 470.C.2000 concrel. or 3" 2500 psi, air placed concrete with lW'xlW' 17 gage stucco netting. BROW DITCH TYPE B Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I I I I I I I I I I I I I I I I I I I Page 2 of 2 VARIABLE VARIABLE COMPUTED COMPUTED --------- --------------------------- --------- --------------------------- Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' cfs ft fps Full ft/ft cfs ------------------------------------------------------------------- ------------------------------------------------------------------- 4.00 0.0100 0.013 4.78 0.50 5.28 143.64 4.00 0.0200 0.013 6.77 0.50 7.46 203.14 4.00 0.0300 0.013 8.29 0.50 9.14 248.80 4.00 0.0400 0.013 9.57 0.50 10.55 287.29 4.00 0.0500 0.013 10.70 0.50 11. 80 321.20 4.00 0.0100 0.013 19.68 1.00 8.01 143.64 4.00 0.0200 0.013 27.83 1.00 11. 33 203.14 4.00 0.0300 0.013 34.08 1.00 13.87 248.80 4.00 0.0400 0.013 39.35 1. 00 16.02 287.29 4.00 0.0500 0.013 44.00 1.00 17.91 321. 20 4.00 0.0100 0.013 42.98 1. 50 9.98 143.64 4.00 0.0200 0.013 60.78 1. 50 14.12 203.14 4.00 0.0300 0.013 74.44 1. 50 17.29 248.80 4.00 0.0400 0.013 85.95 1. 50 19.97 287.29 4.00 0.0500 0.013 96.10 1. 50 22 .33 321.20 4.00 0.0100 0.013 71.82 2.00 11. 43 143.64 4.00 0.0200 0.013 101. 57 2.00 16.17 203.14 4.00 0.0300 0.013 124.40 2.00 19.80 248.80 4.00 0.0400 0.013 143.64 2.00 22.86 287.29 4.00 0.0500 0.013 160 . 60 2.00 25.56 321. 20 Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I I I I I I I I I I I I II I I I I I I ~ ~~cgLra@[M LrWYJ@ ONSllE DR~'NAGE ... S1:m~I o HH ~<IIJC1N ... .. V:J 'SBHupug: lodaQ allloHal[1 d (! 0 ~ <) iifTs N v H NI1SnV -:j-~TT- OlOlr9~ IMQ) U:~u.v:l 00'11(] "M ()lNO\.N'f".)S-NlVlIt;ro:JI. N9!'iJ(JNWK1 lo'I'lJ:)lj,,)INloN':~ N'..';J(l!l(ll{JlJ~.<WJl~l .'''''''''''''Iri,PJflJ:JJIJ<I:)tj'{ OOl 01 SNISV8 3~VNI\fHO ( I I " I I I I I I I I I I I I I I I I I ONSITE HYDR2j-OGY The hydrology analysis for this report is based on County of San Diego DesiQn & Procedure Manual for Flood Control and Draina!;le using the rational method. A 100- year frequency storm is used for all calcualtions. For the purpose of this study a time of concentration (tc) of 5 minutes has been assumed for all onsite drainage basins. County of San Diego isopluvial charts for the lOa-year, 6-hour and the lOa-year, 24- hour storms are used to determine the adjusted 6 hour precipitation factor of 2.7 inches. From these values an intensity factor (I) of 7.11 inches per hour was derived. The soil group classification is assumed to be D. A runoff coefficient (C) of .9 has been assigned for the developed portion of the Home Depot site per County Appendix IX. Selected frequency storm = Time of concentraion (tc) = Intensity (I) = Soil type = Runoff coefficient (C) = 100 year 5 minutes 7.11 in/hr. "0" 0.9 The peak runoff for each sub-basin using the equation O=CIA is shown below. Basin Area (A) 0100 G1 0.90 acs 5.8 cfs G2 2.07 acs 13.2 cfs G3 0.15 acs 1.0cfs G4 0.12 acs 0.8 cfs G5 0.26 acs 1.7 cfs G6 0.41 acs 2.6 cfs G7 0.21 acs 1.3 cfs G8 0.24 acs 1.5 cfs G9 0.29 acs 1.9 cfs Hl 2.02 acs 12.9 cfs H2 1.52 acs 9.7 cfs H3 1 .28 acs 8.2 cfs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I.. I .~ THE ENCINITAS HOME DEPOT ON~ITE HYDRAULICl;i The hydraulic analysis for this precise grading plan involves confirming the capacity of the inlets and pipes as well as an analysis of the diverter structures directing flows to the oil and sand interceptor tanks. The purpose of the diverter structures is to direct the "first flush" runoff to the oil and sand interceptor tanks prior to releasing storm runoff directly into the nuisance water retention and treatment basins. This is accomplished by placing the primary outlet pipe invert above the invert of the smaller discharge lines to the oil and sand interceptor tanks. The elevation differential takes into account inlet losses for the pipes. Each diverter structure is individually evaluated based on the calculated inlet and outlet flows. Extra depth has been added to the diverter structures to prevent plugging of the smaller discharge pipes. This added depth will act as an initial sand and silt trap. The trapped sand and silt will be removed periodically when the oil and sand interceptor tanks are cleaned. While some of the of oily pollutants will be trapped by the oil and sand interceptors, the primary treatment of these pollutants is intended to take place in the nuisance water treatment basins. The basic function of the oil and sand interceptor tanks is to reduce sediment buildup in the nuisance water treatment basins. 1 .' ;,;:..':.'). ,\ ,. '. , .,;: . cI ,~ :t;,~ ~.. , ,~ . " ;;~::' ':"'.- ~,.. . :,) .' " 1 ., 1 1 ! \ ,.1.(' , . i, . .. " " .1 , . '.1 " .1 .. , , "1 . :" ;. :", /. l . l;' .' -, .:.: '. '.~ . II: ... " .. ... :l: <( Q; .' . ....;.: JS -','~ . . ...,-: ./..<: ',' r.Tt\~ ,:'. . f" · . '':':'0 ....,,)0 . ~O ..". . : ,.. -r.lO , I --,1-" r-::: _ ~:..~.:: 11 .........--.-.-.1 "0___._',___1., 1 ---::= ,; wo ji .. :--. - - .-- '-" .' --... ... j ~.. . . ---.. -- ----- .' .',:" ~;;.~.l ,. , , . ~.. . .I;~' . ,~.; '. . !O 00 ,~ ..: U z "JO C' f"- -r-- . l.o-Ie . , ~. 7 ," /' -11', ,:~:~',:';"'~'"' . .' .~. -., . ,," ,:".. '.... '" u .r.: '. ~ ''0 \1'. i:i . , ..t', 1. . " a . - ., , ",~ - . ,. . ". f.:.;; I .., 0.' ;.. ", .' . . ,.;....,.. . \" J '.,. , ':. ,eN .0001 ,hel f'CCO' .0010. .000. t' 0 z , .00.1 0 .", . U .OO~.OOO. 0 ., , ci , ,/" CIl . .oj' 0..0 . /' a: .CO .... N /' .. N ,'0 .0010 " ~. .C~.~-';r^,,;;o /' .. .. ... :,J31:: a: ... 0 . ... ~ . .0 ... . /~ fOOOO 0. .. ... .O):)t) "-:.01"0 0 .... ..J /' . . . .q... . . III 0 ,I '. ... 0 o 1."__ .,~ .' o . ,..... ... ~ ,'600 ..". > -. 'oGO . flIMIPLE:: riND 110 10. ., ':'. I GI\'fN OISClll.to,;E Q. 4.4 c.I... I'RIC11():~ ft.:T('fI n . 0.01) SLOPE OF 0.(".114' PER rOOT O:AMETER 15 Ir~CIIES 1.1/0 VELOCITY Of ~,5 fT. PER SECOND. BY fOLLCWllNG CASHED LINE . . .'00 o .'~Ol- . . -, CIl ... :I: o Z Z Z Ci a: o ... o .". (I.. :" :' ," . ~ :'~ .....;. .<'f.. .~o~ .0001 .CoOOI ..... " .0600 ,.0800 -. JOoo 10 if - u ) .It ,. .. I. ,. II " ~:, .1Ol;, J.;~;:~ 1I ~. I t .~o;.~. -1. r~~o ',r.I. ',~'" -r_, :":0 . '''~'^''~1 o ., r--.----T" - -----::3 .-- -. --:J .-.-----..- . .--- ft . 0,0'3 011 CI. ;.-22 . .. ~. .. -..--..-..- ---...--- '. ..j . -~ .-i '4 . ~~..;.::~';: ~ .". ";::.~~~~~I:. .'~ ...... ";",.' .:/ ,":"4 " , . . .... ~ t .] ... ) .1 .y .. ;- .. . ,. ,~ 1" t 1 7 ;: " .~ ',' , .}t ~ -1 ':i .J ) .~ '- '/ '~ ., ... ~ '," ~ f- '!: ". '.: ". 1 1 1- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~ ci z ::;; W I- U1 >- U1 CY 0 I- 0.. w U CY W I- Z -' 0 0 0 0 ~ Cl Z 0 < 0 0 U1 0 0 0 0 0 U 0 u 0 a iJ --- ---- ---- Ii [i.:J 0'4;'::':'~ ,y~d: l;-;'>:~:~" '>;;';;,><l >>;,"~~.:.:,' .::;;,:~:::,:.. :> co ';':'i ~rl:::~li;~~~:~l :>~;~., ~;:::,::::{l 1:::J t::J .;.<.;,.:,......,.~:.;.N:.;.... :: , - ~~ .....1' ~~ :;.<::::l (J) ::. - - ,', > .::' :::,:~;:;. . .;, ,~. i~::% .t;./:;~~:.~.,J: ..;.;...... ;.; 1..::;.;~ ~:;.;.:;:-' .;:" ~ ~ " ~ ::t: (Jl I- Z < I- (Jl Z 0 U w CY C) (Jl I < W ........ Z I- Z ~ < Z CY If) a ~ If) 0 If) ..t w v- a ~ /I (Jl 0 -' /I /I -' 0 I-U 0 I U (Jl I- Z < I- (Jl Z 0 U w CY C) (Jl I < w ........ I- Z Z ~ < z ~ CY ~ ~ a r-: If) Ol W 0 /I I- (Jl /I /I 0 Z I-U 0 0 u = 1 1 1'- 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 1 1 /t .;t- ...... ,./, '..~ .}~ ,,' 0 "<t ..' , '" , , ~ --- I"") .., N d (f) z XO"B' . ..!il .&rZZ '" 0 (J') l- s.:) r'z - DID Io! I 0 Z S.:l "S - DOLO ~ I z <t: I I- ::;;: (f) W Z I- 0 (J') >- 0 ~ (J') Cl:: cc: w (f) I 0 0 <t: w " l- I- Z ~, 0 a.. z :::J w N U <t: Z ~ ",.., ..' cc: Cl:: ~ ~ ~'Or ~ '\, d w 0 " cr. .. , z I- , . '" Z L!') 01 ~c:..~..... Io! W 0 II .....-~.., ~ I- "' ---' II %~~ 0 (f) II "ill> Z ~ 0 I- 0 Cl Z <( (J') ~ I I r-A 3' - D" ~ ',s"r- I I I I .' Ci :it .. ... ... I t Slope floor 12: 1 towards outlet. ELEVATION t.-A I I IS'~ r- I I I I . Ci :it .. ... ... I 2'.11" single 5' . 0" double 7' . 0" triple I SECTION A-A I I FlEea..ENDED IV THE SA,. DIEGO ""GlON"1. STMO".OS CQllUIl'nEE x . e w = .!!! - i > #4 lli'12" both way. ( ) NOTES 1. See Scanderd Drawing 0.11 for additional notes and decailL 2. When V 'x..ed. 4', step. shall be installed. See Standard Drawing 0.11 for detail.. 3. Maintain 1 1/2" clear spacing between reinforcing and surface. 4. Increase in allowable depth subject tp approval by Ag,ncy. 5. Section A-A shows 3 sizes and shall not imply that an interior wall is to be built for the structures with double or tripl. frame and gratl. S. Exposed edges of concrete shall be rounded with a radius of 112". 7. D,signate types as follows: Single G.!, Double 'G.2 and Triple G.l 8. Only 'nd bearing grate. shall be usad. See Std. Drawing 0.15. For frame and grate details, see dwgs. 0.13, 0.15. is"r- "f Round,d pipe ,nds See drawing 0-61 {r ~ __ " 4 iii' 12" both way.~ ' , I , I I lr: ;.JL_ ' j __: I :':~ t I I I I , , II . I I = I ~ i ! ~ Jl"" ___ ~ :~2:~ ~"i Elov shown on plans LEGEND ON PLANS I a&../df...,t....;' .:ftc.lm c......,,,...,,.. M (' [l~'Q' !;I.te SAN DIEGO REGIONAL STANDARD DRAWING Rev1sion Reference Lap DRAWING NUMBER 0-8 CA TCH BASIN. TYPE G I By Approved " "'.11. 'm.B. (J Oat. /17-1, ~ I '~-\ I ;1 II ]1 ]1 I. , . .IS I ~ ,I ~r" '1" .., ->l ~ ;:; .. oi ~' < " ,: .. .. ~ I , '( Ii r 10.." i l'llt' XI" +---.~-:~-~ ..L ~~..~:.::;=:--. ~ I --r T t".~. -:=== 1 I W 1':'===, .= I bl . -:~i .'":-~__ I I . ...~ I 0 I r--:- ----, = I .~ I . . 0 . - - P . 2 (0 + b) A.GOW : - - ......... ,'"' II' I I I I I I I 1/ /' .s.z I ctLJ JX I 7- ./" /' :- .... 4 -: loll I i i:: ! I :; % I i E,: 1......'1 . - ~ j ! .....l,'1lP .13. OH-. VI I I 0.1 I T I I! I I " I 1 HEt.OS U P TO 10." 'CU~;VEI(C!l ,,,,,,-tIES I HEAOS Ab OVe: II." !CU"Ive: (!, b l~pL I oS I H EAOS B~nV::~'l O.~e. L4, ~~A ~iFtfrIOH - SE<"TOR B OPE';lA,;"'N 151 I'~ '')'::''";'T~ I i I i I I I I : I I - i - DISC ARG PER FO,O' ;) '-I ' I I. ; ,:r .. ,j',... ",-." .... I ! ,r. ~R J,I;E Tr~ ,'Q/~). " :lIS 0.1 .. .3 ,oil. .~ .6.7 .S.iLQ 1073 02. I.T I' I ; T I I : I I I I , , I """"'-~I'I"''''H' " '. ~ .. ~ li-j- I 'l-:~' I I I I I ~ j I /1;3 : - II i i !I I ';; , I::: I ~ I ~ , = I~ '. '~ i i' i ::: I (1-t ,I I : 1/ / ,,,r I .' I '. I j 1-1.1 I T II 1/ I: ), )Ii I I o i ~ 'i. '\ "7 l-/Y'z I 3 ~ I ';;l , - I : I I I I I ~ , , I : - i : .: I I , - , ;;l I I I I 3 I i ~ I I f I I ~ I ;l : ~ ~ ~ .= - I ~ ~ ~,7,~..rl?C ,:. ?fl'":~r-f': ;-,'Al: I i I I I I Ht;RC,;:: . ;).c ~6T'''IO 20 BUREAU OF PUBLIC ROADS DIVISION .WO WASH., D.C. CAPACITY OF GRATE INLET IN SUMP WATER PONDED ON GRATE I (I~\ I I I I I I 'I "(' I I I. . I I I I , ( I I TYPE "G" INLET CAPACITY TABL!LATION BASED ON FIGURE 1073.02 AND RSD D-15 kco C.We; q I '" q :f,tc.,;,... 0 (2. 2S -- c:xJ Z lJ2p~-t-f 4_2x' ~...,;:? I . /' J ]y1 f <:"'-1(/-<- I >j_::~-0f.(. /v-/- , 'I (>7 /:/ '- lh~-7..-UJ7<-J . ,1.;1 ~~ /7'.7 INLET CAPACITY BASED ON INLET PERIMETER (WEIR) FLOW. CFS TYPE "G" INLET PEFlMETER (P) 0.30 INLET HEAD (H) 0.40 0.50 0.60 SINGLE 8.98 4.43 6.82 9.52 12.52 DOUBLE 12.06 5.94 9.15 12.79 16.81 TRIPLE 15.14 7.46 11.49 16.06 21.11 INLET CAPACITY BASED ON INLET AREA (ORACE) FLOW - CFS ....... .. u' . ~._.c ,~.-...TYPE "G" ...... AREA INLET HEAD (H) INLET (A) 0.30 0.40 0.50 0.60 SINGlE ... 5.75 NA NA . 21.83 23.92 DOUBLE 11.50 NA NA 43.67 47.84 TRIPLE 17.25 NA NA 65.50 71.75 NOTE: INLET CAPACllY FOR HEADS EXCEEDING 0.4' CANNOT BE DETERMINED PRECISELY DUE TO TURBULENCE RESULllNG FROM TRANSmON FROM WEIR FLOWTO ORFICE FLOW. 1 '1 1 1 1 1 1 1 (( 1 1 1 1 1 1 I, (, Iq 1 NO 1212 CAST IRON PARKWAY WT.- 29 :- ,1/2 NO 1212 TOP SECTION OR EXTENSION CD-W028 NO 1212 S,EEL ,~RAFE,IC .,G,RAT~ W T - 35 'J ~AVAllA8LE WITH OR GAlS, : I I ! 5.-' (HAfi7 I~//J---l NO.1212 STEEL P:'RKWA~ OR" i?A"-'C SOliD COVER.:.':::'::'::'"'::.-.. vi T: 2 i pARKWM -,~~=:;:=:::=~~'::':::-_ .... T .. -. '~RAFFI- ,:,~~,-':':-:-:-:-:':-:-:'::":--:-':::-, . ,">." >-<.' .:-_:-_--~-----'----------'._,-- . ~.,:-:.:f.~~:~~ r~~~~~~~ ~~~~::S~ '. ~;:-~~~~~.:~:.,.,' ~' ~~, "~~"', ~' I . ./ /1 0f-.../'j i , 1 SEE ,~HART ) '1 .NO 12/2 LOWER NO 1212 lOWER L"K-O SIZE VAR:ES ONE EACH WALL "'1' T SEE I CHART I i I i ) ~'"3;O 1"'''>3 / 20/ ~ "..~/> "-.....,~ "--/- 'r rap OR f: ~~ r. SECTlml HT L. S AVAI L.A8L E 6 - 104 12/2 T6 NO K-O 1212 TIO 10" 180 " 1212 TI2 12 208 " " L.OwEi'l HT.I L8S 1212 Ll2 12" /86 12!2 L 18 ! 8" 293 1212 l28 28 435 AVAILABLE W/2 5")( 10" K-O W/4 8XI2 K-O. W/4 8" X 22" K.-O. 12"X 12" CATCH BASIN WITH 4" WALLS OATE )-8-84 DWG NO NO /212 BROOKS PRODUCTS I ~ I I I I I I I I I I I I I I I ( I I BROOKS PRQO!.lCTS INLET CAPACITY TABULATIOtll INLET CAPACITY BASED ON INLET AREA (ORACE) FLOW. CFS AREA INLET HEAD (H) (A) 0.30 0.40 0.50 0.60 TYPE 1212 0.84 2.47 2.86 3.19 3.50 TRAffiC GRATE TYPE 1218 1.08 3.19 3.68 4.11 4.51 TRAffiC GRATE TYPE 1818 1.84 5.42 6.26 7.00 7.67 TRAFACGRATE TYPE 2424 3.15 9.28 10.71 11.98 13.12 TRAffiC GRATE INLET CAPACITY -A. 5.37..JH I I I I I I I I I I I I I I I I I I I PRELIMINARY DESIGN FOR THE CONTROL AND TREATMENT OF URBAN RUNOFF RESULTING FROM THE DEVELOPMENT OF THE HOME DEPOT COMMERCIAL SITE. (Updated April, 1994) DISCUSSION: The Home Depot site is proposed for development at the southeast corner of the EI Camino Real and Olivenhain Road intersection. The site is currently an open field which falls gradually toward Encinitas Creek. Encinitas Creek crosses the northerly end of the proposed commercial development. Moderately steep hillsides lie southerly of the project site. For the most part these hillsides will remain in a natural state and will be protected by an open space easement. Commercial development significantly alters the characteristics of storm runoff. Of particular concern is the degradation of the storm water quality. Large paved parking areas collect motor oil and other products associated with automobile usage. Landscaped areas contribute fertilizers and pesticides. The accumulated impacts of such contaminants can have a very detrimental affect on downstream water courses. Other less harmful materials such as silt, sand and ash tend to be transported more quickly to natural water courses across the impervious paved surfaces thereby adding to the problem of siltation of the stream beds and downstream lagoons. OBJECTIVES: There are two basic objectives to be met. The first objective is to treat the runoff from the Home Depot site to remove harmful pollutants. The second objective is to minimize the amount of silt and other solids which are deposited in Encinitas Creek as a result of the project development. APPROACH: Control of silt and other solids is a two-fold problem. The first occurs during construction when grading is in process and the ground has been disturbed. Construction related silt will be controlled through conventional desilting basins and sandbagging. Also, grading is presently proposed to be performed during the dryer season of the year. Long term control of silt and debris from the developed site will be accomplished by the use of "sand and oil interceptors" in conjunction with a routine parking lot maintenance and sweeping program. Control and treatment of oils, suspended and dissolved solids and other pollutants will be accomplished through the combined use of the sand and oil interceptors (oil/water separators) and the creation of water treatment wetland areas. This report will not I I I I I I I il I I I I I I I I I I I attempt to describe the vegetation or specific biological operation of the water treatment wetland. (See attached memo titled "HOME DEPOT SPECIFIC PLAN PROPOSED WATER TREATMENT WETLANDS PLANT PALETTE".) Rather, this report will provide the results of the hydrology and hydraulics associated with the design of the various urban runoff control and treatment facilities. BASIS OF DESIGN: 1. A 2-year 6-hour precipitation storm will be used for the basis of design for the water treatment wetland detention ponds and the sand and oil interceptor tanks. 2. A 1 DO-year 6-hour storm will be used for evaluating peak flows for storm drain systems and for the evaluation of overflow and/or by-pass systems. 3. The sand and oil interceptor tank system will be sized to accommodate the first 10 minutes (first flush) of the 2-year 6-hour storm. 4. Storm runoff from the natural hillside south of the Home Depot building will not be treated but will be collected in a separate drainage system and discharged through an appropriate energy dissipator into Encinitas Creek. 5. The "equivalent triangular hydrograph" in Figure I-C-2 of the County of San Diego Hydroloov Manual will be used to evaluate volumes for the sizing of the interceptors. (See attached "HYDROGRAPH" exhibit.) 6. The County of San Diego HydroloQv Manual and DesiQn & Procedure Manual will be used for determining storm runoff. Peak flows will be determined using the rational method. The attached "DRAINAGE BASINS" exhibits define the areas of the site studied in this report. The results of this evaluation of the storm runoff volumes and flows are presented in the attached "HOME DEPOT PRECISE GRADING PLAN ONSITE DRAINAGE/URBAN RUNOFF STUDY" tabulation. Typical sections for the sand and oil interceptors and the water treatment wetland detention ponds are attached for reference. Also attached are the design layouts for the two proposed detention ponds and the storm runoff collection systems. I I I~ I I I I I I I I I I I I I I I- I HOME DEPOT SPECIFIC PLAN PROPOSED WATER TREATMENT WETLANDS PLANT P ALEITE Nuisance Water Treatment Wetlands Botanical Name Common Name Juncus mexicanus Pluchea odorata Scirpus robustus S. californica Typha latifolia Mexican Rush Salt-marsh Fleabane Prairie Bulrush California Bulrush Soft-flag Cattail The proposed Nuisance Water Treatment Wetlands as shown in Figs. will occur at the edge of the parking lot between the project development and the Encinitas Creek Wetland area. As part of the mitigation outlined in the Home Depot Specific Plan protection of water quality in the Creek is a major goal. The Water-Treatment Wetland will be designed to catch and hold water that is secondarily passed through the parking lot oil interceptor program and to catch high flow rainfall directly. Wetland plant species, acting as filtering agents, will be cultivated from healthy and mature plugs grown under the supervision of a qualified biologist or nursery person. Replacement of plant material that shows signs of irreversible degradation will be reintroduced on a partial revolving basis to maintain a constant filtering continuity. The assessments of the project biologist will determine the lengths of time necessary for plant re-introductions. To ensure water availability during months of no rair,la'li or 10w urban r.:.n-on a water-conserving emitter type irrigation line will be installed to supplement water facilitating the viability of plant life. The presence of a high ground water table and proposed low elevation of the Treatment areas will also provide a positive biological setting. During the establishment period of the the Wetland Restoration Project and susbequent Nuisance Water Treatment areas the maintenance is projected at bi- weekly or as needed assessments according to the judgment of the project biologist. Visits will taper to monthly and continue to be performed on an as needed basis for a period of three years. I I I I I I I I I I I I I I I I I. I' I Inflow Pipe from . Oil/ Waler Separator Plan IN --- -.......r.......-............. ........- Sfl. our --- 8ft. Section End Typical Oil I Water Separator High Waler \ 0/ ~ Prepared Sail French Drain Row Through Pond Section Not to Scale NUISANCE WATER TREATMENT The Home Depot =--, Encinitas, CA . -- Concrele Overflow WIer & Spillway ExlubHII-' rEfj ~:,~_ THE ~~ AUSTIN __,<:.-00. H A N S E N "";.~':.:""' GROUP I I I I I I I I I I I I I I I I I I- I ,- 8'-0" 'I r-,I,---i I I I '0.6" OUTLET I I I ~ I ~I L' I L~L___~ 8" INLE T PLAN VIEW -t '2- RISER WITH WATER TIGHT SEAl . ~ I ~ 1 SLOT 01 . 4" X 30" . I ~ ~ I ~ . 0 l~ N I J I I in . 0 in L !:'! .., --1 L ALHAlABRA FOUNORY lAODEL A-1494 lAANHOLE FRAlAE " COVER WITH INSPECTION HOLE, OR EOUAL. AOJUST TO FINISH GRADE. PRECAST CONCRETE RISERS AS NECESSARY TO REACH FINISH GRADE. o (28.91 SF) I I I --1 2" X 6" REDWOOD SLEEPER END VIEW SAN AND OIL INTERCEPTOR TANK TO BE PRO-CAST lAODEL "PC-SG-1500" lAODIFIED AS SHOWN, OR EOUAL. lAODIFICA TIONS TO BE THE DELETION OF SAlAPLE BOX, USE OF 8" INLET AND 6" OUTLET, AND USE OF CIRCULAR RISERS. TANK AND lAANHOLE RISERS TO BE DESIGNED FOR H- 20 LOADING. INLET AND OUTLET OPENINGS TO BE CORED AFTER ,. RISER IS INSTALLED. INLET DATA TABLE 1,500 GAL. PRECAST SAND & OIL INTERCEPTOR TANK SCALE: I" ~ 3' SYSTElA NO. INLET ELEV SYSTElA NO. 1 84.0 SYSTElA NO. 2 77.1 SYSTElA NO. 3 77.8 SYSTElA NO. 4 78.1 1 1 I' 1 1 Cl. 1 ~~ ~ ~ 1 ~~ 1 1 1 I I I I I I I I I THE AUSTIN HANSEN GROUP l0035~ESCAN"ONrl!:: SAN [)jEGO CAlli'it (6'9)5521010 I I~ I ~() : J I~ MIN ~ f 'ti~ /P J4#-kt1 -= ~ X A ~ = .J?S Wtd"t11 fp= 2~ T Qp Q r:: Tt,t~p :: !t1~P, JDP ip -tp l{,,:: ~/()f 'h" 2. JOB HOd( e Depo-l::: SHEET NO OF SCALE CALCULATED BY CHECKED BY DATE 6-/9-9/ DATE " ~ /WAAfJ4MPN J J Tr .:: /.b7 t)> A .:: PasM C//79:1 ~ = 2-yMr, 6 ~ stDhII ~= ictal ru"cIF "r ~-lJourm";J/ Q P = f't'ak f!jllu . Q/tlP::: ,c/t;(Q 41- /t1 /1/Nltde.f IAr" ~III 1,;:> fiiHt> It, rt!t:lCA petli.: ~/4k1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 1 I i 1- ! I I : '-..-,- ,. ._- - ...:: ' "".", --. ','Ir flEJj I H , ..::;::.~~::~ti.. A US, I N '-",.;:..':::..... H A N 5 E N ...;.~.::...,.~ G n 0 l:! P ....,.. !)-11-'}3 I I I I I > c :) I- U) II. II. o Z :) a: z <C a:l a: :) -- w " <C Z <C a: c w I- en z o Z <C ...J a.. " Z - C <C a: " w U) (3 w a: a.. I- o a.. w c w :E o :I: I I I I I I I I I I I I I I' I w 00 Cl lL. <C3:w!2. 0:0~ w <C- >...10::; <C lL. 0.. Cl - w Z::::E-- :E::::l~Ci! 0...1 ~Cl ~O _ > w ~:EOLL :;::::l~<..> o5~- ~> ~ z ~ 0: o t;:: w <..> 0: w ~ ~ ...I 12 c Z <C 1Il C Z c( C z :5 ~ w ~ !z w :::E ~ W 0: ~ a: w ~ ~ Cl z N in a: o lL. 1Il in > ...I c( Z <C a: ::::l o ;f ~ <C w >;- <'I ~~~1L00 :::E<COOlL. ~~~Q.~ O~ ~<c-z W 0.- w-"", ~o..-e ~ - 0. lL. > !2. .J_ 00; >15 ~~ ~ i:i5 0.. LL !2. 3:-00 o Q.lL. ...10" LL-~ Cl if J: L. ~ l? g o:""~_ >WC\l~ No..o..~ ~~ No.. ~ 0:", > No.. z ;. w elL." enlL.lL. 00lL.- o..zw!2. ::;;::::l0 00:<"> <..> i:i5 0: <C Z Cii <C co ~ II) ~ M <'I II) II) ~ co ~ II) on ~ ~ .... o N a> cD ~ ai ~ '" a> II) ,..: - lll~ <'I_a ~~ C\! M ~ '" ~ M o .,; ~ o N g ell ~ C\! ~ a> o II) '" ..; Cl 0",11) II)~a> "":"":0 ~........ ....0<'1 "'l/l'lt' ~NN ~........ ....ON <<iLl'i<<i ~co~ 0........ a> "'II) OMa> criC\i.,..: ~ ~ ~ ciciai ~ ~ ~ O"'~ ocoa> "'~o M (',r C\f mT"""(O~>: OlN"a;U ,..., (0 ll) ... co rtiuion~~ ...."'''' ui..C"i "''''''' ~ ~ ~ MMM 000 uiLriLri '#.cf!.*- NNN ggg ell ell ell ~ ~ ~ C\!C\!C\! ~ ~ ~ a> a> a> cicici NNCO Oll)N t\i,..:.,..: ~N'" J:J:J: o ~ ~<c-z w 0.- ",w.e:E ""'0- _ i= 0. LL > !2. .J_ 00; >15 ~~ ~ ~ <C W 0- LL !2. 3:-00 o Q.lL. ...10" u.-~ 8 ::: if J: :- '- ~ l? "E 0: >_''It'_ '<ON~ ga..a..~ ~ 0: >~ ON 00- z ~ en in > ...I oCt Z <C a: ::::l o J: .D ~ <C W > o a ~ 0: ><0 00- o z - ~ w elL. . enLLLL OOLL- o-zw<..> :;::)0- 00:<"> o i:i5 [) 0: ~ <C Z Cii <C m ~ a> ~ ~ ~ ~ molm ~ ~ ~ o a> o ....- ~ ~...."" NCOO ''"It).... ,.....- III v- II) .... II) on ~ CO CO II) 0l0l,," ....COII) a> ~- N ~ ~ ~ CXl gj ~"C\1 ~mcO ~ ~ ,...: ~ ~ ~ ~ ~ ~ r-..:r-..:r-..: o .,; 000 uiuilri ~ o ~ o <0 (j!.cft.cft. C!C!C! 000 <0<0'" It) ..; II)lt)lt) ~~~ .... N ............ NNc\i Ol ci 0l0l0l coo II) '" ..; NNCO Olt)N N ''''': Cl ~N'" J:J:J: ~. :~ t:.~ I I I - . 1---." .' 1-,- I 1.- I I:'." I J-.~." . I I I / o CD ~ .-' , ........" .# ". ".' .':,. BASIN "A" WATER TREATMENT POND AVERAGE FLOWRATE FOR INITIAL 10 MINUTE FIRST FLUSH OF . STORM RUNOFF =~!52 GPM. USE. 650 GPM SAND/OIL INTERCEPTOR TANKS. TOTAL 2-YEAR, 6-HOUR STORM VOLUME =2425"5 CUBIC FEET, OR 7~ CUBIC YARDS. CREATE DETENTION POND WITH THIS VOLUME. PROVIDE MARSH TREATMENT PLANT MATERIALS TO TREAT CAPTURED STORM RUNOFF. PROVIDE FILTER BLANKET AND FRENCH DRAINS TO COLLECT AND DISCHARGE TREATED WATER TO THE NATURAL WATER COURSE. ,o.IJ.- ~[., 7J('P-I?AP ENE.R6Y .. J)r.;s/}>/mJ,(' EME/Z.t!,ENCY OVE,RFLOW WI/IE' ( :SP/~WAY WA7F..(' TkEATMENT WETL-"9N.o ZJETENT/t:J/Y }?()#/) F/ZENCH !)KA/# S72'Ji?M [)MIAI Fl?oM OPEN, SPACE A.REA C" ; -1 ,- I ---, I I I I. I !~ I ---r- Shade Screen r - - - -.l Structure I 32' I .1_" 0__-J__ I I I I I I I I I i I I I I I I I I I I \~\~\\' ,'\ \ \" /~~,\\>> \.~. ~ ~\~~\" , '-... \\ 1'\ ", \ \ ( I'~ \ I I 0 ':---, ~,/'):":., \" \, 6'd:,~.'< I I ~~\ \(\ i~O" -. '.ii' ':::;:--~~fl.\ \ J{ ( ~ \(.[.:1\ \.. I "i;PI II .~ . I ' O,V\ I I \;1;),\ \ II . ~\\\\\ Of/I 0 \\ ' 0) " ' c _ '. \~\\,\), r ';>3 ~\. \~\ ( I \:-'\\\\~\ It', -~\ \\'\\ .,.. .0", ~\O\\\\ '1 " ~ ~" \:.\ \..\\ ~ --- -~~~~W\\'<> /'tJ I - ~. \ \\' It _ \, ~ <0::: _ _ .. -____ :::s,.. ~ -; _ ~ -..c; _ ___ ------,;... __ ~~?:-ii -,--_~.. ~'Y.''i:'' :J'""~~-..:::~~:::. ~__::::--::. ~ - ..,.. ~ -~~---!---"'-: ....-.............~~- t - --- -.......:::: '::?\~-~ , - - -- ---<::,:---.... ~ ~ - ~ oW --- - _ -------=::: ~ ':"'L --__ --- __ . DeS/6N U,LVME 827 ~y BorroM A.REA 2,8sa 5F r:J _. .~. oa~/" ,.., 1 1 '- 1 1 1 1 1 1 1 I 1 1 1 I' ~ BASIN "B" WATER TREATMENT POND AVERAGE FLOWRATE FOR INITIAL 10 MINUTE FIRST FLUSH OF STORM RUNOFF: B1 = 01 GPM, USE ONE SAND/OIL INTERCEPTORS B2 =507 GPM, USE ONE SAND/OIL INTERCEPTORS B3 =427 GPM, USE ONE SAND/OIL INTERCEPTORS TOTAL 2-YEAR, 6-HOUR STORM VOLUME =20J9.%; CUBIC FEET, OR 778 CUBIC YARDS. CREATE DETENTION POND WITH THIS VOLUME. PROVIDE MARSH TREATMENT PLANT MATERIALS TO TREAT CAPTURED STORM RUNOFF. . PROVIDE FILTER BLANKET AND FRENCH DRAINS TO COLLECT AND DISCHARGE TREATED WATER TO THE NATURAL WATER COURSE. \-'- ~A?6Va-l),.wy ~R/'- RA, GvE~GY J}/$/PA~R ~ "-- -- / ~ - EM~RGENCY OVFVLlJW IYE/-e /~;::-::x:: . 1-/.....'''9 ~ \ i I~ ~- ~ ( ~ ~ (' rD. ~ ..if '\ (;p J ~\..~'>\ -_../ ~:~ \ \( \\\-~, ~ 'C)\.:J\~t -\f~\ .~ 'i\\jf'\~ ~~ ,\,\ ~~... ....-, \ "'.;:, "'- r" I . BYP/JsS ) P/,PE / . " )" -- .' . I P/YE.€S"/tW S71ltKTvRE I MILEr :I 1 \ 0/.t/W/J7E,f I S'EPA&4Tt:'R.S' ~.. I 1 _ -:a\~ - I I I I I I I I I I : I , I I I I I I I I _-' ~_ ,U__ -- ./'1' t ~. 1/' ^~i, "'0 0 . l' "{1t ~. '/ ~\ 0 A' ,,'" '. - '.~ __~ . !,.:I ' (6,.""" i ",,",~.I"' hl/.J"'l:'C",___ .t' ., /~ ~-~~~~--..- _~:t'$. ------=t- --~- . .: ~ ..... ~ -----. ---r--- _ o/'''~~ .:::,.. ~~ _ ' ---...-:-- -r -- -- ----Jr( t.)c.J.\. _ ~~" . 16~ 78:0 "~~\ \-1b..OC -_ ~ 81.0 TOP O\\-ly~"'" _"-. )f[.~~ /. Of WEIR '10. ; . WJ () -r~,. .,,), / . ~;' '~"h';f---.-..... ''''. . A' ~ . /' ........"". .LJ '- '--78.0 "- '\:..._______--)' . 78. (J 'z.....______/ . 78.0 DeSIGN YoL.VMES I, jtJO cy BoTTOM IlR~A 4, 8a:J ~F BOS/A ''8'' I I "- I I I I I I I I I I I I I I I I I /(ev lJ-n ~94 .). - THE AUSTIN HANSEN GROUP JOB ENCINITAS .hit/ME lJEAtJT 9605 SCRAN10N ROAD 5lJITE300 SAN DIEGO, CA 9:1\21 (1)19)552.1010 SHEET NO CALCULATEO BY CHECKED BY OF SCALE DATE DATE 8' I ~. ",,,~c, $fJc-Q."'r' cJ.ft cJ. X# -<.: '$:-v ':l Z :i io cri <( > io ,/.:.' ;..,10'] 560-C-3250 CONCRETE OR A.8.M. REINFORCED WITH 6.x 6. 10/10 GAGE W.W.F. 1/4 TON RIP-RAP ENERGY '/ DISSIPATOR PER R.S.D. 0-40 WEIR CROSS-SECTION OVERFLOW WEIR DETAIL NO SCALE WIDTH SHOWN ON PLANS r r 3'1 0 5' ~ .... 0 5' 3' . 0 j . lr 1 I .1 n:------r-- -----Tl '-")"'--1 , t.............., , VIEW FROM UPSTREAM rw~'J~ c,~~r)v 'C.4~c~ . 'I' .;J~t(Nle b';;;c~fetl <<.,I~/K , ..1/;' ." : ' C< '" Ct..fI ' (K/~ ~f ~'/~) Le-I- C = C, 7 rp."s ?;It- $."- 1) FINSIH GRADE: 'l.!PSTREAM I,. "I f-,' 'rj ~~~~~~=~=~=~~=~~=!~ 84$/-" 'A r, L ff_, Weir QlHiA1 Q,IIO /2 I /,0 32,4 d~ 29,8 cfs 2/)' /.12 , $4,o.ch 30,8 Cofs /I, , 95' , . , Bd.5in 'g'l .'8' I I I I I I I I I I I I I I I I I I I DIVERTER STRUCTURE EVALUATION Concrete box structures, either Type A-4 storm drain cleanouts or Type "G" OR "G-2" catch basins, are to be used as diverter structures to regulate flows to the sand and oil interceptor systems and to the nuisance water treatment basins. The "first flush" storm runoff, the storm runoff from the first 10 minutes of a 2-year 6-hour storm, is directed to the sand and oil interceptors by 8" diameter low flow pipes set at a specified elevation. A larger overflow pipe capable of carrying a 100-year 6-hour storm peak flow is set at a higher elevation in the box structures. The differential between the low flow pipe invert and the overflow pipe invert is determined by the inlet capacity of the smaller pipe. The following tabulation tables show the inlet head verses flow rate relationship for the typical 8" low flow pipe, the larger overflow pipes and the combination of the two. The bottoms of the box structures are to be at least 1.5' below the invert of the smaller low flow pipe. This space will act as an initial silt trap during minor storm events, or parking lot washdown, which may not provide sufficient flows to carry suspended solids through the diverter structure to the sand and oil interceptor tanks. A sump is to be built into the bottom of the diverter structures to provide for infiltration of trapped water into the soil below to reduce the potential for mosquito infestation. The sand and oil interceptor tanks which will typically contain standing water will have closed lids to minimize the risk of mosquito growth. I I I I I I I I I I I I I I I I I I I 8" PVC OUTLET TO SAND " OIL IN TERCEPTORS o 2" tollN. GRADE OVERFLOW PIPE OUTLET ELEV. PER DATA TABLE, THIS SHEET 8" PVC OUTLET TO SAND " OIL INTERCEPTORS . o 2" tollN. GRADE LOWFLDW PIPE OUTLET ELEV. PER DATA TABLE, THIS SHEET ,.: w --' S~t 0--' a.. ~'" Ow ita.. "'w ~~ o III TOP OF GRATE OVERFLDW OUTLET, ELEVATION SHOWN SIZE PER PLAN ON PLAN INLET - SIZE -PER PLAN 8" DIA. SUtolP, ALL DIVERTER STRU TURES. OVERFLOW PIPE OUTLET ELEV. PER DATA TABLE, THIS SHEET PLAN VIEW ADJUST TO ~ FINISH GRADE 8" PVC OUTLET TO SAND " OIL IN TERCEP TORS J .. o 2" tollN. GRADE LOWFLOW PIPE OU TLET ELEV. PER DATA TABLE, THIS SHEET OVERFLOW OUTLET, SIZE PER PLAN '",z ,",;ji INLET - SIZE -PER PLAN TYPE "G" OR "G- 2" CATCH BASIN PER RSD 0-8 J DIVERTER STRUCTURE DETAil SYSTEM NO'S. 2, 3 & 4 <nz ,",;ji INLET ELEV. PER PLAN AND DATA TA8LE, THIS SHEET TYPE A-4 CLEANOUT PER RSD 0-9 DIVERTER STRUCTURE DETAil, SYSTEM NO. 1 DIVERTER STRUCTURE DATA TABLE 010 LOWFLOW INLET LOWFLOW OVERFLOW SYSTEtol NO. (CFS) OUTt~\ ELEV OUTLET OU TLE T PIPE S OR I.G. ELEV ELEV SYSTEtol NO. 1 6.0 CFS 3 8 02" MIN 84.33 84.33 86.07 SYSTEM NO. 2 3.0 CFS 1 8 02" tollN 82.70 TG 77.39 80.00 SYSTEM NO. 3 2.3 CFS , 8 02" MIN 82.91 TG 78.26 80q~ SYSTEM NO. 4 1.9 CFS 1 8 02" MIN 83.09 TG 78.66 80.00 I I I I I I I I I I I I I I I I I I I PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE April 12, 1994 ==================================================================== PROGRAM INPUT DATA: DIVcRTFR, OUTLET (LoW I='Jow) DESCRIPTION an @ 2% - 0.25 MIA/. HEAO INCREMENTS. -------------------------------------------------------------------- VALUE CuI vert Diameter (feet)................................. FHWA Chart Number (1, 2 or 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scale Number on Chart (Type of Culvert Entrance) ........ Manning's Roughness Coefficient (n-value).. ............. Entrance Loss Coefficient of Culvert Opening............ Culvert Length (feet)................................... Culvert Slope (feet per foot) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.67 1 2 0.0130 0.50 20.0 0.0200 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM RESULTS: Flow Tailwater Rate Depth (cfs) (ft) Headwater (ft) Inlet Outlet Control Control Normal Depth (ft) Critical Depth (ft) Depth at Outlet (ft) Outlet Velocity (fps) -------------------------------------------------------------------- 0.2 0.5 1.0 1.5 1.8 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.4 3.6 3.7 3.9 4.0 4.1 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.50 0.76 1. 00 1. 25 1. 50 1. 75 2.00 2.25 2.50 2.75 3.01 3.26 3.51 3.75 4.00 4.25 4.50 4.76 5.00 5.25 5.51 5.75 6.00 6.25 6.51 0.03 0.20 0.49 0.91 1.27 1. 62 1. 97 2.31 2.65 2.99 3.34 3.69 4.03 4.37 4.70 5.04 5.39 5.73 6.08 6.41 6.75 7.10 7.43 7.77 8.11 8.46 0.14 0.25 0.36 0.48 0.57 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.18 0.34 0.48 0.57 0.61 0.63 0.64 0.65 0.66 0.66 0.66 0.66 0.66 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.14 0.25 0.36 0.48 0.61 0.63 0.64 0.65 0.66 0.66 0.66 0.66 0.66 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 3.07 4.32 5.08 5.50 5.31 6.00 6.63 7.23 7.78 8.31 8.81 9.29 9.74 10.16 10.56 10.95 11.35 11.72 12.09 12.43 12.77 13.11 13.42 13.73 14.04 14.35 -------------------------------------------------------------------- -------------------------------------------------------------------- PIPE CULVERT ANALYSIS COMPUTER PROGRAM Version 1.6 Copyright (c)1986 Dodson & Associates, Inc., 7015 W. Tidwell, #107, Houston, TX 77092 I I I I I I I I I I I I I I I I I I I PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE April 12, 1994 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM INPUT DATA: DIVERTER OUTLET (Low Flow) DESCRIPTION 8" tIP 2 % - 0.2 MIN. F~OW/ll/CREMENTS VALUE -------------------------------------------------------------------- Culvert Diameter (feet)................................. FHWA Chart Number (1,2 or 3). ............... ............ Scale Number on Chart (Type of Culvert Entrance) ........ Manning's Roughness Coefficient (n-value) ....... ........ Entrance Loss Coefficient of Culvert Opening.... ........ Culvert Length (feet)................................... Culvert Slope (feet per foot) ......... ....... ........ ... 0.67 1 2 0.0130 0.50 20.0 0.0200 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM RESULTS: Flow Tailwater Headwater (ft) Normal Critical Depth at Outlet Rate Depth Inlet Outlet Depth Depth Outlet Velocity (cfs) (ft) Control Control (ft) (ft) (ft) (fps) -------------------------------------------------------------------- 0.2 0.00 0.28 0.05 0.15 0.21 0.15 3.28 0.4 0.00 0.45 0.14 0.22 0.31 0.22 4.00 0.6 0.00 0.53 0.23 0.26 0.36 0.26 4.70 0.8 0.00 0.64 0.35 0.32 0.42 0.32 4.82 1.0 0.00 0.76 0.49 0.37 0.48 0.37 5.08 1.2 0.00 0.83 0.66 0.41 0.52 0.41 5.30 1.4 0.00 0.96 0.84 0.46 0.56 0.46 5.46 1.6 0.00 1.10 1. 05 0.51 0.59 0.51 5.58 1.8 0.00 1. 26 1.28 0.58 0.61 0.61 5.34 5YS.4 1.9 0.00 1.34 1.40 0.67 0.62 0.62 5.58 2.0 0.00 1.44 1. 53 0.67 0.63 0.63 5.83 2.1 0.00 1. 53 1. 66 0.67 0.63 0.63 6.08 2.2 0.00 1. 63 1. 80 0.67 0.64 0.64 6.34 SYS J.~,j 2.3 0.00 1. 74 1. 95 0.67 0.64 0.64 6.61 2.4 0.00 1. 85 2.10 0.67 0.65 0.65 6.88 2.6 0.00 2.08 2.43 0.67 0.65 0.65 7.42 2.8 0.00 2.34 2.77 0.67 0.66 0.66 7.97 SYS, 2 3.0 0.00 2.61 3.15 0.67 0.66 0.66 8.53 3.2 0.00 2.90 3.54 0.67 0.66 0.66 9.09 3.4 0.00 3.21 3.97 0.67 0.66 0.66 9.66 3.6 0.00 3.54 4.41 0.67 0.67 0.67 10.22 3.8 0.00 3.89 4.89 0.67 0.67 0.67 10.79 4.0 0.00 4.25 5.39 0.67 0.67 0.67 11.35 4.2 0.00 4.64 5.91 0.67 0.67 0.67 11.92 4.4 0.00 5.04 6.46 0.67 0.67 0.67 12.48 4.6 0.00 5.47 7.04 0.67 0.67 0.67 13.05 4.8 0.00 5.91 7.64 0.67 0.67 0.67 13 .62 5.0 0.00 6.37 8.27 0.67 0.67 0.67 14.18 --------------------------------------------------------------------- -------------------------------------------------------------------- I I I I INTERCEPTOR SYSTEM 1 I 010 = 6.9 CFS, 0100 = 29.8CFS I HEAD ELEV 1 - 8" 3 - 8" 30" 3-8" + 30" FT FT CFS CFS CFS CFS I 0.00 84.33 0.00 0.00 0.25 84.58 0.20 0.60 0.60 I 0.50 84.83 0.50 1.50 1.50 0.75 85.08 1.00 3.00 3.00 I 1.00 85.33 1.50 4.50 4.50 1.25 85.58 1.80 5.40 5.40 1.50 85.83 2.10 6.30 6.30 : I 1.75 86.08 2.30 6.90 0.00 6.90--'.9cfs 2.00 86.33 2.50 7.50 0.30 7.80 2.25 86.58 2.70 8.10 1.30 9.40 I 2.50 86.83 2.90 8.70 2.90 11.60 2.75 87.08 3.10 9.30 5.00 14.30 I 3.00 87.33 3.30 9.90 7.50 1 7.40 3.25 87.58 3.40 10.20 10.30 20.50 3.50 87.83 3.60 10.80 13.30 24.10 I 3.75 88.08 3.70 11.10 16.50 27.60__2,-Scfs 4.00 88.33 3.90 11.70 19.70 31 .40 I 4.25 88.58 4.00 12.00 23.00 35.00 4.50 88.83 4.10 12.30 26.20 38.50 4.75 89.08 4.30 12.90 30.00 42.90 I I I I I Page 1 I I I- I I I I I I I I I I I I I I I I PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE April 13, 1994 -------------------------------------------------------------------- -------------------------------------------------------------------- SYSTEM No..i PROGRAM INPUT DATA: u 0 DESCRIPTION 11 DIVt:RTER OVFRFLOW '(JTLET VALUE -----------_________________P.~~~_lN~Jec61E~_~j.~-------__________ Culvert Diameter (feet)................................. 2.50 FHWA Chart Number (1,2 or 3) . . .. .. . . . . . . . . . . . . . . .. . . . . . . 1 Scale Number on Chart (Type of Culvert Entrance) ........ 2 Manning's Roughness Coefficient (n-value) ............... 0.0130 Entrance Loss Coefficient of Culvert Opening......... ... 0.50 Culvert Length (feet)................................... 42.0 Culvert Slope (feet per foot) ............. ........... ... 0.1030 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM RESULTS: Flow Tailwater Rate Depth (cfs) (ft) Headwater (ft) Inlet Outlet Control Control Normal Depth (ft) Critical Depth (ft) Depth at Outlet (ft) Outlet Velocity (fps) -------------------------------------------------------------------- 0.3 1.3 2.9 5.0 7.5 10.3 13 .3 16.5 19.7 23.0 26.2 30.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1. 00 1.25 1.50 1. 75 2.00 2.25 2.50 2.75 3.00 -2.98 -2.88 -2.78 -2.68 -2.55 -2.41 -2.25 -2.06 -1.85 -1.62 -1.37 -1. 05 0.09 0.18 0.26 0.33 0.41 0.47 0.54 0.60 0.65 0.71 0.76 0.81 0.19 0.38 0.56 0.74 0.91 1. 07 1. 23 1. 37 1. 51 1. 63 1. 74 1. 87 0.09 0.18 0.26 0.33 0.41 0.47 0.54 0.60 0.65 0.71 0.76 0.81 5.75 8.67 10.99 12.88 14.52 15.97 17.19 18.31 19.28 20.16 20.90 21.74 -------------------------------------------------------------------- -------------------------------------------------------------------- PIPE CULVERT ANALYSIS COMPUTER PROGRAM Version 1.6 Copyright (c)1986 Dodson & Associates, Inc., 7015 W. Tidwell, #107, Houston, TX 77092 (713) 895-8322. All Rights Reserved. I I I I I I I I I I I I I I I I I I I PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE \ April 12, 1994 -------------------------------------------------------------------- -------------------------------------------------------------------- SVSTEM No.1 PROGRAM INPUT DATA: 3()" DII/FIlTER OI/ERFLtJW OUTLET ~~~:~=:==~~_______________~g:_CJ:~_!~~R~~~~~~_______________~~~~~ Culvert Diameter (feet).................... .............. FHWA Chart Number (1,2 or 3)............................ Scale Number on Chart (Type of Culvert Entrance) .... .... Manning's Roughness Coefficient (n-value) ... ......... ... Entrance Loss Coefficient of Culvert Opening. ........ ... Culvert Length (feet)................................... Culvert Slope (feet per foot)........................... 2.50 1 2 0.0130 0.50 42.0 0.1030 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM RESULTS: Flow Tailwater Headwater (ft) Normal Critical Depth at Outlet Rate Depth Inlet Outlet Depth Depth Outlet Velocity (cfs) (ft) Control Control (ft) (ft) (ft) (fps) -------------------------------------------------------------------- 0.5 0.00 0.29 -2.96 0.11 0.23 0.11 6.40 1.0 0.00 0.42 -2.91 0.15 0.32 0.15 7.97 1.5 0.00 0.52 -2.87 0.19 0.40 0.19 8.97 2.0 0.00 0.61 -2.84 0.21 0.46 0.21 9.78 2.5 0.00 0.69 -2.81 0.24 0.52 0.24 10.45 3.0 0.00 0.76 -2.78 0.26 0.57 0.26 11. 03 3.5 0.00 0.82 -2.75 0.28 0.61 0.28 11.57 4.0 0.00 0.88 -2.73 0.30 0.66 0.30 12.08 4.5 0.00 0.94 -2.70 0.32 0.70 0.32 12.48 5.0 0.00 1. 00 -2.68 0.33 0.74 0.33 12.88 5.5 0.00 1. 05 -2.65 0.35 0.77 0.35 13.23 6.0 0.00 1.10 -2.63 0.36 0.81 0.36 13 .59 6.5 0.00 1.15 -2.60 0.38 0.84 0.38 13 .91 7.0 0.00 1. 20 -2.58 0.39 0.88 0.39 14.26 7.5 0.00 1. 25 -2.55 0.41 0.91 0.41 14.52 8.0 0.00 1. 30 -2.53 0.42 0.94 0.42 14.82 8.5 0.00 1. 34 -2.50 0.43 0.97 0.43 15.08 9.0 0.00 1. 39 -2.48 0.44 1. 00 0.44 15.34 9.5 0.00 1.43 -2.45 0.45 1.03 0.45 15.59 10.0 0.00 1.47 -2.43 0.47 1. 06 0.47 15.87 10.5 0.00 1. 52 -2.40 0.48 1. 08 0.48 16.03 11.0 0.00 1. 56 -2.37 0.49 1.11 0.49 16.28 11. 5 0.00 1. 60 -2.35 0.50 1.14 0.50 16.46 12.0 0.00 1. 64 -2.32 0.51 1.16 0.51 16.74 12.5 0.00 1. 68 -2.29 0.52 1.19 0.52 16.90 13.0 0.00 1. 72 -2.27 0.53 1.21 0.53 17.08 13 .5 0.00 1. 77 -2.24 0.54 1. 24 0.54 17.30 14.0 0.00 1. 81 -2.21 0.55 1. 26 0.55 17.43 14.5 0.00 1. 85 -2.18 0.56 1. 28 0.56 17.66 15.0 0.00 1. 88 -2.15 0.57 1. 31 0.57 17.83 I I I I I I I I I I I I , I I I I I I I 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 25.0 26.0 27.0 28.0 29.0 29.8 30.0 31.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1. 92 1. 96 2.00 2.04 2.08 2.12 2.16 2.20 2.23 2.27 2.31 2.35 2.39 2.43 2.46 2.50 2.54 2.58 2.66 2.73 2.81 2.90 2.97 3.00 3.00 3.01 -2.12 -2.09 -2.06 -2.03 -2.00 -1.96 -1. 93 -1. 90 -1.87 -1.83 -1. 80 -1. 76 -1. 73 -1.69 -1.65 -1.62 -1.58 -1. 54 -1.46 -1.39 -1. 30 -1. 22 -1.14 -1. 07 -1. 05 -0.96 0.58 0.59 0.60 0.61 0.62 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.67 0.69 0.70 0.71 0.71 0.73 0.74 0.75 0.77 0.78 0.80 0.81 0.81 0.83 1. 33 1. 35 1.37 1. 39 1.42 1.44 1.46 1.48 1.50 1.52 1.54 1. 56 1. 58 1. 59 1.61 1. 63 1. 65 1. 67 1. 70 1. 74 1. 77 1. 80 1. 84 1. 86 1. 87 1. 90 0.58 0.59 0.60 0.61 0.62 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.67 0.69 0.70 0.71 0.71 0.73 0.74 0.75 0.77 0.78 0.80 0.81 0.81 0.83 17.97 18.10 18.31 18.45 18.63 18.77 18.93 19.07 19.21 19.35 19.50 19.61 20.16 19.90 20.04 20.16 20.31 20.03 20.65 20.85 21.08 21. 30 21.50 21. 69 21.74 21.85 -------------------------------------------------------------------- -------------------------------------------------------------------- PIPE CULVERT ANALYSIS COMPUTER PROGRAM Version 1.6 Copyright (c)1986 Dodson & Associates, Inc., 7015 W. Tidwell, #107, Houston, TX 77092 (713) 895-8322. All Rights Reserved. I I I I INTERCEPTOR SYSTEM 2 I Q10 = 3.0 CFS, 0100 = 12.9 CFS I HEAD ELEV 8" 18" 8" + 18" FT FT CFS CFS CFS I 0.00 77.39 0.00 0.25 77.64 0.20 0.20 I 0.50 77.89 0.50 0.50 0.75 78.14 1.00 1.00 I 1.00 78.39 1.50 1.50 1.25 78.64 1.80 1.80 1.50 78.89 2.10 2.10 I 1.75 79.14 2.30 2.30 2.00 79.39 2.50 2.50 I 2.25 79.64 2.70 2.70 2.50 79.89 2.90 0.00 2.90 __ g,~cfs 2.75 80.14 3.10 0.30 3.40 I 3.00 80.39 3.30 1.00 4.30 3.25 80.64 3.40 2.00 5.40 3.50 80.89 3.60 3.40 7.00 I 3.75 81.14 3.70 4.80 8.50 4.00 81.39 3.90 6.40 10.30 I 4.25 81.64 4.00 7.80 11.80 --/2.~ cfJ 4.50 81.89 4.10 9.80 13.90 4.75 82.14 4.30 11.00 15.30 I 5.00 82.39 4.40 12.20 16.60 I I I I Page 1 I I I I I I I I I I II I I I I I I I I PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE April 13, 1994 -------------------------------------------------------------------- -------------------------------------------------------------------- SV6TEM No. 2 PROGRAM INPUT DATA: /8" DIVE'IlTER OVE'~FLL:JW OUTLEr ~~~:~====~~_____________9~~~!~f~~~~~~_(f!J_________________~~~~~ Culvert Diameter (feet)................................. FHWA Chart Number (1, 2 or 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scale Number on Chart (Type of Culvert Entrance). ....... Manning's Roughness Coefficient (n-value) ............... Entrance Loss Coefficient of Culvert Opening............ Culvert Length (feet)................................... Culvert Slope (feet per foot) ................. ..... ..... 1.50 1 2 0.0130 0.50 54.0 0.0740 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM RESULTS: Flow Tailwater Rate Depth (cfs) (ft) Headwater (ft) Inlet Outlet Control Control Normal Depth (ft) Critical Depth (ft) Depth at Outlet (ft) Outlet Velocity (fps) -------------------------------------------------------------------- 0.3 1.0 2.0 3.4 4.8 6.4 7.8 9.8 11.0 12.2 13 .2 14.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1. 00 1. 25 1. 50 1. 75 2.00 2.25 2.50 2.75 3.00 -3.15 -3.05 -2.92 -2.75 -2.53 -2.25 -1.94 -1.46 -1.10 -0.75 -0.40 -0.05 0.10 0.19 0.27 0.35 0.42 0.48 0.54 0.61 0.65 0.68 0.72 0.75 0.19 0.37 0.54 0.70 0.85 0.98 1. 09 1. 21 1. 27 1. 32 1. 36 1. 39 0.10 0.19 0.27 0.35 0.42 0.48 0.54 0.61 0.65 0.68 0.72 0.75 5.11 7.58 9.38 10.86 12.06 13 .04 13.81 14.65 15.18 15.53 15.91 16.15 -------------------------------------------------------------------- -------------------------------------------------------------------- PIPE CULVERT ANALYSIS COMPUTER PROGRAM Version 1.6 Copyright (c)1986 Dodson & Associates, Inc., 7015 W. Tidwell, #107, Houston, TX 77092 (713) 895-8322. All Rights Reserved. I I I I I I I I I I I I I I I I I I I PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE April 12, 1994 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM INPUT DATA: DESCRIPTION SYSTeM /Vo. 2 /8" DIVEgrER OVERFLOW OOTLET 0, S' erG /A1C.eEMENTS: -------------------------------------------------------------------- VALUE Culvert Diameter (feet)................................. FHWA Chart Number (1,2 or 3)............................ Scale Number on Chart (Type of Culvert Entrance) ..... ... Manning's Roughness Coefficient (n-value) ............... Entrance Loss Coefficient of Culvert Opening............ Culvert Length (feet)................................... Culvert Slope (feet per foot)........................... 1. 50 1 2 0.0130 0.50 54.0 0.0743 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM RESULTS: Flow Tailwater Headwater (ft) Normal Critical Depth at Outlet Rate Depth Inlet Outlet Depth Depth Outlet Velocity (cfs) (ft) Control Control (ft) (ft) (ft) (fps) -------------------------------------------------------------------- 0.5 0.00 0.35 -3.13 0.14 0.26 0.14 6.16 1.0 0.00 0.50 -3.06 0.19 0.37 0.19 7.63 1.5 0.00 0.63 -3.00 0.23 0.46 0.23 8.55 2.0 0.00 0.73 -2.95 0.27 0.53 0.27 9.31 2.5 0.00 0.83 -2.89 0.30 0.60 0.30 9.94 3.0 0.00 0.93 -2.82 0.33 0.66 0.33 10.50 3.5 0.00 1. 02 -2.75 0.35 0.71 0.35 10.98 4.0 0.00 1.10 -2.68 0.38 0.77 0.38 11.41 4.5 0.00 1.19 -2.61 0.40 0.81 0.40 11.82 5.0 0.00 1. 27 -2.52 0.42 0.86 0.42 12.16 5.5 0.00 1.35 -2.44 0.46 0.90 0.46 12.07 6.0 0.00 1.44 -2.35 0.47 0.95 0.47 12.77 6.5 0.00 1.52 -2.25 0.49 0.99 0.49 13 .12 7.0 0.00 1. 60 -2.15 0.50 1. 02 0.50 13 .40 7.5 0.00 1. 69 -2.04 0.52 1. 06 0.52 13 .64 8.0 0.00 1.77 -1. 93 0.54 1.10 0.54 13.85 8.5 0.00 1. 81 -1. 81 0.56 1.13 0.56 14.13 9.0 0.00 1. 86 -1.68 0.58 1.16 0.58 14.35 9.5 0.00 1. 95 -1.55 0.60 1.19 0.60 14.52 10.0 0.00 2.04 -1.40 0.61 1. 27 0.61 14.76 10.5 0.00 2.14 -1. 28 0.63 1.25 0.63 14.93 11.0 0.00 2.24 -1.14 0.64 1.27 0.64 15.14 11. 5 0.00 2.34 -0.99 0.66 1.29 0.66 15.33 12.0 0.00 2.45 -0.83 0.68 1. 31 0.68 15.50 12.5 0.00 2.57 -0.67 0.69 1.33 0.69 15.65 13 .0 0.00 2.69 -0.50 0.71 1. 35 0.71 15.73 13 .5 0.00 2.81 -0.33 0.72 1.37 0.72 15.97 14.0 0.00 2.94 -0.16 0.74 1. 38 0.74 16.12 -------------------------------------------------------------------- -------------------------------------------------------------------- PIPE CULVERT ANALYSIS COMPUTER PROGRAM Version 1.6 Copyright (c)1986 I I I I INTERCEPTOR SYSTEM 3 I Q10 = 2.3 CFS, Q100 = 9.7 CFS I HEAD ELEV 8" 15" 8" + 15" FT FT CFS CFS CFS I 0.00 78.26 0.00 0.25 78.51 0.20 0.20 I 0.50 78.76 0.50 0.50 0.75 79.01 1.00 1.00 1.00 79.26 1.50 1.50 I 1.25 79.51 1.80 1.80 1.50 79.76 2.10 2.10 I 1.75 80.01 2.30 0.00 2.30 --2,3 d:s 2.00 80.26 2.50 0.28 2.78 2.25 80.51 2.70 0.92 3.62 I 2.50 80.76 2.90 1.88 4.78 2.75 81.01 3.10 2.97 6.07 3.00 81.26 3.30 4.12 7.42 I 3.25 81.51 3.40 5.55 8.95 7 f,; 3.50 81.76 3.60 6.60 10.20-- 9, c ~ I 3.75 82.01 3.70 7.50 11.20 4.00 82.26 3.90 8.33 12.23 4.25 82.51 4.00 9.07 13.07 I I I I I I Page 1 I I I I I I I I I I I , I I I I I I I I I I PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE April 13, 1994 -------------------------------------------------------------------- -------------------------------------------------------------------- SYST~M No. :3 PROGRAM INPUT DATA: /5" DIVEIZTFR OVt:RFL..OW GoTLET DESCRIPTION 0,25' INCREMENTS (R\ VALUE ---------------------------------------------~---------------------- Culvert Diameter (feet)................................. 1.25 FHWA Chart Number (1, 2 or 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Scale Number on Chart (Type of Culvert Entrance) ........ 2 Manning's Roughness Coefficient (n-value) ..:. ..... ...... 0.0130 Entrance Loss Coefficient of Culvert Opening....... ..... 0.50 Culvert Length (feet)................................... 22.0 Culvert Slope (feet per foot) ................. .......... 0.1800 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM RESULTS: Flow Tailwater Rate Depth (cfs) (ft) 0.3 0.9 1.9 3.0 4.1 5.5 6.6 7.5 8.3 9.1 9.7 10.4 Headwater (ft) Inlet Outlet Control Control 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1.00 1. 25 1. 50 1. 75 2.00 2.25 2.50 2.75 3.00 -3.23 -3.13 -2.99 -2.81 -2.57 -2.22 -1. 92 -1. 63 -1.33 -1.05 -0.78 -0.50 Normal Depth (ft) 0.09 0.16 0.22 0.28 0.33 0.38 0.42 0.45 0.47 0.50 0.51 0.53 Critical Depth (ft) 0.20 0.38 0.55 0.69 0.82 0.95 1. 03 1. 09 1.13 1.16 1.18 1.19 Depth at Outlet (ft) 0.09 0.16 0.22 0.28 0.33 0.38 0.42 0.45 0.47 0.50 0.51 0.53 Outlet Velocity (fps) 7.29 10.36 12.78 14.61 16.07 17.48 18.31 18.97 19.59 20.04 20.51 20.80 -------------------------------------------------------------------- -------------------------------------------------------------------- PIPE CULVERT ANALYSIS COMPUTER PROGRAM Version 1.6 Copyright (c)1986 Dodson & Associates, Inc., 7015 W. Tidwell, #107, Houston, TX 77092 (713) 895-8322. All Rights Reserved. I I I I I I I I I I I I I I I I I I I PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE April 12, 1994 ==================================================================== SVSTEM No.3 PROGRAM INPUT DATA: IS" DlveRTER OVERFLOW OOTtET ~~~=~====~~ _ _ _ _ _ _ _ _ _ _ _ _ _ g.?. ~~~ _ !~~~~~~A!!"~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~~ Culvert Diameter (feet)................................. FHWA Chart Number (1,2 or 3)............................ Scale Number on Chart (Type of Culvert Entrance). ....... Manning's Roughness Coefficient (n-value)... ..... ....... Entrance Loss Coefficient of Culvert Opening...... ...... Culvert Length (feet)................................... Culvert Slope (feet per foot) ............... ...... ...... 1.25 1 2 0.0130 0.50 22 .0 0.1800 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM RESULTS: Flow Tailwater Rate Depth (cfs) (ft) Headwater (ft) Inlet Outlet Control Control 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 9.7 10.0 10.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.35 0.52 0.66 0.78 0.89 1.01 1.11 1. 22 1. 33 1.45 1.49 1.60 1. 72 1. 85 2.00 2.15 2.31 2.48 2.65 2.73 2.84 3.04 -3.19 -3.12 -3.05 -2.97 -2.89 -2.80 -2.70 -2.60 -2.49 -2.36 -2.23 -2.09 -1.95 -1. 79 -1. 63 -1. 45 -1.27 -1. 08 -0.88 -0.80 -0.67 -0.45 Normal Depth (ft) Critical Depth (ft) Depth at Outlet (ft) Outlet Velocity (fps) 6.86 10.61 11.96 13 .03 13 .95 14.65 15.30 15.93 16.48 16.99 17.42 17.91 18.31 18.71 18.97 19.41 19.68 20.13 21.39 20.43 20.70 20.85 -------------------------------------------------------------------- -------------------------------------------------------------------- 0.14 0.16 0.20 0.23 0.25 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.41 0.43 0.45 0.46 0.48 0.49 0.49 0.51 0.52 0.54 0.27 0.39 0.48 0.56 0.63 0.70 0.75 0.81 0.86 0.91 0.95 0.99 1. 03 1. 06 1.09 1.11 1.14 1.16 1.17 1.18 1.18 1.19 0.14 0.16 0.20 0.23 0.25 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.41 0.43 0.45 0.46 0.48 0.49 0.49 0.51 0.52 0.54 PIPE CULVERT ANALYSIS COMPUTER PROGRAM Version 1.6 Copyright (c)1986 Dodson & Associates, Inc., 7015 W. Tidwell, #107, Houston, TX 77092 (713) 895-8322. All Rights Reserved. I I I I INTERCEPTOR SYSTEM 4 I 010 = 1.9 CFS, 0100 = 8.2 CFS I HEAD ELEV 8" 15" 8" + 15" FT FT CFS CFS CFS I 0.00 78.66 0.00 0.25 78.91 0.20 0.20 I 0.50 79.16 0.50 0.50 0.75 79.41 1.00 1.00 1.00 79.66 1.50 1.50 I 1.25 79.91 1.80 0.00 1.80 _ 1.'JeTS 1.50 80.16 2.10 0.20 2.30 I 1.75 80.41 2.30 0.90 3.20 2.00 80.66 2.50 1.80 4.30 2.25 80.91 2.70 2.90 5.60 I 2.50 81.16 2.90 4.00 6.90 2.75 81.41 3.10 5.20 8.30 - 8.2 c& I 3.00 81.66 3.30 6.50 9.80 3.25 81.91 3.40 7.40 10.80 3.50 82.16 3.60 8.30 11.90 I 3.75 82.41 3.70 9.00 12.70 4.00 82.66 3.90 9.70 13.60 4.25 82.91 4.00 10.30 14.30 I I I I I I Page 1 I I I I I I I I I I I I I I I I I I I PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE April 12, 1994 -------------------------------------------------------------------- -------------------------------------------------------------------- SYSTEM No. 4 PROGRAM INPUT DATA: /S" [)/VE"IZTER OVERFLOW O{JTLET DESCRIPTION 0.25' INCREMENTS (rrl VALUE ----------------------------------------_______J____________________ Culvert Diameter (feet)................................. 1.25 FHWA Chart Number {1,2 or 3)............................ 1 Scale Number on Chart (Type of Culvert Entrance) ........ 2 Manning's Roughness Coefficient (n-value) ....... ........ 0.0130 Entrance Loss Coefficient of Culvert Opening............ 0.50 CuI vert Length (feet)................................... 77 . 0 Culvert Slope (feet per foot) ............... ...... ...... 0.0520 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM RESULTS: Flow Tailwater Rate Depth (cfs) (ft) Headwater (ft) Inlet Outlet Control Control Normal Depth (ft) Critical Depth (ft) Depth at Outlet (ft) Outlet Velocity (fps) -------------------------------------------------------------------- 0.2 0.9 1.8 2.9 4.0 5.2 6.5 7.4 8.3 9.0 9.7 10.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1. 00 1.25 1.50 1. 75 2.00 2.25 2.50 2.75 3.00 -3.28 -3.17 -3.00 -2.75 -2.42 -2.00 -1.43 -0.96 -0.50 -0.04 0.39 0.84 0.10 0.21 0.29 0.38 0.45 0.52 0.58 0.63 0.67 0.71 0.74 0.77 0.19 0.37 0.53 0.68 0.81 0.92 1. 03 1. 09 1.13 1.16 1.18 1.19 0.10 0.21 0.29 0.38 0.45 0.52 0.58 0.63 0.67 0.71 0.74 0.77 4.29 6.59 8.14 9.25 10.23 10.90 11.62 12.04 12.36 12.61 12.82 13 .01 -------------------------------------------------------------------- -------------------------------------------------------------------- PIPE CULVERT ANALYSIS COMPUTER PROGRAM Version 1.6 Copyright (c)1986 Dodson & Associates, Inc., 7015 W. Tidwell, #107, Houston, TX 77092 (713) 895-8322. All Rights Reserved. I I I I I I I I I I I I I I I I I I I PIPE CULVERT ANALYSIS COMPUTATION OF CULVERT PERFORMANCE CURVE April 12, 1994 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM INPUT DATA: DESCRIPTION SYSTEM No.-I 15'/ DI VERTI:.e OVE'RFLt:JW OUTLET OS CFS INCReMENTS -------------------------------------------------------------------- Culvert Diameter {feet)................................. FHWA Chart Number {1,2 or 3)............................ Scale Number on Chart (Type of Culvert Entrance) ..... ... Manning's Roughness Coefficient (n-value) ............ ... Entrance Loss Coefficient of Culvert Opening............ Culvert Length (feet)................................... Culvert Slope (feet per foot)........................... VALUE 1.25 1 2 0.0130 0.50 77 .0 0.0520 -------------------------------------------------------------------- -------------------------------------------------------------------- PROGRAM RESULTS: Flow Tailwater Rate Depth (cfs) (ft) Headwater (ft) Inlet Outlet Control Control Normal Depth (ft) Critical Depth (ft) Depth at Outlet (ft) Outlet Velocity (fps) -------------------------------------------------------------------- (}.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.2 8.5 9.0 9.5 10.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.54 0.68 0.80 0.91 1. 02 1.13 1.24 1. 35 1.47 1. 51 1. 62 1. 74 1. 87 2.01 2.16 2.23 2.32 2.49 2.67 2.86 -3.23 -3.15 -3.06 -2.96 -2.85 -2.73 -2.59 -2.43 -2.26 -2.08 -1. 88 -1.67 -1. 44 -1.19 -0.93 -0.66 -0.54 -0.37 -0.06 0.26 0.59 0.16 0.22 0.27 0.31 0.35 0.38 0.41 0.45 0.47 0.50 0.53 0.56 0.58 0.61 0.63 0.66 0.67 0.68 0.71 0.73 0.76 0.27 0.39 0.48 0.56 0.63 0.70 0.75 0.81 0.86 0.91 0.95 0.99 1. 03 1. 06 1. 09 1.11 1.12 1.14 1.16 1.17 1.18 0.16 0.22 0.27 0.31 0.35 0.38 0.41 0.45 0.47 0.50 0.53 0.56 0.58 0.61 0.63 0.66 0.67 0.68 0.71 0.73 0.76 5.57 6.85 7.72 8.39 8.95 9.43 9.84 10.20 10.55 10.84 11.14 11.37 11.57 11.87 12.05 12.28 12.35 12.40 12.58 12.74 12.90 -------------------------------------------------------------------- -------------------------------------------------------------------- PIPE CULVERT ANALYSIS COMPUTER PROGRAM Version 1.6 Copyright (c)1986 Dodson & Associates, Inc., 7015 W. Tidwell, #107, Houston, TX 77092 (713) 895-8322. All Rights Reserved. I I I I I I I I I I I .. t,1./-Ini!J~;"/'~{R)' -I. 82 ~f/dtAf 4.B2 n/d~ I : BaS"'n~IhLtJ~. (S~) 2,8.S?J SF 4,/J:J:J S"F l3a S;" 1J~1fg.. (Jf'&J Uu) , oc.s4 oc. .lItJ2 QC I IAh'lfr~Iti.?L1. (Q)ac.fWay .81.52 Qcff/t/er ..5JIZ qcfljrAy 8(lsin~hllte u;;y) 827 c.y ,Jm i?Y I iSos;" JI~/"'I/Ie (4C"ctJ ,5/3 ac.pl .~ qc r:t 7;'Af~ i2>e~ Qar~ I.' chys :t /.s ~YiS r I 71ese.tV:8. ~1"&/KIAt~ Vqjtl~5 C);tly tV1drv,:;!va9r I dt1~ile4~ o/tJ'1 S/(;j~/h'c. sd~ so(ls UJ~'-;'/d".s. . 0,,-5',1e Stpn/{IIJt1~ I/tutlfe//(t!')f by Fe~tfSt?# q~7t ~JtJ I !?'itJ/ I IV"$" ustoclas a ,..m~l!>Itc~ "'I'" '/4/5 t'tltllttq-h~"I r$l9("q~cA"<<() I I THE AUSTIN HA NSEN GROUP JOB kNC/A//7A.s 1Io1Jf.G lJEfit:JT SHEET NO OF SCALE CALCULATEO BY OATE 9605 SCRANTON ROAD SUIlE300 s.o.N DIEGO, CA 92121 (01"'552.1010 OATE CHECKEO BY ....~.s~.'~..!. :.df--/~'1f,r1l-h4~i~:~I'"; !3al'd~ '. " , . . , ! i . : 4;~"';)~;cpk6b~'iJ~~f4?"I6~~'k;/~s ,..............,, ,tl6"~ I1ny S "!tf461Uf ,Q t:: 41(G/J tvl,re' tf; ~ 1'1hJ~;'.~ /4 ac ,,c-,L/a6y . , . 1'1:: c,.."S".f'-~t.<t:ItdAtll qre4 [b~lfqA( "lrCl:lJ "' Qc. )(.- !,,*"';'qlli1-h//-6wf,~~ ~ Irl A/t14y Gh.::, Ay.'drtlll'4c?I"tl'deHt ~ Vl'J"Y-t'c4! l#i't,'/-In,f.l,,, . kfr G4:::"/) . Scs S"o,'J1jle ~ /()~~y ;sa"L K ~r, )"al,. ~~;;Z'i:j;;'B4 ,_"'.n_.___:.... BItS/N A ! !?~ 1/ 4~/3--' t ~ .1;) 't .1,,; 'i: " ~ ~ '-> ~ , \) ~ Q; ~ I I I J OF AGRICULTURE TION SERVICE '-- I I I I I I BOL NAME SYMBOL GI Co ACid igneous rock land Ahomant clay, 5 to 9 percent stopes A Itamont clay, 9 to 15 percent 5 lopes Altamant clay, 9 to 15 percent slopes, eroded \hamont clay, 15 to 30 percent slopes .hamont clay, 15 to 30 percent slopes, .roded Ahomant cloy, 30 to 50 percent stopes Anderson very gravelly sandy loom,S to 9 percent slopes Anderson very gravelly sandy loom, 9 to 45 percent slopes Arlington coarse sandy loom, 2 to 9 percent slopes Auld clov, 5 to 9 percent slopes Auld clay, 9 to 15 percent slopes Auld stony clay, 9 to 30 percent slopes DoC DoD DoE OaE2 DoF DcD DcF DoE C,B , C,D CtE CtF CuE CuG CvG ~I F ,C 'J ,C v vD :1 ,E ,E2 :1 Badland Boncos stony loom,S to 30 percent slopes Boncos stony loom, 5 to 30 percent slopes, .roded Boncos stony loam, 30 to 65 percent slopes Boncos stony loom, 30 to 65 percent slopes, eroded Blasingame loom, 9 to 30 percent slopes Blasingame stony loam, 9 to 30 percent slopes Blasingame stony loam, 30 to 50 percent slopes Bonsoll sandy loam, 2 to 9 percent slopes Bonsall sandy loam, 2 to 9 percent slopes, eroded Bonsall sandy loom, 9 to 15 percent slopes, eroded Bonsall sandy loam, thick surface, 2 to 9 percent slopes Bonsall.Fallbrook sandy looms, 2 to 5 percent slopes Boomer loom, 2 to 9 percent slopes Boomer loom, 9 to 30 percent slopes Boomer stony loam, 9 to 30 percent slope. Boomer stony loom, 30 to 65 percent slopes Bosanko clay, 2 to 9 percent slopes FoB FoC EdC EsC EsD2 ,E :1 ID2 :1 oE rE :1 E,E2 EvC ExE ExG I I I SOIL L Each symbol consists of letters or a combir letter is the initial one of the soi I nome. A of slope. Symbols without Q slope letter or. in 0 symbol shows that tne soil is named 05 NAME Clayey allu...ial land Corralitos loam sand 0 to 5 rcent sto s orro itas oamy san I to pltrcent s opes Corrolitos loamy sand, 9 to lS percent slopes Crouch coars. sandy loam, S to 30 pltrcent slopes Crouch coors. sandy loom, 30 to 50 percent slopes Crouch rocky coane sandy loam, 5 to 30 percent slopes Crouch rocky coorse sandy loom, 30 to 70 percent slopes Crouch stony fine sandy loom, 30 to 75 percent slopes Diablo cloy, 2 to 9 percent slope. Diablo clay, 9 to 15 percent slopes Diablo cloy, 15 to 30 percent slopes Diablo cloy, 15 to 30 percent slopes, eroded Diablo cloy, 30 to 50 percent slopes Diablo-Urban land complex,S to 15 perCent slopes Diablo-Urban land complex, 15 to 50 percent slopes Diablo-Oli....nhoin complex, 9 to 30 percent. lopes Elder sholy fin. sandy loom, 2 to 9 percent slopes Escondida ...ery fine sandy loom, 5 to 9 perc.nt slopes Escondida ....ry fine sandy loom, 9 to 15 percern slopes, eroded Escondida ...ery fin. sandy loom, 15 to 30 percenT slopes, eroded Escondida ....ry fine sandy loam, deep, 5 to 9 percent slopes Exchequer rocky silt loam, 9 to 30 percent slopes Exchequer rocky silt loom, 30 to 70 percent slopes Fallbrook sandy loom, 2 to 5 percent slopes Follbrook sandy loam, 5 to 9 perc.nt slopes tiSGS So,'~ SUrt/7 C{J)J]}.. S ii ft~ Sft(Q)lfmW~ft~]f JMIm~l~m~IIJlft Applications for Landscape and Engineering Second Edition Bruce K. Ferguson School of Environmental Design, University of Georgia Thomas N. Debo City Planning Program, Georgia Institute of Technology Im:ii5l VAN NOSTRAND REINHOLD ~ New York I I I I I I I I I I I ! I I I I I I I I I :~ > " " , , .', . .' ... " . .' ." .' ." . . . ',:: ",: ......: :. . :::',' ,'. .:.:" " .' . ',' ".. 1 J I. '; i I , i ' ! 5: " Infiltration is governed by Darcy's equation. Darcy was a Frenchman who discovered this relationship about a century and a half ago. Since then this relation- ship has been richly confirmed, and found to have ahnost universal application to subsurface flow. It is a simple relationship: Q = A K Gh ,~ i l' l '# -'j y. " '; 'f where, Q = infiltration, ac.ft./day; A = cross-sectional area through which the water infiltrates, ac.; K = saturated hydraulic conductivity, the permeability or infiltration rate of the soil, ft./day (see the table on the next page); and Gh = hydraulic gradient (no units) = Mi / I, where, Mi = difference in head (pressure), in feet of water, between two points in the path of the water's movement; and 1 = distance along path of movement, in feet. Through a level basin floor, the direction of movement of infiltrating water is likely to be close to vertical. Thus 1 is equal to the distance of water's "fall" into the soil. If the underlying soil is homogeneous with no restraining soil layer or groundwater table, then the loss of head Mi is is also equal to the water's loss of el- evation into the soil. Thus Mi and 1 are equal, and Gh is equal to 1.0. Through a basin's sides, the direction of movement of infiltrating water is unlikely to be vertical if the side slope exceeds about 20 percent (5:1). The move- ment is more likely to be at a low angle, in which case the hydraulic gradient Gh would be closer to 0.5 than to 1.0. 'j " , ~' WlIltell'JElIlllllmce 74 , I L~ Saturated hydraulic conductivity K depends on site-specific soil types. It can be estimated from soil borings or in situ tests such as with double-barrel infil- trometers. Such tests involve expenses, and do not always give consitent results. An alternative method is to identify soil types from SCS soil surveys or (prefera- bly) on-site examination, and then to estimate I by association with soil texture. The table below lists average conductivities found in the laboratory by highway drainage engineers and USDA soil scientists. When on-site data are extremely lim- ited, only very conservative assumptions would be prudent: for a wet pond, assume soil texture with permeability as high as can be found in the region; for a dry basin, assume texture with permeability as low as can be found. Hvdraulic conductivity K inlhr ftldav Crushed stone: ASTM stone size: No.3 stone 50,000 No.4 stone 40,000 No.5 stone 25,000 No.6 stone 15,000 100,000 80,000 50,000 30,000 Natural.MJ.il: SCS texture class: Sand I Loamy sand Sandy loam Loam Silt loam Sandy clay loam Clay loam Silty clay loam Sandy clay Silty clay Clay 8.27 2.41 1.02 0.52 0.27 0.17 0.09 0.06 0.05 0.04 0.02 16.54 4.82 2.04 1.04 0.54 0.34 0.18 0.12 0.10 0.08 0.04 Stone dall infe:mt from H.l. Codetpln and othcn, 1972. GwiJ"lUtu for 1M Dui,,. ofSub.nufilu Drai_g. Sr.rI,1PU for Hi,h_y StntellU"Gl S.CtioN, Report No. FHWA-RD-30, WuftinglOl1: Federal HighwIY AdminiJuabm. Office ul kcacuch ilIld Devdopment; uel. T.blc2.1 oCH.R. Ccdcrgre:n,19TI.S.'I'OI..Drai_,., aMFluwN.ts,Ncw YodcWilcy. Soil conductiviUcl from W.J. Raw". D.L. BnkaWek and K.E. Su1On., 1982. Eatimauon of Soil Wilta' Propc:roc., TrlllUlll;tUnv of IIw MYrica 5<<:;"" of A,na.uw.1 BllliN.,., vol lS. no. 5, pal. 1316-1320 and 1328. 75 Water ]Balance ( , . . 2.612- r; -13 '9~ Triangular Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: HOME DEPOT Comment: pcc SWALE CAPACITY CHECK Solve For Depth Given Input Data: Left Side Slope.. Right Side Slope. Manning's n...... Channel Slope.... Discharge...... .. Computed Results: Depth.. . ... .. .. .. Velocity...... ... Flow Area........ Flow Top Width... Wetted Perimeter. Critical Depth... Critical Slope... Froude Number.... 46.08:1 (a:v) 49.02:1 (H:V) 0.020 0.0092 ft/ft 4.03 cfs 0.23 ft 1. 66 fps 2.42 sf 21.46 ft 21.47 ft 0.21 ft 0.0123 ft/ft 0.87 (flow is Subcritical) Open Channel Flow Module, Version 3.21 (c) 1990 Haestad Methods. Inc. * 37 Brookside Rd * Waterbury, Ct 06708 J I I , I I I I I I I I I I I - I -- J -- -- - >- a > - 0::: Q >- Q: .... 'Z : j; ;~ ~ ;( .... ~ Q~ I z~ Q:N ::>~ ~~ . . -- -- -- -- ~ ~~ - Gl Z 0: ;:) t; .9t 0: ~..... ~z 4f.{- , z ..., 0= ::) t; 0: .... fI) ..,.... ... . lIOd OO'lXi+lL :>1 ~lrC:8 ~ ~I >~ I ~~ :u OL"S8 L ... I- ~ ~ 0:: < fu o " z a;: w w z <3 z w ~ fu c ~ w, ::IEC' o' :1:0 (I) ( ~i 1-.. a..;;: - 0:: '"- Zit ~:I oz Ut- Z ~ ffi Q. W I- ~ cS ?i ~ % lL t!li R 0 ~ ~>-g: t ...~ ~ 0 ~ ;i Q. I \ , I I \ I , I , \ ~. , SJ t-l:'l:6 I . OJ. t-L 7:6 . ~ S :z: ~ ~ , OJ. 107:6 1 ," ~ ' ~ :>J. 917:6 ,...: I' ;!. 'J.d 'IH - ~ "..... 10"0 la O.L zn:e ~ OJ. 99' 16 s:l l HOd OJ. rt'I6 ~ ~ ~ . ~ OJ. ''''OS , ~ ~ , -, OJ. ttO'OS ~~ ~ ~ OJ. og'llll \ 4t OJ. 01"6ll -' HO II 1'O't9+ZL ~~\ I ---...~...._J_ . --------- ... . I::!IIt 5:0 :J~ .~~ I::! ' ~ ~ N :!: '" I::! t:!~ Iii . - ...: ; z ~ ;:) t;j ~ ..... Z ~ ~ - 4( t- ~ LaJ b ..... Q .... > I - Z~ 0:: , , Q o::N ! ~~ ( f >- ~~ 0:: ... Z LaJ-CD 0:: :J 0 i II) . . . . I ~ ll:l, O()'!l'J+IL Z /' OJ. 1:11'1:6 IX ~ :;) ~ OJ. 9t~8 ti - ~ ex N :It , :>.11111~S 1U d I ~ I en ...J OJ. YO'tS 01 ~ ij~d OJ. OY'tS ,...,/ - I' ~ ~ !i!1 OJ. ~'tO f,! - ~~ , - , OJ. Oll'tll : j I , --....------J , \ I I , I .\ \ ~. \ s.l Y1:~e \ I I ~r ~~ OJ. YL~O . . IHi -- r;l , ~~ N' s! :l! :j[ ::c~ ~ - ~ ... .., /' OJ. LO~II 1 ~ , ~ OJ. 8~~1I ~ :. 'J.d 'IH ~ - -' !i! ".. OJ. Z1:~lI ~ - ~ 41( I- ~ OJ. Il1ne ~ ~ ~~ ~ Z LtJ 0:: > I ijOd :;:) - z~ OJ. ,t' III 1 t; ~ ~ C o::~ ~ ). 0:: ~::c OJ. S:ll' 08 \ 1U >- ~~ ~~ Z 0:: ~ ... I- I'~I ~n'nll I , .. Fax Transmittal Memo 7672 :""CI"4/' ~Ck~6(W"r. =C,'ty cf E~ui4"ft1.! e I'v:U'" ,pI' V" II'UJ (j)..I"" f.., . .'" / ....'CPhon.. . (,3)-2'2-7 . C<lmmtnll S.M.~ cuI~/n~".1 Ilfl- ~r tI, e /' ':'~ Of~ J'ya/, IeJ 0 ;I~", .2..",., 1&''' dt!'e~ cell Ir f4~ k#lt!- SUf!l$h~. ~)t""I t:,w "~~J tf .,.t:-;...,.rt:;.wf~~ ;,., . 11\.,. -""',"".'.''''' II E'ItClit;!&u- HtJ",,(! j!)~1- 01 5CAil /.If .JOI ---.--" I of 2. OAT[ <1r)J'?Y' DIll( SHUr NO ~TW WI AU $ I I N H A N Sf N GROUP CH[QlDI '" . ~ " i !' .il , , 1+. i . i. "TOo""; ""'l ':"' 1 ,t j"',,, i "1"',--;-'-' ! ' 1 t r ' ..\-.... . i ......j'.... I i ! ....."....".,' i ! l l 1 j +... . ,"" i ...{ , , j. ! ; , '--1-"-'1 I' ~-..~-~/I i -:-1.,' ',1 : '.n. --. ...\.. . . , '. [I.... , ,I l' ; , . --I --1' -j. ~ : I 1 0006 SCRANTON RO"O , HillE 300 . SA.N OIEGO CA 02121. 61Q 552 1010 . F,,t,X 610 S~~ 1001 .....f-_.j. , ' . , , . ......1. ' i .. -~-_.. i ., T" .i ._,j. , I t i ..-.\, o. I \ ....i....j --- i 1 ! \ ; 1 I , , . I.... .J i ' ! .+.__ ~.."" L,. 'j.. j' , I l i I .. r-~ . , , . .~~".,.;-- i I rt"". -1-.,.i."" , ; . , . i , . , -T"- -""'~'. ' ) .:'.;.rJ?:,'.': ,;';'''f C':/' ;';J~; )" '., ,,';:: ,:~ .. . -: . ~ (I) II;j I- Q Z ~ 11 ~~ <~ .,0 ~'" 1Oil; l(", ~lli ~., Iil'" il;~ ~:;!;; ==N "''''0 ~~Z :E~ti "'"'''' 00: ~~., < = . ':;~'J~'i!,~.~~i;'\-;'i;,~':{~if;~~ Ii.\:,<,,.',,,,,,,,~,,,,,,_,,,,,,,,::~; ~I > "'I 8C1t t:!1 ~i 51 :~ , "'0 ~3 .,"!:, llC< .~. "'llC: "'''' ~ili z" <'" d -,-------'r .---. ~-- ---.~~, : , '" l::~~J ~=.J ,______..Jl-' : ~.__.--_.---- : ~,- , , , __.J ..> ~~ >ij ~"!l ~Q..J HZ': .d ~'" ~O ., >-iii ~ a ~.~ ~ ~ ~Qz~ 0: "'~ ~ Ii.\' ..,w.. ~ ~o. ._ :;! ~..j(I~..'U'~'~;~iA-'iM~~:..;,1( ~"~:~\-~\iWfI.M~. -"~i~~4t~~ v.l1i.\"-"'_'''-'''''",,'-o~_'''..J \_.~...--....,,,,..._......, ~~ I '.' J ~., j:~ E~ ,r~;'H,:,1j~'~1I;:jt1ii~.7.1%#i;~!:1l~::, . -.0-..., .",,-~ .......,.,.._."_"'..._.~'...."'~,_"'~ ". ~.; i' =-'===" -::'-;'~':.-:;'I il:';' ",:1 " "" ~f-:;;;~: _L-:-::'-:___~_t~::~~~i I' :: .: " II I' II " , . :: I: It ,1~ 1 ~~ i' I: .' :: II L____ :: L~;;'-- , ,:::_::.::::.~ e e :: 0 . ~ e g.>- : =C)~~.... .Zo.w:;l C;:<-llC 5gIllQ!::C w....:i..lV~ Qc~!!!::O ,.., 010 :C<g ;:Ero.:JIIlV.... 0: ,~~- ~li r~l . 0. I: g ~ J ,Ur e = 0 I~I e .. :r Ig! :: !- f1 ~ f' ) ,,; r.I) " " e., .<LJ"LJ: " =~ . () , I .~ I~.~~JJ ' co' .;1 e- < l~ III e" e< -~ ..l ..l ,< - - :i:" ;:; ;:; ~ IOl IOl "';''-~<, ....-:-,."..~"_. -,'-,,",- '"~-,., Q >,,,',~i , Q ~ ~" ~~--"--.. ,,J~,,~ -" , , . ..... "" , ;0 < (,.: " :r ~ tn'. .... ,~i ~,-' ,"Li', z < ..l i:l. r---< . .- < ~;. '.;. -i ~ " I r __n_______.. -....., 1 ~ , , IOl , , - ;-1 , :> , , , ,I . ~"" , Q '" ' , , , , , l : , , 0 z . i! , IOl , J , ,., , , E- , , IOl : ..l . _u__..J Z - ~ IOl - :> Q z IOl E- IOl ..l E- ::l o ~ t: ::: .. , ...v:c zffi!!~" ~IID~Z !:WllCiS !Kl~S ~:if2~ "'""~ Q~ilJ:C ~!i~~ o ., ~ ~ ., NN ee ~~ ,,': o~ II. ~ 0';' ,e ~. ~~ .~ HN ~oo .' ~ <. (,)~ .e ,,= ZOO C ..> '" !: '" ~ ~ s: ~ ~ ';; oo ~ ~ ~ - > 0 " > H " ~ z '" ~ ~ " ~.~J~ ':nr:/l;;"il ... '" '" < '" l( " " : "' : ., ., 0 " " e e ~ S :: c <i> .' ., ~ ~ 'I ~ ~ ~ ~ .. e e H ~ - :, - - <i> :: ~ ;, .. ., ~ ;, ';-..'-':', e in g ~ ~ ~ ~ ., .. ~ ;, ~ ~ ;, e ~ ~ c 'r - <i> - .' ~ ., ~ .. ;, ~ ;, .; z .; ~ o ., z o ~ " ;;: o '" ~ ., < z o - E- U IOl (I) z o ~ ~ " " '" ..> : ~ ~ ~ : '" " ~ ol-~:I: " Z 0 ,.lw z!:2 0 '" ~ w-'<w :r ..> =~...::c ;; !:! ;; ;; : ~ ~ C> '" ~ .. .. .. !:! !:! !:! " - - ~ ., . .. . ~ : . " . .. :! ~ ~ ;;; ;;; ;;; ~ .. .. C> N N '" ~ ~ ~ ~ .. ~ ~ ~ ~ oo ., Z 0 in 0 . . . ~ z ~ ~ ~ oo '" :r is .. .. oo ;; " ~ ~ ~ - oo ..> ..> ;; C oo oo ~ " H . ~ e ~ e e .. ;; c . ~ ~ N ~ C e e e ..> e e e e ~ ~ s: H :: ..> ~ ~ '" <i> <i> ~ " c ., ., 0 ~ ~ ~ ~ :r '~----,"_. .--..;..,... '-'---'"--.- ( , ( PLATE CLEAR OVERALL HEIGHT NUMBER OPENING FRAME A.1325 36 44 6 Conforms 10 City of San Diego Drawing Number M.54. Bituminous Paint. SMALL APPROX. OPENING WEIGHT 22 850 Machined Seats. Painted: ( CAST IRON 36" MANHOLE COVER AND FRAME TWO CONCENTRIC COVERS FOR TRAFFIC ( ( r~~-r-->"~ A-1325 D ( ( ( MANHOLE COVER AND FRAME FOR TRAFFIC c PLATE CLEAR OVERALL HEIGHT APPROX. NUMBER OPENING FLANGE FRAME WEIGHT A.1275 22% 35V, 6 375 Square Block Tread. Cover and Frame Machined to Fit. Painted: Bituminous Paint. Conforms to City of Riverside Standard Manhole Cover and Frame. ( ( ( . . .__;~"k':!,; ~--- --"~ A-1275 : .' ,.....;..:', c . .-'- .~", ..:;".;;:,,"::;_:-., l ( LOS ANGELES STANDARD MANHOLE COVER AND FRAME WITH INSPECTION HOLE FOR TRAFFIC ( l PLATE CLEAR OVERALL HEIGHT APPROX. NUMBER OPENING RING WEIGHT A.1494 23V. 3W. 6 480 Conforms to City of Los Angeles Standard Orawing B,3660. Inspection Hole 5 Inch Diameter With 8 Inch Long Cap to Fit. All Seals Machined. Painted: Bituminous Paint. l ( A-1494 , ~ ~ _ . J ~ ~ '"' " . '" . ..,', ~ ' ~, ", .. ~ ,t~ ~ . '. J' ...(d-l-~;f.,"~,~ '-,I "}.,.' ,....~.:Jl ". z' ''f '~'! . '1~~._1' 1 ,Ill.. ; ~,,:t.'" , "", ,,~~~,. ~ ,'" , ;, ~,~: ~i'>'. h ~ ~"' _ 1""_' '~_' ".~", ",'. '. .. \'~" "'_.~ , . . . " z - = u.l ..l o :c z <: :l: r~..!;;:. C"'loI.lC71 ...lZEO __wf-o :!1 .. iC ~ l ;. iW ~'i.....,'.~ \:-r~.1:i~_.:J~,- i:I !OJ :> Z < ... Cl. I I I I I I I I g iJ ... -.,.- .: '~-4,.. -.~, Q,:' ~. .0.0.:::.... .. '" .. o 0 Z '" '" 0 . ~ ~o ~ Q ~ ~ z ~~ >.u ~ ~~ E ~ ~ 0 ~ ~w~Q_ ~~ f-o Q ... ~ ~Z <ZOZ~ U~ ~E~Q ~ ~ ~i z~.<i 9g ~N- ~ ~ ~~ QuZQ~ ~...l ~!~~ ffi ~ ~~ t~~~8~~~ ~i~ffi~~ ~ E8 ~~~~~5g5 ~~g~~s ~ ~~ <~ffi~>~~~ zi~~=u ~ Q~~~=~;g~=..~ < ~ c.. z w~~~o -...l= ~ ...l~:<=~ 9 ~8~g~u~<x~~ ~~S~d~ffi~ 8f:~~~~~~8~ ~=~~zo=~ ~=Q<>=ON<QN =~===~~u ~~Qf-oOZf-o~uz~ w~f-o<<!w~ <~z==~~o~<x ~~~==wzu ~3<~~~=c~~f-o > w~~=w = ~zozww z; . f-o~~zz>~~ ~~~-f-oO~f-oW~~Z w~~--u=~= o",ww=zuu =0 f-o .~u <o~~=-.f-o...l--~ZWW~ ~~~~~Q=f-o~9!Q~=~=~~a~~ uc~~~~~g~=EEU5<5~~=w= z~EZZu~=aw~f-oZ-U...lZ~Z~~ ONO~~WOf-oW~~~O~~oow~ow uUU==~~~=_=<UiCOUU=~f-oC ~--~ .. '~W,~i ii ~~ ~~ :~ L J I < ~~_ ~i ~ r.n u.l ~ o z ~ co; ~ ati .; = <: ..l ..l o U u.l ..l o :c z <: ::E .. ... ~ '" o '" '" ~ ::lIl'i..\: ~~. -.....0 'lIo-l'.4 -D ~Q.,~-.l ..,'r .':<':.'-~I .. ".,~ l I I .. I .. : I iJ ~1rI. ~;;'-"""" ~. "'~~~~I b~-"J))-...':~J4 i>';'-~~ 'I ~4..;'}~,,~{ i:I !OJ :> Z < ... Cl. '" .. <> o Z '" I- o Z '" '" ~ L",-J ,.; z o to- U !OJ rIJ a: < ... ... o u z o to- U !OJ rIJ " Z is ~ ... '" ... ..1/ ..:c ..... 6" IiJ tJg ..JCIiJ ' OZ..J= =<0= Z :Co .. Z.. '" "0 "'", Z " ;;; '" o > III o .. :c u ~ ~ '='4\"": 'o__Il~ p " .-", ,C;>--:,:l!>J , I , I I I I I I I I I a: < ... ... o u ~ z 1= rIJ ::l ., Q < !OJ Q < a: ~ :t U ~ ~ in ~~~ 'r'~;'\ ,. . l'h'"'\, J :. L . . fIJ 2 o - fIJ 2 ~ ~ >< ~ . ~ ~ 2 < 2 ~ ~ 2 - < :I . . ~ o .. ~ ~ - " III ~ u ~ . ~ ~ - ~ .. lE ~ '> - 'Ii ... a: I- ~ ~ . .0 a: I- - " ~ o.! . . :.0." ..... .-1. - - .... = .e . .0\ -..J .!'~J-O\ .!.! _...'!o ';..rJi=..... :liJlol..-cr-OIl 1...1=:-' _II; 0. 0- .....l..=.!:. .__ _...:.0..- :!~i.s=<';!'; . ~..5!.!.lI.! o. " _....-:: .sJ 1':1:t-:<,1 ..=i.!.~:.e ~:I-;"=;!~ ilJlla:olol...1l .._.loll"I-o .<';.;=:!!~ .! . ,,&_ 0 .. .!..~.:loIi:..! .!;.!;;.!JIJi=i ~: =I-o;-;.::.:i- ~.. ,1I':".'r"l.! ....WIl:~'1lI..;.=. a: ~ : : :11-1 oS.!.! ~.! ....:.g...,,_lol"'; " . _ iJ lol" :I .. tl 1al.ii!!..1..e- "tlao.__Cl.:"" = ii'" .... " tl ;a." :..!!'tl:i~-:=o ..:r" ".lIloI-- ..,!Itl ....!...~i;J:-;. .. _'1lI; !:! o <Ii z ... .. " ... ... <.l Z .., Z ... it c :r "'~ I~:: ~. ~ <. '" uo;' .~!;! ci~ ~q~ t.i~ ~ ." \:> l:!~ ;: i:'<:i~~ ~~ ~:; ,,~ o~ ,,~ ~ o~ c.:~ . ~ o .. ~ ~ - " III ~ u ~ . ~ ~ - ~ .. lE ~ '> - 'Ii :c III 'Ii ~ ~ . ... III 'Ii i.. : . ll.!' a: J;; .- _:z: ....... .. ! '! ;J: . ;:... .! -J. "..." ... .lI...J ;..J-_.2. 1oI.--..J.... ~ 1:1.!!':: tl i . ..t...I""..- :JII=O...s.! ~.. ...<:11 It !~==..!;~ .lol,,-~..... .s:===.=,1: -. ' .. '.lIil'oJi- ..u :1 ~-!.Qo ."... ....." ." ...:Ii.:;liD. ].;~.!~1=-= ....':.-0.,. .!i.-;;.';.!. ~~!l~~==Jj IoI.l ._..__;"IlI" :r::,,!'i:~ ; "";.0 IoI.Iw",,,._:.!oa fIJ : " ~ = :!! = ~~ ~ "Ill tI I.".! - .. =,,:.o.t1&lj!l;.lC; ,,",_li-::" .:r:.!.! ",.-=.!::.o.::I;; "-l:l" . - - 0 "'lI " " l-..!-I~.;; , . . . ~ o .. ~ ~ - " III ~ u = . ~ ~ - ~ .. lE ~ '> - 'Ii U :c lE ~ = . a: :c lE . .. .. _ il~. ::; J..: =: :lA .i;'O;..:J~ o _" .:.0.. :-It.:~I";"IlI: w_w".. 0" ~!i;=;:.o.iil .~.J-:...JIol;:I 0'" ."IlI-=C1o .:::..=;&.- J~:.!',!t~t;J _ . .. li" : "..... :.0. -=::1.." ,,= =-.' "'0.1"..... j""l,;;S-l';: .::~;"'.c.!.. IJ:";.-"-.cw; . .. l- " :- ~ ~.2 :: : Q ." .-."....."'... J:".!.!.rlll".~"'" " . 101"- ! . ..; - 0 ..! :; 1:.. =.! . :I : " j! .. "Ill :.0...- lii.:....S"i.==;. l;.l.:l:i:.!i..j::."IlI-=1 :r:: " i .Ii 1.- "CI " : -! '" :I....JlI .o..::....! ..: :&~&:.."IlI.2. ...!!:"."J":..:!! .~:-",.2!,!!_.!: .J"O 11:..". ~_A.:!-- :z:-.!.!!::!<~..!.': :I...:.o....a.&..;..s:..u :1"';>>"0": "0' ._.%.!;-!l~ 1 1 1 1 1 1 1 1 1 I' 1 1 1 1 1 1 1 1 1 Drainage Study for iJ~[g ~@Uill[g @[g[F)@iJ Encinitas, California May 17, 1993 (Revised Sept. 23, 1993) prepared by The Austin Hansen Group 9605 Scranton Road, Suite 300 San Diego, CA 92121 (619) 552-1010 By: Date: Robert C. Haynes, RCE 25593, Exp. 12/31/93 1 " 1 1 1 1 1 1 1 1 1 I) I I I I I I I 1 I j FORWARD The Encinitas Home Depot will be graded in three distinct operations. The initial grading will be that necessary to generate the material necessary to place the surcharge fill on the Home Depot building pad. A separate grading operation will be that which is associated with the wetland enhancement program. The wetland enhancement grading can occur independent of other site development grading, but will most likely happen in conjunction with the surcharge grading operation. The grading plan for which this drainage study is being prepared assumes this to be the case. The Encinitas Home Depot Surcharge & Wetland Mitigation Grading Plan incorporates both the surcharge grading and the wetland enhancement grading. The Encinitas Home Depot site drainage is divided into two types. The first is the storm runoff which will flow from the hillsides behind the Home Depot. This will be relatively clean, uncontaminated runoff once the slope planting is reestablished. The second type of storm runoff is that which will be generated onsite from the parking lot and the Home Depot building. There is a potential for this runoff to be contaminated from oils and other pollutants associated with the automobile and the store operation. The Home Depot drainage system is being designed to keep the two types of runoff separated. The clean hillside runoff will be piped directly to the Encinitas Creek drainage course. The parking lot and building runoff will be directed to a system of oil and sand interceptors and nuisance water treatment basins. Therefore, this drainage study for the Encinitas Home Depot is comprised of two sections. The first section, Section One, deals with the hydrology and hydraulics for the Surcharge Grading Plan. This portion of this report is dated January 28, 1993. Section One evaluates the hydrology and the hydraulics for the grading, terrace drains and brow ditches associated with the hillside grading to be done to generate the surcharge fill for the Home Depot building pad. The second section, Section Two, incorporates a previous report entitled "PRELIMINARY DESIGN FOR THE CONTROL AND TREATMENT OF URBAN RUNOFF RESULTING FROM THE DEVELOPMENT OF THE HOME DEPOT COMMERCIAL SITE". This report evaluates the "first flush" storm runoff potential and the required minimum capacity for the two nuisance water retention basins. In Section Two the capacity of the overflow weirs for the two nuisance water treatment basins is evaluated. Section Two also reviews the potential infiltration rates for the two basins. A subsequent drainage report, or addendum to this report, will be prepared in conjunction with the Precise Grading Plan for the Home Depot site development which is forthcoming. I I ) I I I I I I I , I I I I I I I I I ~~(glra@oo @oo~ 1 1 1 1 1 1 1 1 1 I) 1 1 1 1 1 1 1 I 1 DRAINAGE STUDY FOR THE ENCINITAS HOME DEPOT SURCHARGE GRADING PLAN January 28, 1993 Revised September 23, 1993 PROJECT DESCRIPTION The Encinitas Home Depot will be built on a site at the southeast quadrant of the intersection of EI Camino Real and Olivenhain Road. According to the soils report prepared for the site by ICG Incorporated on May 30, 1991 a portion of the site is underlain by alluvial and colluvial deposits from the Encinitas Creek. The balance of the site consists of hard claystone and dense sandstone. The proposed Home Depot building will be built near the base of the north facing claystone/sandstone hillside and will project northerly over the colluvial/alluvial deposits. The results of soils testing has confirmed that significant settlement will occur from the added weight of the building. To minimize the potential for settlement the soils report recommends several methods for consolidating the soil beneath the building, one of which is to surcharge the building site by placing 10 feet of fill above the proposed finish grade across the building pad. This is the method the owner has elected to take. The material for the surcharge fill is proposed to come from the grading of the north facing hillside, the adjacent Pierce parcel, the north parking lot and the 3:1 slope along EI Camino Real that is required for the future widening of the street. The grading will be in general conformance with the current tentative map grading proposed for the site. A combination of 2:1, 3:1 and variable slope rations will be used. Benches will be provided with terrace drainage ditchesplaced at approximately 30' vertical intervals. Brow ditches will be placed at the top of the slopes. To help minimize erosion the permanent portions of all slopes will receive permanent landscape and irrigation systems immediately upon completion of the grading. Once the surcharge isin place it will be monitored to determine the amount and rate of settlement. It is anticipated that the desired consolidation will take 8 to 10 months. A wick drain system may be installed to expedite the consolidation process and reduce the total time to 1 to 3 months. During the consolidation period the site will have to be protected to minimize erosion and to prevent silt from entering the Encinitas Creek. As previously stated, the graded slope behind the Home Depot building site, as well as the slope on EI Camino Real, will be immediately landscaped and irrigated. The balance of the site will receive temporary erosion control treatment. The top of the 10' surcharge fill is to be left relatively flat. A row of sandbags is to be placed along the entire perimeter of the top of the fill. The combination of the flat pad grade and the 1 1 1 1 1 1 1 1 1 I' 1 1 1 1 1 1 I, 1 1 1 sandbags will prevent any loose soil from leaving the top of the surcharge fill. A row of sandbags is to be placed along the base of the surcharge fill slopes, as well as all other interim and permanent slopes, to trap loose soils that will be dislodged during rains. The areas adjacent to the surcharge fill wilIalso be graded relatively flat similar to the top of the surcharge fill, again to prevent any loose soil from leaving this area. The flat surfaces will act as a desilting basin area. A silt fence or anchored straw bale barrier is to be constructed the full width of the disturbed site from the west property line along the northern edge of the future parking lot and westerly to the EI Camino Real right-of-way. To minimize silt transport to Encinitas Creek during the grading operation for the surcharge fill we will recommend that this silt fence/straw bale barrier be installed prior to commencement of any grading operations. This continuous barrier will provide both the initial and the final silt and erosion control measure to assure that silt does not exit the site and enter Encinitas Creek. The initial drainage system for the surcharge grading plan is to be composed of the permanent brow ditches and terrace drains and temporary downdrains. The downdrains are to discharge onto rip-rap aprons and into desilting basins made with sandbag berms. The downdrains will eventually be replaced with a system of inlets and pipes once the surcharge program is complete and the final site development is initiated. A separate drainage study will be presented at the time the final site precise grading plans are submitted for approval. A localized silt retention measure may be provided by placing single sandbags at approximately 10' to 15' intervals in the terrace drainage ditches and brow ditches. The property owner will be instructed to monitor and maintain the drainage and erosion control measures installed in conjunction with the surcharge grading plan. Site inspections will be expected after each significant storm. The desilting basins are to be cleaned as necessary. Excess silt trapped by the silt fence, straw bales, sandbags or other entrapment devices is to be removed and stockpiled for use in the final grading of the site. The remainder of this report includes the charts, graphs, tabulations and other information describing the site hydrology and hydraulics. 1 1 1 1 1 1 1 1 1 I.) 1 1 1 1 1 1 1 1 1 J HYDRQLOGY The following hydrology analysis is based on County of San Diego Desion & Procedure Manual for Flood Control and DrainaQe using the rational method. A 100- year frequency storm is used for all calcualtions. For the purpose of this study a time of concentration (tc) of 10 minutes has been assumed for all drainage basins. County of San Diego isopluvial charts for the 100-year, 6-hour and the 100-year, 24-hour storms are used to determine the adjusted 6 hour precipitation factor of 2.7 inches. From these values an intensity factor (I) of 4.6 inches per hour was derived. The soil group classification is assumed to be D. A runoff coefficient (C) of .45 has been assigned for undeveloped land per County Appendix IX. A composite runoff coefficient (C) of .5 is used for Basin 0 to allow for existing residential development. To summarize: Selected frequency storm = Time of concentraion (tc) = Intensity (I) = Soil type = Runoff coefficient (C) = ~ear \ 10 minutes, "- .-/ 4.55 in/hr. 110" 0.45 (.50 for Basin D) The peak runoff/discharge for each sub-basin contributing to a drainage ditch is shown on Exhibit "A" using the equation 0 = CIA is as follows: Basin Area (A) 0100 A1 2.23 acs 4.7 cfs A2 0.25 acs 0.5 cfs A3 0.30 acs 0.6 cfs B1 1.93 acs 4.0 cfs B2 0.41 acs 0.8 cfs C1 1.00 acs 2.1 cfs C2 0.15 acs 0.3ets 0 13.67 acs 31.1 cfs E 1.69 acs 3.5 cfs A more detailed hydrology analysis will be provided at a later date in conjunction with the Home Depot Precise Grading Plan. ~ ~ 3656 ~ 2'30" ~ ~ ~ " 'v " ~ ,~ - - 1IIIIIiiiiiiiii-- ""., '-- ""-..... ", " .- , ,,- .. ''.'\::' .\:~t:'.:".""' -:\;--':~::':::=- .:<~~>~~ ~~:- -, 'C~\'~~_.- ~-.c. - _.}~. . : '\, .... - , -= ," "\_ ~~~=.~~=~~~~~_. = L _~' ~_7-" - _______ - ~' - - <0"' --. ,-' - . - \. - " :_..::\ "-'-:.fJ - - ., \ ~ L. - , -\ i\(>~~' _ - ,.' I-'i'" - ~- L.... - \'. . I ",' ,,- -_.-- . - " ,.' !~~,~ .' . ~- .' . ,c.l--\. <--.,\ .- . -, .- '" . .. !" )-_fl . ~ -\'r~,~\ '- r- ,. ,'~~- ,. \ ,. ( 't \ .,. \ ) '\ .\\. _ ' {r-- \~\'- . T -\ -I \\ \- -~ ---'-1.-- h i '-'...- lj + -\ ~ ~ , \ \ \ \ ,- " '.- I~~~?~e Depot THE AUSTIN HANSEN G R 0 U P DRAINAGE BASINS I FW a .0 tOO ,.. E~TUIE.I'\.NH'OG 1.~."'TlilllCQ[)(SlGN I,AI<I.t~Tf.Cf\SI/E ~1NlNE5Ci<N'o'ON SoANllEGO:~9'112~AD !b'91~2'OlO MEtEll5 I .1 I I I I I I I I) I I I I I I I I I --::0 C".;_ ~ - ~ .~ E- - ~""" - ~ l..l.J ~ c.. -~ - ::;) ~ ~- - I ~o r:.t:: ~ r.u >- I o o ~ ~ % o ..... I- o~ Cl ..... UJ % ..... <- Q Vl %lL.-1 <(00 Vl "" lL.1-1- % =- o lIJ ci >-~u t:;C>eo _<(0 i5Ca...Q .-;;.J~-.J lL.. .'::. . -0 c:::: ::3 Cl '^ - -- I (C ~ ct I.!..l >- I o o ~ - o .... LJ.. 0 en ..J ct - ::::- ::3 0 ...: r-. C- O c.n - - '^ - \ = c--.I \. .. u s: " :: 0 " .... !! ,,;:: 0< -w ~:s W ~~ U !!Z 0:: 7.: 0 CrJ:i~ ~ :;:0< ..:: ::::!: < z. ~. 0 U >= u iO Jo. Ct.. !:! 3 A 0;: 0 ? t..., 0 ~ . I: Z . CO : C:J ... = . a: :;;: < II. - I .... Q 0 0 0:: ~ C:I r'\ < u a.. ~ k: bJ 0.-; II. o ~ 0 uigG ::i .J7. < < 7.~ o ;:::i < - ,,0 :> .. M .J ~ U .. .. M ~ ,/ ~. :ig ~ z <:i '" .::t - o ...... '" .::t I ! ! i : I I '" . .... .... II-A-7 I :~ I , II . ..,., c:: ~ =:J - 0 ...;.. , II 0 - - P- -- I d: 0:::.'" II l- N - 0- c:::: - <: U U.I II . l.:..l > I c:: 0 Q.. 0 I ..... - - t...:;ooo. -- 0 , 0 - (/,) , - --I I ~ ~ - , ) N ;::. ::l c:: --I ~ I c::: 0 Ll.J c,,) >- '\ I 0 = I "" 0 \. ...- I - " I <4 . '" << on % 0 .... l- I 0;:: CI .... . . ,ro . "-''''' .....< "'''' I ""tJ..-' <00 Vl c::: f-f- '^ 0 '^ tJ..:Z:Z ..:r M 0"-'0 I >-~u f-C::::::> ""<0 I~ =>"-0 OW-I UOU.. I r ~ . M M " " > " ... w " ... . -.:' 1.:". e .... . ..... <.- - C .... ,,>: " < -'" ~" ,,-, t:J !- < U ~;>: e:: :: ~ t:.l :t ~ - ,,< :F.<~ 0"" U i 0 " c ~ ~ :: 5 ,Q o;;::=. !:-oo ~___ .z,.~ ~ ~ :(;: 1 :l. ...:. 00 t-o :Z::.J 0:: < v < u ~ a.. ~:A. t.:.l < 0 a 0", t"'"\ . v:: en 0" '.J7. =' < :; a:5 - ~ ..... i '5 " ... w '^ -' < u " "- ~ <."\ II-A-13 I N c::: 0- I ~ .s:: ') u .... '" I ::;: I I I I I l- e:; -=: ::: <..> I :z: '-" - en :..u 0 I ))~ - - l- I .~ 5' I >- .... - I en :z: '""' I- :z: - I I I I I I I OJ >,.s:: ""... OJ .... 0 0.... .s:: 0 -0 ~c: "'0 ... .... c: .0..... '" '" .. '" >..... ~"""~ -0 0 '" "" u-o-o >,ll> .0 ~ ... > c: >, '" .... '" '" '" .... ~ .... "':1:-0 '" U ~ ::s I: .s:: ::s ::s UJ 0.,- ..> '" U ~ 0 co >,~ "'...~ s.: ~ ~ '" "'... u '" c:.. c:> ~ I: '" ...."'''' u""" c:. .~ '" 0 . 0 '" CUC4-::'I_ QJ l.() t; .... .... ~ "'1: cr; I: 0 1:... '" ... "'I N~ --ou '" .... '" 0. '" 0.. 0.. .... E~ '" c.. ........0 .s:: .... .. s.. '" -0: ... ... ::s 0 '" OJu.s:: E~ ~ ~ I: -0 0 .... . '" ..."'... ~ '" I: ~ 1-0 ~ '" "'~ 0'" '" C"o 0 0 >,'" ~ 0 -0"'1: ....::s 01: 0 0. ... N "'- >,1: -"'I: I: ~>, , 0 .. '" '" ........0 0 '" "'~ ~ ~ .... I: o..4J"CO:i: '" - - ..c: 1:'" 0 rc:s.cQJO ...."'.... ... .... "'I: ~ . '" o~ ~+.:t+.:t.-QJ ~.s::'" '" ...", n 0 .... ~ ... I: .... 0.... ... .... ..c: c: ... I: ..c: .0 '" !:S-_"C:::J ~ ~ ~ '" .~ '" >, N - ..... '" U OOS-C"'C u= ~ c.. ::s I: u 0.. E I: U ~ -,+-.c.~ C1.r "'~- - 0 "'~ I: - - ~ ... u .....s:: u u .... ..c:", '" . ~ 0. ItScn4JCo c..... '" '" .s:: . ... .0 ::s . 0. 0. -i-J +.:t So- L.') So. ~ .... s.. 0 .... '" .. CJ I: II ~ 0. -=: ~"'''' 0.. 0:;: 0. 0.... '" "'I: E '" ~ <0 ~ -=: o.::s . s.. s.. "'I: - 0 .... 0.. s.. -OcnO-c .s:: '" o~ . '" I:~ ~ 0 ..... .. "' .... .e U E Q,...- C ~ s..... s....c: ~~ "'... ..... ~ . 0 cu rc:s rc:s- to <0 ..c: .... ..c:u ~ 1:'" -0 -0 ~ :z: s.. E ... '" -0 _ U I: '" '<\) '" .. '" Co . ~ I: +.:t_ c::r"U) "'''' "'''' ~o 0 .... .... I: s...curc:scn '" "'''' ..c: ... ~ ~ u '" 0 E..c en ::l_ ::S... Q ........ :;:... '" .... '" II ::s II - 0 "'I:'" .""10 C!.J 0 "'0 ~'" '" ~ .., n ... s...~aS:: ItS QJ "C.s:::...co ~.... ....~ ..c:..c: u '" '" -0 U U LLN 1-::: 0 C:::::~~+.:t 0..0 Q C. I- .... ~ en 0.. -=: ... - '" ~ s.. 0. - ~ ~ ~ ~ ~ 0. ~ ~ ~ ~ ~ Q ~ '" .., ... ll) -=: <:> ~ '" .., ... ... >< >< ....... c.... ;z, w< 0.. , 0..> <... 6-Hour Precipitation (inches) <:> ll) <:> ll) <:> M N ~ ~ <0 : ~ L:::.--L. 0 <: . ll) " .... ~ t: '-" . ~ <: ... 0 ,. .... :l: ... .LI> ..... '" ~ ~'I""'" , ,.... ... . .'" <: .... <: ~"l'I. . ." .., .... I'l. .... '. 1.1'"" ~ , I '-" .... e I :~:::-- ' '. U '11 '" C >.. ., . ..J) ..... ... ,. !:, ::s '" .... 0.. III 0 0.. on '" ::: <: .,. ., ,. .,. ... :l: <: ..... .... '" . . . . '" . .... .... "- Q ~ I: .:r- 0 - 0 .... LO '" <: s.. 0 ::s .... 0 Q ... .... '" ::s <:> M != i:: '" <:> ~~~-.~ ,. .. , '" '" .... ,. ,,'j ::s -+ ';,:1 I: .. " 00 - .lI' , .1 Ii.; ." " ~ :E: , 1 , I,'; , " I 1',;1 " r. ----t' I ." 1;1 I i I I , r, ,. I ,;!\I:: ";d I, I I g '" .. ... .. .. .; ool N 0 .... ~- -. ~. ~. "\ ... "t N (..InOll / Sa4:lUO ^HSua:j.uI APPENDIX XI IV-A-14 I - I I I I I I I f' I I I I I I I \ I I RU~OFF COEFFICIENTS (RATIONAL METHOD) LAND USE Coefficient, C Soil Group (1) A B C 0 Undeveloped .30 .35 .40 e Residential: Rural .30 .35 .4.0 ~- . 0 Single Family .40 .45 . SO .55 ~lulti-Units .45 . SO .60 .70 Mobile Homes (2) .4.5 .50 .55 .63 Commercial (2) .70 .75 .80 .35 80% Impervious Industrial (2) .80 .85 .90 q- . _ 0 90% Impervious NOTES: (1) Obtain soil group from maps on file with the Department of Sanitat:on and Flood Control. (2) Where actual conditions deviate significantly from the tabulated imperviousness values of 80% or 90%, the values given for coefficier.~ C, may be revised by multiplying 80% or 90% by the ratio of ac:ual imperviousness to L~e tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Consiuer commercial property on D soil group. Actual imperviousness = 50% Tabulated imperviousness = 80% Revised C = ~ X 0.85 = 0.53 ,\PPEXDIX ~x I I . I . I . . . '. ) . . . . . . . . . HYDRAULICS The hydraulic analysis for this surcharge grading plan primarily involves confirming the capacity of the brow ditches and terrace drains. For this purpose tabulation charts are attached which show depth of flow for vaiousditch types for differing grades and flows. For the brow ditches and downdrains a standard Type UB" ditch per Regional Standard Drawing (RSD) No. D-75 was assumed. For the terrace drains a Type "D" ditch per RSD D-75 was assumed. The brow ditch intercepting runoff from Basin D will require a special detail to assure adequate capacity. A modified RSD D-75 brow ditch with a depth of 2' and a top width of 4' is proposed for this purpose. A more detailed hydraulic analysis will be provided at a later date in conjunction with the Home Depot Precise Grading Plan. I I I I I I I I I I ) Page 1 of 4 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: HOME DEPOT Description: BROW DITCH CAPACITY Solve For Actual Depth Given Constant Data; Diameter..... ...... Mannings n......... 2.00 0.013 Variable Input Data Minimum Maximum Increment By ------------------- ------------------- ------- ------- ------- ------- ------------ ------------ Slope Discharge 0.0100 1.00 0.1000 10.00 0.0100 1.00 II I I I I I I I I ![/' I' '0 :::I ~ " .., ~ ." . ~L 24" min 3" 470.C.2000 concrete or / 3" 2500 psi, air placed concrete with 1\\"xl\\" 17 gage stucco netting. ~t " 'E BROW DITCH TYPE B Open Channel Flow Module, Version 3.21 (cl Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I I Page 2 of 4 I VARIABLE VARIABLE COMPUTED COMPUTED COMPUTED I --------- ------------------------------------ --------- ------------------------------------ Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' efs ft fps Full I ft/ft cfs ------------------------------------------------------------------- ------------------------------------------------------------------- 2.00 0.0100 0.013 1.00 0.29 3.62 22.62 I 2.00 0.0200 0.013 1.00 0.24 4.61 31.99 2.00 0.0300 0.013 1.00 0.22 5.32 39.18 2.00 o . 0400 0.013 1.00 0.21 5.88 45.24 2.00 0.0500 0.013 1.00 0.19 6.35 50.59 I 2.00 0.0600 0.013 1. 00 0.19 6.77 55.41 2.00 0.0700 0.013 1.00 0.18 7.15 59.85 2.00 0.0800 0.013 1.00 0.17 7.49 63.99 I 2.00 0.0900 0.013 1.00 0.17 7.80 67.87 2.00 0.1000 0.013 1.00 0.17 8.09 71. 54 2.00 0.1100 0.013 1.00 0.16 8.37 75.03 I 2.00 0.0100 0.013 2.00 0.40 4.44 22.62 2.00 0.0200 0.013 2.00 0.34 5.67 31. 99 2.00 0.0300 0.013 2.00 0.31 6.54 39.18 2.00 0.0400 0.013 2.00 0.29 7.24 45.24 I ) 2.00 0.0500 0.013 2.00 0.27 7.82 50.59 2.00 0.0600 0.013 2.00 0.26 8.34 55.41 2.00 0.0700 0.013 2.00 0.25 8.80 59.85 I 2.00 0.0800 0.013 2.00 0.24 9.22 63.99 2.00 0.0900 0.013 2.00 0.24 9.61 67.87 2.00 0.1000 0.013 2.00 0.23 9.97 71.54 I 2.00 0.1100 0.013 2.00 0.22 10.31 75.03 2.00 0.0100 0.013 3.00 0.49 5.00 22.62 2.00 0.0200 0.013 3.00 0.41 6.39 31. 99 2.00 0.0300 0.013 3.00 0.37 7.37 39.18 I 2.00 0.0400 0.013 3.00 0.35 8.16 45.24 2.00 0.0500 0.013 3.00 0.33 8.83 50.59 2.00 0.0600 0.013 3.00 0.32 9.41 55.41 I 2.00 0.0700 0.013 3.00 0.30 9.94 59.85 2.00 0.0800 0.013 3.00 0.29 10.41 63.99 2,00 0.0900 0.013 3.00 0.29 10.85 67.87 I 2.00 0.1000 0.013 3.00 0.28 11.26 71.54 2.00 0.1100 0.013 3.00 0.27 11. 64 75.03 2.QO 0.0100 0.013 4.00 0.57 5.43 22.62 2.00 0.0200 0.013 4.00 0.48 6.95 31.99 I 2.00 0.0300 0.013 4.00 0.43 8.02 39.18 2.00 0.0400 0.013 4.00 0.40 8.88 45.24 2.00 0.0500 0.013 4.00 0.38 9.61 50.59 I 2.00 0.0600 0.013 4.00 0.36 10.25 55.41 2.00 0.0700 0.013 4.00 0.35 10.82 59.85 I Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I I I Page 3 of 4 I VARIABLE VARIABLE COMPUTED COMPUTED COMPUTED I --------- ------------------------------------ --------- ------------------------------------ Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' efs ft fps Full I ft(ft efs ------------------------------------------------------------------- ------------------------------------------------------------------- 2.00 0.0800 0.013 4.00 0.34 11. 34 63.99 I 2.00 0.0900 0.013 4.00 0.33 11.82 67.87 2.00 0.1000 0.013 4.00 0.32 12.27 71.54 2.00 0.1100 0.013 4.00 0.31 12.69 75.03 2.00 0.0100 0.013 5.00 0.64 5.78 22.62 I 2.00 0.0200 0.013 5.00 0.53 7.41 31.99 2.00 0.0300 0.013 5.00 0.48 8.56 39.18 2.00 0.0400 0.013 5.00 0.45 9.48 45.24 I 2.00 0.0500 0.013 5.00 0.42 10.26 50.59 2.00 0.0600 0.013 5.00 0.41 10.94 55.41 2.00 0.0700 0.013 5.00 0.39 11.56 59.85 I 2.00 0.0800 0.013 5.00 0.38 12.11 63.99 2.00 0.0900 0.013 5.00 0.37 12.63 67.87 2.00 0.1000 0.013 5.00 0.36 13.11 71. 54 2.00 0.1100 0.013 5.00 0.35 13.55 75.03 I:) 2.00 0.0100 0.013 6.00 0.70 6.08 22.62 2.00 0.0200 0.013 6.00 0.59 7.81 31.99 2.00 0.0300 0.013 6.00 0.53 9.02 39.18 I 2.00 0.0400 0.013 6.00 0.49 10.00 45.24 2.00 0.0500 0.013 6.00 0.47 10.82 50.59 2.00 0.0600 0.013 6.00 0.44 11.54 55.41 1 2.00 0.0700 0.013 6.00 0.43 12.19 59..85 2.00 0.0800 0.013 6.00 0.41 12.78 63.99 2.00 0.0900 0.013 6.00 0.40 13.32 67.87 2.00 0.1000 0.013 6.00 0.39 13.83 71.54 I 2.00 0.1100 0.013 6.00 0.38 14.30 75.03 2.00 0.0100 0.013 7.00 0.76 6.35 22.62 2.00 0.0200 0.013 7.00 0.64 8.16 31.99 I 2.00 0.0300 0.013 7.00 0.57 9.43 39.18 2.00 0.0400 0.013 7.00 0.53 10.45 45.24 2.00 0.0500 0.013 7.00 0.50 11. 32 50.59 I 2.00 0.0600 0.013 7.00 0.48 12.07 55.41 2.00 0.0700 0.013 7.00 0.46 12.75 59.85 2.00 0.0800 0.013 7.00 0.45 13.37 63.99 2.00 0.0900 0.013 7.00 0.43 13.94 67.87 I 2.00 0.1000 0.013 7.00 0.42 14.47 71. 54 2.00 0.1100 0.013 7.00 0.41 14.96 75.03 2.00 0.0100 0.013 8.00 0.82 6.58 22.62 I 2.00 0.0200 0.013 8.00 0.68 8.47 31. 99 2.00 0.0300 0.013 8.00 0.61 9.80 39.18 I Op en Chann e 1 Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I 1 1 1 1 1 1 1 1 1 I) 1 1 1 1 1 1 1 1 1 Page 4 of 4 VARIABLE VARIABLE COMPUTED COMPUTED COMPUTED --------- ------------------------------------ --------- ------------------------------------ Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' cfs ft fps Full ft/it cfs ------------------------------------------------------------------- ------------------------------------------------------------------- 2.00 0.0400 0.013 8.00 0.57 10.86 45.24 2.00 0.0500 0.013 8.00 0.54 H.76 50.59 2.00 o .0600 0.013 8.00 0.51 12.55 55.41 2.00 0.0700 0.013 8.00 0.49 13.25 59.85 2.00 0.0800 0.013 8.00 0.48 13.90 63.99 2.00 0.0900 0.013 8.00 0.46 14.49 67.87 2.00 0.1000 0.013 8.00 0.45 15.04 71.54 2.00 o .HOO 0.013 8.00 0.44 15.56 75.03 2.00 0.0100 0.013 9.00 0.88 6.79 22.62 2.00 0.0200 0.013 9.00 0.73 8.75 31.99 2.00 0.0300 0.013 9.00 0.65 10.13 39.18 2.00 0.0400 0.013 9.00 0.60 H.23 45.24 2.00 0.0500 0.013 9.00 0.57 12.16 50.59 2.00 0.0600 0.013 9.00 0.55 12.98 55.41 2.00 0.0700 0.013 9.00 0.52 13.71 59.85 2.00 0.0800 0.013 9.00 0.51 14.38 63.99 2.00 0.0900 0.013 9.00 0.49 15.00 67.87 2.00 0.1000 0.013 9.00 0.48 15.57 71. 54 2.00 o .HOO 0.013 9.00 0.47 16.10 75.03 2.00 0.0100 0.013 10.00 0.93 6.98 22.62 2.00 0.0200 0.013 10.00 0.77 9.00 31. 99 2.00 0.0300 0.013 10.00 0.69 10.43 39.18 2.00 0.0400 0.013 10.00 0.64 H.57 45.24 2.00 0.0500 0.013 10.00 0.60 12.53 50.59 2.00 0.0600 0.013 10.00 0.58 13.38 55.41 2.00 0.0700 0.013 10.00 0.55 14.13 59.85 2.00 0.0800 0.013 10.00 0.53 14.82 63.99 2.00 0.0900 0.013 10.00 0.52 15.46 67.87 2.00 0.1000 0.013 10.00 0.51 16.05 71. 54 2.00 o .HOO 0.013 10.00 0.49 16.60 75.03 Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 1 1 1 1 1 1 1 1 1 Ilj 1 1 1 1 1 1 1 1 1 Page 1 of 2 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: HOME DEPOT Description: TERRACE DRAINAGE DITCH TABULATION Solve For Actual Depth Given Constant Data; Diameter.......... . Mannings n......... 3.26 0.013 Variable Input Data Minimum Maximum Increment By ------------------- ------- ------- ------------ ------------------- ------- ------- ------------ Slope 0.0100 0.0500 0.0100 Discharge 1.00 5.00 1.00 = c 'C c " e ~ Co " "" l~ << 'ill ,,:' .3" 470.C.2000 concrete or / 3" 2500 psi, air placed concrete with lW'xlW' 17 gage stucco netting. 2' min 3' min 6" ~f ,~G-I'r., .--............. ...... , f , , , c 'e N TERRACE DITCH TYPE 0 Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I I I I I I I I I IJ I I I I I I I I I Page 2 of 2 VARIABLE VARIABLE COMPUTED COMPUTED COMPUTED --------- ------------------------------------ --------- ------------------------------------ Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' cfs ft fps Full ft/ft cfs ------------------------------------------------------------------- ------------------------------------------------------------------- 3.26 0.0100 0.013 1. 00 0.25 3.39 83.25 3.26 0.0200 0.013 1.00 0.21 4.31 117.73 3.26 0.0300 0.013 1. 00 0.19 4.96 144.19 3.26 0.0400 0.013 1.00 0.18 5.49 166.50 3.26 0.0500 0.013 1.00 0.17 5.93 186.15 3.26 0.0100 0.013 2.00 0.35 4.17 83.25 3.26 0.0200 0.013 2.00 0.30 5.32 117.73 3.26 0.0300 0.013 2.00 0.27 6.12 144.19 3.26 0.0400 0.013 2.00 0.25 6.77 166.50 3.26 0.0500 0.013 2.00 0.24 7.32 186.15 3.26 0.0100 0.013 3.00 0.42 4.71 83.25 3.26 0.0200 0.013 3.00 0.36 6.01 117.73 3.26 0.0300 0.013 3.00 0.33 6.92 144.19 3.26 0.0400 0.013 3.00 0.30 7.65 166.50 3.26 0.0500 0.013 3.00 0.29 8.27 186.15 3.26 0.0100 0.013 4.00 0.49 5.14 83.25 3.26 0.0200 0.013 4.00 0.41 6.55 117.73 3.26 0.0300 0.013 4.00 0.37 7.55 144.19 3.26 0.0400 0.013 4.00 0.35 8.35 166.50 3.26 0.0500 0.013 4.00 0.33 9.02 186.15 3.26 0.0100 0.013 5.00 0.54 5.49 83.25 3.26 0.0200 0.013 5.00 0.46 7.00 117.73 3.26 0.0300 0.013 5.00 0.42 8.07 144.19 3.26 o . 0400 0.013 5.00 0.39 8.93 166.50 3.26 0.0500 0.013 5.00 0.37 9.65 186.15 Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 I I I, . I I t I' I' f ! IJ ) I) I) Ii I' I I I I I Page 1 of 2 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: HOME DEPOT Description: BASIN "D" BROW DITCH ANALYSIS Solve For Actual Discharge Given Constant Data; Diameter........... Mannings n......... 4.00 0.013 Variable Input Data Minimum ------------------- ------------------- ------- ------- Slope Depth 0.0100 0.50 3" 470-C.2000 concrete or / 3" 2500 psi, air placed concrete.. with l%"xl%" 17 gage stucco netting. BROW DITCH Maximum Increment By ------- ------- ------------ ------------ 0.0500 2.00 0.0100 0.50 II 48 m;n ~ ::-'E ~ TYPE B Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 I I I. i I I I I' It r J I) .' ~ l Il I, I I I I I Page 2 of 2 VARIABLE VARIABLE COMPUTED COMPUTED --------- --------------------------- --------- --------------------------- Diameter Channel Mannings Discharge Depth Velocity Capacity ft Slope 'n' cfs ft fps Full ft/ft cfs ------------------------------------------------------------------- ------------------------------------------------------------------- 4.00 0.0100 0,013 4.78 0.50 5.28 143,64 4.00 0.0200 0,013 6.77 0.50 7.46 203.14 4,00 0.0300 0,013 8.29 0,50 9.14 248.80 4.00 0.0400 0.013 9.57 0.50 10.55 287.29 4.00 0.0500 0,013 10.70 0.50 11.80 321,20 4.00 0.0100 0.013 19.68 1. 00 8.01 143.64 4.00 0.0200 0.013 27.83 1. 00 11.33 203.14 4.00 0.0300 0.013 34.08 1.00 13.87 248.80 4.00 0.0400 0,013 39.35 1. 00 16,02 287.29 4.00 0.0500 0.013 44.00 1.00 17.91 321. 20 4.00 0.0100 0.013 42.98 1. 50 9.98 143.64 4.00 0.0200 0.013 60.78 1. 50 14.12 203.14 4.00 0.0300 0,013 74.44 1. 50 17.29 248.80 4.00 0.0400 0.013 85.95 1. 50 19,97 287.29 4.00 0.0500 0.013 96.10 1. 50 22.33 321. 20 4.00 0.0100 0.013 71.82 2.00 11. 43 143,64 4.00 0.0200 0.013 101. 57 2,00 16.17 203.14 4.00 0.0300 0.013 124.40 2.00 19.80 248.80 4,00 0,0400 0.013 143.64 2,00 22.86 287.29 4.00 0.0500 0.013 160.60 2.00 25.56 321.20 Open Channel Flow Module, Version 3,21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, ct 06708 1 1 1 1 1 1 1 1 1 1-) 1 1 1 1 I I I I I ~~cguD@~ uwYJ@ I I I I I I 1 1 I I) I I 1 1 I 1 1 1 1 PRELIMINARY DESIGN FOR THE CONTROL AND TREATMENT OF URBAN RUNOFF RESULTING FROM THE DEVELOPMENT OF THE HOME DEPOT COMMEROAL SITE. DISCUSSION: The Home Depot site is proposed for development at the southeast corner of the El Camino Real and Olivenhain Road intersection. The site is currently an open field which falls gradually toward Encinitas Creek. Encinitas Creek crosses the northerly end of the proposed commercial development. Moderately steep hillsides lie southerly of the project site. For the most part these hillsides will remain in a natural state and will be protected by an open space easement. A small 5 lot residential development is proposed for the hilltop south the project site. The configuration of the existing topography, however, is such that virtually none of the residential lot drainage will contribute to the storm runoff being considered for treatment in conjunction with the Home Depot project. Commercial development significantly alters the characteristics of storm runoff. Of particular concern is the degradation of the storm water quality. Large paved parking areas collect motor oil and other products associated with automobile usage. Landscaped areas contribute fertilizers and pesticides. The accumulated impacts of such contaminants can have a very detrimental affect on downstream water courses. Other less harmful materials such as silt, sand and ash tend to be transported more quickly to natural water courses across the impervious paved surfaces thereby adding to the problem of siltation of the stream beds and downstream lagoons. OBJECTIVES: There are two basic objectives to be met. The first objective is to treat the runoff from the Home Depot site to remove harmful pollutants. The second objective is to minimize the amount of silt and other solids which are deposited in Encinitas Creek as a result of the project development. APPROACH: Control of silt and other solids is a two-fold problem. The first occurs during construction when grading is in process and the ground has been disturbed. Construction related silt will be controlled through conventional desilting basins and sandbagging. Also, grading is presently proposed to be performed during the dryer season of the year. Long term control of silt and debris from the developed site will be accomplished by the use of "sand and oil interceptors" in conjunction with a routine parking lot maintenance and sweeping program. I I I I I I I I I I- I I I I I I I I I Control and treatment of oils, suspended and dissolved solids and other pollutants will be accomplished through the combined use of the sand and oil interceptors (oil/water separators) and the creation of water treatment wetland areas. This report will not attempt to describe the vegetation or specific biological operation of the water treatment wetland. (See attached memo titled "HOME DEPOT SPECIFIC PLAN PROPOSED WATER TREATMENT WETLANDS PLANT PALETTE".) Rather, this report will provide the results of the simplified approach to the hydrology and hydraulics associated with the preliminary design of the various urban runoff control and treatment facilities. The dynamics of percolation rates in the wetland treatment detention ponds, and the detention capacity of the sand and oil interceptor tanks is not incorporated into this preliminary study. Subsequent detailed design may permit the downsizing of certain of the facilities. BASIS OF PRELIMINARY DESIGN: 1. A 2-year 6-hour precipitation storm will be used for the basis of design for the water treatment wetland detention ponds and the sand and oil interceptor tanks. 2. A 100-year 6-hour storm will be used for evaluating peak flows for storm drain systems and for the evaluation of overflow and/or by-pass systems. 3. The sand and oil interceptor tank system will be sized to accommodate the first 10 minutes (first flush) of the 2-year 6-hour storm. 4. Storm runoff from the natural hillside south of the Home Depot building will not be treated but will be collected in a separate drainage system and discharged through an appropriate energy dissipator into Encinitas Creek. 5. The "equivalent triangular hydrograph" in Figure I-C-2 of the County of San Diego Hydrology Manual will be used to evaluate volumes for the sizing of the interceptors. (See attached "HYDROGRAPH" exhibit.) 6. The County of San Diego Hydrology Manual and Design & Procedure Manual will be used for determining storm runoff. Peak flows will be determined using the rational method. The attached "DRAINAGE BASINS" exhibits define the areas of the site studied in this report. The results of this preliminary evaluation of the storm runoff volumes and flows are presented in the attached "HOME DEPOT PRELIMINARY DRAINAGE/URBAN RUNOFF STUDY" tabulation. Typical sections for the sand and oil interceptors and the water treatment wetland detention ponds are attached for reference. Also attached are the preliminary design layouts for the two proposed detention ponds and the storm runoff collection systems. I I I I I I I I I I-...~. VJ I I I I I I I I I HOME DEPOT SPECIFIC PLAN PROPOSED WATER TREATMENT WETLANDS PLANT PALETTE Nuisance Water Treatment Wetlands Botanical Name Common Name Juncus mexicanus Pluchea odorata Scirpus robustus S. californica Typha latifolia Mexican Rush Salt-marsh Fleabane Prairie Bulrush California Bulrush Soft-flag Cattail The proposed Nuisance Water Treatment Wetlands as shown in Figs. will occur at the edge of the parking lot between the project development and the Encinitas Creek Wetland area. As part of the mitigation outlined in the Home Depot Specific Plan protection of water quality in the Creek is a major goal. The Water-Treatment Wetland will be designed to catch and hold water that is secondarily passed through the parking lot oil interceptor program and to catch high flow rainfall directly. Wetland plant species, acting as filtering agents, will be cultivated from healthy and mature plugs grown under the supervision of a qualified biologist or nursery person. Replacement of plant material that shows signs of irreversible degradation will be reintroduced on a partial revolving basis to maintain a constant filtering continuity. The assessments of the project biologist will determine the lengths of time necessary for plant re-introductions. To ensure water availability during months of no rainfall or low urban run-off a water-conserving emitter type irrigation line will be installed to supplement water facilitating the viability of plant life. The presence of a high ground water table and proposed low elevation of the Treatment areas will also provide a positive biological setting. During the establishment period of the the Wetland Restoration Project and susbequent Nuisance Water Treatment areas the maintenance is projected at bi- weekly or as needed assessments according to the judgment of the project biologist. Visits will taper to monthly and continue to be performed on an as needed basis for a period of three years. I I I I I I I I I I~ I I I I I I I I I THE A U S TIN HANSEN GROUP '0035 BAr?NES CA"ivO'i rr: :..>.~ D<tGO CA ~2'21 'O'Q:5521O'C Q., ~~ ~ ~ ~~ ~ l10 t ItAOV ~ -t,., to Y-t~f2tl '" ~ X A * = ,J?S Wufl1/ tp~ 2~ Qp . t;,Q.1' MtXP Q,cP r +:p . ~ If tp lfe,= Q /tJP no - 2. .i JOB )/OIJ( e Oepo-t SHEET NO or SCALE CAlCULATED BY DATE 6-/9-91 CHECKED BY DATE tt ., ~MPH J tr = I. b7 ~ A = MsM C//'I9:1 ' ~ = 2-y81r, 6 ~ sm#ll . ~= -I3thl rU.lJdF,f,. ~.!bur m"~ Q p ;: ,Peak -P/"u . 6)/tlP;: ,c!b/iJ At- /~ I1IN1tJ7P.5 /~f" ~rlll 1,; => fiiHe .Iz, rt>&lc/' p8::lk -Ilo/iJ 1 1 1 1 1 1 1 1 1 IJ 1 1 1 1 1 1 1 1 1 llJ !'I'1' n I:Sl !ll' t: i!lll Il. !Il' l'~! QO !i!~~8 _ ~~~ !~~~ ~!Si~ Of-I 'sill' II I!! 11'~ sill: i' · ! !" "I, ;'~', a.. .. !!!i~ li.2 -'ll~ =~~!~ llJ " li"l Ii, i", 1"'1 .. 0 ill !Ss 'I! iil! 'illi, < llJ ,l!!l!' I"~ "'I' "'I :>::;: '!" 'I I" !!" "!I' ~ ~ Ii!!!!! jl!1 Iii! i1i: 011 < I'f'!' 0,,'0 101 ~~ ill,l! iill i!!11 I! II :i 0 .., n:;;: 0:1 : :~: w' o:r.. zl :!=: ;:1 "h" O ~ :::~ ....._0 ~ i'!!li~!"I'!!'- ~ !' o.! ~ ,I ill hi " 111"!ii:!~1 r! I a~ ~iWill'li ,I'll" 1 !il"ll!,. " ", ,I !.,' !z ,1 '"' ~~lllgl!lh < 11..811 I! I' :;,i'h:1 '!:l ii! ~I i!liil!E! ~ i~~ . @I dhi~:h! ~i ~ .. I""~ ~i ~ <I : ~ . C, I 1 ' " , ..... ,,' I ....!.., I I >-I!:: I I ..... II:: ~; ~' ! ~ o! <I'.... (I) ~ : I ! ! (I)' E'.... Wi '1." (I)! .. ~i 51 ~I o' ;: I I :511' ~' ill I..~~ \J r ~ Illl ~Ol! ifi "I~ " . , , ,! " " I! ... .. ~ . ~~I:le on :: ... '" ~ . ., I " 11 :i j I ," , i : " -- -- , I I .. " -- " I 1 l Sjw:~r~ _ :I:"'Ze:: 1-::>""0 ~" ~ ~ ;; i " ;: ;: i I 1, ~ ~ , ~:I ~I ~ ~, ffil ffil ~, ~I "'I ;: ,I, . I' !' c~~~ ~ ~ 'h!!l ~a 'Ii!! i!~ d i '" C1)! w ~. ;~ Z b ~i e 0 0' ~ :>oi z>- a: a: ow, , u.1Il :J:::E1 <<I d 0-1: wi, 1-1 ~.. O'o\! Zlf! ~!~~ o;.:!: ~ig: (I): ~: 01 ~~ ...JI ~~ $' ;!~ . frll ~5 0..1!!.. 0j ~~ I~Ull8U8U ! ~ r!;!;;,;! : g:r=:.::!:~== I ~I~' r"'l"'" I ~ ..::;;-;:;;:; . . . ._.000".,1 >- a: < :> :> " '" >- o -' H !~ II !;; i~ wi ~; ~I ~~ grj; ~H < .. "'I;; ~H l.l..12i ." i~ ~ ~i! III t:: iH t~ i ~~~ ... ~H '.. :n DMlN/J6E &9s"INS ....... o 0., (l) o (l) S~ o~ ~E OJ :5 ..c:;! f-i~ 1 1 1 1 1 1 1 1 1 ) I" . 1 1 1 1 1 1 1 1 I '\S .~~: I '~.. ~ ,- ~::..~ "l ~ - y,\ ~. ;-:'. ~h ......~, -to ,:..'\~ .... . -. a '" I :.:1'_ ''', >~Z't:~~~, 'J(.. ~.. :/1: j' ';'\-~<>.:""';;;;;.-...' "-",,,,:>~~~~-,~\ \ ' . .......... -""'" ~.. '.. " - '.. - , I .. ")... ..... .............~ _. -";;:." _--::'-..:'=---=~_...:..-.....;-..:.._=.:_______ ' -...., .............. -'--.. - . .. -. , . I, ---- .~ ":_. 1,_ .......::.:;;,,-cc::--...::_--=.QW)[l;,t~JiAl~8q~P___.. _.: IJ.:, '. '.. _ ...-:.,...............~___~__!\_.. _-:,____ " J I', 1 t .. .,,~' ".\ "" \ "'. -/1' I " .' "2 \ .-- -; (~,J, ~ll:! 1,;;FiosIIl~ ~~- ...~~;.-".\ \ ' I,. ---,.. '. . '," 't;::' \ ..\ . "I'.. .... ,. .' \ 'I \ \ .,'. -, I ~ 11' I .: "':;., '''. :. .:.- \ . \, . I .:, ::,:-.........u;>.. : :' . 1 ::"": ~..: _....;.~ ~' \ (;, '~ .. \\. -...... - I' . ," -- . ,_../..'0\....':.. ';'. . 1'1__ " :,'1"""'1 :-,',\. -':.:.':':' ""_'. "';'" ....,.......\ \ \ (l .::.:.,::: \:L-::-'i-'5=1~ .;.' ....;..'C\ \\ \ )~.: j 1,1"\1 .':-- ':~:"~.\;:-==-~""" .. . '.;;,,'J I' 1 1 . -] -......., .,.. , I \ '-<"""" I I' Ij, 1 "11\'. . " I' 1 B . . ,: '!. I 11$I11 -' , ,I!, 1 " '....._ I \ . - -...- \ ~~) \ I~' , L5' I cr I \ \ ~,., 0.... . ~. --- ~z . ....."';.... .. - '" . ..... '. ---:- , 'J ~' ! ;1 , I ._1 , - , ! ~.:..") , l.._ I ':(;-" . ---. . f , ' I 'u'/ ..... . . ... .'. i{ "f" J' '. \ - .,-..~._.,..."~ i7~ UI I, , ''''.' \,.... "'. _..__ ..!! 'I'll' '<iPX\\:I~'~:;;\:?c"~ '/ _._;-_... 1'1 . '., r. \i" ..b. _I__/~:::::':::-_" DNI'.lI"'9' ,,____ -\ I /// E::?-..:E~:;:!~-~ · ......_~J.., "_"~'~._ BoC'''$ =~":7.'l::." HOME DEPOT SITE PLAN The Home Depot . Encinitas, CA . ..~ . '~::Ir~-' ..--.". ..-........ '_~'''I I -" .. .. ...,- -- tBJ -<......-.;~.. I H E ,.., ,.,"':,,;:::::... A U SIr N '-~"'K;IO, HANSEN ::.':::~::::.:;.~ G R 0 ~ p ........ .')-lJ-<J3 I w Vi 0'> or--on Cl U. r-- 0"'''' I <3:w2- N N"":"": 0:01- w <~ >-'0::; on ~r--,," <u. 0.. on O~CO '" 0'> coon I ~ ~ w Z;:E-- ~ 0,,"0 :i;:J:=~ ~r--~ on o~ I o -' ~Cl N o)cD.n ~O ~ ~ > ~ w :;~~ r-- onon,," I :; ;:Jou. r-- o",on -'~o CO. C'{ CO ,...... 0 02:..- ~ ~ ~ > I ~ ~~3:1LVi CO ocoon z :;i1j0:=u. Lri ~NN < ~a..LiQ.2. I- a: I 0 0 o~ l- I- ~ ~ ~ ~ ~ ~ 1-i1j~z ~ ~ ~ ~ "1 Q. W c( a:~ oi oioioi w 0.- oi mmm g) w :; w~~ ~ ~ ~ ~ ~o...e~ ~ ~ ~ ~ U 0.. ~ a: l- I- I w ~ '" o"'~ ~ 0;.......... on i:L i:L '" 0'> > a. "" ~"'co a. '" ",on;;!: "" > 2- ~ ,,"or-- > 2- ..; .0 r-: C -' cD ~riN o . . :J Q ~ ~r--<o ~ I I- 0 .J ~ .J ~ r-- ~"'r-- '" U) Z 0 OJ 0'> ~O'>'" 0 OJ i:L r-- <0 on <0 i:L ~ or-- on e( > '5 '" > (; '" ,,"co~ <0 2- ""'..0 ('I') 2- LL Ul ~ ~ cD ::00,," ....: ~ as "':a5"": cD LL 0 ~ ~ '" "'~~ "" IJ 0 z I- Z e( ~3:~Vi ~ 3:~Vi r-- 0 0'>"'''' on :J 0 < 0 a.u. 0 r--",co i1j o a.u. Lri r-...:C\i"": oi z w-,Ou r'tri-.i -,Ou a: :5 O-u..-_ ~ 0.. u.~~ '" ~ ~ ~ ~ I z I- ~ ~ <C w 0: <0 <0<0<0 8 0: co co co co '" 3: Cl J: ~ ~ ~ ~ J: '" "''''''' r-- m MMM ..... r..: ,....:,....:,....: "'" !z t:. '" ..... t:. a: I :J w -- :E C- o 000 C- o 000 0 w !;i ~ I Lri triuiLci ~ I Lri LriLriLri 0 " w I <C a: Z I- >i1 '#.cf!.rfl. a: >i1 cf..cf!.* >i1 a: 0: U5~;e 0 >- (ac:!i;e 0 0 <C >- "! "''''''' '" "''''''' '" w . a..a..!L. 12 ggg 6 a.. a.. a... N ciC\iC\i N a: I- '" 0 <0 <0<0<0 <0 e( ~ I c 3: 0: > Cl 0: "" Z "1 ~~~ >- rs ~ on on on on on Z >;- '" , ~ "'" .q:~-.:i "'" a: 0.. ~ ~ ~ ~~ 0 0.. N '" 0 <C ~ I z 1ii 0: a: a:: ~ "! "!"!C\! >- Z co co co co co :iii: 0 >- <0 ~ , <0 U. N 0.. ~ ~ ~ ~ Ul 0 0.. = N C\iciN N ::i 1ii 0 Ul ~ I w 1ii w ~ w a: >- I- u. . e( t:: u. . -' 1ii u.u. UlU.U. c.. e( 00u.~ 0'> 0'>0>0> Z 00u.~ 0'> 0>0'>0> 0'> Z o..zw2- 0 coci e( o..zw2- 0 ddd ci l- e( :;;:JO a: :;;:JO I 0 a: o a:: 0 ::) 00:0 c.. ::) 0 0 () w 0 < J: < '" G' <0 oonO'> cb G' <0 oonO'> 0'> C 0> :J: W r-- r--co<o W r-- r--co<o on , . 0: ~ M C\i"":"": r:i a:: ~ M C'J"":"": "'" I r-- co < < w ~ r:i e( . :iii: 0> e( Z W Z >- 0 ;:> w 1ii < ~"'''' 0 1ii < ~"'''' 0 w >- < aIaIaI < alaICll ::J: . Q I a:: OIl Cll ~ Cll I I I I I I I I I W:-;l. I::' I I I I I I I. I I Inflow Pipe from Oil I Water Separator __ 6ft.Q Plan -- Capacity 1.600 Gal. Assumed Flow-650 GPM -1.5 cfs OllT -- IN -- ...........""!"....................................... 5 ft. Section a ft. End Typical Oil I Water Separator Prepared Soil Marsh Treatment Nea ~ Q , Concrete Overflow Wier & Spillway Flow Through Pond Section Not to Scale NUISANCE WATER TREATMENT The Home Depot =- .' Encinitas, CA ExlubH 11-8 81J ~;.:.".~ THE ~~ AUSTIN ...._c:-o..., H A N 5 E N "";.~~::"" GROUP ~ :~ f',/' ~ I 0, I I I I I 1:)-'- I 1.- I I I .... -- . 1--:"'" I I I .... ..' o to ~ 17 14 :-' '. ,--: BASIN "A" WATER TREATMENT POND AVERAGE FLOWRATE FOR INITIAL 10 MINUTE FIRST FLUSH OF STORM RUNOFF =~~5"GPM. USE TWO 650 GPM SAND/OIL INTERCEPTOR TANKS. TOTAL 2-YEAR, 6-HOUR STORM VOLUME =1',379 CUBIC FEET, OR '07 CUBIC YARDS. CREATE DETENTION POND WITH THIS VOLUME. PROVIDE MARSH TREATMENT PLANT MATERIALS TO TREAT CAPTURED STORM RUNOFF. PROVIDE FILTER BLANKET AND FRENCH DRAINS TO COLLECT AND DISCHARGE TREATED WATER TO THE NATURAL WATER COURSE. 11>0 :l:- ~/..-. 7R,'I'--RAP ENCil'6Y " PISS/I'/ITl)~ EMFl2qE/VCY cJVE.RFLOW WI/A' t SPILLW,4 V WA7'E,(' TkEA-TMENT WETL.-"'9N'o lJE7E1ITI~1V 'ptJ#l) FI2E.NCH !J..eA/tV PIPE @!" ~ ) S77J~ DM/AI FICt'M OPE/V SPACC /ME-"J efl . -l L 1 ---, I I I I. I I:;; I ---r-- Shade Screen r- - - - -1 Structure I 32' I I" '- ~::>..rlon 1 1 1 1 1 1 1 1 I 1 I.) 1 1 1 ~ BASIN "B" WATER TREATMENT POND AVERAGE FLOWRATE FOR INITIAL 10 MINUTE FIRST FLUSH OF STORM RUNOFF: B1 = 901 GPM, USE TWO SAND/OIL INTERCEPTORS B2 = 617 GPM, USE ONE SAND/OIL INTERCEPTORS B3 = 564 GPM, USE ONE SAND/OIL INTERCEPTORS TOTAL 2-YEAR, 6-HOUR STORM VOLUME = 27,182 CUBIC FEET, OR 1,007 CUBIC YARDS. CREATE DETENTION POND WITH THIS VOLUME. PROVIDE MARSH TREATMENT PLANT MATERIALS TO TREAT CAPTURED STORM RUNOFF. . PROVIDE FILTER BLANKET AND FRENCH DRAINS TO COLLECT AND DISCHARGE TREATED WATER TO THE NATURAL WATER COURSE. ! PIYE.€S"/01/ SmCO'2tRE r< JfvLEr I 1 \ O/L/W/l7E-f I 5Ef'A~Tt7R.S' ~. / 1 . . - :;~ . , \-~ ""f'-ewC7' .D$;A/ ~ '--- -/ C;; _.~ /' ---- / ,\)..-- - . ....... fy/~~ I r'\ V ,"'- "- '.' (A./'~- .:' - r~~(/-p .~"--t. / .~ '_.-~ . \ '\ . '\\ .~\~~\ ~ \\\\ ....~..... .' \ m I\"- ~ -.Q r--(R/.p-RA.P ENEA'Gy.o/SS/PA72JR .. / ~ EIV1FRGENCY OVE.RF.MW ffs-e ~\ ~'\~1 ~)~. \\ '<:l \..:J \. 'q . , \\,j\\~ ~~.. '\ ^' r"" I . BYP/JSS ') P/PE / . " )"- ....... 1 1 1 1 1 I It L M~~\ I fJf;>'/~/ 1_ . ~ /~t. ~ /Nf)I?TH ) ._~. I (. I":S-O' L . 1 - I ....1 . . ", II I~T'Jir..... , .80SI" .14 1 ' 1 1 1 1 1 1 1 . .. - AUSTIN HANSEN GROUP JOB E /VCIN/T/IS ~ME l)EPClT SHEET NO OF CALCULATED BY CHECKED BY SCALE DATE DATE 96QS ;CRA~lON roAD SUITEJOO SAN DIEGO, CA 921,) (619)~2.101O ,",-,.."...,.._----...-_..., , .-..-.,.".......--...---..".. . 'l)L:Sltf7!V VOL.V/t'1ES' . ...-...."...--.----..-......... D:Ti'A ii, *' Q(l.$/""f!M' ~ ~ 40 cy i3?I1DM~Il=' ~ 8{/() Sr Bar 1/1 'g" ;: I, 1.1t27 ~ .s"tIIH1 II'M. =: 3', 7.25 s'&" <If' . 4f 51 ~'pf~ ... ... -" I I I I I I I I I I I I j I I I I I I I I THE AUSTIN HANSEN GROUP JOB EIVCINITAS JldME J)EPt?T SHEET NO CALCULATED BY CHECKED BY OF SCALE DATE DATE 9005 SCRANION fK)AD SUITEJOO SAN DIEGO. CA 92121 (619)562-1010 ~. <"'''~c, ~~ </.,,'f c5< O~ 8o~ -<.:~ CO :i. 51 '" ai < > ;-,10'J 5S0-C-3250 CONCRETE OR A.8.M. REINFORCED WITH S"x S" 10/10 GAGE W. W.F. 1/4 TON RIP-RAP ENERGY '/ DISSIPATOR PER R.S.D. D-40 WEIR CROSS-SECTION OVERFLOW WEIR DETAIL WIDTH SHOWN ON PLANS r o 5'"' ".- 0 5' 3' . 0 I . lr 1 I ;1 r,- ---r-- ---- ,~ Li i I r 3'1 FINSIH GRADEi" ;, UPSTREAM ~',.j L~~~=======~===~=!~ Q:;, . urC= 2,7 VIEW FROM UPSTREAM L h"-.r QDO WeirQ"''''1 BQs/" ...................,,_......... j4-" /2' . 32,4cf$ /,0 25 . Bp.siJ1 '8" ,84- 20' /. tJ . $4iCJ. cf.s 4/. 4. c.fs I I I I I I I I I .~............ -.--- I,c~..r" I I I I I I I I I AUSTIN HANSEN GROUP JOB ./::-NC/AI/7AS ~/JIF J)EPt:JT SHEET NO OF SCALE 960~ SCRANTON roAD $U11EJOO SA.N DIEGO. C.... '17121 (019)552.1010 CALCULATED BY CHECKEO BY OATE OATE .E5-t;~ .(}.f. ;~'hlfvtrhd# .M J;",. /3a;/,f~ ::t~'a~ '8'~ . 4ssu<<~ it';ctJ.kh;'~ . ii~(,(f) ~#t,~ 't?/ks/,,~ O~~. . . U$~f1"o/~ 'Q4'~g~' . Q;: 4KG/J . tulRr.e . 52:: IdJIm6;'.~ I~ ac,,,ct-/a'f2?" . " . /1 = CI':'t?~~.~t<t:I,,"At!l1 O",t!Q [b,,~A{ <:l1"'t"Q'] (Lt QC. J(.- 1"*"'/'4/ 1i1~//fn:,h~~ ~ /~. ,4/d1j' GiJ ~ 1y.c;lr(Jt(~c 7"(J~e~if_(*-lleY'Y'iUll. /I1'/,II-nthI?~. lei- G4 -.1) .. . Scs So':/ 1jle' -. . /tJ~~y .SClA/. .. .' n. . K .{;,.. ic/l~j" sa~;/-::;;: .4.8i-.c,y~y-' ..... .... P' o "_.."n,._..___.... ;"".".'.-....;----.m.."'rlo:--nn..[tT BA-S/NA. ... 'V3J$JJtJB i !2J,?;y{J;~b~:;:~lR)',4.$2':;ld.,... ....... !.4.B27ff/I,-...... .~/n~'%41~(~p) I, BOOsE', ,3,l.2.,f"..1E. '.!3as)",iJ,,!fpHtQ!,&) Cae) . 04/3.. ac. ,371!1L4C ktbZt~";Ul CQ -> 4c. fj;kiay ,,1"1.~c. .11:/.1,. .. 4122.qc.,4/~j' . !3asit1!!ah.lJle<cy) ~. '7 1,IJt2.;y. ....... iJ~15;Ai/~/I{IIt~ (,4cJi:J ,197 Q.t,,ct; ,'lM4.4C.-EL 7;iI1eoTb Bllfply Q~~ 2 ~~ ..t: I. Z da.pi r. '. . 74ESe,f:Y"t9,4jJjJ'.4K1~#I/~t(.~5 t:).nIyCU1diwi//.l/d~. .do/eilM~ttI,,'1 S/(;JLlh'c sd~ SOl!.$' U/:"d'.'-!-L.d4.5...... ... ......... ...ey~Et1~~7:t:"~1;~1~~~~W~~ t 't .\;\ ~ .\J ~ " ~ ~ c..; ~ ~ \) In :;; '" o o -t; o , 0- ~ "- o 'E o '" o -0 V o o '" Q) ~ I I I :I OF AGRICULTURE nON SERVICE . 1 1 1 1 1 31 NAME SYMBOL 1 Acid igneous rock land A ltomant cloy I 5 to 9 percent 5 topes A Itomont cloy I 9 to 15 percent 5 lopes Altamant cloy, 9 to 15 percent slopes, eroded . )rtomont cloy, 15 to 30 percent slopes .: ltomont clay J 15 to 30 percent 5 lopes, eroded -- Altamant cloy, 30 to 50 percent slopes Anderson very gravelly sandy loom,S to 9 percent slopes Anderson very grove Ily sandy loom, 9 to 45 percent slopes Arlington coarse sandy loom, 2 to 9 percent slopes Au Id cloy, 5 to 9 percent 5 lopes Auld cloy, 9 to 15 percent slopes Auld stony clay, 9 to 30 percent slopes Co "'-'CsB 2 , C,D CtE CtF CuE CuG CvG 21 :1 ) DoC DoD DoE DoE2 DoF DcD DcF DoE ,1 Bod land Bancos stony loam,S to 30 percent slopes Boncas stony loom,S to 30 percent slopes, eroded Boncos stony loom, 30 to 65 percent slopes Boncos stony loom, 30 to 65 percent s lopes, eroded Blasingame loom, 9 to 30 percent slopes Blasingame stony loom, 9 to 30 percent slopes Blasingame stony loom, 30 to 50 percent slopes Bonsall sandy loom, 2 to 9 percent slopes Bonsall sandy loom, 2 to 9 percent slopes, eroded Bonsall sandy loom, 9 to 15 percent slopes, eroded Bonsall sandy 100m, thick surface, 2 to 9 percent slopes Bonsall-Fallbrook sandy looms, 2 to 5 percent slopes Boomer loom, 2 to 9 percent slopes Boomer loom, 9 to 30 percent slopes Boomer stony loom, 9 to 30 percent slopes Boomer stony loom, 30 to 65 percent slopes Bosonko clay, 2 to 9 percent slopes FoB FoC =2 !I = EdC E,C EsD2 :. )2 EsE2 : ~I EvC ExE ExG I 1 1 1 SOIL L Each symbol consists of letters or 0 combir. letter is the initial one of the soi I nome. A of slope. Symbols without 0 slope letter arc in 0 symbol shows that the sai I is named os NAME Clayey alluvial land Corralitos loom sand 0 to 5 reent slo s orra itos carny son, to percent s opes Corrolitos loamy sand, 9 to 15 percent slopes Crouch coorse sandy loam,S to 30 percent slopes Crouch coarse sandy loam, 30 to 50 percent slopes Crouch rocky coarse sandy loom,S to 30 percent slopes Crouch rocky coorse sandy loom, 30 to 70 petcent slopes Crouch stony fine sandy loom, 30 to 75 percent slopes Diablo cloy, 2 to 9 percent slopes Diablo cloy, 9 to 15 percent slopes Diablo cloy, 15 to 30 percent slopes Diablo cloy, 15 to 30 percent slopes, eroded Diablo cloy, 30 to 50 percent slopes Diablo-Urban land comple;l(, 5 to 15 percent slopes Diablo-Urban land complex, 15 to 50 percent slopes Diabla-olivenhain complex, 9 to 30 percent slopes Elder shaly fine sandy loom, 2 to 9 percent slopes Escondida very fine sandy loam,S to 9 percent slopes Escondida very fine sandy loom, 9 to 15 percent slopes, eroded Escondida very fine sandy loom, 15 to 30 percenl slopes, eroded Escondida very fine sandy loom, deep, 5 to 9 percent slopes Exchequer rocky silt loam, 9 to 30 percent slopes Exchequer rocky silt loom, 30 to 70 percent slopes Fallbrook sandy loom, 2 to 5 percent slopes Fa Ilbrook sandy loam, 5 to 9 percent slopes tlSG5 So,'1s- Sur//7 (Q)IDl ~ ~ 1l1l(g Slt(Q)1fJl)]l W&lt~Jf M&IDl&~~m~IDllt Applications for Landscape and Engineering Second Edition J Bruce K. Ferguson School of Environmental Design, University of Georgia Thomas N. Debo City Planning Program, Georgia Institute of Technology ~ VAN NOSTRAND REINHOLD ~ New York I I I I I I I I I I ) I I I I I I I I I .' ......:.:'...:........:?\,. ~;::"';""':-':" Hyd='>'.~. ..C{,.. - ">,,"'w" gradient:/" ....I'IYd;:;;~~j~ 1,'.. ~radlent gradient . ... .; . . ...... Infiltration is governed by Darcy's equation. Darcy was a Frenchman who discovered this relationship about a century and a half ago. Since then this relation- ship has been richly confirmed, and found to have almost universal application to subsurface flow. It is a simple relationship: Q = A K Gh where, Q = infiltration, ac.ft./day; A = cross-sectional area through which the water infiltrates, ac.; K = saturated hydraulic conductivity, the permeability or infiltration rate of the soil, ft./day (see the table on the next page); and Gh = hydraulic gradient (no units) = Ml / I, where, Ml = difference in head (pressure), in feet of water, between two points in the path of the water's movement; and 1 = distance along path of movement, in feet. Through a level basin floor, the direction of movement of infiltrating water is likely to be close to vertical. Thus 1 is equal to the distance of water's "fall" into the soil. If the underlying soil is homogeneous with no restraining soil layer or groundwater table, then the loss of head Ml is is also equal to the water's loss of el- evation into the soil. Thus Ml and 1 are equal, and Gh is equal to 1.0. Through a basin's sides, the direction of movement of infiltrating water is unlikely to be vertical if the side slope exceeds about 20 percent (5:1). The move- ment is more likely to. be at a low angle, in which case the hydraulic gradient Gh would be closer to 0.5 than to 1.0. W ffiteIi' B lllhlll1lCe 74 " -~ ,"; " ~ y- ~ ~ I , i .. '! i t : j i l\ 11 - ~ ~ ~ J 'i!f. ,( /i . . '. ~ ,~ 1?: ~. " , ---LL Saturated hydraulic conductivity K depends on site-specific soil types. It can be estimated from soil borings or in situ tests such as with double-barrel infil- trometers. Such tests involve expenses, and do not always give consitent results. An alternative method is to identify soil types from SCS soil surveys or (prefera- bly) on-site examination, and then to estimate [by association with soil texture. The table below lists average conductivities found in the laboratory by highway drainage engineers and USDA soil scientists. When on-site data are extremely lim- ited, only very conservative assumptions would be prudent: for a wet pond, assume soil texture with permeability as high as can be found in the region; for a dry basin, assume texture with permeability as low as can be found. Hvdraulic conductivitv K inl hr ftlday Crushed stone: ASTM stone size: No.3 stone 50,000 100,000 No.4 stone 40,000 80,000 No.5 stone 25,000 50,000 No.6 stone 15,000 30,000 Natural soil: SCS texture class: Sand 8.27 16.54 ( J Loamy sand 2.41 4.82 Sandy loam 1.02 2.04 Loam 0.52 1.04 Silt loam 0.27 0.54 Sandy clay loam 0.17 0.34 Clay loam 0.09 0.18 Silty clay loam 0.06 0.12 Sandy clay 0.05 0.10 Silty clay 0.04 0.08 Clay 0.02 0.04 Stone data infened iran H.R Cedcrgrc:n and others, 1972, Guit:KliIIUforlJv Duigll ofSubnufau DralN2g~ SYSkmsfor High'WO.yStn4.:lIITal S,ctUJ1U, Report No. FHW A-RD-30. WuhinglOn: Federal Highway AdrnizW;tnticrt Office of Research and Dcvdopmc:nt; &ad Tlblc2.1 afRR. Ccdc:g:rcn.19TI,S6ttpaftt,Drai.NJg" alldFlowN,U,NttW Yade: Wiley. Soil conductivities from W.J. Rawls. DL Brakemick and K.E. Suton, 1982, Estimation of Soil W.t.cr Propc:;nU:.;, TrQIISacrioMo[liv..tIMric4llSoc;..tyofArricuUwalElIgw,r.r. vol2S.no. 5. plgca 131~1320and 1321. 75 Water lB ali21lll.ce . . . / J ole '-C Drainage Study for ~a @~)[Kfi)nITU@ ~@@a for lJ[}{J~ [}{J@rMJ~ @~[F)@lJ Encinitas, California August, 1994 prepared by The Austin Hansen Group 9605 Scranton Road, Suite 300 San Diego, CA 92121 (619) 552-1010 By: ~ ~ Date: 6-(6-94- Blair A. Knoll, RCE No. 45885, Exp. 12/31/94 . . APPROACH In conjunction with the Encinitas Home Depot project EI Camino Real is to be widened 23' for the full length of frontage along the Home Depot ownership, with the exception of the area south the OIivenhain Road intersection which is to be improved at a future date when Olivenhain Road is realigned. The drainage analysis for EI Camino Real adjacent to the Encinitas Home Depot has been prepared to evaluate the ability of the road to carry projected storm runoff from a 10-year frequency storm and a 100-year frequency storm. City of Encinitas design criteria requires that a 10-year storm flow not exceed the top of curb elevation, and a 100-year storm flow not exceed the elevation at the right-of-way. For this analysis the curb height is 0.5' and the height at the right-of-way is 0.66' for the 8' wide parkway behind the curb. A high point occurs in the EI Camino Real profile approximately 140' north of the south boundary of EI Camino Real. Roadway runoff flows south from this high point to an existing 21' curb inlet. This is an existing condition which is not being impacted in any significant manner by the roadway widening for Home Depot. No analysis is included for this segment. The drainage analysis evaluates runoff from the high point north to a point just south of and adjacent to the bridge near the Olivenhain Road intersection. The drainage basin incorporates adjacent slopes along the east right-of-way, a small tributary area designated as Basin C, and half-width of the road as determined by a line running along the centerline of the proposed median. The attached tabulation charts, EL CAMINO REAL 10 YEAR DRAINAGE ANALYSIS and EL CAMINO REAL 100 YEAR DRAINAGE ANALYSIS, indicate that both the 10- year storm and the 100-year storm can be carried in the roadway in conformance to City design criteria. An overside spillway is to be provided at the point where the new curb approaches the bridge abutment. This spillway is to be designed as a 0.5' deep weir wide enough to accommodate a minimum of 12.5 cubic feet per second. . . !~~~e: '" - '" '" '" '" '" '" '" '" ~att!!;. 0 0 0 0 0 ~ ~!I~ :11 :11 "ii- "ii- "ii- 0 0 '" - "! '" ~ '" ... '" 0 - 0 1ii '" 0 '" '" ~ - u. ..; !:? '" '" t- t- 1= EC '" 0 '" '" - J: '" t- '" '" - <: '" '" '" '" N '" ...J W 0 '" t- '" '" ~'!iO;!; 0 ": t- '" '" t-Ft:~ 0 - '" '" '" - - - - - H ...J ~'!i z ..,. '" t- '" ": ~ ~ '" ~i= ~ - - - '" t- .~ a ~~ XU) '" '" '" '" .[l. ... ... '" ttu. '" <(I;!;! <( ~~ "ii- '*I.ll '#0 ~o 'i: 00 0", 0", 00 ",'" O!'" ~'" O!..,. .", '" CO) '" 0 ~6 ICij OX! ~ - OX! 0 O! u. N 12 - - - '" - i= Ia: '" '" '" '" '" '" J: O! '" '" O! O! '" <: '" N '" '" '" N I'" " Ie: 0 0 0 0 0 0 t- I] - - - - - - ~ f- It) "': ... n:. '" '" '" - '" '" '" '" '" '" '" II ~p t- ": '" t- '" OX! '" OX! t- '" t- o 0 0 0 0 0 0 0 0 0 0 (D -f:- a III ~ "",I"" '" 0 '" '" '" 0 '" 0 '" '" 0 (ij . ..,.<..l t- o t- '" ..,. CO) t- - '" '" '" "! ~ "! "': ": "': OX! "': O! ~ 0 > ~ P ol~ 0 - - 0 - 0 - 0 - 0 '" -~ [l. Z w ~ lIllJl-:,:, t- o t- '" '" t- o ;:: 0 Q - 0 - - CO) '" '" 0 ..,. ..,. ~ !.lJ '" 0) () U) 0 '" '" ~ U) "! ~ ~ .'" O! W w !!! P ol~ 0 0 0 0 - 0 - 0 '" 0 '" ::i - c:J 0 ....I ~ :J: ;;!~ 10 '" 0 '" '" '" t- '" - '" '" - ~ Z ~ '" 0 '" '" t- '" 0 '" '" '" '" w :< O~ I~ t- ~ ": '" t- t- '" t- '" t- o II: II: t- o - - 0 N 0 '" 0 ... 0 ..; ~ Q Z '" II: (3 '" ~ ::i - ~ Z 0 1ii ii5 ~ w w - U) U) U) U) - ~ ~ z z ;;:; z (.) > II: '" Cii ~ i ~ ....I 0 f2 Cii irl ~ ca ~ ~ ~ <( W ... III <..l H H H H . . !~~~~ ... '" 0) ~ 0 '" '" '" '" '" cCo&f:: 0 0 0 0 0 :! ~!I~ .... .... ~ .... .... 0 '" ~ '" OX! ~ '" .. M 0 ~ 0 1ii 0 0) ... '" "l '" 0 lL ~ '" Q ... .... 01 ~ ~ <^l ~O (( '" 01 '" 01 '" f: ::c '" ~ 01 '" "l - .. .E ... '" '" '" ...J W 0 '" ~ '" 0 ~!;!iu;; 0 "l ... 0) 0 I-F=t:~ 0 ~ '" '" '" ~ ~ ~ ~ ~ <^l ...J Ww Z '" '" ... '" ~~ "l ~ "': ~ ~ ~ ~ ~ N I- .~ C ~~ XU) 0) '" '" ~ '0.. M ~!:!: ... '" ... ~ 00( ~~ ~ 'iflo (flU) '#.0 (fl,o 001 0", 001 00 '" "l", "!,,, ~'" "!... '" '" '" 0 ~~ U) 0) 0 '" 0) ~ 0 '" lL M lLO 0 '" '" '" '" '" 0) i~ a: '" '" '" '" '" '" '" ::c '" '" '" '" '" '" '" c .. ... .. .. .. .. .. ;:: " c: 0 0 0 0 0 0 0 I- I~ ~ ~ ~ ~ ~ ~ ~ ~ 1---": N " ~9 0) '" 01 ~ ... '" 0) 0) '" 0) ... '" .... "': "l .... '" 0) '" OX! .... OX! .... "': CD 0 0 0 0 0 0 0 0 0 0 0 0 0.. ~ -I/) 0 (j) ~ ," ~Ie:; '" 0 '" '" '" 0 '" 0 '" 0) 0 0 .... 0 .... '" ... '" .... ~ 0) 01 0) 0 > P 015 "! ~ "! "': ..., ~ OX! ~ "! ~ 0 '" ..J ~ 0 ~ ~ 0 ~ 0 - 0 ~ 0 '" .. _<C 0.. Z W ~ ," ~16 <C .... 0 .... '" '" .... 0 ~ ~ 0 ~ 0 C ~ 0 ~ ~ '" 01 '" .... 0 ... ... 0 W W ~ P ol~ '" 0 '" '''l ~ '" "! "! '" "! 01 0 CJ :E 0 0 0 0 ~ 0 - 0 '" 0 '" 0 - <C e ..J Z :I: c;!ij'j Ie:; '" 0 '" '" '" .... '" ~ '" 0) 0 <C < ~ 01 0 01 0) .... '" 0 0) 0) '" '" 0 w 5!1C I~ .... ~ ..., 01 .... .... '" .... '" .... 0 '" a: a: 0 ~ ~ 0 N 0 '" 0 .. 0 '" .. c t: l- e a: z ... Z <C (3 01 ~ :i! ;:; <C w ffi ~ 1ii U) Ul Ul Ul > - ~ ~ z z ;;:; z 0 a: co ~ ~ Ul ~ 0 ..J 0 f2 1ii &i ~ l3 <5 ll\ ~ w ... ~ 0 <^l w H w H H lL ... _'I AUSTIN HANSEN GROUP c.LC\JlATfJl Il't .lOll E ~cl;'''fzzs IId~ D~,.<:1"'i' SHtET NO OF . SCAU: /.2#- -gLL . CHECKfD Il't DAn: J- /1--9'.' DATE e:, -Ie -'14- ----.-- ---~ --, .-- '---1---,--, I-J-....-L-c-___I__---L,__L --r--l--i- i -d.. .~; ---: ~__l___~_ --; - ~'='-b-1-.-+-;t'-~---~-'~:i-!'--T'." : . .....__i_ ---,-.EL _e .I!jNlo~.i2e~ LL_[_ --i--- .--t4L'"I".s:~-::A-.y~~.- ...L..."_.."__.:.... __:__.__ . .~.-.~--=_~lJ~~~ --or t.--- - -.--~=. --~~.-~=~:.- ---:~~[;It':C~!:_~:'Mi_~::t~_;;;---tt'I._.~.:=- .-.-.- . - - .-..,1l~_t6_. -:'7.--~.~ _' /JU_~L4t.l/IH_ ".__~_~. ! - : I , ' i : :;{:: L_~ ~ , ' . ! ' . : : ; , i ; ( , ._.._...~......_. ......_...~._,.~-_......_._......_.__.,........_-----..."'..-_...+_."-__'_..~.__...._......._____............,~ ..........u_......___ .....n.__....._ ............ ..._....._~,._... --.--.. . vi.$StU1tC.-fO)wJtCLf',r_W.__Id.ek~..__J , , .. .. . .--..--..~ -,.. .....Ta~.:2~u.Y2.-1:(E;...~~:J-/,11.. ,i'-Lb:t-:'-c:;--Zl_:7I(k/~I'_:_~M::_[{=;J2J_:_:J .......--..-:~-:::~~-L.:-...-..__~-.-..=.__: r21'-:I;?;:;;-=~_'_~:L~~i:~1-~l~:]f:~4B--.L_ , ..----;.-.-!----- .. ~LL_ , , ", >1" . "'::I:--i-~, J:i::'-::: ..---.....,...__.~----.._........."),._..-. _._-....-.__........~. . . . . . - - . . . . . -.....;.....--.... . ~ .......-. .--~.---~_.-.- .......-.---,.-.-.........---.--...........-.-. _--,--,-_.L__"__L__Lne&~L:"t: ' _ . , I . I _~._..~_..--,:,,___..._~._._;"----l---._.._..';"'.~._...~~.__~_._._._._.......--"--~.~.._.._~___-----:-__~~_...._....______+-n_ .J...-,--._.__~L..L.-._~_____L~__L_L_L_L_._Lm~-. , . , , ' , . I -' , . . . , . " _.r---L-LL--r-.I..~-=--:-e+mo/.2L--...---=--JL~l./ : , , ' , , , " ,," i ' , .~.~._.._...._...... ...,. ,.__......~.._._.-... ...........---..,-..-.-. ...~._....._.-------:'..__._...-_.__......--- --.!'....-..-.-:..........'...'..-'. .,. .. ..................~ ....._-~.~..---~..--_L_-:...._._...;._._....~~_._.~..__...L_._~.~_.. .. '" ..- .....+--~.-...............t....--l..-L.__..l.__L.__.l__. ..._._._..-....---_._.,.~... .......-..-......-,.......... ..-:-.-....;.------.-'---.. " " . "-:,::;, , . , , , . , . . . , ' : . ' : : : . : : : ; -.:::==~:_:::'.-~:::~-:...:J:;p I.~~~:~;-:TIP==.-~$_~_[:r;;-r, l.".r-$fff?~r i___:=r~~__ :___:::: . ..__..l._mi::T~-ALLoW ;f:?~.. :?",:-ll'f<,,'~S-or._~.a.E&>.~......A.LL_____L. .. ...........,.-'--____.__.....~__..._~..c_.._ .............--.---.-.^.. .,...................--....- .. ........-......--^.--.......... ... ........,.~,-_._. .: __.n_.... ........'........---"---.....i-.-...-...... , .......>-.- '-'~---'~"- .....--;-....;.-.-. ......-..--'--.-..-..-,.. ..............-,-,. __...-................... _L ...........;. ....____;._..........__.n. ..... ....:..._..._.~._-_.~.._... ...........-...-.--.........-. i : : ,: ': ....._~-..-........_.~..~,...."..-:-.-....-...-'-t.-...-.....r.....-~-._...,-. . . .....-;--'--'__1_ .. ....._"._.._.L......!,____L . , . - , ............----------."..- ... '.. ---~- ...., .---..-......---1-.--.~.......-.-.___ I ..!.._---,.-_......._._._~.- , . . ; - .. ..........;.....-.-......-.-......--..-;.-- .....-.--."- ;----....-.--...-.'-------,. ......-.---.... , -- .-,..- ~....._--........_-..;...._......-..._..---,. -'........y'....-..-.-." ......... ,-.......--- ..~...._........_._.....- .............--".,.......-...-...- . .,. .. ................~--.~--...,.--.......r_-...-...;-.-....-....,~_._. '-._...__..,..~-_...._..~.._---~. ...........~-..--_....,.."t ........~......_-.;...--... ...n_._........._______...............,_..____...n;. -.. ......--.-....,....- ........----.....--.....--,-----.;.....-. , .: i . _l_...._........_....L_l..__..._L.._.~l-l.,... ........--~.y..-:-_.....-- ..._n_____--"---'---_.._...;. ...........---- ............-"'--.......... ...-..-.-.-----. , ' , , ' . . __~....__..._...._.~.__.........._.._.._._..._....o__.......~..-~-___..._..._....... .._-~_..._........_,.._...;-_.......-....._.._-------~. ........----..-...-----. ........_,....- ......~._-_.._....._.,.,.,._._-,..,...._...,"..... .... .-..........---....,^ .'... .....-.-..-.--.....-...,,---. -...0-.....-..--,.- - , __....n_.__._...........___ .. .... ......... .. ._.__ ...___.._____n._._^'__ . ...---.--...- ........-...-...;..-. .... _~____...n__" .__~....___..,_._. ......~-...__ --.~-.~........,.~----_...- ......~_.........--.---...~-.....-~..n-._-.i..- .-..-.........--~...__.____..._...~__~__...__..___..._.__... 0605 SCRANTON ROAD. SUITE 300 . SAN DIEGO CA 02121.6105521010. FAX 6195521001 # 4 @ 6'both waY' rB Manhole frame and cover. Se. drawing M.2. s ... 12 :1 ":'.101 ~ ~ '" -...... t :I.. ,.. .:. . '.,:. ... ., l!==:!l Round.d pipe end> See drawing 0..1 - 4.#4 around pip. > . Q i' 0= ... '"' ---LL l~rl- Slop. floor 12:1 towards outl.t -lrl- Elev ,hown on plans I Cl ". '" :.:. :~--r- -'-:.~ .~. ... f SECTION A-A SECTION B-B 4. # 4 around opening ~ I' e A L t A s .... ... 4' PLAN NOTES 1. S. StandIrd OrawilUJ 0.11 for additional nalll and del3i1s. 2. WlIm V........ 4' SlIIlI shill be inslOlled. S. SlIIIdlrd OrawilllJ 0.11 fot dlllils. 3. ElqJ01Id edlJlS 01 concrlll shill bl rounded willi . radius 01 112". 4. Openings on bolll ~d.. unless 01llorwiso "'own on pi.... 5. Moinllin 1 112" clnr SpICing be_n reinlon:illlJ and surfaCI. LEGEND ON PLANS ---li'\1-__ ---"'C:::..,J---"'- . Rtvision Rober 01.. SAN DIEGO REGIONAL STANDARD DRAWING CA TCH BASIN - TYPE F Ilfco.Inu rr TMI SAIl tutGa IIffUMA&. 11'....... CO~H t14./t? IS..,t../ <1k I~ c--... I.C.L 1_ 0.. DRAWING NUMBER D - 7 .'1 _,. . .JOll r I'I-J llOT- . S\A SCAlE fcc1c,c;" A U S TIN HANSEN GROUP SHEE:T NO CAlCUlATE> En' CHECKED En' OF '1<.~ \L DAlE 'f. - ,t. - ~4. DAlE 9605 SCRANTON ROAD. SUITE 300 . SAN DIEGO CA 92121.6195521010. FAX 619552 IDOl . . Page 1 of 2 Circular Channel Analysis & Design Solved with Manning's Equation Open Channel - Uniform flow Worksheet Name: ~1\'S\l-l r Description: STORM DRAIN @ 60+08 EL CAMINO REAL Solve For Actual Depth Given Constant Data; Diameter........... Mannings n......... Discharge.......... 2.00 0.013 8.60 Variable Input Data Minimum Maximum Increment By =================== ------- ------- ------- ------- ------------ ------------ Slope 0.0100 0.0600 0.0100 Open Channel Flow Module, Version 3.21 (cl Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 . . Page 2 of 2 VARIABLE COMPUTED COMPUTED COMPUTED --------- --------- =========================== Diameter Channel Mannings Discharge Depth ft Slope 'n' cfs ft ft/it Velocity Capacity fps Full cfs =================================================================== 2.00 0.0100 0.013 8.60 0.86 6.71 22.62 t 2.00 0.0200 0.013 8.60 0.71 8.64 31. 99 1 2.00 0.0300 0.013 8.60 0.64 10.00 39.18 2.00 0.0400 0.013 8.60 0.59 11. 08 45.24 2.00 0.0500 0.013 8.60 0.56 12.00 50.59 2.00 0.0600 0.013 8.60 0.53 12.81 55.41 USE 2..:111 fZLP @ -z...Dlo /.:),1\. (..0..,. D~ E\.. <:..A,,^'N~ (2':;:AI"... Open Channel Flow Module, Version 3.21 (c) Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 . f- L5' ~015 -l I' I ~n,.OI75 20/,.. OJ3 t- RESIDENTIAL STREET ONE SIDE ONLY 20 r.' .J 18 r- 16-+ 14.....r-- I I __w 12--r 0.5 10 9 8 7 I I 6-,,- I ! 'r 5 LLI 1 ... a. 0 ...J CIl I- 3 LLI .. LLI a: r-:..-:. I- CIl lJ.. ( 0 ~ . -- -, .-( ..:.= 0.6 0.4 T 1, T'-f ._- 6 7 8 9 10 DISCHARGE (c. F. S.l I 30 ~. 'r 40 EXAMPLE: Given. 0.= 10 S = 2.5 % Chart ~: OeIrth = 0.4, Velocity = 4.4 f p,.. t SAN DIEGO COI.INTY DEPARTMENT OF SPECIAL DISTRICT SERVICES DESIGN MANUAl;; ~.~ ~~;I, ,j ,. ~;" :~. GUTTER AND ROADWAY DISCHARGE-VELOCITY CHART APflRCVED :lATE 12. 130/, 9 AP?'!NDIX X-!) (, , " ..... e::: c:: ::: u z C!> - V> :..oJ. C ''\2: '0 )- .- ..... 2: =:> Q . >- ..... - V> % w ..... :z: - ( i ./ C o - .... '" U - - c. c. <: ~ o ... CIJ >,.c 0;>.... o "0 _ C c .0- 10 >,5- U"O "0 _C:>,aJ -"-' QJ:I:" ..c::l ::l C->,_ \CGJo4-oJU ~CC GJ't-::J_ C 0 _~UU'l e2 C1J:;;-. QJU..J:E- ~ aJ~ _ aJ_ -10 '"'QQJCS-::J VI_>tC '" '" Q.QJ"'OO: IO.J:Q)O E..toJ""'- aJ C ~ cs..._--c::s 00""'=--0 _'+-c.tCaJ .... U I't'IC,I)QJeo ~.....s...L...,s... __ C to c... c.::l _0&110'"'0 U E 0..,.... c: QJ 10 l't'I_ra ... = 0... _c S-QJ to en E.t: C,I) ::s- O QJC;II'I s... ood"'.J:: n::l QJ . LLN 1-:::'0 '" C o - .... U CIJ ~ - '" ~ - E: - ~ . s:: .... '-' I: .... s:: o .... .. oj .. .... Po .... u ., .. c. ,U'l ..... ',-a ~ - ...... . s:: .... '-' Q -0 C. >- .. .... III s:: ., .. s:: ..... .. ::: -a I~. ;: ~ .... J~ ~ ~ t-iJ ;:: ~'-"'" F II II .... -a c. ~.. ~~- >'''' .c ~'" '" '" U "'0_ "'....- CIJ "- u.... <:.. CIJ U'> '" c.... .... ...... 0 -o~ - - CIJ Cel OC _"'c ....~o '" - .......... _.c '" c..... .... - - U!:Q. C1J__ s....= u c..... CIJ - ~ .:;3:c. ..c en .- -....... '" ..c... .... CIJ ~_c:TU'I '" N" ::l.... 0 ....., 10 (!J "'O.J::.s::.-o c::::..,......... ~ N :::-----, . . ~ CIJ "0 - .... <.> .<< Cl ~ ... CIJ ..c .... C o C o - .... '" .... ... c. ~ U CIJ ... 0 c..... ... 0'" ....c ..cU "'CIJ ..c ........ o -... C.O ~ <"l OJ .c .... o .... - CIJ - - '" ... '" c. .... '" - o c. CIJ .c .... .c en ::l o ... .c .... .... CIJ C1JC "'~ -- - "0 ",CIJ .... ;3:.... "'0 ...- oc. ~ .... ... o ..... OJ > ... ::l U C o - .... '" ... ::l "0 I "0 >,CIJ ....N ->, "'- "'''' OJ'" .....'" '" ~ en '" OJ_ .c OJ ..... .c VI'" -0 - C1J.... "'''' _ u _0 - VI ~ CIJ .c.c ........ >, u C CIJ ::l a- = CIJ ... ... o ..... ..... "0 C CIJ o .... _ u .... CIJ '" - u CIJ _ Vl - C. C. ~ <<: 0 - ~ " ....C "'I N_ o.. C. .. .~ ~ ~ ~ -.L...-- . ., i :1: -:.::.!..:.... : .~ -.-,- ~ 1..1, f, :~':I',' ',. '1' III '/ 'I ';1:1:,:' ":", ;/11 :,' ~ '" , tor., ~ -, t: ,. ., " ., 'IP ,. '," II h " " .g c; -5 ~ d '" .... :l; '-' '" o .... .. aI' ... :> Q II :- Q 4:r-- .~ ,-,.-,..+- ~ " .... N 0.. ~ C - = C - . '" C. .. "0 CIJ .... '" ::l ...., "0 <: u .... ~ .....:: " '" 0.. " ~ ..... ~ N ~ <"l 6-Hour Precipitation (inches) I I. t:i; ~. -'-'- .,,+:~.; ,"'I .. ~ ~ ~ ..: 0"'0 i' -.-,- -'--"-' ....., . I ,. ,. I' , '., o o N - -1......-... ,... U'> U'> <"l. N I" .,,' ,,":1 I" ~ .. : I " , .: 'I" "tit " " " ." " I " :" . ..; I:.: i:l! " '!:' " p: ." ':. ".: ,,' ..tlll' ;:11,: II. ." !;l l'l.t: '.-;I:li,I;'I -,' ,. lIilt I' ~ ; j I I ; : I tl : ~ I! t I 1 (..mOll I Sil4JUO ^:l-~SUil:l-uI ~ ~ .... '"t . ~ ..c ...... s:: - C o - en CIJ a:: .... ... CIJ VI CIJ o o .... CIJ - ..0 '" U - - c. c. <<: .... o z .. ~ ~ " - ~ .... o - I , III , , I , ~ APPEi'o/DIX XI-A < , - >< >< ..... Ci :z '"' "" "" < \0 '" ... "" N '" ~ ::l o ::r:: ~ J:. C ~ ~ .~ c o '" o .... o "" o N' '" CIJ .... ::l '" ::;: '" ~ o " ~ <.> z < '" o "" '" ! I j I .",..::::.. e::: 0 =:l - 0 I t- :I: c<:<:: I <::t'. l- N - [ 0- e::: - c:.c C-:) LU ~ >- I [ ~ 0 c.. .... Q:: u.. [ ~ -- ...J en 0 -J - c::: - I I - ~ :::>- =:l ~ .-! .J 0... ,I Q;:::: . 0 .::;: en - L!.J '\ I >- = I ~ <:::) \ 'V"- I I c6 I 2: 0 ..... I- 0;:: L t:l.... '" ....z .::- ...<: 011) 2:"'--' <:00 r V> c: 1->- "'-~~ OLUe :cu >-1- I I-c:o =--=<0 =>0..0 0......... 'UCL&... I ) I _';'--.U") ............. N . "" "" " u > '" .. M '" .. ::;: a~ ...~ ~-' t:J I- <. u ~ Z Q:; ~ ~ t.r.1 .... < :E ~ z :s:u> 0_" u ~ 0 t:. _..J ':o~g -: ~ 5;; 0 : f-_ . :- t:J <:.. .. ~ Q 0 0 a.. f- % W P"\ ~ < U < u a: c.. - '" t.rJ ~ 0 Ow..; ui g G ".J7. ::J < ~ 7... EM ..... < - ::g ... M -' :: u ". :; II-,\- I 0 V , - '" .::- . ~ - '" o "" - '" - . ..... '" o .... '" .::- . c:) [ .. r { l ~::: c-:.:: Q ~ C:::J - - r- - I ~ Q l- e:::: - [ Q. cz - I.W ~ ::- ~ t [ O' c:: ..... c.. I.!- C;:) -c:: en ~ ...J 0 c::: - - [ ~ ::::- I :=:l . CoO ...J ~ , [ j c::: ~ v';i ~ - Lr.J 1 >- [ c.c I - Q l 'P'- l. [ ~ :z: o to< ... <( Ol- e> to< "':Z: to<<( Cl V) :Z:"-...J ':;00 V) 0:: ....... L&..Z::: 0"'0 :>:w >... "'c:::o :Z:<(O ::><>'0 O"'...J wo,,- ) . " / "w' ,t ~ .U Z .. '" y l.I\ ~ - o ...... '" . ...... ...... .-. . " u ;: 0: " ~ 0: .. ,,;: 0< ~~. ~.J w"< u." c: Z 2. tLI ~ ~ ~~% o I..l): u EO ,,0 ; 100, C:..o- ~3 " -" ~f-~~ '" ~ I=- '.. ... ~- ~ <... == 00 1- 7. W 0: < U < Ui: a. Z Iol. W < 0 0... u - vi 0 G ".J7.: :,') < ~ >:a !<~ ..... < - "a ~ .. ~ .J < u. w .. ~ . '" - '" o ...... '" - . ..... - '" o ...... '" ~ . CO - o ...... II-A-4 !=. t:: ,., c .. '., ) 'Ill , '. " k " .' ,I ~ .;. oJ ... .. .4 ~ ') , ~ 0:: c::: ::: <.> :>:: <:> - en w. Q )e -~ .~ => . Q . >0- I- - V> 2: "-' ~ z: - '" >, .c "'.... ~. '" ... 0 .c 0 . ~ ~C::: .... .... c::: . o~ '" '" '" >,s- ~N~ ~ 0 '" ~ U~~ >,LC'l.o - .... > c::: >. '" "'\0 '" VI ... ... '" :r: '0 '" U ~ " e: .c " " VI 0_ <-' '" U 0 ,,">,~ VI.....~ .<: ~ - \0 QJ..... U QJ C- O ~ e: 0> ...e:e: UNJ:.. - '" 0 II . '" QJ't-::s_ QJ a.n r; ... ... - ....e: c:: e: 0 e:.... '" ..... \01 N_ _~U VI .... ell 0. '" 0.. 0.. ..... E 1l '" 0. ..........0 .c ... .. ... '" . -0::: ..... .... " . QJ ",u.c E~ ~ ~ e: ~ . " ... ~ <II ..... "'..... ~ ell e: - I~ .~ '" "'~ . '" e: 0'. 0 0 >'''' .~ Q ~QJe: ..." 0 e: . 0. ..... N VI_ >,e: - ",e: c::: ->. ... 0 .. VI '" ..... S-O 0 CIJ VI~ l:-... ~ ..... c::: c..CJ~O:C '" - - .s:: c:::'" 0 to..c: Q,) 0 ..... QJ..... ..... ..... ",e: , . ell - E:~""- <U _.s::.. '" ..... '" II ~ . S- ~ ..... e: ... 0..... .... ..... .c e: .... e: .s:: .0 '" CS-_--C~ - - - 0> - 0> >, N - ..... '" U OOs...C"'C U~c.. 0. " e: U 0.. E e: U - _,+- c-rc QJ "'-- - 0 "'- e: - - ~ ..... U s...J:: 0 U ... .c '" '" . ~ 0.. I'OV\QJCO 0...... '" '" .c . ..... .0 " . I.,.. 0.. 0.. ~~s..,,-..,s.. _s- S- . ..... VI .. a- e: II 0.. <: _e:", 0.. . ): Q.. c...... '" VIe: E '" - \0 c:t c." . s- ... ",e: -0 ... ... 0.. ~ '~ ... -0(/)0'"0 .s:: VI .~ . '" e:_ - 0 ...... t'.. .. ..... 0 u E 0-_ c: - ........ ....s:: -~ QJ..... ...... 0 .... GJtCl'O-fO \0 .c... .cU ~ e:", "" . "" ~ :z: ... E ..... QJ "" _ U e: QJ ~ QJ .. VI 0.. ~ e: ~_qo VI \OCIJ ",QJ ~o 0 ..... ..... c::: S-CUttSC"J <II NQJ .s:: ..... ~ - U VI 0 EJ::VJ::S_ "..... C .......... "'..... <II ..... QJ II " II - 0 QJe:VI ....., to c: Cl "'0 .~ CIJ '" ~ ..., II ..... s..--=:-.croCU -o.t:.s::.'O ~.... ...~ .c.c U '" \0 "" U U . &.I..N 1-::::0 <:........+-1 0..0 Cc.. ~..... - <I) 0.. c:t ..... - '" ~ ... 0.. - ~ ~ ~ ~ ~ 0.. ~ ~ ~ ~ ~ C ~ N .., .... LC'l c:t 0 ~ N .., .... . < I - >< >< - Q Z t:.l c.. c.. < :: N \0 ~ <: .... -- ,... <: 0 '" '" ::: ... ..... OS ... <: '" ....- c. '-' '" u >. '" ... '" .... "- VI c: '" '" ... ::: c: ..... '" >.:-= ~ .-.- LC'l . . , .-:2..... :- r ... -r-:-:-- .... :1. t: .U> ..... ,~ ,..., , :~ .." ., .011 I, "1. '" "" -,., :11:1', c: .... ::<: '-' ; '.,1'1 " ':1:1-:;' :11\ !,,: ! Ii ,:;: ,;j , . ,," , , . . I . , i:l! , , , : H: ; ... " II <II s... " o :r: "1", c '" "- ~ .... J ~ I g E~ c: as E " ....(jf ::: ~.-..... q. J: i::.l" .; c: o .... ... as' .... " Q II II II '" "- Q ~ " c. .... C) ..... LC'l '" ~ C) c. .,. C) "" C) <II N '" ..... " e: , I LC'l , , ~ ::E: I I II I 1 0 ~ ""' ~ APPENDIX XI-A ..... .:.==t"' : i~ ~.~ ~ ~ ~ ~~ , ~ I ,,,. 1 ..'; '" .'1111' ;,;" :, .1 ,. I ., I . , I. I ., I ,. M ..: .... -- -- .... ~. ~ ,.. . , , ';'1 I II, I : , : ~ i 1 , i! I , , " :':';, ";,: t: ;:ld;: .... ": (.moll ISa4::lU~) ^~~SUa~uI --::0 c:::: t::~_ b3 ::::l - 0 ~ - -- .~ . !- c.c - ~ (~- c:: - w ~ >- f.LJ . ~ 0 0 Q.. ,..... ..('~ L1- 0 ::;:) en ~ - ...J c::.. '"1~ c:: - s: I T ~ ::::l ...J Q:: c.. c::t 0 c.n t.r..l - ::>- \ I 0 c:::> C'l 0 f" ?D- Ol " > " .. . . - ~ . , o.!l % o ... I- o~ c: ... ~z.. .,.;;l %' L1.. -l ";00 II> c:: lL..!z= O..,,JO >i::u 1::'""0 (L5~~ ~u.J-J -J Q L.I... . ". -.~.. --'. . '" I .n! , I '" o .... . ..... o .... '" o .... - '" j ~ " !! ,,;: 0< -" ~:r W =~ U ~ z a:: ~ 2 W 21- :; Q < :0;:<" ~. 0 b> U ;0 100 fz.. !:! 3 A 0 i 0 ~ ~ ~ ~ . c Z . :- C:J": .. - <II. .~~oo 0 I a:: Zt:I P"\ <" I < ,,- ! 0..-.. tLJ :c.'" Q ~ c: . u = ... 0" :i ..z 7. < < 7.: o -. !(~ :g .. . "' < u .. . . - CO - '!:' - ~./ ~ f'" G '" < '" , . .1. '-- o ..... '" . ..... ..... II-A-7 --.,.. z.::: c:::: ~ 0 0 - - r- -- I c:::::: ~ l- N - c:::: f::2.. <: - w.J U >- . &.:.J I ~ 0 C1.. 0 ,... - - t.,..=- --' c:::l 0 C/.l - ..::- -oJ I ~ ~ :::::> , C'J 0. :::l -oJ !::: r.:.. < 0 c/) w.J - >- " I = 0 "'" 0 \ ..,..... ... z o ... I- <: Ol- e>- ""% -<: Q rn ,. I I I - u.. . ;CoO' ..,.. c:: 1-1- u.. :z: :z: OUJ 0 ~'-' >-1- I-C::O %<:0 ::>0..0 0"""'" '-' Q u.. ~ .. u > .. 0 .. .... w .. .. zj: g:: ,." ~.> C:J ~ '< ~"' U 717. e:: Z ~ - -.. t:.l ::;: '< ::: ~ % ~u> 0_ Q U" _ ..- . C&. :: ~ Jj 0;:. ~ ! :.. 0 Q, . z' ~ ~ :! ~ ~ .. .. 0 0 ~ 2::/1 a: < u <u:: - c.. ~. 0 '^ ~ < 0 "" - Ot;: vi Q U .-17- . ~ < ~ z" "" 9", "". .... < - ZO " .. . .> < u .. .. !I-;'-13 . " fjf, - y :z: < .. L V\ o "" '^ . "" "-. '- - e ~ ..-. . ,.... ..-. DD' 111'" I :""'" '. ' - '- .'- . . . . . , . . , . . . . . . . . . . . : : : : : : : : : :' :Y:J lSl3nUpUt[ lO cia Q: d1llO,H 'alTl OlOI.~aI619) tllU'i:) OOJKJ till 1Jl NJN'N:) SHM mo .,.,.,""'" )tJ'U:)UtCllNJI't'OSONl ~JOIlOIIl&...tNlJlN!H1 .......,.."""""""" .f.- . r H I . S n r 3 H 1 001 ot o UlJ . '. '. . . . . . . . . . . . . . ,'. . ." . . . . . . . . . . .. . . . , " I, " SNISVB 3DVNIVHO I ~~d' WIMP,;) Is \ ' ( , ' , , , , \. ,.' i , , I i J 1 ." THE AUSTIN HANSEN GR()UP ARCHITECTURE INTERIOR DESIGN PLANNING URBAN DESIGN LANDSCAPE ARCHITECTURE CIVil ENGINEERING STRUCTURAL ENGINEERING DOUGLAS AUSTIN, FAIA ARCHITECT DONALD HANSEN, AlA ARCHITECT RANDY ROBBINS. AlA ARCHITECT PATRICK O'CONNOR GERRY SIMON, PE COIlPORATE HEADQUARTERS 10035 BARNES CANYON RD SAN DIEGO, CA 92121 (619) 552-1010 FAX (619) 552-1001 NORTHERN CALIFORNIA 814 29TH STREET SACRAMENTO CA 95816 (916) 442-5391 FAX (916 J 4449762 ASIA THE MOSER AUSTIN HANSEN GROUP 88 HING FAT STREET. 2JF CAUSEWAY BAY HONG KONG (011)8b2-806-1373 FAX (011) 852-806-1403 . (~1 /. C Cj C( ", /-~-<-... J ': ,/. September 30,1992 Mr. Hans Jensen Department of Public Works City of Encinitas 527 Encinitas Boulevard Encinitas, CA 92024 fJtYT r" utJl "-" C RE: Home Depot Flood Plain Analysis Dear Mr. Jensen: Please find attached for your review a letter and supporting exhibits prepared by ASL Consulting Engineers dated September 10, 1992, regarding the Encinitas Creek 100-year flood plain within the Home Depot site. We asked ASL to prepare this additional HEC-2 analysis because we were concerned about public misconceptions regarding the Home Depot 100-year flood plain. These misconceptions are: 1. A portion of the Home Depot parking lot would be inundated by a 100-year peak storm (even with the construction of the upstream Detention Basin "D"); and 2. Without the construction of Detention Basin "D", unknown large areas of the Home Depot parking lot, and perhaps the building, would be inundated by a 100-year storm. In the Hydrology section of the draft Home Depot EIR the only site exhibit shown which indicated potential flooding was Figure 3.1-2. This exhibit is misleading since it consists of the three flood plain conditions described by Dr. Chang in his Drainage Study for Encinitas Creek (1990), combined with the Home Depot site plan. Figure 3.1-2 does not reflect the change in flood plain limits that will occur with the grading of the Home Depot parking lot. The parking lot grades will be several feet above the existing ground along the north edge of the lot, and will slope upward toward the Home Depot building. ASL's Exhibit "A" shows the existing 100-year flood plain limit and the proposed 100-year flood plain limit with the Home Depot parking lot grading in place. This exhibit assumes that Detention Basin "D" will not be built. Exhibit "AU clearly shows the entire area of development to be outside of the 100-year flood plain boundary. ASL's study of Encinitas Creek with a 100-year flood shows the water surface elevation in the vicinity of the Home Depot will be 82.4. This is about a half foot lower than the proposed 83.0 elevation at the north end of the parking lot, and several feet lower than the Home Depot finish floor elevation of 92.0. The end result is that both the parking lot and the Home Depot building will be out of the . . lOO-year Page Two September 30, 1992 Mr. Hans Jensen flood plain, even if Detention Basin "0" is not built. I hope this information will add to your understanding of the Home Depot project. Please call me if you have any questions. Very truly yours, -0/'--'/ /Je>'t;'-. ~~ Robert C. Haynes, P.E. Director of Civil Engineering THE AUSTIN HANSEN GROUP enclosures cc Jim Lyon, Home Depot Jim Hirsch, FORMA . . ASL Consulting Engineers One Jenner Street Suile200 Irvine, California 92718 714n27-7099. September 10, 1992 Job No. 2005.2 \ The Home Depot 601 S. Placentia Fullerton, CA 92631 \ -_...- Attention: Mr. Jim Lyon Reference: Flood Plain Analysis - Home Depot Site City of Encinitas Dear Mr. Lyon: This letter summarizes an additional flood plain analysis of Encinitas adjacent to the proposed Home Depot at 01 ivenhain and El Camino. information should assist in your evaluation of this development. Creek This A report by Dr. Chang recommends the installation of Detention Basin D west of Rancho Santa Fe just south of Olivenhain Road which, when constructed, will yield a peak 100-year storm discharge in Encinitas Creek of B32 CFS at El Camino Real. It was the basic assumption of our previous flood plain analysis and the EIR that this detention basin would be installed prior to construction of the Home Depot project. The previous analysis indicated some potential flood plain encroachment near the Home Depot parking lot and that the proposed building pad was significantly higher than the flood plain. With the downturn in development of this area, it now appears that this basin will not be built. Without this basin, a peak storm 100-year discharge in Encinitas Creek adjacent to this project will be increased to 1465 CFS. We have completed a revised hydraulic analysis of Encinitas Creek with a 1465 CFS design flow and the results are presented in Exhibits A and C. Exhibit B indicates the actual flood plain level at sections along Encinitas Creek. Our hydraulic analysis of the stream indicates that this design storm will generate a 100-year flood water surface elevation adjacent to the parking lot and building of approximately 82.4 feet. The Home Depot building area with a proposed finished floor elevation of 92.0 feet is approximately 9 feet above flood levels and significantly out of the flood plain. The parking lot area if graded to the proposed minimum elevation of 83.0 feet will not be impacted by this flood plain. Ltrl Arcadia Corporale Office 818/447-4494 Fax 818/447-4543 Irvine 7141727- 7099 Fax 714/727.7097 Palm Springs 619/320-4110 Fax 619/320-3580 Rancho Cucamonga 714/989-8963 Fax 714/944-9766 Camarillo 8051388-2344 Fax 8051388-3082 San Diego 619/673-5505 Fax 619/673-5550 , / . . ASL Consulting Engineers The Home Depot September 10, 1992 Page 2 With a conservative approach, this 100-year hydraulic modelling was performed assuming no improvements to the bridge section at El Camino and Olivenhain Road. To maintain the conveyance capacity of the bridge for the future, it is recommended that the channel floor beneath and immediately before the bridge be dredged. The channel floor beneath the bridge should be maintained at an elevation no higher than the current 75.0 feet. Should you require additional information, please don't hesitate to contact me. ~ tr~lY yours, v.&U ~~--- Richard A. Moore Division Manager RAM:rlh cc: Mr. Jim Hirsch (Forma) ~ Ltr! ;!; c:( Z..J OCL 1-0 08 Z..J o Uu.>- C)Q:Q: zc:(c:( -wo I->-z Vl :J -00 XOQ) w_ N Z Zc:( O...J f:CL 00 Zo 00 U...J 011.>- WQ:Q: Vlc:(<( Owo CL>-Z 006 Q:OQ) CL_ o Z W - Vl <(XO ...JI-CL CLOO Q)Q: o CL oQ:o 00 . . . . . . . . - ll) <0 C\l II . ..... .. W ....I < o --en ,. - . '. ~- ~~;.-::.~::~~ .... -:; . _I-~;s:...~.. '~'~""""'\::"';-4 ~" '. " I <( " I I l- I ; - , In - i J: X W ZO -w <l:CIJ ..Jo 0.0. o On: 00. o ..Jo(! u.. .<9 n:z >-- )f- oCIJ ox -w . o c - - en ...... c ro ...... - :J en c o o -I C/) <( . . ASL Consulting Engineers Ltrl APPENDIX A HEC-2 Hydraulic Modelling Methodology and Assumptions . . ASL Consulting Engineers Methodology The 100-year water surface profile for Encinitas Creek is calculated using the HEC-2 computer model developed by the U.S. Army Corps of Engineers. The computational procedure of the program is based on the solution of the one- dimensional energy equation, with energy loss due to friction evaluated with Manning's equation. This method is also known as the Standard Step Method. Encinitas Creek is modelled for both the existing and proposed conditions. The downstream control is taken at the downstream face of the El Camino Real bridge. The modelling continues easterly along the creek approximately 1400' to the eastern extreme of the project site. Assumptions The HEC-2 model is run with the following assumptions: The proposed detention basin upstream of the project site, referred to as Detention Basin "0" in the drainage study by Howard H. Chang prepared for Fieldstone/La Costa Associates September, 1990, will not be built. QIQQ' the Encinitas Creek discharge volume for the 100-year storm, is taKen as 1465 CFS for both existing and proposed conditions. Mannings roughness coefficient "n" is taken as 0.060 for the channel sections, and 0.040 for the bridge sections. The channel elevation under the bridge is taken as 75.0 feet, which is the current elevation. As a conservative estimate, no dredging has been assumed. Channel cross-sections for the proposed condition have been taken from the conceptual grading shown on the Tentative Map. (See Exhibit "C"). The downstream control water surface elevation at the downstream face of the E1 Camino Real bridge has been taken as 83 feet. We have used a value 0.5 feet higher than the value as calculated in the drainage report for Fieldstone/La Costa Associates referred to above. ltrl .. . . ASL Consulting Engineers APPENDIX B HEC-2 Run Hydraulic Calculations Ltrl . . ASL Consulting Engineers EXHIBIT B QIOO WATER SURFACE ELEVATION EXISTING VS. PROPOSED SECTION NO. Q... WATER SURFACE ELEVATION 100 79.4 79.4 101 81.7 81. 7 102 81.9 81.9 103 82.0 82.0 104 82.1 82.1 105 82.2 82.2 106 82.3 82.3 107 82.3 82.3 108 82.3 82.3 109 82.4 82.4 110 82.4 82.4 III 82.4 82.4 112 82.5 82.5 113 82.5 82.5 114 82.5 82.5 115 82.6 82.6 116 82.6 82.6 Ltrl z 0 ~ z w 0 z- <iJ:(.I) z5 oct w _.J .JI- ~ (.1)(.1) OCl.. 1::Cl.. Cl..oo :J_ i=o (.I) 00 OCDCt: Ct:>- = ~8 ~8 00:0. w.J () 300 CD<t 0.J U.J ~z = uu. ou.>- u.u.z :Jct >- >-ct ZN 'I- 1.:>Ct:Ct: wo:o: 0:Ct:1.:>i; z<tct (.I)ctct ctctZ- z' 'co -wo owo wo-I- ou ti;>-z Cl..>-z >-z1-5 -w J: -0::> 00:J o::>!!!z I-J: x XoO 0:00 U LLJ w_CD 00(;50 wz Cl.._CD _CD U (.1)- \',", . II) . C') .. VI 0 . ~ ~ - . ,II 0 Z . ~ LO . W . ~ ~ .-:::::: ~ w . <t Cl .' . . w W II' . .J . .J . ~ < II . 0 . . () . 0 . . en 0 . ~ , ~ . .J W I t ~ u l . l w ~ % \. ~ . l " ~ ~ . ; ~ ~ 1 " , , - \ -- --....11 . I- " ' , r zo :;:UJ ...JC/) 0.0 0. 00 OCC 00. ...JO l.1.Z CC<C ~0 >-Z , - II- (/) o oX .....UJ , l~L n . & ? t ;,I , . y ., :1. 1 : ' i r , ::l (/) 5 0- ...J (/) ex: . .. S. h . 0" U' Street Address ~(60 I 3~5B19 Serial # Category ~j}1 q /- () c¡ Lj Name. I Description ,qqr Year Plan ck. # recdescv . flY) ~eotechnics Incorporated June 9, 1994 R E C F. 'vt: '" JUN 13 :_' 4 PrincipII Is: Anthony F. Uclfllst Michael P. Imhri~lill W. Lcl: Vandl:rhllrst \..Ji\c.U'futl\l.t fl\:(. .~W Home Depot U.S.A. Inc. LosANÅ“tS 601 South Placentia Fullerton, CA 92631 Project No. 0110-001-03 Doc. #4-0214 Attention: Ms. Debbie Hanks SUBJECT: INVESTIGATION OF EXISTING PAVEMENT AND DESIGN RECOMMENDATIONS EL CAMINO REAL IMPROVEMENTS FOR THE HOME DEPOT ENCINITAS, CALIFORNIA Dear Ms. Hanks: In accordance with your authorization, we have completed our investigation of the pavement section of EI Camino Real, along the frontage for the Home Depot project. The purpose of our investigation was to determine the existing pavement section of EI Camino Real, and provide recommendations for bringing the section up to current standards for a prime arterial. The scope of our services included the following: " 1) Scheduling of utility locators and traffic control for access to the travel lanes of EI Camino Real. 2) Drilling four exploratory borings in the roadway to assess the existing pavement section and to sample the subgrade for laboratory testiJ1g. 3) Engineering analysis of the required and existing pavement sections, using design standards of the City of Encinitas and County of San Diego. 4) Providing recommendations for pavement rehabilitation, if required. SUBSURFACE CONDITIONS Four Borings were drilled in the outside lanes of EI Camino Real, near the bicycle lanes. The logs of the borings are presented on the attached Figures 8-1 and B-2. The following table summarizes the findings of our explorations. 1'.0. Box 2t.5011-224 . Sun f)jc~o Culili,miu . 1)21 % Phont: «() II) 536- IUIIO . Fux (611) 53t....~') II HOME DEPOT U.S.A. JUNE 9, 1994 PROJECT NO. 0110-001-03 DOC. #4-0214 PAGE 2 TABLE 1 BORING NO. B-1 B-2 B-3 B-4 LOCATION (relative to 205' south, 386' north, 250' north, 200' south, centerline of main northbound northbound southbound southbound entrance to Home Depot lane lane lane lane ASPHALT CONCRETE 5~ inches 3% inches 5 inches 5 inches THICKNESS AGGREGATE BASE 6 inches 7 inches 6% inches 6 inches THICKNESS SUB-BASE THICKNESS 12 inches 11 % inches 11 inches 11 ~ inches (decomposed granite) SUBGRADE SOIL fine to fine to fine to fine to .' medium grain medium grain medium grain medium grain silty sand silty sand silty sand silty sand R-value = 61 R-value = 74 R-value = 74 R-value = 61 LABORATORY TESTING / Samples of the subgrade soil were retrieved from the explorations and visually classified. The subgrade soil in Boring 1 and Boring 4 were determined to be similar and were combined for R- value testing. Likewise the subgrade soil in Boring 2 and Boring 3 were combined for testing. R-value tests were performed in accordance with CAL TRANS test method 301 and the results are shown on Table 1. PAVEMENT ANALYSIS Based on a Traffic Index of 9 for a prime arterial, an R-value of 50 for the subgrade soil, and the CAL TRANS design method, it was determined that a total gravel equivalent of 1.440 feet is required. Although this lowest R-value determined by testing is 61, a reduced value of 50 was Geotechnics Incorpo..ated HOME DEPOT U.S.A. JUNE 9, 1994 PROJECT NO. 0110-001-03 DOC. #4-0214 PAGE 3 assumed because evaluation was made by localized borings. without the benefit of observing the entire subgrade area. The lowest section components observed in the borings were 3~ inches of asphalt concrete, 6 inches of aggregate base, and 11 inches of decomposed granite sub-base. These provide an available gravel equivalent of 2.018 feet. The total existing section therefore exceeds the required design section. The county standards require a minimum thickness of 5 inches of asphalt concrete for prime arterials. Our exploration indicates that in three of the four borings, the thickness of asphalt concrete 5 inches or greater. Boring B-2 indicated 3~ inches of asphalt concrete. It is possible that this thinner section is an anomaly resulting from the placement of too thick a layer of base and sub-base. RECOMMENDATIONS Our findings indicate that the total available existing section exceeds that required for a Traffic Index .of 9, which is the current design standard. Except for the area of boring B-2, the asphalt concrete thickness meets the standards for prime arterials. In our opinion the existing section should be considered adequate, subject to a performance inspection by personnel of the governing agencies. If local areas are found to have unacceptable distress, local rehabilitation of these areas should be performed. Local rehabilitation may consist of the following options: 1) Saw-cut the distresses areas of pavement, and replace the existing asphalt concrete with at least 5 inch of new asphalt concrete. 2) An overlay of at least 2 inches of asphalt concrete may be placed over the existing section. To reduce the potential of reflection cracking into the new overlay, a geotextile reinforcement (such as Petromat) should be placed on the existing pavement. In addition all cracks should be adequately sealed. Rehabilitation materials and methods should conform to the requirements of the governing agencies, and/or 'Green Book' standards. Where a new pavement section is required for additional lanes, we recommend the following section: Geotechnics Incorpo..ated HOME DEPOT U.S.A. JUNE 9, 1994 PROJECT NO. 0110-001-03 DOC. #4-0214 PAGE 4 5 inches of asphalt concrete, over 10 inches of Class II aggregate base, over 12 inches of native subgrade Aggregate base and subgrade should be compacted to at least 95 percent of maximum density as determined by ASTM 01557. Asphalt concrete should be compacted to at least 95 percent of maximum density as determined by the Hveem method. Please call at your convenience if you should have any questions or comments regarding our . findings and recommendations. We appreciate this opportunity to be of continued service. GEOTECHNICS INCORPORATED " ~7.~~ . Anthony F. Belfast, P.E. 40333 Principal Distribution: Austin Hansen Group, Mr. Bob Haynes Greenberg Farrow, Mr. Michael Okuma ,I- Geotechnics Inco..po..ated LOG OF EXPLORATION BORING NO.1 Logged by: KWS Date: 5/27/94 Method of Drilling: 8" Hollow Stem Flight Auger DEPTH DESCRIPTION ASPHAL TIC CONCRETE: 5Yz inches thick CLASS H BASE: 6 inches thick; Brown Sand with gravel, fine to medium grained, 1 ft. nonplastic, moist, dense D.G. SUB-BASE: 12 inches thick; Brown Sand, fine to coarse grained, nonplastic moist, dense 2 ft. SUBGRADE SOIL: Brown Sand, fine to medium grained, non plastic, moist, medium dense 3 ft. 4 ft. Grades to light brown in color 5 ft. Total Depth 5 Feet 6 ft. No Groundwater .' LOG OF EXPLORATION BORING NO.2 Logged by: KWS Date: 5/27/94 Methód of Drilling: 8" Hollow Stem Flight Auger DEPTH DESCRIPTION ASPHALTIC CONCRETE: 3Yz inches thick CLASS II BASE: 7 inches thick; Brown Sand with gravel, fine to medium grained, 1 ft. nonplastic, moist, dense D.G. SUB-BASE: 11 Yz inches thick; Brown Sand, fine to coarse grained, non plastic moist, dense 2 ft. /" SUBGRADE SOIL: Olive-brown clayey Sand, fine to medium grained, non plastic, moist, medium dense 3 ft. ..--...........- .......................................................,..............'.."'."'.'..""'.'."'.""""""."-""'."".'."'.'-'.""""""'."."-"""""'."""""."."'..-"..."'.".---- Brown Sand, fine to medium grained, non plastic, moist, medium dense 4 ft. 5 ft. Total Depth 5 Feet 6 ft. No Groundwater PROJECT NO. 0110-001-03 GEOTECHNICS INCORPORATED FIGURE: B-1 .. . LOG OF EXPLORATION BORING NO.3 Logged by: KWS Date: 5/27/94 Method of Drilling: 8" Hollow Stem Flight Auger DEPTH DESCRIPTION ASPHALTIC CONCRETE: 5 inches thick CLASS II BASE: 6Yz inches thick; Brown Sand with gravel, fine to medium grained, 1 ft. nonDlastic, moist, dense D.G. SUB-BASE: 11 inches thick; Brown Sand, fine to coarse grained, nonplastic moist, dense 2 ft. SUBGRADE SOIL: Olive-brown clayey Sand, fine to medium grained, nonplastic, moist, medium dense 3 ft. ......................... """""""""""""""""""""""""""""""""""""""".................................-..............--.......................""""""""""-""""""""""'--""'--"-' Brown Sand, fine to medium grained, nonplastic, moist, medium dense 4 ft. 5 ft. Total Depth 5 Feet 6 ft. No Groundwater .., LOG OF EXPLORATION BORING NO.4 Logged by: KWS Date: 5/27/94 Methód of Drilling: 8" Hollow Stem Flight Auger DEPTH DESCRIPTION ASPHALTIC CONCRETE: 5 inches thick CLASS 1\ BASE: 6 inches thick; Brown Sand with gravel, fine to medium grained, 1 ft. nonDlastic, moist, dense D.G. SUB-BASE: 11 Yz inches thick; Brown Sand, fine to coarse grained, non plastic moist, dense 2 ft. ./' SUBGRADE SOIL: Brown Sand, fine to medium grained, non plastic, moist, medium dense 3 ft. 4 ft. 5 ft. Total Depth 5 Feet 6 ft. No Groundwater I PROJECT NO. 0110-001-03 GEOTECHNICS INCORPORATED FIGURE: B-2 600-36 July 1. 1990 mGHWAY DESIGN MANUAL , Table 608.4 Gravel Equivalents of Structural Layers in Feet ASPHALT CONCREm (DGAC) BASE AND SUBBASE Tr8fDc Index rro 5 It 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 CTPB below 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 lit up ACB Cl. A CI. B LCB CTB ATPB CTB AB AS Actual Gravel Factor (Ot) Thlclm... Å“ Layer " Of vaJ1es with 11.. ..." Of constant 1ft) 2.54 2.32 2.14 2.01 1.89 1.79 1.71 1.64 1.57 1.52 1.46 1.9 1.7 1.4 1.2 1.1 ... 1.0 0.10 0.250.23 0.21 0.20 0.190.180.17 0.160.16 0.15 0.15 -- 0.15 0.38 0.35 0.32 0.30 0.28 0.27 0.26 0.25 0.24 0.23 0.22 -- 0.20 0.51 0.46 0.43 0.40 0.38 0.36 0.34 0.33 0.31 0.30 0.29 -- 0.25 0.63 0.58 0.54 0.50 0.47 0.45 0.43 0.41 0.39 0.38 0.37 -- 0.30 0.760.690.64 0.60 0.570.54 0.51 0.490.47 0.45 0.44 -- -- ~ -- -- 0.42 -- 0.35 0.890.81 0.750.70 0.66 0.63 0.60 0.570.55 0.53 0.51 0.67 ~ 0.49 0.42 0.39 0.35 0.40 1.01 0.93 0.86 0.80 0.760.72 0.68 0.650.63 0.61 0.59 0.76 0.68 0.56 0.48 0.44 0.40 0.45 1.14 1.04 0.96 0.90 0.85 0.81 0.77 0.740.71 0.68 0.68 0.86 0.77 0.63 0.54 0.50 0.45 0.50 1.27 1.16 1.07 1.00 0.94 0.90 0.85 0.820.79 0.76 0.73 0.95 0.85 0.70 0.60 0.55 0.50 0.55 1.41 1.29 1.19 1.12 1.05 1.00 0.95 0.91 0.87 0.84 0.81 1.05 0.94 0.77 0.66 0.61 0.55 0.60 1.58 1.45 1.34 1.25 1.18 1.12 1.07 1.02 0.98 0.95 0.91 1.14 1.02 0.84 0.72 0.66 0.60 0.65 1.76 1.61 1.49 1.39 1.31 1.25 1.19 1.14 1.09 1.05 1.02 1.24 1.11 0.91 0.78 0.72 0.65 0.70 -- 1.78 1.64 1.54 1.45 1.38 1.31 1.26 1.21 1.16 1.12 1.33 1.19 -- 0.84 0.77 0.70 0.75 -- 1.95 1.80 1.69 1.59 1.51 1.44 1.38 1.32 1.27 1.23 1.43 1.28 -- 0.90 0.83 0.75 0.80 -- 2.12 1.96 1.84 1.73 1.64 1.57 1.50 1.44 1.39 1.34 1.52 1.36 -- 0.96 0.88 0.80 0.85 -- 0.90 .- 0.95 -- 1.00. -. 1.05 -- 1.10 -- 1.15 .. 1.20 -- 1.25 -- 1.30 -- -- 2.13 1.99 1.88 1.78 1.70 1.63 1.56 1.51 1.48 1.62 1.45 .. -- 2.30 2.15 2.03 1.92 1.83 1.76 1.69 1.63 1.57 1.71 1.53 -. .. 2.31 2.18 2.07 1.97. 1.89 1.81 1.75 1.69 1.81 1.62 -- 2.47 2.33 2.21 2.11 2.02 1.94 1.87 1.81 1.90 1.70 .- -- 2.64 2.49 2.36 2.25 2.162.07 2.00 1.93 2.00 1.79 -- -- 2.65 2.51 2.40 2.292.20 2.12 2.05 -- -- 2.81 2.67 2.54 2.43 2.34 2.25 2.18 -- -. 2.98 2.82 2.69 2.58 2.48 2.39 2.30 -- -- 2.98 2.84 2.72 2.61 2.52 2.43 -- .. 3.14 2.99 2.872.75 2.65 2.56 .. 1.02 0.94 0.85 1.08 0.99 0.90 1.14 1.05 0.95 1.20 1.10 1.00 1.26 1.16 1.05 1.35 -- 1.40 -- 1.45 -- 1.50 -- 1.55 -- 1.60 -- 1.65 -- 1.70 -- 1.75 -- 1.80 -- -- 3.30 3.15 3.01 2.90 2.79 2.70 -- -- 3.31 3.163.04 2.93 2.83 -- -- 3.48 3.32 3.19 3.07 2.97 .. .. 3.62 3.473.33 3.21 3.10 .. -. 3.62 3.48 3.36 3.24 -- -- 3.783.63 3.50 3.38 -- -- 3.94 3.79 3.65 3.52 -- eo 3.94 3.80 3.67 eo -- 4.09 3.95 3.81 -- 4.25 4.10 3.96 -- 1.85 -- 1.90 -- 1.95 -- 2.00 -- -- 4.25 4.10 -- -- 4.40 4.25 -- -- 4.56 4.40 -- -- 4.55 -- Notes: 1. See Tabla 605.1 and 608.2 lOr .ubbue and bue mater1al8 terminology. abbrevlallol18. and gravd facto", (OÒ. 2. . Standard layer thIc:kr-.a o( 0.25 (oot and 0.35 lOot have been adopted reapect1vdy for ATPB and C'I1'8. Theae In turn COlt'C8pond reapect1vdy to OE'. o( 0.35 (oot and 0.60 (oot. ,.. cIIacua8ed In Index 606.2(3) a thlcioer TPB draIn8 e layer may be conaldered only under a Wúque combInatIon of condltfona. 3. 00Ac: may be .ubaUtuted lOr up to 0; 10 (oot of DOAC. .. a .urfacc layer. when wananted by condlllona cIIacua8ed under Index 608.2(2), the dIfI'erence In O( not wlthatandlnc- 4. .. OW: IÙ8o InI:reus u the thIcknr:aa Increa8s. If the thlckneu 18 pater than 0.150 ft. . See Index 608.4(3). HIGHWAY DESIGN MANUAL 600-33 AU~Bt 5, 1988 Figure 608.4 Flexible Pavement Structural Section Design 0 0 10 20 30 40 50 60 70 80 0 0.5 3.0 0.5 ~ LiJ LiJ U. ¡ i ¡ i 1 ¡ 1.0 1 . 1.0 z 1.5 1.5 ~ Z LiJ -' c( > - ::;) 0 LiJ 2.0 2.0 -' LiJ > c( 0:: C) 2.5 " 2.5 3.0 3.5 0 3.5 80 10 20 30 40 50 60 10 R. VALUE G.E. = 0.0032 (TI)(lOO-R) G.E. = Gravel Equivalent T.I. = Traffic Index R = Resistance Value or R-Value 600-36 July I. 1990 HIGHWAY DESIGN MANUAL . Table 608.4 Gravel Equivalents of Structural Layers in Feet ASPIW..T CONCRETE (DGAC) BASE AND SUBBASE TrafDc IDdeIt rro 56: 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 C'I1'B below 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 &: up ACB CI. A Cl. B LeB C'IB ATPB C'IB AB AS Actual Oravel Factor (Ot) Th¡,.1rnesa Å“ Layer .. Of varIeS with 1'1" ..... Of constant 1ft) 2.54 2.32 2.142.01 1.89 1.79 1.71 1.64 1.57 1.52 1.46 1.9 1.7 1.4 1.2 1.1 0.10 0.250.230.21 0.20 0.190.180.17 0.160.16 0.15 0.15 -- 0.15 0.38 0.35 0.32 0.30 0.28 0.27 0.26 0.250.24 0.23 0.22 -- 0.20 0.51 0.46 0.43 0.40 0.38 0.36 0.34 0.33 0.31 0.30 0.29 -- 0.25 0.63 0.58 0.54 0.50 0.47 0.45 0.43 0.41 0.39 0.38 0.37 -- 0.30 0.760.690.64 0.60 0.57 0.54 0.51 0.490.47 0.45 0.44 -- ... 1.0 -- ~ -- -- 0.42 -- 0.35 0.89 0.81 0.75 0.70 0.66 0.63 0.60 0.57 0.55 0.53 0.51 0.67 ~ 0.49 0.42 0.39 0.35 0.40 1.01 0.93 0.86 0.80 0.760.72 0.68 0.650.63 0.61 0.59 0.76 0.68 0.56 0.48 0.44 0.40 0.45 1.14 1.04 0.96 0.90 0.85 0.81 0.77 0.740.71 0.68 0.66 0.86 0.77 0.63 0.54 0.50 0.45 0.50 1.27 1.16 1.07 1.00 0.94 0.90 0.85 0.82 0.79 0.76 0.73 0.95 0.85 0.70 0.60 0.55 0.50 0.55 1.41 1.29 1.19 1.12 1.05 1.00 0.95 0.91 0.87 0.84 0.81 1.05 0.94 0.77 0.66 0.61 0.55 0.60 1.58 1.45 1.34 1.25 1.18 1.12 1.07 1.02 0.98 0.95 0.91 1.14 1.02 0.84 0.72 0.66 0.60 0.65 1.76 1.61 1.49 1.39 1.31 1.25 1.19 1.14 1.09 1.05 1.02 1.24 1.11 0.91 0.78 0.72 0.65 0.70 -- 1.78 1.64 1.54 1.45 1.38 1.31 1.26 1.21 1.16 1.12 1.33 1.19 -- 0.84 0.77 0.70 0.75 -- 1.95 1.80 1.69 1.59 1.51 1.44 1.38 1.32 1.27 1.23 1.43 1.28 -- 0.90 0.83 0.75 0.80 -- 2.12 1.96 1.84 1.73 1.64 1.57 1.50 1.44 1.39 1.34 1.52 1.36 -- 0.96 0.86 0.80 0.85 -- 0.90 -- 0.95 .. 1.00 -- 1.05 .. -- 2.13 1.99 1.88 1.78 1.70 1.63 1.56 1.51 1.46 1.62 1.45 -- -- 2.30 2.15 2.03 1.92 1.83 1.76 UI9 1.63 1.57 1.71 1.53 -- -- 2.31 2.18 2.07 1.97- 1.89 1.81 1.75 1.69 1.81 1.62 .. -- 2.47 2.33 2.21 2.11 2.02 1.94 1.87 1.81 1.90 1.70 -- -- 2.64 2.49 2.36 2.25 2.162.07 2.00 1.93 2.00 1.79 -- -- 2.65 2.51 2.40 2.292.20 2.12 2.05 .. -- 2.81 2.67 2.54 2.43 2.34 2.25 2.18 -- u 2.98 2.82 2.69 2.58 2.48 2.39 2.30 -- -- 2.98 2.84 2.72 2.61 2.52 2.43 .. -- 3.14 2.99 2.872.75 2.65 2.56 -- 1.02 0.94 0.85 1.08 0.99 0.90 1.14 1.05 0.95 1.20 1.10 1.00 1.26 1.16 1.05 1.10 -- 1.15 -- 1.20 -- 1.25 -- 1.30 -- 1.35 -- 1.40 -- 1.45 -- 1.50 -- 1.55 -- 1.60 -- -- 3.30 3.15 3.01 2.90 2.79 2.70 -- .. 3.31 3.163.04 2.93 2.83 -- -- 3.48 3.32 3.19 3.07 2.97 -- -- 3.62 3.473.33 3.21 3.10 -- -- 3.62 3.48 3.36 3.24 -- -- 3.78 3.63 3.50 3.38 -- -- 3.94 3.79 3.65 3.52 -- -- 3.94 3.80 3.67 -- -- 4.09 3.95 3.81 -- 4.25 4.10 3.96 -- 1.65 -- 1.70 -- 1.75 -- 1.80 -- 1.85 -- 1.90 -- 1.95 -- 2.00 -- -- 4.25 4.10 -- u 4.40 4.25 -- -- 4.56 4.40 -- -- 4.55 -- Notes: 1. See TabIe8 605.1 and 608.2 br .ubbue and bue materlala terminology. abbrevlatlona, and gravel factora (ad. 2. . Standard layer ~ of 0.25 foot and 0.35 foot have been adopted reapecl1vely br ATPB and C11'B. 1beae In turn coneapond reapecUvely to OE'. of 0.35 foot and 0.60 fooL A8 cll8c:uued In Index 608.2(3) a thfcker TPB draJnaae layer may be coll8ldered only under a unique combination of conditione. 3. OOAC may be aubatltuted for up to 0.10 foot of DOAC. u a .urfacc layer. when warranted by condItione cIIacu88ecI under Index 608.2(2). the cII&rence In Of not wtthatandlng. 4. .. OW: aI8o ~ u the ~ 1na'eUe8. If the thfclaleu .. reater than 0.150 ft. - See Index 1108.4(31. 600-8 July I. 1990 mGHWAY DESIGN MANUAL during the design period should be de- signed for a 11 of 12.0. When ramps are widened to handle truck off-tracking. the full structural section. based I on the ramp 11. should be extended to the inner edge of the required widening. (4) Auxiliary Lane Tra1fic. Because of structural section dra1nag~. considerations. the auxiliary lane structural section should have the same thickness for the pavement. base. and subbase layers as those specified for the adjoining outer lane of the traveled way. (5) Median Shoulder Tra1fic. Paved medians are subject to occasional use by maintenance trucks and other heavy maintenance vehicles. Occasionally. disabled heavy commercial vehicles or emergency vehicles may use the median. Generally. medians less than 12 feet in width on all paved 4-lane cross sections are constructed with the same structural section as the median traveled way lane. Median shoulders on 4-lane divided highways are arbitrarily paved with 0.20 foot of AC over a variable AB thickness. When there is a potential for restriptng to add a lane or lanes to carry mainline or high occupancy vehicle traffic. an estimate of traffic should be made. This and other pertinent factors should be considered in detennining the structural section under the median shoulder. 603.4 Traffic Indez Table 6O3.4B illustrates detennination of the 11 for outside and median lanes of an 8-lane freeway. The expanded AADTI and the 11's shown in Table 6O3.4B are taken from the flexible pavement design example (described in Index 608.4) and are not to be used in the design for a specific project. The Traffic Index or 11 is a measure of the number of ESAL's expected in the design lane over the design life period. The 11 does not vary directly with the ESAL's but rather according to the following exponential fonnula and as illustrated in Table 6O3.4A 11 = 9.0 X (ESAL/1()6)0.119 Where: 11 = Traffic Index ESAL = Equivalent 18-kip Single Axle Loads Table 603.4A Conversion of ESAL to Traffic Index ESAL ." ESAL *TI 48 1.270.000 3.0 9.5 194 1.980.000 3.5 10.0 646 3,020.000 4.0 10.5 1.850 4.500.000 4.5 11.0 4.710 6,600.000 5.0 11.5 10,900 9.490,000 5.5 12.0 23.500 13.500.000 6.0 12.5 47.300 18.900,000 6.5 13.0 89,800 26.100.000 7.0 13.5 164.000 35,600.000 7.5 14.0 288,000 48,100.000 8.0 14.5 487.000 64.300,000 8.5 15.0 798.000 84.700,000 9.0 15.5 1.270,000 112,000.000 .NOTE: No interpolations should be made as detennfnation 0£11 closer than 0.5 Is not Justified. Topic 604 . Basement Soils 604.1 Introduction The resistance value (R-value) is a param- eter representing the resistance to defonnation of a saturated soil under compression at a given density. The R-value is measured with the stabilometer, and is used in the design of flexible and rigid pavements. It is an indication "'"I ~ Geotechnics ~ Incorporated Principals: Anthony F. Belfast Michael P. Imbriglio W. Lee Vanderhurst September 23, 1994 Home Depot U.S.A., Incorporated 601 South Placentia Fullerton, CA 92631 Project No. 0110-001-04 Doc. #4-0354 Attention: Ms. Debbie Hanks SUBJECT: SITE GRADING COMPACTION TEST RESULTS HOME DEPOT STORE #660, 1001 EI CAMINO REAL ENCINITAS, CALIFORNIA Dear Ms. Hanks: In accordance with your request, we are confirming the results of our compaction testing peñormed during the grading of the Home Depot site, located on EI Camino Real in Encinitas, California. Grading for the site included the building pad, surrounding driveways and parking lots, cut slopes, and surrounding fill slopes. The fill was placed over a prepared subgrade that in the building pad includes stone column stabilization. Prior to the placement of fill materials, the existing subgrade soils were scarified approximately 12 inches, moisture conditioned, and compacted. Testing and observation of this grading was peñormed by Geotechnics Incorporated, with the maximum density and optimum moisture of representative samples determined in the laboratory in accordance with ASTM D 1557-91 (Modified Proctor), and density tests by the Nuclear Method (ASTM D 2922-91 and 03017-88), and Sand Cone Method (ASTM 0 1556-90). Specific test results and locations will be reported at a later date in a summary As-Graded Geotechnical report for the project. In our opinion, the subject earthwork compaction was peñormed in general accordance with the intent of the project geotechnical recommendations, and with the requirements of the City of Encinitas. Based on our observations and testing, it is our professional opinion that the fill soils were compacted to at least 90% of ASTM 0 1557-91. P.O. Box 26500-224 . San Diego California. 92196 Phone (619) 536-1000 . Fax (619) 536-8311 -.. Home Depot U. SA, Incorporated September 23, 1994 Project No. 0110-001-04 Doc. #4-0354 Page 2 Please call if you should have any questions regarding our recommendations. We appreciate this opportunity to be of continued service. CZ&:)~ GEOTECHNICS INCORPORATED Anthony F. Belfast, P.E. 40333 Principal Copy: (1) by FAX to Austin Hansen, Attn: Mr. Blair Knoll (1) by FAX To Grant General Contractors, Attn: Milo Hama Geotechnics Incorporated I I I I I I I I I I I I I I I I I I I QtEENBERC. FARROW . . . , ' . AlCHn'tCTUH. PlANNrNG Los AN(",f1 ro: JUN 05 1991 R E C E IV:. ED ,,_. . GEOTECHNICAL INVESTIGATION ill Å’ f!ð ~ U W ~ ]J HOME DEPOT FEB 0 3 1993 EL CAMINO REAL AND OLIVENHAIN ROAD ENGINEERING SERVICES ENCINIT AS, CALIFORNIA CITY OF ENCINIT AS PREP ARED FOR: HOME DEPOT U.S.A. INc. 601 SOUTH PLACENTIA FULLERTON, CA 92631 PREP ARED BY: ICG INCORPORATED 9240 TRADE PLACE, SUITE 100 SAN DIEGO, CALIFORNIA 92126 May 30, 1991 JOB NO. 05- 7454-007-00-00 LOG NO. 1-1648 I an Diego ounty Office: 240 Trade Place, uite 100 I an Diego, CA 92126 19/536-1102 Home Depot U.S.A. Inc. x: 619/536-1306 601 South Placentia II land Empire Office: Fullerton, CA 92631 906 Orange Tree Lane, uite 240 Attention: Mr. Jim Lyon edlands, CA 92374 14/792-4222 If x: 714/798-1844 SUBJECT: range County Offices: onstruction Inspection 1 d Testing: 92 La Palma, uiteA naheim, CA 92806 7 4/632-2980 I f x: 714/632-9209 eotechnical: 1 Mason II ine, CA 92718 7 4/951-8686 f x: 714/951-7969 rporate Office: 11 Mason line, CA 92718 7 4/951-8686 f : 714/951-7969 I I I ICG TM in£orporaÅ“d May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1648 GEOTECHNICAL INVESTIGATION Home Depot El Camino Real and Olivenhain Road Encinitas, California Gentlemen: As requested, we have completed our geotechnical investigation for the site of the proposed Home Depot store. Our findings and recommendations are presented herein. The site is underlain by thick layer of compressible alluvium. Under the proposed fill and foundation loads, this soft soil is expected to settle up to 12 inches. The differential settlement may be as great as 10 inches across the building. Recommended methods for mitigating the settlement include deep foundations, surcharging, or soil densification. If you have any questions after reviewing our report, please do not hesitate to contact the undersigned at your convenience. This opportunity to be of professional service is sincerely appreciated. Very truly yours, ICG INCORPORATED ~.fLJ:Y ~ Vice President I I I I 1 1 G otechnical Services, Construction Inspection and Testing AFB/rp I I I I I I I I I I I I I I I I I I I 7.0 GEOTECHNICAL EVALUATION AND RECOMMENDATIONS. . . . . . . . . . . . . . . . . .. 9 7.1 General Discussion ..............................................9 7.2 Review of Plans ...............................................10 7.3 GradingandEarthwork ......................................... IO 7.3.1 .General................................................ 10 7.3.2 Geotechnical Observation ................................... II 7.3.3 Site Preparation ........................................... II 7.3.4 .FiIlCompaction.......................................... II 7.3.5 .TrenchBackfill.......................................... 12 Settlement....................................................12 7.4.1 Surcharging .............................................. 13 7.4.2 .WickDrains............................................. 14 7.4.3 Dynamic Compaction ...................................... 14 7.4.4 Vibro-Replacement ........................................ 14 7.4.5 Settlement Monitoring ...................................... 15 SlopeStability.................................................15 7.5.1 Cut and Fill Slopes ........................................ 15 7.5.2 Construction Slopes ........................................ 16 SiteDrainage .................................................16 FoundationRecommendations ....................................17 7.7.1 Shallow Foundations .......................................17 7.7.2 Deep Foundations ......................................... 17 7.7.3 LateraILoadResistance..................................... 18 7.7.4 On-Grade Slabs ........................................... 18 6.0 TABLE OF CONTENTS 1.0 INTRODUCTION .................................................... I 1.1 Authorization .................................................. I 1.2 Scope of Services ...............................................1 2.0 PROPOSED DEVELOPMENT ........................................... 2 3.0 SITE DESCRIPTION .................................................. 2 4.0 SITE INVESTIGATION..................................... ...........3 4.1 FieldExploration """""""""""""'....................3 4.2 Laboratory Testing .............................................. 3 5.0 SUBSURFACE CONDITIONS ...........................................4 5.1 General ...................................................... 4 5.2 Colluvium (Qcol) ...............................................4 5.3 Alluvium (Qal) ................................................4 5.4 Delmar Formation/Torrey Sandstone (Td/Tt) .......................... 5 5.5 Groundwater ..................................................5 SEISMICITY ........................................................ 5 6.1 General ...................................................... 5 6.2 SurfaceFaultRupture............................................6 6.3 Earthquake Accelerations .........................................6 6.4 SeismicallyInducedSlopeFailures ..................................7 6.5 Seismically Induced Settlement and Liquefaction. . . . . . . . . . . . . . . . . . . . . . .. 7 6.6 LurchingandShallowGroundRupture...............................8 6.7 Tsunamis, Seiches, and Reservoir Failures. . . . . . . . . . . . . . . . . . . . . . . . . . . " 8 7.4 7.5 7.6 7.7 I I I I I I I I I I I I I I I I I I I 8.0 Figures 1 2 3 4 Appendices A B C D Plate 1 7.8 7.9 7.10 TABLE OF CONTENTS (cont'd) RetainingWalls................................................19 Pavement .................................................... 19 Reactive Soils ................................................. 20 LIMITATIONS OF INVESTIGATION .................................... 21 A TT ACHMENTS Location Map Regional Fault Map Retaining Wall Backdrain Detail - Crushed Rock Alternative Retaining Wall Backdrain Detail - Composite Drain Alternative References Field Exploration Laboratory Testing Program Standard Guidelines for Grading Projects Geotechnical Map I I I I I I I I I I I I I I I I I I I GEOTECHNICAL INVESTIGATION HOME DEPOT EL CAMINO REAL AND OLIVENHAIN ROAD ENCINIT AS, CALIFORNIA 1.0 INTRODUCTION This report presents the results of our Geotechnical Investigation performed for the proposed Home Depot store near the intersection of EI Camino Real and Olivenhain Road in Encinitas, California. The purpose of this investigation was to explore and evaluate the subsurface conditions at the site, and to provide recommendations for site preparation, and the geotechnical aspects of project design. The location of the site is shown on the Location Map provided on Figure I. 1.1 Authorization This investigation was conducted in accordance with the authorization of Mr. Jim Lyon of Home Depot U.S.A. Inc. The scope of services performed was consistent with our proposal number SDPI-5871, dated April 25, 1991. 1.2 Scooe of Services Our scope of services for this investigation included the following: a) Review of existing geotechnical reports and literature pertinent to the project area (Appendix A). b) Drilling, logging, and sampling of 7, eight-inch diameter hollow stem auger borings, to a maximum depth of 59 feet. c) Laboratory testing of selected samples to evaluate the pertinent engineering characteristics of the prevailing soils. d) Evaluation of groundshaking potential resulting from seismic events occurring on significant faults in the area. I I I I I I I I I I I I I I I I I I I I:) IONUGHT \ .TE BEAC." ~\. 1... \\1 --.; ,~ ~ï Eñcinitas W (8M 911 ", ,. "{\i 27 .':' '. 0 2~ FEET ~ J_-- ADAPTED FROM U.S.G.S. 7.5' ENC8ßTAS(1975)QUADRANGLE JOB NO.: LOCATION MAP DATE: FIGURE: 05-7454-007-00-00 MAY 1991 ~ ICG Incorporated I I I I I I I I I I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 2 e) Engineering analysis to evaluate and provide recommendations regarding the settlement potential of the soils, and other geotechnical concerns. f) Development of geotechnical criteria for earthwork on the site, including site preparation and soil compaction criteria. g) Recommendation of appropriate foundation systems and geotechnical criteria for design of foundations, slabs, and, recommendations for remedial grading. 2.0 PROPOSED DEVELOPMENT It is our understanding that the proposed development consists of an approximately 100,000 square foot single story building with slab-on-grade. The construction is expected to be load bearing concrete or masonry exterior walls with uniformly spaced interior columns. Anticipated design loads are 120 kips for columns, and 4.5 kips/ft for bearing walls. A retaining wall with a maximum height of approximately 22 feet will be constructed along the south side of the site. Grading will consist of a maximum of about 22 feet of cut on the south side of the site, and up to approximately 10 feet of fill near the center of the site. At-grade parking will be constructed on the north side of the site. 3.0 SITE DESCRIPTION The site is located at the southeast corner of EI Camino Real and Olivenhain Road in Encinitas, California. Presently undeveloped, the site is situated in the floodplain of Encinitas Creek. The creek bed runs along the north side of the site. Topographically, the site slopes gently upward to the south from an elevation of 80 feet on the north side to about 90 feet near the southern boundary where the ground rises steeply to an elevation of 160 feet just off site. I I I I I I I I I I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 3 4.0 SITE INVESTIGATION 4.1 Field Exoloration The field exploration for this investigation was performed on May 9, 1991. The investigation consisted of site reconnaissance, and subsurface exploration by our geotechnical staff. The subsurface exploration consisted of seven 8-inch diameter, hollow stem auger borings, drilled with a truck-mounted continuous flight auger. Samples were taken using a standard split spoon sampler, 3 inch diameter thin wall "Shelby Tubes", and by collecting auger cuttings. The deepest of the borings went 59 feet. The borings were logged and then backfilled. Lines defining the change between soil types were determined from interpolation between sample locations and are therefore approximations. Transitions may be abrupt or gradational. Logs of the borings are included in Appendix B. The approximate boring locations and were mapped in the field on a site plan (Plate 1). Locations were estimated by pacing and dead reckoning; greater accuracy should not be assumed. 4.2 Laboratory Testing Samples representative of earth materials encountered during the field exploration were submitted to our laboratory for testing. Tests were performed in accordance with test methods of ASTM and/or other accepted standards. Results of descriptions of the laboratory tests performed are included in Appendix C. ------- -_. ------. . I I I I I I I I I I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 4 5.0 SUBSURFACE CONDITIONS 5.1 General The subject site is situated in the coastal plain section of the Peninsular Ranges geomorphic province. Specifically, the site is underlain by Quaternary age alluvium deposited by Encinitas Creek, Quaternary age colluvium, and Tertiary age Delmar Formation and Torrey Sandstone. The distribution of the geologic units are shown on the accompanying Geotechnical Map (Plate I). Descriptions of the units are presented below. 5.2 Colluvium (Oco/) The colluvium at the site occurs as a thin band along the toe of the slope on the south side of the site. This material was not observed in any of our borings, and is described only from field observation of the surface material. It consists generally of silty fine sand (Unified Soil Classification SM) with some sandy lean clay (CL). Due to its high potential for collapse when wetted, colluvium is not considered suitable for the support of fill or structures. However, it is generally suitable for use in compacted fill. 5.3 Alluvium (Oa/) The alluvium at the site can be divided into two distinct units. The upper unit consists of loose to medium dense silty fine sand (SM). This unit is thickest (about 40 feet) on the north side of the building pad, and thins to only a few feet thick on the south side. The lower unit consists of medium soft to medium stiff sandy lean clay (CL). This unit is up to 25 feet thick, and in general appears to be more uniform in thickness than the upper unit. Both the clay and the sand units are compressible and will settle under loads imposed by fill or structures. The sand unit is generally nonexpansive, while the clay unit I I I I I I I I I I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 6.0 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 5 exhibits a high expansion potential. Both units are considered suitable for use in compacted fills, however, the clay material should not be placed near finish grade within the building area. 5.4 Delmar Formation/Torrev Sandstone (Td/Tt) The Delmar Formation and the Torrey Sandstone are interfingered in this area, so they are mapped as undifferentiated. On the south side of the site, the only area of surface outcrop on the site, the material is a bluff forming sandstone. In the borings the material varied from a hard claystone to a dense to very dense sandstone. Both the sandstone and the claystone are generally incompressible, and will support loads with little settlement, however, the claystone is highly expansive. 5.5 Groundwater Groundwater was encountered at an elevation of 76 to 80 feet M.S.L. in all of the borings (three to sixteen feet below existing grade). This groundwater table is associated with the level of Encinitas Creek. During periods of heavy rain or drought, the water table may rise or fall, respectively. It should be recognized that excessive irrigation on the project site or on adjacent sites can cause a perched groundwater conditions to develop at some future date. This typically occurs at underlying contacts with less permeable materials, such as the interface that exists between the fill and the underlying bedrock. Because the prediction of the location of such conditions is not possible, related problems are typically mitigated if and when they occur. SEISMICITY 6.1 General As with all of southern California, this site lies in a seismically active area. There are, however, no known active faults either on or adjacent to the site. Figure 2 shows the known active faults and earthquake epicenters (M > 5.0) in the region and their - - - - - - - - - - - - - - - - - - - \ n' ",' ..' n' n' - ~,o 0"°'" ~ ""0. ,,'-- ,,' "- '- '------"-----" " "" " " " " " '.""-".' I "".~~:i:~~.~:,~~ ~:".::::r,:~'~,o,oo. I "'" ...~~""'"." ",' ",' ",' REGIONAL FAULT MAP JOB NO.: 05-7454-007-00-00 DATE: MAY 1991 FIGURE: 2 ICG Incorporated I I I I I I I I I I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 6 relationship to the site. Because the active faults lie at some distance, the seismic risk at this site is thought to be only low to moderate in comparison with many other areas of southern California. Seismic hazards at the site are the result of ground shaking caused by earthquakes on distant, active faults. Table I lists the known major active and potentially active faults within a 100-kilometer radius and the estimated bedrock accelerations resulting from the maximum probable earthquakes on those faults. By definition, the maximum probable earthquake is the largest event likely to occur in a 100-year interval, but is in no case smaller than the largest historic earthquake. 6.2 Surface Fault Ruoture Because active or potentially active faults do not cross the site, the probability of surface fault rupture is very low. 6.3 EarthQuake Accelerations In our opinion, based on the information now available, the most significant event likely to affect this project will be an earthquake on the Rose Canyon fault. Recent studies of the Rose Canyon fault zone have indicated that at least one strand within the zone may be considered active. For Rose Canyon events, we estimate a peak bedrock acceleration at the site of about 0.35g for a maximum probable earthquake of magnitude 6.4. Bedrock accelerations do not take into account differing soil types, including deep alluvium, and the effects of local topography. A site specific ground response study was beyond the scope of this investigation. I I I I I I I I I I I I I I I I I I I TABLE 1 SEISMICITY FOR MAJOR FAULTS MINIMUM ESTIMA TED DISTANCE PROBABLE PEAK BEDROCK FA UL T FROM SITE EARTHOUAKE ACCELERA nON Rose Canyon 7 Miles WSW 6.4 0.35g La Nacion3 24 Miles SSE 6.0 0.09g Coronado Banks 22 Miles SW 6.5 0.14g San Clemente 55 Miles SW 7.3 0.07g Elsinore 23 Miles NE 7.0 0.19g San Jacinto 48 Miles NE 7.5 O.l1g I. 2. 3. Seismic Safety Study, City of San Diego (1974) & Bonilla (1970) Seed and Idriss (1983) Potentially Active I I I I I I I I I I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 7 6.4 Seismicallv Induced SloDe Failures Seismically-included slope failures are not considered likely to occur at this site under the design earthquake loading, provided that proper grading and construction practices are used. 6.5 Seismicallv Induced Settlement and Liauefaction Liquefaction is a phenomenon in which soils lose all shear strength for short periods of time during an earthquake. The effects of liquefaction may be large total and/or differential settlement for structures with foundations founded in the liquefying soils. Groundshaking of sufficient duration results in the loss of grain to grain contact and rapid increase in pore water pressure, causing the soil to behave as a fluid for short periods of time. To have potential for liquefaction, a soil must be cohesionless with a grain size distribution of a specified range (generally sands and silt); it must be loose to medium dense; it must be below the groundwater table; and it must be subject to sufficient magnitude and duration of groundshaking. In evaluating liquefaction potential for the project, we have relied, in part, on the results of a study presented by Seed and Idriss, "Ground Motions and Soil Liquefaction During Earthquakes" published by the Earthquake Engineering Institute. Seed and Idriss present a method in which estimates of stresses likely to be induced by an earthquake and the stresses necessary to initiate liquefaction are evaluated, using Standard Penetration Test (SPT) blow counts as an indication of relative density. Our calculations indicate that some liquefaction would be possible during a strong earthquake event if the soil is left in its present condition. Any of the soil improvement methods, surcharging, dynamic compaction, or stone columns, will decrease the potential for liquefaction. Additionally, the structure will be founded I I I I I I I I I I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 8 on a 10 foot thick mat of compacted fill which will greatly reduce the risk of differential movement in the event of liquefaction. 6.6 Lurching and Shallow Ground RuDture Shallow ground rupture should not be a hazard, given the apparent absence of active faults in the area. Ground cracking also should not be a major hazard. However, it is possible that some cracking may occur at any site during a major earthquake. 6.7 Tsunamis. Seiches. and Reservoir Failures The site is not subject to inundation by tsunamis or seiches because of its elevation above sea level and its distance from large bodies of water. I I I I I I I I I I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 9 7.0 GEOTECHNICAL EVALUATION AND RECOMMENDATIONS 7.1 General Discussion No geotechnical conditions were apparent during our investigation which would preclude the site development as planned. The site condition which should most severely impact the development is the presence of compressible alluvial soil underlying the site. The placement of fill and structural loads on this material will result in significant settlement. Additionally, because the alluvium varies in thickness and compressibility across the site, substantial differential settlement is expected. A number of alternative methods to reduce the settlement problem are possible. I) Surcharge the building pad area with 10 feet of fill placed above finish grade. Monitor the resulting settlement, and remove the surcharge after settlement is complete. The rate of settlement may be greatly increased with the use of wick-drains. The structure may be constructed on conventional shallow foundations after the surcharge is removed. Rates of settlement are further discussed in the following Section 7.4. 2) Densify the soil by either dynamic compaction, or vibro-replacement. After densification, the proposed fill can be placed, and the structure can be built on conventional shallow foundations with little risk of significant settlement. 3) Grade the site to the proposed grade, and monitor the settlement. After the settlement is complete, fine grade the site, and construct the structure on deep foundations (driven piles). As with the surcharge option, the use of wick drains will greatly increase the rate of settlement. An additional concern, is potential settlement of the proposed retaining wall. Although the magnitude of settlement is not expected to be as great as that of the building, some remedial grading should be performed to reduce the risk of differential movement. We recommend that the wall be founded on a mat of I I I I I I I I I I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 10 compacted fiII. The fill mat should extend three feet below the bottom of the footing, and three feet outside the edges of the footing. The remainder of this report presents our recommendations in detail. These recommendations are based on empirical and analytical methods typical of the standard of practice in southern California. If these recommendations appear not to cover any specific feature of the project, please contact Our office for additions or revisions to our recommendations. Various options are presented. We have, in our opinion, provided sufficient detail for a selection to be made. After such selection, ICG Incorporated can provide any further necessary design criteria. 7.2 Review of Plans When the grading plans and foundation plans are developed, they should be forwarded to the geotechnical consultant review. The recommendations of this report are based on assumption regarding the proposed development. Our review will confirm these assumptions and evaluate if the intent of the recommendations of this report have been complied with. 7.3 GradinQ. and Earthwork 7.3.1 General Grading and earthwork should be done in accordance with the "Standard Guidelines for Grading Projects" attached to this report as Appendix D, and with Chapter 70 of the Uniform Building Code. Where special recommendations in the body of this report conflict with the guidelines in Appendix D, the recommendations in the report should govern. I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page II 7.3.2 Geotechnical Observation I ICG Incorporated personnel should continuouSly observe the grading and earthwork operations for this project. Such observations are essential to identify field conditions that differ from those predicted by preliminary investigations, to adjust designs to actual field conditions, and to determine that the grading is in general accordance with the recommendations of this report. The recommendations contained in this report are contingent upon observation I I and testing being performed by ICG Incorporated. Our personnel should perform sufficient testing of fiIl during grading to Support the geotechnical consultant's professional opinion as to compliance of the fill with compaction requirements. I I 7.3.3 Site Preoaration I I I Vegetation and other unsuitable material should be removed from the areas to be graded. All debris resulting from demolition of any existing structures and improvements should be removed from the site. Prior to the placement of fill, the existing ground should be scarified to a depth of 12 inches, and recompacted. I I I I I I As previously mentioned, the proposed retaining wall should be founded on a mat of compacted fiIl to reduce the risk of differential settlement. The soil within the footing zone should be removed to a depth of three feet below the bottom of the footing, and to three feet outside the edges of the footing, and replaced with compacted fill. 7.3.4 Fill Comoaction All fill and backfill (other than in moisture conditioned areas) to be placed in association with site development should be accomplished at slightly over optimum moisture conditions and using equipment that is capable of producing I I I I I I I I I I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 12 a uniformly compacted product. The minimum relative compaction recommended for fill is 90 percent of maximum density based on ASTM D1557 (modified Proctor). Sufficient observation and testing should be performed by the geotechnical consultant so that an opinion can be rendered as to the compaction achieved. Representative samples of imported materials and on site soils should be tested by the geotechnical consultant in order to evaluate the maximum density, optimum moisture content, and where appropriate, shear strength, consolidation, and expansion characteristics of the soil. Imported soil should have an expansion index of 20 or less. During grading operations, soil types other than those analyzed in the geotechnical reports may be encountered by the contractor. The geotechnical consultant should be notified to evaluate the suitability of these soils for use as fill and as finish grade soils. 7.3.5 Trench Backfill All trench backfill should be compacted by mechanical means in uniform lifts of 8 to 12 inches. The backfill should be uniformly compacted to at least 90 percent of ASTM D1557. 7.4 Settlement The placement of up to approximately 10 feet of fill is expected to result in 6 to 10 inches of settlement at the northeast corner of the building pad. An additional I to 2 inches of settlement is expected due to the foundation loads if conventional shallow foundations are used. Along the south side of the building, the total settlement from the fill and foundations is expected to be only 1/2 to 3 inches. The settlement due to the fill is expected to take 8 to 10 months to be 90 percent complete. The last 10 percent of settlement (about I inch) may take as much as an additional year. The I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 13 I I I I settlement from the foundation loads is expected to be complete within 1 month of loading. I Two methods for reducing the potential for settlement to acceptable levels are presented below, surcharging and soil densification. If neither of these methods, are used, we recommend that the structure be founded on deep foundations after 90 percent of the settlement from the fill is complete. Recommendations for deep foundations are presented in Section 7.7.2. The settlement should be monitored as recommended in Section 7.4.5. Wick drains may be used to accelerate the settlement as discussed in Section 7.4.2. I I I 7.4.1 Surcharging I I I I I I I I I Surcharging consists of placing an embankment of fill material on the building pad to consolidate the underlying soil. The settlement is monitored and the surcharge is removed when the settlement has reached about 90 percent of the predicted amount. The process results in overconsolidation of the underlying soil at a stress higher than the stress that will be imposed by the foundations. After surcharging, the structures can be constructed on conventional shallow foundations with little potential for settlement. We recommend that the building pad be surcharged with 10 feet of fill (measured from proposed finish grade). The crest of the surcharge embankment slopes should extend a minimum of 5 feet outside the building lines. The settlement should be monitored as recommended in Section 7.4.5. We expect the settlement to be 90 percent within about 8 to 10 months. The rate of settlement can be greatly increased with the use of wick drains, see Section 7.4.2. I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 14 7.4.2 Wick Drains A viable method of accelerating the consolidation of alluvial soils appears to be the use of wick drains. Wick drains typically consist of a thin strip of synthetic drain board wrapped in filter fabric. These drain strips are then pushed into the ground by a large crane and mandrel system. The wick drain is typicaIly installed to the depth of expected settlement which in this case would be bedrock. We have estimated an average drain depth of 40 feet through out the site. Wick drains are typicaIly installed on a 5 foot or 10 foot center to center pattern. With wick drains, we expect the time to 90 percent consolidation to be between I and 3 months depending on drain spacing. 7.4.3 Dvnamic Comoaction I I I I I I I I I Dynamic compaction is a method of soil densification in which a large weight (up to 100 tons) is dropped from a height of up to 100 feet. The impact of the weight on the ground tends to induce liquefaction and settlement of the soil mass below the weight. In using this method settlement is generally considered complete once the dynamic compaction is completed. FiB placement is then begun over the treated area. It is expected that the soils in this area contain enough silt and clay particles that this method may not be as effective as some of the other methods. 7.4.4 Vibro-Reolacement Vibro-Replacement is a technique of soil densification in which gravel is added to deep borings using a vibrating compactor, resulting in the consolidation of the surrounding soil. This method is generally suitable for any soil type, and requires no waiting period as with surcharging. The technique can be performed either before or after the site grading. Fine grading and construction can proceed immediately after the column installation. The I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 15 I I I I structure can be constructed on conventional shallow foundation with little risk of settlement 7.4.5 Settlement Monitoring We recommend that regardless of the option used to accelerate consolidation that settlement monuments be installed to monitor the actual settlements I I I I I I induced. The monitoring program should be initiated prior to the start of fiIl placement. The monitoring program should include settlement monuments to monitor consolidation of the alIuvium and piezometers to monitor changes in pore water pressure. Fine grading of the building pads should not be started until these monuments indicate that settlement is mostly complete. Specific locations for monuments should be provided by the geotechnical engineer prior to the commencement of grading. A remote benchmark should be established on a bedrock area well away from the area of grading to prevent disturbance. 7.5 SloDe Stability 7.5.1 Cut and Fill SloDes I I I I I I Base on our experience with similar soil conditions, we expect that cut and fiIl slopes up to at least 30 feet in height with a slope ratio of 2: I (horizontal:vertical) or flatter will have a factor of safety of at least 1.5 for deep-seated failures. AdditionalIy, the slope on the south side of the site is expected to be stable with a factor of safety of at least 1.5 for deep-seated failures. We recommend that cut slopes, and the back-cut for the proposed retaining wall be observed by a representative of ICG Incorporated. Additional slope stability analysis may be necessary if geologic conditions are observed that are different than anticipated. I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 16 I I I I I Slopes should be covered with vegetation as soon after completion as possible. Plants should consist of a deep rooted variety well adapted to arid conditions. Irrigation on slope faces should be kept to a minimum and proper drainage away from the top of the slope should be maintained. Excessive irrigation could result in a reduction of the slope stability. 7.5.2 Construction Slooes I Temporary excavations and cut slopes in the formational material, without surcharge load, should be stable at slope ratios of 1.0 to 1.0 (horizontal to vertical) or flatter. All cut slopes should be mapped by the geotechnical consultant during grading to see if adverse geologic conditions are present that might affect stability. I Water should not be permitted to flow over the tops of temporary slopes. Furthermore, stockpiled equipment, materials, and other surcharges should be kept back at least 15 feet from tops of slopes. Workmen should be protected from local ravelling and surficial sliding that may occur at the slope ratios I I I recommended above. All temporary excavations should conform to at least the minimum requirements of the OSHA standards. 7.6 Site Drainage I I I I I I Foundation and slab performance depends greatly on how well the runoff waters drain from the site. This is true both during construction and over the entire life of the structure. The ground surface around structures should be graded so that water flows rapidly away from the structures without ponding. The surface gradient needed to achieve this depends on the prevailing landscape. In general, we recommend that pavement and lawn areas within five feet of buildings slope away at gradients of at least two percent. Densely vegetated areas should have minimum gradients of at least five percent away from buildings in the first five feet. Densely vegetated areas are considered those in which the planting type and spacing is such that the flow of water I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page I 7 is impeded. Roof drains should be carried across all backfilled areas and discharged at least 10 feet away from structures. Planters should be built so that water from them will not seep into the foundation, slab, or pavement areas. Site irrigation should be limited to the minimum necessary to sustain landscaping plants. Should excessive irrigation, waterline breaks, or I I unusually high rainfall occur, saturated zones or "perched" groundwater may develop in fill soils. 7.7 Foundation Recommendations I 7.7.1 Shallow Foundations I Shallow foundations may be used if the soil underlying the site is densified by either surcharging, dynamic compaction, or vibro-replacement. The design of the foundation system should be performed by the project structural engineer, incorporating the geotechnical parameters described in the following sections. I I I I I I I I I Allowable Soil Bearing: 2,500 psf (allow a one-third increase for short- term wind or seismic loads) Minimum Footing Width: 12 inches Minimum Footing Depth: 24 inches Minimum Reinforcement: two no.4 bars at both top and bottom in continuous footings, or design as simply supported beam capable of supporting the applied loads over a span of 5 feet, whichever is greater. 7.7.2 DeeD Foundations If the soil underlying the site is not densified, the structure should be founded on driven pile foundations. Pile lengths will vary from 40 to 80 feet. If 12 inch I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 18 square precast concrete piles are used, the expected allowable axial capacity will be 80 to 100 kips. More detailed design criteria, including lateral capacity, can be provided if the pile foundation option is chosen. 7.7.3 Lateral Load Resistance Lateral loads against structures may be resisted by friction between the bottoms of footings and the supporting soil. A coefficient of friction of 0.35 is recommended for both fill and formational soil. Alternatively, a passive pressure of 350 pcf is recommended. If friction and passive pressure are combined, the passive pressure value should be reduced by one-third. 7.7.4 On-Grade Slabs I I I Interior slabs: Slabs should be designed by a structural engineer for the anticipated loading. If an elastic design method is used, a modulus of subgrade reaction of 250 kips/ft3 may be used. Slabs should be at least 5 inches thick and should be reinforced with at least #3 reinforcing bars on 24 inch centers, each way, or 6X6- W2.9XW2.9 WWF, at mid-height. Crack control joints should be provided in all slabs, spaced on 15 to 20 foot centers. I I I I I I Moisture Protection for Slabs: Concrete slabs constructed on soil ultimately cause the moisture content to rise in the underlying soil. This results from continued capillary rise and the termination of normal evapotranspiration. Because normal concrete is permeable, the moisture will eventually penetrate the slab unless some protection is provided. This may cause mildewed carpets, lifting or discoloration of floor tile, or similar problems. To minimize these problems, suitable moisture protection measures should be used. Various alternatives exist, such as concrete toppings or additives, or synthetic moisture-resistant membranes. Information on the usage, installation, and warranty should be obtained from the manufacturer if these products are I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 19 I I I I I I used. The effectiveness of such measures can be improved by installing a capillary break under the membrane or damp-proofed slab. If a waterproofing membrane is installed beneath the concrete slab, at least one inch of sand should be placed between the membrane and the slab to decrease the likelihood of curing problems in the concrete. 7.8 Retaining Walls Cantilever retaining walls backfilled with the site soil should be designed for an active earth pressure approximated by an equivalent fluid pressure of 35 Ibs/ft3 for level backfill. For a 2: I (horizontal:vertical) sloping backfill, an equivalent fluid pressure of 45 Ibs/ft3 should be used. The active pressure should be used for walls free to yield at the top at least 0.1 percent of the wall height. For walls restrained so that such movement is not permitted, an equivalent fluid pressure of 50 Ibs/ft3 should be used, based on at-rest soil conditions, and level backfill. I I I I I I I I I To prevent the buildup of hydrostatic pressure, due to the infiltration of irrigation or rain water, we recommend the installation of drains behind all retaining walls. Suggested drain details are shown on Figures 3 and 4. Retaining wall backfill should be compacted to at least 90 percent relative compaction, based on ASTM D1557. Backfill should not be placed until walls have achieved adequate structural strength. Heavy compaction equipment which could cause distress to walls should not be used. 7.9 Pavement Testing of the existing, near-surface silty sands, which are anticipated for subgrade soil for pavement areas indicates an R- Value of 61. The actual R-value of the pavement subgrade should be determined after grading is complete. The import of fill material with an R-value less than 35 will require thicker pavement sections. Traffic was assumed to fall into two categories: I) Light traffic areas and passenger I I I I I I I I I I I I I I I I I I I RETAINING WALL ~8LOPE 2~ AWAY FROM WALL COMPACTED BACKFILL. iJfj!!f!ifi')it~I¡(\*æ' . . FILTER FABRIC MIRAFI 140N OR EQUIVALENT IN-PLACE SOIL OR BEDROCK H 3/48 CRUSHED AGGREGATE 2H/3' 128 MINIMUM MINIMUM 38 DIA. PERFORATED PIPE COMPACTED SOIL WEEP HOLES. (MINIMUM 1 t /2 tNCH DIA. ON 8 'OOT CENTERS) IN-PLACE SOIL OR BEDROCK MPERMEABLE CLAY FILL CAP (ALTERNATIVELY USE GUNITE,BROW DITCH) DETAIL OF WEEP HOLES (MAY BE USED INSTEAD OF DRAIN PIPE IF SEEPAGE OUT OF WEEPHOLE IS ACCEPTABLE TOP OF WALL DETAIL FOR SLOPING BACKFILL . SUB DRAIN SHOULD HAVE A FALL OF AT LEAST 1.5~. . SUB DRAIN SHOULD HAVE WEEP HOLES. A FREE GRAVITY OUTFALL OR A SUMP AND PUMP. . INSTALLATION OF THE DRAIN SHOULD BE OBSERVED BY THE SOILS ENGINEER. . PLACE PIPE (IF USED) WITH PERFORATIONS FACING DOWNWARD. NOT TO SCALE RETAINING WALL BACKDRAIN DETAIL -CRUSHED ROCK ALTERNATIVE J08 NO.: 05-7454-007-00-00 DATE: MAY 1991 FIGURE: 3 I I I I I I I I I I I I I I I I I I I RETAINING WALL \S~OPE 2~ AWAY FROM WALL FABRIC FLAP COMPACTED BACKFILL. MIRADRAIN 8000 OR EQUIVALENT H IN-PLACE SOIL OR BEDROCK 2H/3 FABRIC FLAP AROUND PIPE COMPACTED SOIL IN-PLACE SOIL OR ~DROCK IMPERMEABLE CLAY FILL CA~ ('ALTERNATIVELY U8E GUNITE BROW DITCH) TOP OF WAll DETAil FOR SLOPING BACKFill DETAil OF WEEP HOLES (MAY BE USED INSTEAD OF DRAIN PIPE IF SEEPAGE OUT OF WEEPHOLE IS ACCEPTABLE . SUBDRAIN SHOULD HAVE A FALL OF AT LEAST 1.5". . DRAINAGE MAT SHOULD BE GLUED OR NAILED TO WALL. AND SPLICED IN ACCORDANCE WITH THE MANUFACTURER.S RECOMMENDATIONS. . FABRIC SIDE OF DRAIN BOARD SHOULD BE PLACED AWAY FROM WALL. . SUBDRAIN SHOULD HAVE WEEP HOLES. A FREE GRAVITY OUTFALL. OR A SUMP AND PUMP. . INSTALLATION OF THE DRAIN SHOULD BE OBSERVED BY THE SOILS ENGINEER. . PLACE PIPE (IF USED) WITH PERFORATIONS FACING DOWNWARD. NOT ..TO SCALE RETAINING WAll BACKDRAIN' DETAIL -COMPOSITE DRAIN ALTERNATIV .108 N .: 05-7454-007-00-00 MAY 1991 UIIE: 4 I I I I I I I I I I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 20 car parking (Traffic Index = 4.0), and 2) Access drives and truck routes (Traffic Index = 5.0). Based on these assumptions, the recommended pavement sections are as follows: P A YEMENT SECTIONS Traffic Index Asphaltic Concrete Aggregate Base Thickness Thickness Parking Areas 3 inches 4 inches TI = 4.5 Driving Lanes 3 inches 6 inches TI = 5.5 The upper 12 inches of pavement subgrade should be scarified, brought to approximately optimum moisture content, and compacted to at least 95 percent of ASTM D1557. Aggregate base should conform to Section 26 of the California Department of Transportation Manual, and should be uniformly compacted to at least 95 percent relative compaction. If rigid pavements are required at loading docks or trash enclosures, we recommend a full-depth Portland cement concrete section with a minimum thickness of six inches. The concrete should be durable and resistent to scaling, with a modulus of rupture equal to at least 600 pounds per square inch. We further recommend that #3 deformed steel reinforcement bars placed on 24 inch centers each way at mid-height be provided for crack control. Steel dowels should be installed at all cold joints, and contraction joints should be placed at spacings of no greater than 25 feet. 7.10 Reactive Soils Laboratory testing indicates that the soil should not be detrimental to Type I cement. Results of sulfate content tests are presented in Appendix C. I I I I I I Home Depot U.S.A. Inc. May 30, 1991 Job No. 05-7454-007-00-00 Log No. 1-1458 Page 21 8.0 LIMITATIONS OF INVESTIGATION Our investigation was performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnical consultants practicing in this or similar localities. No other warranty, expressed or implied, is made as to the .conclusions and professional opinions included in this report. I I I I I The samples taken and used for testing and the observations made are believed representative of the project site; however, soil and geologic conditions can vary significantly between borings. As in most projects, conditions revealed by excavation may be at variance with preliminary findings. If this occurs, the changed conditions must be evaluated by the geotechnical consultant and additional recommendations made, if warranted. I I I I I I I I This report is issued with the understanding that it is the responsibility of the owner, or of his representative, to ensure that the information and recommendations contained herein are brought to the attention of the necessary design consultants for the project and incorporated into the plans, and the necessary steps are taken to see that the contractors carry out such recommendations in the field. This firm does not practice or consult in the field of safety engineering. We do not direct the contractor's operations, and we cannot be responsible for other than our own personnel on the site. The findings of this report are valid as of the present date. However, changes in the condition of a property can occur with the passage of time, whether due to natural processes or the work of man on this or adjacent properties. In addition, changes in applicable or appropriate standards of practice may occur from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. Therefore, this report is subject to review and should not be relied upon after a period of three years. I I I I I I I I I I I I I I I I I I I Home Depot U.S.A. Inc. May 30, 1991 *** ~NCORPORATED ~?: 1c~ Registration Expires: 3-31-95 Principal Engineer /I~~ Robert M. Pintner Project Engineer Job No. 05-7454-007-00-00 Log No. 1-1458 Page 22 ~uJ.~ Kenneth W. Shaw, C.E.G. 1251 Registration Expires: 6-30-92 Chief Geologist I I I I I I I I I I I I I I I I I I I APPENDIX A References I I I I I I I I I I I I I I I I I I I References 1. California Division of Mines and Geology, 1975, Recommended Guidelines for Determining the Maximum Credible and the Maximum Probable Earthquakes: California Division of Mines and Geology Notes, Number 43. 2. Geocon Incorporated, "Geotechnical Feasibility Study for Home Depot Building, Encinitas, California" File No. D-4454-WOl, December 18, 1989. 3. Greensfelder, R.W., 1974, Maximum Credible Rock Acceleration From Earthquakes in California: California Division of Mines and Geology Map Sheet 23. 4. Jennings, C.W., 1975, Fault Map of California 1:750,000, California Division of Mines and Geology. 5. Seed, H.B., and Idriss, I.M., 1982, Ground Motions and Soil Liauefaction during Earthauakes: Earthquake Engineering Research Institute, Monograph Series, 134p. I I I I I I I I I I I I I I I I I I I APPENDIX B Field Exploration I I I I I I I I I I I I I I I I I I DEFINITION OF TERMS PRIMARY DIVISIONS R CLEA~ ~ G AWLS GRAVELS ~ ¡ 0 MORE THAN (LESS THAN Õ = ~ HAL. O. n. FINES) CIO. . COARSE Q ~ ~. FRACTION IS GltAVEL W 0 Z ~ LARGER THAN WITH .INES æ ... .. NO. 4 SIEVE «....:::.., Ct."'> O::::!!! WZO' clI: CIO2'.. Ct"'.... «III. 011:- gg SYM.OLS SECONDARY DIVISIONS G W =- or.- or...... -...-- -.ur... 1It1l. .. - - GP Peerty.- or.-. .. or.- --... ... .. - n._.. -I GM ~=L ...... .,...-. --... -.-... GC f~""""'" .,..--... --... ....,.. CLEAN SANDS W." or.- - .,......, ..-. MI.. ..... '..... (LESS THAN '::., a.. FINES) ::.::' SP P~...- -.. or.".'1y ....... ......... ,...... SANDS MORE THAN HAL. OF COAltS- ""ACTION IS SMALLER THA NO. 4 SI_VE SANDS WITH FINES CIO ... ~...c~ ÕO~. CIO~~~ Q.:I !!! W:::.. Zz.o -00:-0 « ::: ~ '" Ct... c ' olilig wí5=z æ:1~~ "- 0- SILTS AND CLAYS LIQUID LIMIT IS LESS THAN 80.. SILTS AND CLAYS LIQUID LIMIT IS GREATER THAN aD.. HIGHLY ORGANIC SOILS SM SIIIy..-..-... ........ -.-.... till8&. S C c...,..,....... ."""'. ---. ....... ....... ML .n...- ..... .- ".... ,- ..-. ..e. ,.... 81n. o. c...,.., ,- ..-. . c..".., ..... 8nlt ...... ......"". CL -..- C"". ., .- ,. -.- .........". ........, c...,.. -. c..... I.... c.... I I I OL 0....... ..... ..... ....... ...." .".. .. ... .......... MH :-::::-.:~:~.:::::-=,~.. --.- 1- ......, CH -...... e.... .. It.... .......... ,.. ."".. 0 H ~I~~:.- c.... ., -- ,. ...... ........ -..- GRAIN SIZES P... .... ..- It...... -..- .--. SILTS AND CLAYS RELATIVE DENSITY SANDS. GRAYELS AND BLOWS/FOOT NON-PLASTIC SILTS YER., LOOSE 0-4 LOOSE 4 -10 IIEDIUM DENSE 10 - 30 DENSE 30 - 50 YER., DENSE OYER 50 SAMPLING AND DRILLING . [I D CALIFORNIA RING SAMPLE STANDARD PENETRATION TEST BULK SAIiPlE 8LOWS/FOOT - NUIIBER OF 8LOWS OF 140 POUND HAIIIIER FALLING 30 INCHES TO DR lYE SAIIPLER SHOWN NR - NO RECOYERY CONSISTENCY CLAYS AND BLOWS/FOOT PLASTIC SilTS YERY SOFT 0-2 SOFT 2 - 4 FIRII 4-8 STIFF 8 - 18 YERY STIFF 18 - 32 HARD OYER 32 WELL CONSTRUCTION [ill CONCRETE SURFACE SEAL [I] FILTER MATERIAL AROUND AROUND CASING WELL SCREEN II GROUT AROUND CASING [] SAND BACKFtLL D BENTONITE SEAL AROUND . BENTONITE BACKFilL CASING [ill FILTER IIATERIAL AROUND . GROUT BACKFilL CASING I JOB NO.: 05-7454-007-00-00 DATE: KEY TO LOG S FIGURE: MAY 1991 B-1 I I I I I I I I I I I I I I I I I I I DATE OBSERVED: , " , " : '.':,', 5 :::: :> : ',::.:, , '. , , . '.- 10 ',:,' :',:' 17 .', 15 » , '.- , .,' ':: ' , ..- 20 " .,' ", , " ',' . 25 ::", ','.: ..",' , , ',' 30 . , ".- 5-9-91 19.8 21.1 21.1 19.6 82' 8" Hollow Stem Auger METHOD OF DRILLING: LOCATION: See Map WGGED BY: RM.P. GROUND ELEVATION: ,... e w ,... ru. ... ... W J w~ Ito LOG OF BORING NO.1 w IZ 0 IDW Il ell W u.o 0 ItJ I: It'" w'" U. HH U. :)Il <I ::)... '" en... " "'z Or en<I en "'I: en enw <I... J: <Io 3 en<I ~ H... JH ... ðH 0 Een J Oz Ilen Il J Z ::) I:o ZZ w ID :) ID 0 H~ e Sheet :Iof 2 DESCRIPTION ALLUVIUM (Oal): Brown silty fine sand, medium dense, moist 102 Light brown silty fine sand, medium dense, wet Same as above 105 Same as above Same as above, medium dense 106 Same as above ----------------------------- Light brown clayey fme sand, medium dense, wet - Mottled -¡¡"gilt gr-aÿ and broWÏÏ, Å¡ãndŸ lëãn - - - - - - 104 clay, medium stiff, wet ICG Incor orated SOIL TEST CONSOLIDA nON CLASSIFICA nON CONSOLIDA nON B-2 I I I I I I I I I I I I I I I I I I I LOGGED BY: R.M.P.GROUND ELEVATION: '" 0 w '" >-u.. I- I- W .J w~ 0.:0 W IZ 0 mw n. on. w u..o 0 0.:'" u.. u.. 0.:.J I: ;:)1- w'" HH ;:)n. ([ '" (/)1- " I-z 0>- (/)([ (/) I-I: (/) (/)w ([l- I: ([0 3 (/)([ ~ HI- .JH I- c3H 0 ::;(/) .J oz n.(/) n. .J Z ;:) I:O ZZ W m ;:) m 0 ° H g 40 DATE OBSERVED: 45 60 65 70 75 5-9-91 24.1 METHOD OF DRILLING: 8" Hollow Stem Auger 82' LOCATION: See Map LOG OF BORING NO.1 Sheet))( 2 DESCRIPTION Interbedded light brown clayey fme sand and light gray sandy lean clay, medium dense to dense, wet ----------------------------- Light gray clayey fme sand, medium dense 101 to dense, some cemented chunks, wet -lñieihëJdëJllgï£gÏeëñiÅ¡ÇgÏaŸ ãñd-dãrk - - - - - - brown sandy lean clay, medium stiff to stiff, wet DELMAR FORMATION ITd): Olive green claystone, hard, wet Total Depth 59' ICG Incor orated SOIL TEST B-3 I I I I I I I I I I I I I I I I I I I DATE OBSERVED: 5-9-91 91' 8" Hollow Stem Auger METHOD OF DRILLING: LOGGED BY: RM.P.GROUND ELEVATION: LOCATION: See Map ,.., I- W W u.. " I- 0 W lOW .J u..Z 0 mw IL HO u.. O::.J E enH , :;)IL ([ en~ en ¡;E en ([0 :3 H([ ~ .JH 0 oen .J 0 .J Z :;) m:;) m J: l- II W 0 ><: 25 ".> , , ", , :.:.,:: 25 ,.., WX 0::'" :;)1- I-z enW HI- Oz Eo 0 >-u.. 0::0 OIL W'" 0>- ([I- .JH lLen ZZ H~ LOG OF BORING NO.2 Sheet Jof 1 DESCRIPTION ALLUVIUM (Oal): Light brown silty fine sand, medium dense, damp ----------------------------- Dark brown clayey fme sand, medium dense, moist ¥ - I5ãrië brõWñish gr-aÿ Å -añdy lëañ ëiãÿ ~ - - - - - - - - medium stiff, wet Mottled olive and brown sandy clay, medium stiff, wet -I5ãriëbrõWñsTltÿfi~e-sãñd-Witii ÏÏ2tõÏ - - - - -- inch gray clay interbeds, medium dense, wet DELMAR FORMATION ffd): Light gray with orange staining clayey fme to medium sand, dense, wet Same as above Total Depth 38.5' ICG Incor orated SOIL TEST MAXIMUM DENSITY, SHEAR CLASSIFICATION EXPANSION B-4 I I I I I I I I I I I I I I I I I I I DATE OBSERVED: LOGGED BY: ,... I- IIJ IIJ IL '" :I: l- n. IIJ 0 5 ,', ' " ': ' 10 15 : :.',:: 20 25 . ',:' "': : 6 : ' " , , 30 . , 35 5-9-91 MEmOD OF DRILLING: 84' RM.P. GROUND ELEVATION: I- 0 IIJ I 0 IIJ ..J ILZ 0 OJIIJ n. HO IL O:..J J: (l)H , ::In. <I (I)~ (I) t;J: (I) <Io :3 H<I ~ ..JH 0 0 (I) ..J 0 ..J Z ::I OJ::I OJ ,', , : ',:-' 19 " " ': ' ".> 15 , , ,': " '. ': . :,:: 24 ':: '. . .: : ,:':, :-.< 15 "', ' ,',- , , 15 ,,', :: 25 , . .. 05-7454-007-00-00 ,... IIJ~ 0:'" ::II- I-z (l)1IJ HI- Oz J:o 0 LOCATION: >-IL 0:0 on. IIJ'" 0>- <II- ..JH n.(I) ZZ H~ LOG OF BORING NO.3 Sheet Jof 1 DESCRIPTION AlLUVIUM (Qal): Brown silty fine sand, medium dense, moist - Same as above, wet Same as above Same as above, slightly more fIDes Same as above Same as above, loose Same as above, denser Total Depth 34' ICG Incor orated 8" Hollow Stem Auger See Map SOIL TEST B-S I I I I I I I I I I I I I I I I I I I DATE OBSERVED: 10 ,': " " , ,',-:: 7 :',>. 5 15 20 25 30 35 .. 05-7454-007-00-00 5-10-91 94' 8" Hollow Stem Auger METHOD OF DRILLING: LOCATION: See Map LOGGED BY: R.M.P.GROUND ELEVATION: ,.., 0 w ,.., >-11.. I- I- W .J w~ Ito W IZ 0 IDW n. on. W 11..0 0 1t.J ~ It'" W'" II.. HH II.. ::)n. ([ ::)1- '" (/)1- " (/) I-z 0>- (/)([ (/) I-~ (/)w ([l- I: ([0 3 (/)([ :¡:: HI- .JH I- 5H 0 ::/(/) .J Oz n.(/) n. .J Z ::) ~O ZZ W ID ::) ID 0 H~ 0 LOG OF BORING NO.4 Sheet Jof 1 DESCRIPTION ALLUVIUM (Oal): Dark brown silty fine sand, loose, moist \ Becomes less moist at 4' J t_-------------------------_: Olive brown sandy lean clay, very stiff, moist - Iñtëfhëddëd õlive- gÏ-ãy -ciãÿ ãnd õIlvë white - - - - - medium sand with clay, medium dense, moist, orange staining - DELMAR FORMATION ITd): Olive gray claystone, hard, wet Hard drilling @21.5' Light olive gray with orange stains, medium sand with silt, very dense, wet Total Depth 23.5' ICG Incor orated SOIL TEST EXPANSION, SULFATE, pH, RESISTIVITY ClASSIFICATION B-6 I I I I I I I I I I I I I I I I I I I DATE OBSERVED: 5-10-91 , :,:,,:: ""', , ':',' , ',", , : ',:::. 3 ",'.: , . :,:,,:: ':,<: 5 .;:' , , 25.0 ::,,' : ", , , ':': ' , ' 10 , , :: 10 ,.' " ':'.:': ' ,", : 15 :':' " ': 7 '. ': 20 ':- 6 25 . , :' , 8 , ' " .: METHOD OF DRILLING: 82' 8" Hollow Stem Auger WCATION: Sheet :be DESCRIPTION AU..UVIUM (Oal): Dark brown silty fme sand, loose, wet 93 Same as above LOGGED BY: RM.P. GROUND ELEVATION: ,.. c w ,.. >-IL .... .... W .J WX 0:0 LOG OF BORING NO.5 W 'z 0 IDW Q, CQ, W 1L0 0 0:'" IL IL O:.J I: ::>.... w'" HH ::>Q, ([ 2 '" (/).... ' ""z 0>- (/)([ (/) ""I: (/) (/)w ([.... I: ([0 :3 (/)([ ~ H.... .JH .... ðH 0 ~(/) .J Oz Q,(/) Q, .J Z ::> I:o Zz W ID :> ID 0 H~ C No Sample Light brown silty medium to fme sand, loose, wet Same as above Same as above ----------------------------- Light brown clayey fme sand, medium dense, wet Medium brown clayey fine sand with inclusions of olive claystone, medium dense, wet ICG Incor orated See Ma t , SOIL TET ~ CONSOLIDA'D)N ClASSIFICA TlÐN B-7 I I I I I I I I I I I I I I I I I I I DATE OBSERVED: 5-10-91 METHOD OF DRILLING: 8" Hollow Stem Auger LOGGED BY: R.M.P.GROUND ELEVATION: LOCATION: See Map 82' ,.., a 11.1 ,.., ~IL I- I- 11.1 ...I 11.1 X IlO LOG OF BORING NO.5 11.1 IZ 0 On. 11.1 0 DJI1.I n. Il"" 11. 11.0 11. 1l..J I: ~I- 11.1"" "" HH " ~n. ([ o~ Sheet :be 2 (1)1- I-I: (I) I-z SOIL TEST (1)([ (I) (1)11.1 ([I- 1: ([0 :3 (I)([ :t HI- ..JH I- 5H 0 ~(I) ..J Oz n.(I) n. ...I z ~ I:o zZ DESCRIPTION 11.1 DJ ~ ID 0 H~ a 40 Dark brown clayey fme sand interbedded with olive clay, medium dense, stiff, wet 45 Total Depth 43.5' 50 55 60 65 70 75 05-7454-007-00-00 ICG Incor orated B-8 I I I I I I I I I I I I I I I I I I I 5-10-91 DATE OBSERVED: 8" Hollow Stem Auger METHOD OF DRILLING: WGGED BY: R.M.P.GROUND ELEVATION: ,.. 0 III ,.. >-IL I- I- III IZ 0 III .J III~ 0:0 LOG OF BORING NO.6 III 1L0 0 IDIII n. 0:"" On. IL IL O:.J :E: ::>1- III"" 104104 ::>n. <I "" (/)1- '\. I-z 0>- 1 (/)<I (/) I-:E: (/) (/)111 <II- J: <Io :3 (/)<I ::.:: HI- .JH I- rlH 0 ~(/) .J oz n.(/) n. .J Z ::> :E:O ZZ III ID ::> ID 0 H g 0 84' See Map LOCATION: Sheet be SOIL TEST DESCRIPTION :\:'. AIL1NIUM (Oal): Dark brown silty fme sand, loose, moist to wet ,', 8 , , " , 5 , , ,.' " '. :.', ::,>. 13 Light brown silty fme sand, medium dense, wet 10 Same as above ,.: 15 ", , , ,,', 15 ", ': , .: " ,',:< ' Same as above "',' 10 .:: :- 20 .::', Same as above 6 Total Depth 23.5' 25 30 35 ICG Incor orated 05-7454-007-00-00 B-9 I I I I I I I I I I I I I I I I I I I DATE OBSERVED: ,', ' , , , , " :,', ',' " , ':,,' , 5 10 15 20 25 30 35 . .. 05- 7454-007-00-00 5-10-91 METHOD OF DRILLING: 84' 8" Hollow Stem Auger LOCATION: LOG OF BORING NO.7 Sheet Jof 1 DESCRIPTION AlLUVIUM (Oal): Light brown silty fme sand, moist Total Depth 5' No Water ICG Incor orated See Map SOIL TEST R-VALUE B-lO LOGGED BY: RM.P. GROUND ELEVATION: " I- 0 W ,,>-11.. I- 0 W .oJ w~ ~o W 'z 0 mw a. 0:'" a. WII.. 11..0 II.. 0: I I:..... W'" HH " ;:) iL« ""'I- 0 '" g I- (I) !":. I: (I) Ii; Zw « >-1- :r «« :3 H«:,c HI- .oJH 0.1- dS 0 o(l).oJ Oz 0.(1) W .oJ Z ;:) I:o ZZ 0 m;:) m 0 H~ I I I I I I I I I I I I I I I I I ¡ I I APPENDIX C Laboratory Testing Program I I I I I I I I I I I I I I I I I I I APPENDIX C LABORA TOR Y TESTING Selected representative samples of soils encountered were tested using test methods of the American Society for Testing and Materials, or other generally accepted standards. A brief description of the tests performed follows: Classification: Soils were classified visually according to the Unified Soil Classification System. Visual classification was supplemented by laboratory testing of selected samples and classification in accordance with ASTM D2487. The soil classifications are shown on the Boring Logs. Particle Size Analvsis: A particle size analysis was performed in accordance with ASTM D422. The grain size distribution was used to determine presumptive strength parameters used to develop foun- dation design criteria. The results are provided on the following Figures C-I to C-3. Atterbere: Limits: The liquid limit, plastic limit, and plasticity index of selected samples were determined in accordance with ASTM D4318. The test results are shown of Figures C-I to C-3. Consolidation Tests: Consolidation tests were performed on samples of the material encountered during field exploration to assess their compressibility under load. Testing was performed in accor- dance with ASTM D2435-80. Results are shown on Figure C-4 to C-6. Direct Shear Tests: Unconsolidated, undrained direct shear tests were performed in accordance with ASTM D3080. The samples were remolded to 90 percent of the modified proctor density and tested in a saturated condition using normal loads of I ksf, 2 ksf, and 4 ksf. The results of the tests are presented in the attached Figure C- 7. Exoansion Test: Expansion tests were performed using Uniform Building Code Test Method 29-2. Test results are provided on the following Table C-I. oH and Resistivitv: pH and resistivity tests were performed on a sample of the site soil with various percentages of lime in accordance with California Test Method 643- 78. The results are shown on Table C-3. I I I I I - Sulfate Content: To access their potential for reactivity with cC8rete, a typical sample was tested for content of water-soluble sulfate minerals using CAL TRANS athod 417 (Part I). The results are listed in Table C-3. R- Value Tests: R- Value Testing was performed on a selected saI1l8le considered typical of pavement subgrade. Tests were performed using California Department oFrransportation Method 301. The test results are presented in Table C-4. I I I I II. - ..., ... ..' ... r .. I "'. .. - ... .r.' "", Ò>o.. I iI/;~ .,.' ,.. ~t" ..~ I I I I I I I I ... 8>: - "tJ :Þ :0 -f - 0 r- m en Ñ m :Þ z :Þ ï -< en - en () I ~ 'WI ¡ ~I m .. - - - - - - - - - - - - - - - - - - -- GRAVEL SAND COBBLES SIL T CLAY COARSE I FINE COARSE! MEDIUM I FINE SIEVE SIZES-U.S. STANDARD 0 . 3.. . 3 4. J B' 16 30 50 100 200 ,.. , r'\.. \. I I \. ~ ' , "\ - \ \ \ \ , ) \ '\ , I ~ -- .~ 4 ^ - - - - - 100 100 90 90 80 80 70 'V m :u 0 60 m z -t 50 'V ~ I ! 40 z G) 70 'V m :u 60 0 m z -t 50 'V :.- (þ 40 ! z G) 30 30 20 20 10 10 100 10 0.01 0 0.001 f~ð 0.1 GRAIN SIZE IN MILLIMETERS BORING NO. DEPTH (FEET) SYMBOL LIQUID LIMIT PLASTICITY INDEX CLASSIFICATION B-1 22 . - - SM-SiLTY SAND --~ B-2 12 . 46 24 CL-SANDY LEAN CLAY , , ¡I - '1J > :tJ -f Õ r- m en Ñ m » z » !( I en ~ 'TI ¡ c: :II !". 0 I I\) - , - - - - - - - - - - - - - - - - - GRAVEL SAND COBBLES COARSE I COARSEI I SIL T CLAY FINE MEDIUM FINE SIEVE SIZES-U.S. STANDARD 0 . . .34. JII!' 18 30 ðO 100 200 0 ..."" - -- - - .~ - ) '" \ I - \ \ I - - I 1\ - - I \ \ - \ ) \ '\ - - \ \ \ - I - I I - ( 100 10 1. 0.1 n n 4 10 100 9 90 80 80 70 "V m :a 0 60 m Z ~ 50 "V > CD ! 40 Z G) 70 "V m :a 60 0 m z ~ 50 "V > CD 40 ! z Q 30 30 20 20 10 a t"'!1nu' 0.00 1 ! , a...... IIII 'N a""""""RI , " . . . ... """ , BORING NO./DEPTH (FEET) ~OL LI~~~D LlMIT PLASTICITY INDEX ,--- - 8-5 17 . 27 NP - - - - - --- -,-- 8-4 7 . 46 26 CLASSIFICATION SM-SILTY SAND -------,- CL-SANOY lEAN CLAY - "tJ > :u -f - 0 r- m en Ñ m » z » r- -< en I rñ .,. ¡ ~I !". <;'1 Ú) - - - - - - - - - - - - - - - - - - GRAVEL SAND COBBLES COARSE r COARSE' J SIL T CLAY FINE MEDIUM FINE SIEVE SIZES-U.S. STANDARD 0 . . 34' 1!J' 16 30 50 100 200 I - ~... - -- ~ I \ I 1 I \ - I - - - - 1 - - - - \ \ \ I .. \. I - 100 10 1. n f ^ ^ ~ 100 10 90 90 80 80 70 "V m :a 0 60 m Z -t 50 : I cø ! 40 Z G) 70 "V m :II 60 0 m z -t 50 "V )Þ cø 40 ! z G) 30 30 20 20 10 a 0.01 0 0.001 GRAIN SIZE IN MILLIMETERS BORING NO. DEPTH (FEET) SYMBOL LIQUID LIMIT PLASTICITY INDEX CLASSIFICATION ------ ---,- -.u B-7 1-3 . - - SM-SILTY SAND - --. ..-- --"-- , i ; I I I I I I .... ~ .... z I 2 CI) z < 0.. I )( w I I I I .... ~ 4. .... z I 0 I- < 5. 0 ..J I 0 CI) z 8. 0 (;) I 7. a I I I I BORING NO.!:1 SAMPLE DEPTH -!!:.. INITIAL DENSITY (PCF) 104.3 EXPLANATION INITIAL MOISTURE UU 21.1 FIELD MOIST.RE FINAL MOISTURE (1ft) 18.0 ---------- SAMPLE SAT~ATED INITIAL VOID RATIO 0.58 .. RESOUND .. I I ! : , I I I I .. , r . .~ -. "" .... . '~~ , I . , I , I ' , . 4 ~ : 0 \ \ .. , .. 0 , \ \ ! 0 "' " .. \ I ¡ I 0 I. ~ ~ ~ ¡...~ \ : 0 ~~h: I - '- '. !; ! , I ,.. 0 0 I 3.0 2.0 1.0 0 1.0 2.0 3.0 8. 9. 10. 0 0 ... 0 0 C\ 0 0 0 0 0 0 (') 'It 10 0 0 0 ... 0 0 0 C\ 0 0 0 0 0 0 0 0 0 (') 'It 10 0 0 0 0 ... 0 0 0 0 C\ 0 Go C 0 Q,CI 0 O!CI 0 G:CI (') .. 0 0 0 0 0 ... NORMAL LOAD (PSF) JOB NO.: 05-7454-007-00-00 LOAD CONSOLIDATION TEST FIGURE.~ C-4 I I I I I I I I I I I I I I I I I I I JOB NO.: ¡ .... 3.0 z 2 U) z C A- X W 2.0 1.0 1.0 2.0 3.0 .... # .... 4.0 z 0 ~ c 0 ..J 0 U) z 0 CJ 5.0 8.0 7.0 8.0 9.0 10.00 0 ... INITIAL DENSITY CPCF) INITIAL MOISTURE C'I) FINAL MOISTURE C'I) INITIAL VOID RATIO 0 I , I ¡ ! I I Ii 0 0 C\ 0 0 0 0 0 0 (f) .. 10 7-00-00 BORING NO.!=.1 SAMPLE DEPTH ...!!:... 104.7 18.6 EXPLANATION 20.2 0.58 FIELD MOISTURE ---------- SAMPLE SATURATED REBOUND I ! I I I I 1 0- 'I.. ,..,~ "..... III Þ-.. " ... '.~ '.~ " - .. - " ~ I T I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - C\ (f) .. 10 0 0 0 0 0 0 - C\ (f) .. 10 0 - NORMAL LOAD (PSF) LOAD CONSOLIDATION TEST FIGURE: C-5 I I I I I .... ~ .... z I 2 U) z ~ CL I )( w I I I I .... ~ .... z I 0 ... ~ e ..J I 0 U) z 0 0 I 7. I 8. I I I I BORING NO.!!::§. SAMPLE DEPTH -L INITIAL DENSITY (PCF) 83.3 EXPLANATION INITIAL MOISTURE (~) 25.0 FIELD MOISTURE FINAL MOISTURE (~) 22.5 ---------- SAMPLE SATURATED INITIAL VOID RATIO 0.78 REBOUND I I I I I ! . i I : I I I ' , I t ~I , I" , In, \ , I \ . , \ 4' , \ \ \ \ \ , ì 4~ ! , 0 I \ , 0 ¡ 4 L \ 0 "'.... ¡...- I I ¡ - ~ \ - i- - ..., 0 3.0 2.0 1.0 0 1.0 2.0 3.0 4.0 5.0 8.0 9. 10. 0 0 ... 0 0 C\ 0 0 0 0 0 0 (\I) .. 10 0 0 0 ... 0 0 0 C\ 0 0 0 0 0 0 0 0 0 (\I) .. 10 0 0 0 0 ... 0 0 0 0 C\ 0 0 0 0 0 0 0 0 0 0 0 0 (\I) .. 10 0 0 0 0 0 ... NORMAL LOAD (PSF) LOAD CONSOLIDATION TEST FIGURE: C-6 I I I I 3000 .... u. (I) Q. .... :I: I ... CJ Z W ~ 2000 I (I) CJ ~ a:: ~ I w :I: (I) 1000 I I I I I .... u. (I) I Q. .... I I I I I I :I: ... CJ Z W ~ 2000 (I) CJ ~ a:: < w :I: (I) 4000 BORING NO. B-2 COHESION, ANGLE O~ (PSF) FRICTION 0 38° DEPTH (FEET) 1-2 1000 2000 3000 4000 NORMAL LOAD (PSF) 6000 6000 BORING DEPTH COHESION, ANGLE OF SAMPLE DESCRIPTION NO. (FEET) (PSF) FRICTION.o 4000 3000 1000 00 1000 2000 3000 4000 NORMAL LOAD (PSF) 6000 6000 SHEARING STRENGTH TEST FIGURE: C-7 I I I I I I I I I I I I I I I I I I I TABLE C-l EXPANSION TEST RESULTS Sample Expansion Expansion Location Index Potential B2 @ I 7' 107 High B4@1-3' 0 Very Low TABLE C-2 CHEMICAL TEST RESULTS Sample Sulfate Content pH Resistivity Location (mg/kg) (ohms/em) I B4 @1-3' 1 <200 I 6.22 i 640 I TABLE C-3 MODIFIED PROCTOR TEST RESULTS Sample Optimum Moisture Maximum Density (dry) Location (%) (pcf) B2 @ 1-2' 10.5 126.0 TABLE C-4 R-VALUE TEST RESULTS Sample R-value Location B7 @ 1-3' 61 I I I I I I I I I I I I I I I I I I I APPENDIX D Standard Guidelines for Grading Projects I I I I I I I I I I I I I I I I I I ...- 2. 1. STANDARD GUIDELINES FOR GRADING PROJECTS 1.1 GENERAL 1.2 1.3 1 .4 1.5 1.6 Representatives of the Geotechnical Consultant should be present on-site during grading operations in order to make observations and perform tests so that professional opinions can be developed. The opinion will address whether grading has proceeded in accordance with the Geotechnical Consultant's recommendations and applicable project specifications; if the site soil and geologic conditions are as anticipated in the preliminary investigation; and if additional recommendations are warranted by any unexpected site conditions. Services do not include supervision or direction of the actual work of the contractor, his employees or agents. The guidelines contained herein and the standard details attached hereto represent this firm's standard recommendations for grading and other associated operations on construction projects. These guidelines should be considered a portion of the report to which they are appended. All plates attached hereto shall be considered as part of these guidelines. The Contractor should not vary from these guidelines without prior recommendation by the Geotechnical Consultant and the approval of the Client or his authorized representative. These Standard Grading Guidelines and Standard Details may be modified and/or superseded by recommendations contained in the text of the preliminary geotechnical report and/or subsequent reports. If disputes arise out of the interpretation of these grading guidelines or standard details, the Geotech- nical Consultant should determine the appropriate interpretation. DEFINITIONS OF TERMS 2. 1 ALLUVIUM -- Unconsolidated detrital deposits resulting from flow of water, including sediments deposited in river beds, canyons, flood plains, lakes, fans at the foot of slopes and estuaries. I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2. 1 1 2.12 Page 2 AS-GRADED (AS-BUILT) -- The surface and subsurface conditions at completion of grading. BACKCUT -- A temporary construction slope at the rear of earth retaining structures such as buttresses, shear keys, stabilization fills or retaining walls. BACKDRAIN -- Generally a pipe and gravel or similar drainage system placed behind earth retaining structures such buttresses, stabilization fills, and retaining walls. BEDROCK -- A more or less solid, relatively undis- turbed rock in place either at the surface or beneath superficial deposits of soil. BENCH -- A relatively level step and near vertical rise excavated into sloping ground on which fill is to be placed. BORROW (Import) -- Any fill material hauled to the project site from off-site areas. BUTTRESS FILL -- A fill mass, the configuration of which is designed by engineering calculations to retain slope conditions containing adverse geologic features. A buttress is generally specified by minimum key width and depth and by maximum backcut angle. A buttress normally contains a backdrainage system. CIVIL ENGINEER -- The Registered Civil Engineer or consulting firm responsible for preparation of the grading plans, surveying and verifying as-graded topographic conditions. COLLUVIUM -- Generally loose deposits usually found near the base of slopes and brought there chiefly by gravity through slope continuous downhill creep (also see Slope Wash). COMPACTION -- Is the densification of a fill by mechanical means. CONTRACTOR -- A person or company under contract or otherwise retained by the Client to perform demolation, grading and other site improvements. I I I I I I I I I I I I I I I I I I I ._-_._---~--"" ,'-~,.,. Standard Guidelines for Grading Projects 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 Page 3 DEBRIS -- All products of cle~ng, grubbing, demolition, contaminated soil~8aterial unsuitable for reuse as compacted fill and/or any other material so designated by the Geotechnic~ Consultant. -,' ENGINEERING GEOLOGIST -- A G~gist holding a valid certificate of registration ia the specialty of Engineering Geology. ENGINEERED FILL -- A fill of ~ch the Geotechnical Consultant or his representat~, during grading, has made sufficient tests to enab~ him to conclude that the fill has been placed in swl8tantial compliance with the recommendations of the Geotechnical Consultant and the governing ~ncy requirements. EROSION -- The wearing away o~ the ground surface as a result of the movement of win~ water, and/or ice. EXCAVATION -- The mechanical ~oval of earth materials. i "". EXISTING GRADE -- The ground ~face configuration prior to grading. FILL -- Any deposits of soil, ~ck, soil-rock blends or other similar materials pl~d by man. FINISH GRADE -- The ground su~ce configuration at which time the surface elevatiams conform to the approved plan. GEOFABRIC -- Any engineering ---tile utilized in geotechnical applications incIaming subgrade stabilization and filtering. .,., GEOLOGIST -- A representative~af the Geotechnical Consultant educated and train" in the field of geology. GEOTECHNICAL CONSULTANT -- Th.Geotechnical Engineer- ing and Engineering Geology c,.sulting firm retained to provide technical services;: 6:lr the proj ect. For the purpose of these guidelin... observations by the Geotechnical Consultant inclu48 observations by the Geotechnical Engineer, Engine~ng Geologist and those performed by persons employedlbJ and responsible to the Geotechnical Consultants.~ .- I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 Page 4 GEOTECHNICAL ENGINEER -- A licensed Civil Engineer who applies scientific methods. engineering principles and professional experience to the acquisition. inter- pretation and use of knowledge of materials of the earth's crust for the evaluation of engineering problems. Geotechnical Engineering encompasses many of the engineering aspects of soil mechanics. rock mechanics. geology. geophysics. hydrology and related sciences. GRADING -- Any operation consisting of excavation, filling or combinations thereof and associated operations. LANDSLIDE DEBRIS -- Material, generally porous and of low density, produced from instability of natural of man-made slopes. MAXIMUM DENSITY -- Standard laboratory test for maximum dry unit weight. Unless otherwise specified. the maximum dry unit weight shall be determined in accordance with ASTM Method of Test D1557. OPTIMUM MOISTURE -- Test moisture content at the maximum density. RELATIVE COMPACTION -- The degree of compaction (expressed as a percentage) of dry unit weight of a material as compared to the maximum dry unit weight of the material. ROUGH GRADE -- The ground surface configuration at which time the surface elevations approximately conform to the approved plan. SITE -- The particular parcel of land where grading is being performed. SHEAR KEY -- Similar to buttress, however. it is generally constructed by excavating a slot within a natural slope in order to stabilize the upper portion of the slope without grading encroaching into the lower portion of the slope. SLOPE -- Is an inclined ground surface the steepness of which is generally specified as a ratio of horizontal:vertical (e.g., 2:1). SLOPE WASH -- Soil and/or rock material that has been transported down a slope by mass wasting assisted by runoff water not confined by channels (also see Colluvium) . I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects 2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.42 2.43 3. Page 5 SOIL -- Naturally occurring deposits of sand, silt, clay, etc., or combinations thereof. SOIL ENGINEER -- Licensed Civil Engineer experienced in soil mechanics (also see Geotechnical Engineer). STABILIZATION FILL -- A fill mass, the configuration of which is typically related to slope height and is specified by the standards of practice for enhancing the stability of locally adverse conditions. A stabilization fill is normally specified by minimum key width and depth and by maximum backcut angle. A stabilization fill mayor may not have a backdrainage system specified. SUBDRAIN -- Generally a pipe and gravel or similar drainage system placed beneath a fill in the alignment of canyons or former drainage channels. SLOUGH -- Loose, noncompacted fill material generated during grading operations. TAILINGS -- Nonengineered fill which accumulates on or adjacent to equipment haul-roads. TERRACE -- Relatively level step constructed in the face of graded slope surface for drainage control and maintenance purposes. TOPSOIL -- The presumably fertile upper zone of soil which is usually darker in color and loose. WINDROW -- A string of large rock buried within engineered fill in accordance with guidelines set forth by the Geotechnical Consultant. SITE PREPARATION 3.1 3.2 Clearing and grubbing should consist of the removal of vegetation such as brush, grass, woods, stumps, trees, roots to trees and otherwise deleterious natural materials from the areas to be graded. Clearing and grubbing should extend to the outside of all proposed excavation and fill areas. Demolition should include removal of buildings, struc- tures, foundations, reservoirs, utilities (including underground pipelines, septic tanks, leach fields, seepage pits, cisterns, mining shafts, tunnels, etc.) and other man-made surface and subsurface improvements I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects 3.3 4. Page 6 from the areas to be graded. Demolition of utilities should include proper capping and/or re-routing pipe- lines at the project perimeter and cutoff and capping of wells in accordance with the requirements of the governing authorities and the recommendations of the Geotechnical Consultant at the time of demolition. Debris generated during clearing. grubbing and/or demolition operations should be wasted from areas to be graded and disposed off-site. Clearing. grubbing and demolition operations should be performed under the observation of the Geotechnical Consultant. SITE PROTECTION 4. 1 4.2 4.3 4.4 4.5 The Contractor should be responsible fo~ the stability of all temporary excavations. Recommendations by the Geotechnical Consultant pertaining to temporary excavations (e.g., backcuts) are made in consideration of stability of the completed project and. therefore. should not be considered to preclude the responsibil- ities of the Contractor. Recommendations by the Geotechnical Consultant should not be considered to preclude more restrictive requirements by the regulating agencies. Precautions should be taken during the performance of site clearing. excavations and grading to protect the work site from flooding, ponding or inundation by poor or improper surface drainage. Temporary provisions should be made during the rainy season to adequately direct surface drainage away from and off the work site. During periods of rainfall. the Geotechnical Consultant should be kept informed by the Contractor as to the nature of remedial or preventative work being performed (e.g.. pumping. placement of sandbags or plastic sheeting. other labor. dozing. etc.). Following periods of rainfall. the Contractor should contact the Geotechnical Consultant and arrange a review of the site in order to visually assess rain related damage. The Geotechnical Consultant may also recommend excavations and testing in order to aid in his assessments. Rain related damage should be considered to include. but may not be limited to. erosion, silting. saturation. swelling. structural distress and other adverse conditions identified by the Geotechnical I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects Page 7 Consultant. Soil adversely affected should be classified as Unsuitable Materials and should be subject to overexcavation and replacement with compacted fill or other remedial grading as recommended by the Geotechnical Consultant. EXCAVATIONS UNSUITABLE MATERIALS 5. 5.1 5.1.1 5.1.2 5.2 Materials which are unsuitable should be excavated under observation and recommendations of the Geotechnical Consultant. Unsuitable materials include. but may not be limited to, dry. loose. soft. wet. organic compressible natural soils and fractured. weathered. soft bedrock and nonengineered or otherwise deleterious fill materials. Material identified by the Geotechnical Consultant as unsatisfactory due to its moisture conditions should be overexcavated. watered or dried. as needed. and thoroughly blended to a uniform near optimum moisture condition (as per guidelines reference 7.2.1) prior to placement as compacted fill. CUT SLOPES 5.2.1 5.2.2 5.2.3 Unless otherwise recommended by the Geotech- nical Consultant and approved by the regulating agencies. permanent cut slopes should not be steeper than 2:1 (horizontal:vertical). If excavations for cut slopes expose loose. cohesionless. significantly fractured or otherwise unsuitable material. overexcavation and replacement of the unsuitable materials with a compacted stabilization fill should be accomplished as recommended by the Geotechnical Consultant. Unless otherwise specified by the Geotechnical Consultant. stabilization fill construction should conform to the requirements of the Standard Details. The Geotechnical Consultant should review cut slopes during excavation. The Geotechnical Consultant should be notified by the contractor prior to beginning slope excavations. I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects 5.2.4 6. COMPACTED FILL Page 8 t If, during the course of ~ading, adverse or potentially adverse geot~nical conditions are encountered which were n~ anticipated in the preliminary report, the ~80technical Consultant should explore, analyze a~ make recommen- dations to treat these pr~lems. .' r: All fill materials should be compacted;to at least 90 percent of maximum density (ASTM D1557~ unless otherwise recommended by the Geotechnical Consulcant. .. 6. 1 PLACEMENT t 6.1.1 6.1.2 6.1.3 t:" Prior to placement of com,-cted fill, the Contractor should request~a review by the Geotechnical Consultant o~ the exposed ground surface. Unless otherwis. recommended. the exposed ground surface sh¡ald then be scarified (6-inches minimum), water~ or dried as needed. thoroughly blended to ach~ve near optimum moisture conditions, then~1:horoughly compacted to a minimum of 90 percen~ of the maximum density. ; ~- Compacted fill should be PÅ’aced in thin horizontal lifts. Each lift should be watered or dried as needed, blended to achieve near optimum moisture conditioDS then compacted by mechanical methods to a mo¡øimum of 90 percent of laboratory maximum dry:àensity. Each lift should be treated in a li;e manner until the desired finished grades a~ achieved. When placing fill in hori~tal lifts adjacent to areas sloping steeper J8an 5:1 (horizontal: vertical), horizontal key. and vertical benches should be excavated into tbe adjacent slope area. Keying and benchin3 should be sufficient to provide at least 6-foo~wide benches and a minimum of 4-feet of vertical bench height within the firm natural g%amnd. firm bedrock or engineered compacted fill~ No compacted fill should be placed in an ar.. subsequent to keying and benching until:cñe area has been reviewed by the Geotechnical Consultant. Material generated by the" åenching operation should be moved sufficienely away from the bench area to allow for tbe recommended review of the horizontal bench p~r to placement I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects 6.1.4 6.1.5 6.1.6 6.1.7 6.2 MOISTURE 6.2.1 6.2.2 Page 9 fill. Typical keying and benching details have been included within the accompanying Standard Details. Within a single fill area where grading procedures dictate two or more separate fills, temporary slopes (false slopes) may be created. When placing fill adjacent to a false slope, benching should be conducted in the same manner as above described. At least a 3-foot vertical bench should be established within the firm core adjacent approved compacted fill prior to placement of additional fill. Benching should proceed in at least 3-foot vertical increments until the desired finished grades are achieved. Fill should be tested for compliance with the recommended relative compaction and moisture conditions. Field density testing should conform to accepted test methods. Density testing frequency should be adequate for the geotechnical consultant to provide professional opinions regardings fill compaction and adherence to recommendations. Fill found not to be in conformance with the grading recommendation should be removed or otherwise handled as recommended by the Geotechnical Consultant. The Contractor should assist the Geotechnical Consultant and/or his representative by digging test pits for removal determinations and/or for testing compacted fill. As recommended by the Geotechnical Consultant, the Contra~tor may need to remove grading equipment from an area being tested if personnel safety is considered to be a problem. For field testing purposes "near optimum" moisture will vary with material type and other factors including compaction procedure. "Near optimum" may be specifically recommended in Preliminary Investigation Reports and/or may be evaluated during grading. Prior to placement of additional compacted fill following an overnight or other grading delay, the exposed surface or previously compacted I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects 6.2.3 6.3 Page 10 fill should be processed by scarification, watered or dried as needed, thoroughly blended to near-optimum moisture conditions, then recompacted to a minimum of 90 percent of laboratory maximum dry density. Where wet, dry, or other unsuitable materials exist to depths of greater than one foot, the unsuitable materials should be overexcavated. Following a period of flooding, rainfall or overwatering by other means, no additional fill should be placed until damage assessments have been made and remedial grading performed as described under Section 5.6 herein. 6.3.1 FILL MATERIAL 6.3.2 6.3.3 6.3.4 Excavated on-site materials which are considered suitable to the Geotechnical Consultant may be utilized as compacted fill, provided trash, vegetation and other deleterious materials are removed prior to placement. Where import fill materials are required for use on-site, the Geotechnical Consultant should be notified in advance of importing, in order to sample and test materials from proposed borrow sites. No import fill materials should be delivered for use on-site without prior sampling and testing notification by Geotechnical Consultant. Where oversized rock or similar irreducible material is generated during grading, it is recommended, where practical, to waste such material off-site or on-site in areas designated as "nonstructural rock disposal areas". Rock placed in disposal areas should be placed with sufficient fines to fill voids. The rock should be compacted in lifts to an unyielding condition. The disposal area should be covered with at least three feet of compacted fill which is free of oversized material. The upper three feet should be placed in accordance with the guidelines for compacted fill herein. Rocks 12 inches in maximum dimension and smaller may be utilized within the compacted fill, provided they are placed in such a manner I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects 6.3.5 6.3.6 6.3.7 Page 11 that nesting of the rock is avoided. Fill should be placed and tbÐroughly compacted over and around all rock. the amount of rock should not exceed 40 percent by dry weight retained on the 3/4-inch sieve siz.. The 12-inch and 40 percent recommendations herein may vary as field conditions dicta~. 1 Where rocks or similar. irreducible materials of greater than 12 inchestbut less than four feet of maximum dimension a~ generated during grading, or otherwise "sired to be placed within an engineered fill, special handling in accordance with the aceDmpanying Standard Details is recommended. Rocks greater than four feet should be braken down or disposed off-site. Rocks up toÞfour feet maximum dimension should be plaEed below the upper 10 feet of any fill and sbau1d not be closer than 20-feet to any slope f~e. These recommen- dations could vary as lacations of improvements dictate. Where practiè81, oversized material should not be placed below areas where structures or deep utilities are proposed. Oversized material sho~d be placed in windrows on a clean, overexcavaC8d or unyielding compacted fill or firm Datural ground surface. Select native or impore.d granular soil (S.E. 30 or higher) should be placed and thoroughly flooded over and around all windrowed rock, such that voids are filled. Windrows of oversized material shoGdd be staggered so that successive strata of o~sized material are not in the same vertical plane. ~; It may be possible to 4Ispose of individual larger rock as field c~itions dictate and as recommended by the GeoC8chnical Consultant at the time of placement.~ The construction of a ~E\:)ck fill" consisting primarily of rock fragm.nts up to two feet in maximum dimension with:1ittle soil material may be feasible. Such mateEial is typically generated on sites whe~ extensive blasting is required. Recommendattans for construction of rock fills should be p~ided by the Geotechnical Consultanè on a site-specific basis. ; I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects 6.3.8 6.3.9 6.4 Page 12 During grading operations, placing and mixing the materials from the cut and/or borrow areas may result in soil mixtures which possess unique physical properties. Testing may be required of samples obtained directly from the fill areas in order to determine conformance with the specifications. Processing of these additional samples may take two or more working days. The Contractor may elect to move the operation to other areas within the project, or may continue placing compacted fill pending laboratory and field test results. Should he elect the second alternative, fill placed is done so at the Contractor's risk. Any fill placed in areas not previously reviewed and evaluated by the Geotechnical Consultant may require removal and recom- paction. Determination of overexcavations should be made upon review of field conditions by the Geotechnical Consultant. FILL SLOPES 6.4.1 6.4.2 Permanent fill slopes should not be constructed steeper than 2:1 (horizontal to vertical), unless otherwise recommended by the Geotech- nical Consultant and approved by the regulating agencies. Fill slopes should be compacted in accordance with these grading guidelines and specific report recommendations. Two methods of slope compaction are typically utilized in mass grading, lateral over-building and cutting back, and mechanical compaction to grade (i.e. sheepsfoot roller backrolling). Constraints such as height of slope, fill soil type, access, property lines, and available equipment will influence the method of slope construction and compaction. The geotechnical consultant should be notified by the contractor what method will be employed prior to slope construction. Slopes utilizing over-building and cutting back should be constructed utilizing horizontal fill lifts (reference Section 6) with compaction equipment working as close to the edge as prac- tical. The amount of lateral over-building will vary as field conditions dictiate. Compaction testing of slope faces will be required and I I I I I I I I I I I I I I I I I I I It Standard Guidelines for Grading Projects r, I Page 13 .. reconstruction of the slope may result if testing does not meet our recommendations. , Mechanical compaction of the slope to grade during construction should ~ilize two types of compactive effort. First, ~rizontal fill lifts should be compacted during ~ill placement. This equipment should provide compactive effort to the outer edge of the fill slope. Sloughing of fill soils should not be pe~itted to drift down the slope. Secondly, at intervals not exceeding four feet in vertical slope height or the capability of available equipment, whichever is less, fill slopes should be backrolled with a sheepsfoot-type roller. Moisture conditions of the slope fill soils should be maintained throughout the compaction prlacess. Generally upon slope completion, the ~ire slope should be compacted utilizing typi¿al methods, (i.e. sheepsfoot rolling, bulldoz~ tracking, or rolling with rubber-tired heavy equipment). Slope construction grade stdldng should be removed as soon as possible in the slope compaction process. Final slope compaction should be performed without ~ade sakes on the slope face. In order to monitor slope coD8truction procedures, moisture and density tests will be taken at regular intervals. Failure to achieve the desired results will likely result in a recommendation by the Geotechnical Consultant to overexcavate the slope s~aces followed by reconstruction of the slopes utilizing over- filling and cutting back procedures or further compactive effort with the caaventional backrolling approach. Othe~ recommendations may also be provided which Wbnld be commensurate with field con!~ions. ¡ 6.4.3 Where placement of fill above a natural slope or above a cut slope is prop~ed, the fill slope configuration as prese~ed in the accompanying Standard Detail. should be adopted. ( 6.4.4 For pad areas above fill slopes, positive drainage should be established away from the top-of-slope, as designed by the project civil engineer. p, , . . . .. I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects 6.5 6.6 Page 14 6.5.1 OFF-SITE FILL 6.5.2 6.5.3 Off-site fill should be treated in the same manner as recommended in the specifications for site preparation, excavation, drains, compaction, etc. Off-site canyon fill should be placed in preparation for future additional fill, as shown in the accompanying Standard Details. Off-site fill subdrains temporarily terminated (up canyon) should be surveyed for future relocation and connection. 6.6.1 TRENCH BACKFILL 6.6.2 6.6.3 6.6.4 Utility trench backfill should, unless other- wise recommended, be compacted by mechanical means. Unless otherwise recommended, the degree of compaction should be a minimum of 90 percent of maximum density (ASTM D1557). Backfill of exterior and interior trenches extending below a 1:1 proJection from the outer edge of foundations should be mechanically compacted to a minimum of 90 percent of the laboratory maximum density. Within slab areas, but outside the influence of foundations, trenches up to one foot wide and two feet deep may be backfilled with sand (S.E. > 30), and consolidated by jetting, flooding or by mechanical means. If on-site materials are utilized, they should be wheel-rolled. tamped or otherwise compacted to a firm condition. For minor interior trenches, density testing may be deleted or spot testing may be elected if deemed necessary, based on review of backfill operations during construction. If utility contractors indicate that it is undesirable to use compaction equipment in close proximity to a buried conduit, the Contractor may elect the utilization of light weight mechanical compaction equipment and/or shading of the conduit with clean, granular material, (S.E. > 30) which should be thoroughly moistened in the trench, prior to I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects 7. Page 15 initiating mechanical compaction procedures. Other methods of utility trench compaction may also be appropriate, upon review of the Geotechnical Consultant at the time of construction. 6.6.5 In cases where clean granular materials are proposed for use in lieu of native materials or where flooding or jetting is proposed, the procedures should be considered subject to review by the Geotechnical Consultant. 6.6.6 Clean granular backfill and/or bedding are not recommended in slope areas unless provisions are made for a drainage system to mitigate the potential build-up of seepage forces and piping. DRAINAGE 7 . 1 7.2 7.3 7.4 8. Canyon subdrain systems recommended by the Geotechnical Consultant should be installed in accordance with the Standard Details. Typical subdrains for compacted fill buttresses, slope stabilizations or sidehill masses, should be installed in accordance with the specifications of the accompanying Standard Details. Roof, pad and slope drainage should be directed away from slopes and areas of structures to disposal areas via suitable devices designed by the project civil engineer (i.e., gutters, downspouts, concrete swales, area drains, earth swales, etc.). Drainage patterns established at the time of fine grading should be maintained throughout the life of the project. Property owners should be made aware that altering drainage patterns can be detrimental to slope stability and foundation performance. SLOPE MAINTENANCE 8. 1 LANDSCAPE PLANTS In order to decrease erosion surficial slope stability problems, slope planting should be accomplished at the completion of grading. Slope planting should consist of deep-rooting vegetation requiring little watering. A Landscape Architect would be the test party to consult regarding actual types of plants and planting configuration. I I I I I I I I I I I I I I I I I I I Standard Guidelines for Grading Projects Page 16 8.2 IRRIGATION 8.2.1 Slope irrigation should be minimized. If automatic timing devices are utilized on irrigation systems, provisions should be made for interrupting normal irrigation during periods of rainfall. 8.2.2 Property owners should be made aware that overwatering of slopes is detrimental to slope stability and may contribute to slope seepage, erosion and siltation problems in the subdivision. Rev 5/8R I I I I I I I I I I I I I I I I I I I MIN.1 48 DIAMETER PERFORATED PIPE BACji(DRAIN 48 DIAMETER NON-PERFORATED PIPE LATERAL DRAIN SLOPE PER PLAN H/2 PROVIDE BACK DRAIN PER BACKDRAIN DETAIL. AN ADDITIONAL BACKDRAIN AT MID-SLOPE WILL BE REQUIRED FOR SLOPE IN EXCESS OF 40 FEET HIGH. KEY-DIMENSIONSPER SOILS ENGINEER TYPICAL BUTTRESS OR ST ABILIZA TION FILL DETAIL JOB NO.: 05-7454-007-00-00 DATE: FIGURE: 1 MAY 1991 I I I I I I I I I I I I I I I I I I I NATURAL GROUND . . PROPOSED GRADING ~ "" ~- . 'PLÁÑE' . . . OF W . . EAI(ÑÉS'S' . . COMPACTED FILL PROVIDE BACKDRAIN PER BACKDRAIN DETAIL. AN ADDITIONAL BACKDRAIN AT MID-SLOPE WILL BE REQUIRED FOR BACK SLOPES IN EXCESS OF 40 FEET HIGH. LOCA- TIONS OF BACKDRAINS AND OUTLETS PER SOILS ENGINEER AND/OR EN- GINEERING GEOLOGIST DURING GRADING. . ~. BASE WIDTH .W. DETERMINED BY SOILS ENGINEER Pi.AÑE ÔF' . . . WEAI(NESS' . . TYPICAL SHEAR KEY DETAIL JOB NO.: 05-7454-007-00-00 DATE: FIGURE: MAY 1991 2 I I I I I I I I I I I I I I I I I I I OVEREXCAVATE FINAL LIMIT OF EXCAVATION DAYLIGHT LINE SOUND BEDROCK TYPICAL BENCHING OVERBURDEN (CREEP-PRONE) PROVIDE BACK DRAIN PER BACK DRAIN DETAIL. LOCATION OF BACKDRAIN AND OUTLETS PER SOILS ENGINEER AND/OR ENGINEERING GEOLOGIST DURING GRADING EQUIPMENT WIDTH (MINIMUM 15') DAYLIGHT SHEAR KEY DETAIL JOB NO.: 05-7454-007-00-00 DATE: FIGURE: MAY 1991 3 I I I I I I I I I I I I I I I I I I I ---- -- ---- ~ BENCHING FILL OVER NATURAL SURFACE OF FIRM EARTH MATERIAL BENCHING FILL OVER CUT FINISH FILL SLOPE SURFACE OF FIRM EARTH MATERIAL BENCHING FOR COMPACTED FILL DETAIL JOB NO.: 05-7454-007-00-00 DATE: FIGURE: MAY 1991 4 I I I I I I I I I I I I I I I I I I I FINISH SURFACE SLOPE 3 FT3 MINIMUM PER LINEAL APPROVED FILTER ROCK* COMPACTED FILL A - 48 MINIMUM APPROVED PERFORATED PIPE** (PERFORATIONS DOWN) MINIMUM 211 GRADIENT TO OUTLET BENCH INCLINED TOWARD DRAIN BENCHING GRADIENT 48 MINIMUM DIAMETER SOLID OUTLET PIPE SPACED PER SOIL ENGINEER REQUIRE- MENTS DURING GRADING TYPICAL DETAIL A-A TEMPORARY FILL LEVEL COMPACTED BACKFILL 48 MINIMUM DIAMETER APPROVED SOLID OUTLET PIPE 128 MINIMUM COVER I 128 MINIMUMJ *FILTER ROCK TO MEET FOLLOWING SPECIFICATIONS OR APPROVED EQUAL: SIEVE PERCENTAGE PASSING 18 100 3/48 90-100 3/88 40-100 NO.4 25-40 NO.30 5-15 NO.50 0- 7 NO.200 0- 3 **APPROVED PIPE TYPE: SCHEDULE 40 POLYVINYL CHLORIDE (P.V.C.) OR APPROVED EQUAL. MINIMUM CRUSH STRENGTH 1000 PSI. JOB NO.: 05-7454-007-00-00 TYPICAL BACK DRAIN DETAIL DATE: MAY 1991 I I I I I I I I I I I I I I I I I I I FINISH SURFACE SLOPE MINIMUM 3 FT3 PER LINEAL OPEN GRADED AGGREGATE* TAPE AND SEAL AT CONTACT COMPACTED FILL A 2'111 MINIMUM GRADIENT A SUPAC 8-P FABRIC OR APPROVED EQUAL 4" MINIMUM APPROVED PERFORATED PIPE (PERFORATIONS DOWN) MINIMUM 2'111 GRADIENT TO OUTLET 4" MINIMUM DIAMETER SOLID OUTLET PIPE SPACED PER SOIL ENGINEER REQUIREMENTS BENCH INCLINED TOWARD DRAIN TYPICAL BENCHING DETAIL A-A TEMPORARY FILL LEVEL COMPACTED MINIMUM BACKFILL 12" COVER J-. MINIMUM 4" DIAMETER APPROVED SOLID OUTLET PIPE .L-12,,-1 1 MINIMUM'I * NOTE: AGGREGATE TO MEET FOllOWING SPECIFICATIONS OR APPROVED EQUAL: SIEVE SIZE 11/2" 1" PERCENTAGE PASSING 100 5-40 0-17 0-7 0-3 3/4" 3/8" NO. 200 BACK DRAIN DETAIL (GEOFABRIC) JOB NO.: 05-7454-007-00-00 DATE: FIGURE: MAY 1991 6 I I I I I I I I I I I I I I I I I I I CANYON SUBDRAIN IlETAILS §i; ... ~SURFACE OF FIRM EARTH -- 1;- " " // ........." / /' ~\ COMPACTED FILL / / \ .,~ \\ '1 \ " // / '---"" " / TYPICAL BENCHING REMOVE UNSUITABLE MATERIAL NCLINE TOWARD DRAIN SEE DETAILS TRENCH DETAIL - SUPAC 8-P FABRIC OR APPROVED EQUAL 6..:.....M I N I M l!!:L 0 V E ~ INIMUM 6 FT3 PER LINEAL FOOT OF APPROVED DRAIN ì 8ATERIAL ",. OPTIONAL V-DITCH DETAIL SUPAC 5-P FABRIC OR APPROVED EQUAL ..' .\. DRAIN MATERIAL SHOULD CONSIST OF MINUS 1.5., MINUS 1., OR MINUS .75. CRUSHED ROCK to> { MIN~~~M { : þ' MINIMUM 6 FT3 PER LlNeat. FOOT OF APPROVED DRAIN MA..8RIAL 8DD MINIMUM 4. DIAMETER . APPROVED PERFORATED ..' .. PEW HEN LARGE FLOWS ... 8RE ANTICIPATED -" . ~,8PPROVED PIPE TO BE >y 8CHEDULE 40 POLV-VINYL- CHLORIDE (P.V.C.) OR 8PPROVED EQUAL. MINIMUM .' CRUSH STRENGTH 1000 psi. GEOFABRIC SUBD_IN JOB NO.: 0 -7454-007-00-00 FIGURE: 7 DATE: MAY 1 I I I I I I I I I I I I I I I I I I I FINAL GRADE TOE OF SLOPE SHOWN ON GRADING PLAN -- FILL --- --- .-'- O"~O) -- (.~~""-- - ~\...\.. - .-.-'- L1 ""...1~ --- .- 1p - .-"- ~ ~...~ -- ..-"- ~...ø\.. -- -- \)\' - ;....-" -- \)t\ß..-- ~ 10' TYPICAL BENCH -- WIDTH VARIES - - - - / -- ..- - -- -- Á1 .-- -- / 1 .-- -- -- ~----j~' r~15~- n 1" MINIMUM BASE KEY MINIMUM DOWNSLOPE KEY DEPTH 48 FILL PROVIDE BACK DRAIN AS REQUIRED PER RECOM- MENDATIONS OF SOILS ENGINEER DURING GRADING COMPETENT EARTH MATERIAL -- TYPICAL BENCH HEIGHT LIMIT OF KEY EXCAVATION WHERE NATURAL SLOPE GRADIENT IS 5:1 OR LESS. BENCHING IS NOT NECESSARY. HOWEVER. FILL IS NOT TO BE PLACED ON COMPRESSIBLE OR UNSUIT- ABLE MATERIAL. FILL SLOPE ABOVE NATURAL GROUND DETAIL JOB NO.: 05-7454-007-00-00 DATE: FIGURE: MAY 1991 8 - - - - - - - - - - - - - - - - REMOVE ALL TOPSOIL, COLLUVIUM AND CREEP MATERIAL FROM TRANSITION CUT /FILL CONTACT ON GRADING PLAN ......""" ............""" ....,....""" ......""" - ...... ...... ...... ~ E. '^ 0 \J E. ----- ~O CI'E.E.~ - .---- ---- \J\Û"^ "" ...... . --- \ CO\'\'Û --- ---/ - ~O~SO\\.. ---- . /' ------- 4 TYPICAL ~ ~-- ~ 10' t- TYPICAL 15' ---1 MINIMUM '1 FILL CUT/FILL CONTACT SHOWN ON -AS-BUILT- NATURAL~ --- TOPOGRAPHY -- ----- - - -- -- CUT SLOPE* JOB NO.: 05-7454-007-00-00 BEDROCK OR APPROVED FOUNDATION MATERIAL - - - * NOTE: CUT SLOPE PORTION SHALL BE MADE PRIOR TO PLACEMENT OF FILL FILL SLOPE ABOVE CUT SLOPE DETAIL DATE: FIGURE: MAY 1991 9 I I I I I I I I I I I I I I I I I I I GENERAL GRADING RECOMMENDATIONS CUT LOT __--ORIGINAL -- - GROUND -- ---- ...-- -- - ---- -- -- ---- - TOPSOIL, COLLUVIUM AND --- WEATHERED BEDROCK -- -- --- - 3' - - - ---- --- UNWEATHERED BEDROCK OVEREXCAVATE AND REGRADE CUT IFILL LOT (TRANSITION) - ORIGINAL --- ........ GROUND - ......... -"""" -- -- - - -- -- -- -- ......... TOPSOIL, ........"""" -COLLUVIUM AND ........ WEATHERED ........ BEDROCK -- - ........- ....... 3' COMPACTED FILL ........"""" - - OVEREXCAVATE AND REGRADE UNWEATHERED BEDROCK JOB NO.: 05-7454-007-00-00 TRANSITION LOT DETAIL DATE: FIGURE: 10 MAY 1991 I I I I I I I I I I I I I I I I I I I BUILDING FINISHED GRADE CLEAR AREA FOR FOUNDATION, UTILITIES, AND SWIMMING POOLS SLOPE FACE 0 0 o~ .o~ STREET 0 o~ {- ~WINDRDW 0 15' { 5' OR BELOW DEPTH OF DEEPEST UTILITY TRENCH (WHICHEVER GREATER) TYPICAL WINDROW DETAIL (EDGE VIEW) GRANULAR SOIL TO FILL VOIDS HORIZONTALLY PLACED COMPACTION FILL PROFILE VIEW ROCK DISPOSAL DETAIL JOB NO.: 05-7454-007-00-00 DATE: RE: 11 MAY 1991 -',", ',',',".,', !,t', ¡'¡;J ¡" í!' ':', ",{ P;:",', """,,1,' ;, f" C ' If 'I" i, , !;.~ì":..,J\..':¡¡,,Ul;:)!.¡~ I' , . , I ¡ ~ 'J ~ t,," ,: NOV 05 1993 ,-,.1 ENGINEERING SERVICES C~AS Principals: Anthony F. Belfast Michael P. 1mbriglio W. Lee Vanderhurst he Home Depot 01 South Placentia ullerton, CA 92631 Project No. 0110-001-01 Doc. #3-0290 ttention: Mr. Dennis Goughary, Store Planning , GEOTECHNICAL REPORT ADDENDUM PROPOSED ENCINITAS HOME DEPOT 1) 'IIGeotechnicallnvestigation, Home Depot, EI Camino~ Real and 'Olivenhain Road, Encinitas, ,California", by ICG Incorporated, project No. 05:-7454~007:-00-00,~ay30,1991.,/-,: '" ' , , ':::':":; c";' ,.. , : ,,:O", "", ' " ":' "':,;;.."'", ,..'::Cu,' , ,'.. ,,', ..., " "u ':; ", ,,', , " 2).,"Encinitas'Home Depof,' Surcharge & Wetland Mitigation Gràding Plan", by The Austin,' Harisen':Group,unapproved working drawings received August 10,J993. ..' ' '.. , s requested, we have ,reviewed the referenced grading plans for the surcharge fill planned for t e site of the Encinitas Home Depot. This report presents additional recommendations for site reparation and placement of,the surcharge. These recommendations should be considered an ddendum to the referenced geotechnical report by ICG Incorporated, dated May 30, 1993, and s ould supersede recommendations of that report where conflicts occur. ITE PREPARATION em oval OfÄlluvium,: Alluvium within the surcharge area, as delineated by the toe of the I , s rcharge slope, shoul~ be removed to the elevation at which the groundwater causes incipient i stability or the onset °\ pumping. The attached Figure 1 shows a cross-section near the center 0 the surcharge pad, \ and the anticipated areas of over-excavation. The geotechnical i vestigation reported groundwater levels ranging from elevation 76 feet to elevation 80 feet in t e spring of 1991. The groundwater levels may have changed since that time due to variations in rainfall. We anticipate that removal depths will extend to about 2 feet above groundwater Ie els. The groundwater levels should be checked by the contractor by digging test pits prior to m king removals. If unstable bottom conditions develop, stabilization techniques may be P.O. Box 26500-224 . San Diego California. 92196 Phone (619) 536-1000 . Fax (619) 536-8311 .' I" 8 8 The Home Depot August 16, 1993 Project No. 0110..()O1..()1 Doc. #3"()290 Page 3 of pneumatic piezometers at various levels in the alluvium. We recommend two installations, to be monitored for about 1 0 months. The contractors should take all necessary precautions so that piezometers are not disturbed. Disturbance of the piezometers could cause considerable delay in the determination of the time of surcharge removal. Please call at your convenience if you have any questions or comments regarding this report. Thank you for this opportunity to be of continued service. GEOTECHNICS INCORPORATED ~"" . , ' .' r?~c" ~. " ' d'; ;'./'~.... ..".',.',. ':.' , ...' '; ':', .:c', "".; .:, ,-~.'." " . . ' . . -'v; .'.", '..;",.,).~~~:~i;'::i"':,;,.~;..,"'::,;;;~~l:t:;:... ,..,i,,'x..,,:,,'..,. Anthony F. Belfast,p.EX40333 "'.' ",", Principal " Distribution: 2 copies, addressee 2 copies, Greenberg Farrow, Mr. Mike Okuma 2 copies, Austin Hansen, Mr, Bob Haynes \ \ ¡ \ Geolechnics Incorporated --.,.-- -." --""'" . .. '.w.. ", .' 7"QRR£Y -S"ANOSTOIV E:. ¡'BEDROCK) 8 JlORI?OÑ'TI/¿ .5C4t:E" 1.: 50 ' VERTICAL SC/lt.é: 1M::.20' (¿5 X VERT/("/lc. E)(,.f~£~#1'"/ON) III ßé£JRðCK ARE./.i; EKTZ"»O ) \ ' T '~';f~.:. .-. .... 7 """"\ OV£/?-EXC,.r/V¡t¡Tlt)N TO -4Üç,.v . ...... ..' Olla-ExCAVATE EX/STINe; IN /1lLVVII1t.. ,q,f!£..I5. úJlr/l C.l!'EJr O,t:'" .f"V~CI'ÝARC;~ SL(),Pé: \ in. /JILt/WI/H. TO AJ' c¿O.sé TO EXTÐVO OVt:'Æ-EXC'#Y':' \ I, . CRtJUAlO-WI1TEÆ £"~£YArltJ/II AnON ro ,tl,.,.ÇAl t:4I/rN' OVER.E;(CÁ~íION (),&: :~.; A.f , EXCAWI710N .$T/1B/¿¡TY ro~ OF..sVRC'..,,"RtI:E BEOROcK rð m,prc¡,/ \ '"JAUtJllIJ. -S7?/O/¿¡ZE sarro"" .ßOTTð,o? ELEV#T/O,(j OF \ .,", !1f:nf'C£.s:rARY. //¿LUI//t//J7 EXC4VAT¡ON :".,.:;,;' ,',:' o~~~rÁn~ <~IJJ!I(:" . . '" 8 ~. Geotechnics .@tMI.r.ø'#~ Incorporated ~- SURCHARGE CROSS-SECTION ENCINITAS HOME DEPOT THE HOME DEPOT PROJECT NO. 0110-001-01 DOC. #3-0290 .sz.. CROVAI.OIJI1TE.Ií! ¿EVE¿S £/fA/¡;£O ..... ,rRO,Þ? ELEVATION 7¿: r££T TO ELEY-'TION 8a ~£'£T /M..5:L.) 1M J"PR/N& OF If/?I. YAJ!/,l1fiQ,.vf OF' SEV£'~At: ~EET "'MY OCCVÆ Ot/£ Tl) ..5£IIJ'IJ;V#~ APL) ¿tWç-n!""'" CPAA/¿;£j h./ '~/N;~¿¿. ........... ---- - - --- r c- " I' ----. ~ ::..~.: .'.:'.: ...;.;.... ~~J}f.~t\~ . 3/8- TO ,- CRUSHED ROCK NATIVE SOIL. USE LIGHT WEIGHT CEXA.YPLE-POWDER- PUFF) STYLE EQUIPMENT PVC PIPE SLEEVE. <4- D/AMET STANDARD 3/4- PIPE CONNECTORS 8.x '8- STEEL PLATE WITH' COUPLER WELDED TO PLATE" '. :. "'.. . l,bcatioÌ1~ of monitors will be determined by a the geotechnical consultant. I \ Pipe to b~ brought up with the fill in 5 foot sections. EOTECHNICS INCORPORA TED SETTLEMENT MONITOR DETAIL ENCINITAS HOME DEPOT HOME DEPOT PROJECT NO. 0110-001-01 DOC. #3-0290 FIGURE NO.2 , ,- ,;<,:, 8 July 9, 1993 Principals: Anthony F. Belfast Michael P. Imbriglio W. Lee Vanderhurst Home Depot U.S.A. Inc. 601 South Placentia Fullerton, California 92631 Project No. 0110-001-00 Doc. #3-0241 SUBJECT: GEOTECHNICAL REVIEW OF GRADING AND EROSION CONTROL, SURCHARGE AND WETLAND MITIGATION PLAN PROPOSED HOME DEPOT, ENCINITAS, CALIFORNIA References: "Additional Recommendations for Slope Construction and Infiltration Basins, Proposed Home Depot, Encinitas, California", byGeotechnics Incorporated, July 2, 1993 No. 0110-001-00 ' . "',- EI Càminò'Real ' ' , . ,'n. . -, . MaY'~?719.91::~;., <. C' '. In accordance your have performed a geotechnical review of the Grading and < < Erosion Control Plan for surcharge and wetland mitigation, sheet 2 of 11, prepared by The Austin ' , Hansen Group. This plan shows the south cut slope, surcharge grading, and wetland mitigation in more detail than was available for our referenced July 2 report. This plan sheet indicates that the south cut slope is approximately 80 feet in height, and will be constructed at a 2:1 (horizontal:vertical) gradient, except for the upper 30 feet that will be at 3: 1. Based on our fiel,d reconnaissance, the area of the proposed south cut slope is underlain by both the Torrey Sand~tone and Delmar Formation sedimentary bedrock, with a variable thickness of colluvium and toÞsoil c~vering the bedrock. Based on limited exposures of the bedrock, the lower portion of the sl6pe is an)icipated to expose low strength claystone bedrock, resulting in reduced , surficial stability and jnCr~ased weathering of portions of cut the slope. We recommend that a stabilization fill slope be ~onstructed in accordance with the attached Figure 1, for the lower portion of the proposed cut slope. The stabilization is anticipated to be limited to the lower 30 feet (vertical) of the slope, however, the limits of the stabilization fill should be determined in the field by our geologist. The stabilization fill should include a backdrain consisting of a perforated 6-inch diameter pipe, with 6 cubic feet per linear foot of open graded crushed rock, and filter P.O. Box 26500-224 . San Diego California. 92196 Phone (619) 536-1000 . Fax (619) 536-8311 J, . r-~ 8 8 Home Depot USA July 9, 1993 Project No. 0110.001.00 Doc. #3.0241 Page 2 fabric surrounding the rock. The drain should be constructed with a minimum gradient of 1 %, and be permanently connected into an available storm drain or gravity outfall with a tightline pipe. A minimum key width of 15 feet is recommended, at a minimum depth of 2 feet below lowest adjacent toe grade. The stabilization fill slope should be constructed by over filling and cutting back to grade to achieve a compacted surface of 90%, with on-site sandstone bedrock or alluvial materials. Materials derived from the claystone should not be used. The intent of the stability fill is to decrease the potential of shallow failures resulting from desiccation and weathering of the claystone beds expected in the lower portions of the slope. Based on information gathered to date, the planned slope should be stable with regard to deep- seated failures. The stability should be further reviewed after geologic mapping is performed during grading of the slope. In conclusion, ourgeotechnicaLre~iew of ,the subject grading plan indicates that it is in accordance with our recommendations, and the recommendations of the referenced investigation. This opportunity to be of service is appreciated. If you should have any further questions, please do not hesitate to contact the undersigned at your convenience. Very truly yours, GEOTECHNICS INCORPORATED ~'~Ä ~~\ ! \ Anthony F. Belfast, P.EJ40333 Principal \ Attachment: ~.~ Kenneth W. Shaw, C.E.G. 1251 Project Geologist l ( .< .. . , ~~",. , . 5) ",;, Select Backfill ! Pad Grade; NOTES Select backfill should consist of on-site silty sands. Clay and soil derived from claystone should not" be used in the stabilization fill. 2) Filter fabric should completely envelope the crushed rock, and should consist of Mirafi . 40NS, or ~imilar approved geosynthetic. , The 3/4-ihch crushed rock surrounding the pipe should consist of a minimum of 6 cubic! feet per lineal foot of drain. i ' " . ' The ba~kdrain ~pOUld contain a6-inch diameter perforated PVC pipe, installed at a ; gradient of at least 1 %. Perforated pipe should exit to a suitable gravity outfall or storm drain via a 6-inch riameter solid pipe. \ The key should be a minimum width of 15 feet (horizontal), 2 feet (vertical) below pad grade, with the base tilted towards the drain at 5%. " 3) 4) GEOTECHNIC~ NCORPORA TE'b STABILIZATION FILL DETAIL Home Depot Encinitas, Califonia PROJECT NO. 0110-001-00 DOCUMENT NO. 3-0241 FIGURE NO.1 " -of ~e~echnics Incorpora ted 8 July 2, 1993 Principals: Anthony F. Belfast Michael P. Imbriglio W. Lee Vanderhurst Home Depot U.S.A. Inc. 601 South Placentia Fullerton, California 92631 Project No. 0110-001-00 Doc. #3-0169 SUBJECT: ADDITIONAL RECOMMENDATIONS FOR SLOPE CONSTRUCTION AND INFILTRATION BASINS PROPOSED HOME DEPOT ENCINITAS, CALIFORNIA Gentlemen: The following report presents. ~ur recommendations for the proposed cut slope,located alongthe south boundary of thesubj~ctsite, and for. infiltration basinsplannedforthenorth.end'of the site:' . We (Jnderstand that t?e.pr?P9~ed §ut'slo~e will bëhonstruct~d ~ka 2:1(hor¡~ont~I:Yetti~~I)~Î~pe, with an approximate maximum height of 35 feet. The infiltration basins located at~the north end of the site. are planned to impound 'storm water runoff and allow percolation into the' underlying alluvial soils., GeoloQY and Subsuñace Conditions Based on our field reconnaissance, the existing slope on the south side of the site is underlain by interbedded Torrey Sandstone and Delmar Formation sedimentary bedrock. The slope is apparently in a natural condition as evidenced by thick natural vegetation and large trees, with a variable thickness of colluvial and topsoil materials covering the bedrock. The limited exposures of bedrock incluqe both sandstone and claystone. The sandstones are associated with the Torrey Sandstone, andithe claystone with the older Delmar Formation. An exposure of green claystone was observed hear th~\ base of the slope, with light brown and white sandstone, materials observed in an adjacentl road cut representing the upper portion of the slope. The claystone materials typically exhibit\low strength, resulting in reduced stability and increased weathering of cut slopes and excavatio~s. Bedding planes of the formational material appear to be relatively horizontal. ' P.O. Box 26500-224 . San Diego California. 92196 Phone (619) 536-1000 . Fax (619) 536-8311 ~ 8 8 Home Depot U.S.A. July 2, 1993 Project No. 0110-001-00 Doc. #3-0169 Page 2 The alluvium that predominates the lower areas of the site where the infiltration basin is planned consists of medium to fine grain, silty sand. These materials have been derived from the eroded formational materials at higher elevations. Conclusions and Recommendations 1.0 Cut Slope The lower portions of the slope are anticipated to expose .claystone of the Delmar F ormation that generally exhibit low to medium strength parameters, and moderate to high expansion potential. Our preliminary, analysis indicates that the deep-seated stability of these slopes should be acceptable~ .""', However, the long term suñicial stability of the cut slope is reduced by the presenceoUheclaystone beds which will be prone to ravel and ':. -.' ~ u."... . ",. ". ',:' slump. We recommend tha!astabHii~tiÓn ~lIslope be constructed in accordance with the attached Figure 1. The limits of the - stabHization fill will be determined in the field by our geologist, however they are anticipated. to include the entire south cut slope. The stabilization fill should include a backdrain consisting of a perforated 6-inch diameter pipe, with 6 cubic feet per linear foot of open graded crushed rock, and filter fabric surrounding the rock. The drain should be constructed with a minimum gradient of 1%, and be permanently connected into an available storm drain or gravity outfall with a tightline pipe. A minimum key width of 15 feet is recommended, at a minimum depth of 2 feet below lowest a~jacent toe grade. The stabilization fill slope should be constructed by over filling and cutting back to grade to achieve a compacted surface of 90%, with on-site sandstone bedrock or alluvial materials. Materials derived from the claystone should not be used. ì 2.0 Infiltration .Basins' i \ \ \ In order to estirrate percolation rates for the planned infiltration basins, particle size analyses were þerformed on representative samples of the alluvium. Based on presumptive correlations with established values, we estimate permeabilities on the order of 1x10-4 cm/sec to 1x10'3 cm/sec. - ~ 8 8 ~/ ð~ ~+. ~~¡r '...tf~~~~;~~~~:~~ .:\, fa, brl, .~)~f'1t~é",<,., 'j ,'" " NOTES 1) Select backfill should consist of on-site silty sands. Clay and soil derived from claystone should not be used. 2) Filter fabric should completely envelope crushed rock, and should consist of Mifafi 140NS or simil~r appròyed geosynthetic. I \ I , The backdrain s,hould contain a six-inch diameter perforated PVC pipe. installed at a gradient of at Jea[t 1 %. Perforated pipe should exit. to a suuitable gravity outfall via 6- inch diameter sohp pipe. , 3) GEOTECHNICS INCORPORA TED SLOPE STABILIZATION DETAIL HOME DEPOT ENCINITAS HOME DEPOT USA PROJECT NO. 0110-001-00 DOC. #3-0169 FIGURE NO.1 . . 8 8 Home Depot U.S.A. July 2, 1993 Project No. 0110-001-00 Doc. #3-0169 Page 3 3.0 AQricultural TestinQ A representative sample of relatively unweathered bedrock material was obtained from the south cut slope area. The materials were tested common agricultural properties for use by the project landscape architect in evaluation soil amendment needs. The test results . are presented in Appendix B, Laboratory Test Results. This opportunity to be of service is appreciated. If you should have any further questions, please do not hesitate to contact the undersigned at your convenience. Very truly yours, . GEOTECHNICS JNCORPORA TED " . .:!) .: .~ ~2d4~ Anthony F. Belfast, P.E. 40333 Principal l~ v. .4Lwr Kenneth W. Shaw, C.E.G. 1251 Project Geologist 8 8 APPENDIX A REFERENCES American Society for Testing and Materials, 1992, Annual Book of ASTM Standards. Section 4. Construction. Volume 04.08 Soil and Rock: Dimension Stone: Geosvnthetics, ASTM, Philadelphia, PA, 1296 p. California Division of Mines and Geology, 1986, Landslide Hazards in the Encinitas Quadrangle, San Diego County, California: California Division of Mines and Geology, Open File Report 86-8 LA ICG Incorporated, 1991 "Geotechnical Investigation, Home Depot, EI Camino Real and Olivenhain Road, Encinitas, California", May 30,1991, ,', ,', ' , "", <." ' :. ",i,:,. " . Kennedy, M. P~;ândPeterson,G. L., 1975, Geoloa~ of San Dieao Metropolitan Area. California: ", California [)iyision of Mines, and Geology BuUetin 209, 56 p. , :.;:~ ::': :~i2,::~;<\~,i',~C<' ,,";...:::~~t~tf:xi';!~it< ",,'": ,:,.;;:~::;'Ù.."~?;:'*;t.t~:!~fi~:';Ãf1t.s!! i:'-~~-~~:;',,~ ' ¡<J"cY~¡(1>5_Lambe;T~ W:and ,Whitman;R. V.~:..1969,~Soil Mechanics,cWiley & Sons, pp. 281-294." ;c.:"''" ';-,:è':::}~~',:):'\,~:-p.:'tt¿Å¾{!.f~JÞ~'~;~36~:;:.:,::..';;',::,::i~v:þ:'.'~g,,;}~*:b.:,i"::"'/<1..,-',:,/.,"-:\,."",-," ":""',.'-:: - ,. - , , . ,-'.L,:".,.., ". n ,"',i;,;;;:,'~<,:i:f~<~?~j'ì.:;!f~:,;F,,~:',: '.' , "i¡ .i':;'.,"'::;:' 'c' '.~., ",,-,:,-""'", "',',:-,"',-""',':" ,';~:-',:,ò'~::'.'i;;'::;:-~,,"" ',' '," ,. ", i ¡ I \ \ \ " . 8 8 APPENDIX B LABORATORY TESTING Selected representative samples of soils encountered were tested using test methods of the American Society for Testing and Materials, or other generally accepted standards. A brief description of the tests performed follows: Classification: Soils were classified visually according to the Unified Soil Classification System. Visual classification was supplemented by laboratory testing of selected samples and clas- sification in accordance with ASTM 02487. Particle Size Analysis: Particle size analyses were performed in accordance with ASTM D422. The grain size distribution was used to determine presumptive strength parameters used to develop slope stability design criteria. The results are provided on the following Figures B-1, and B-2. . . . Aaricultural~: An 'agricultural suite; was performed on a'selected sample by Agri Service. The res~lt~ ,of th~test suite is appended to, the end of thi~ report. \ \ \ u.s. Standard Slave Opening In Inches 90 --- ( I I I II I ., T T... I ' t I 1\ c I 1 .. --- c- . \ ',c I 2 . - 31 ..- \ . 4( .. \ _. 5CJ \ ,\ 0 \ I . I c. ... 70 " c' .1.. .... I "' '-... '.- .. I cO' t ¡OO 100 50 10 5 . - - Grain S I . 6 4 3 2 1Yo 1 % U.S. Standard Sieve Numbers Hydrometer 100 Yo 3/8 3 4 6 81014 16 20 30 40 50 70 100140 200 80 70 J:. QI '¡; ~ 60 ... m ¿ III .. ~ ... m ¡ .. II 0 U ~ 50 u. ë .. U 40 ;; G. 30 ë . U .. .. L 20 10 0500 100 50 10 5 0.1 0.05 0.01 0.005 0.001 '0 Cobbles Gravel Coarie Fine Slit or Clay . J EXPLORATION ELEVATION PLOT UNIFIED SOIL SAMPLE PLASTICITY ~ NUMBER OR DEPTH SYMBO CLASSIFICATION DESCRIPTION LL PL PI B-2 11 8M Dark brown silty sand I . GEOTECHNICS INCORPORATED PARTICLE SIZE ANALYSIS PROJECT NO. OlIO-DOl-aD FIGURE B-1 , . u.s. Standard Sieve Opening In Inches 90 ( I I I II I T r,.... I , , -1 I' 1\ 1 . . I- _. Î I 2 t 31 -p .. \ 41 _. ~ I, 5( 1\ \ 0 \ 70 '" .... e "~ " ". ""'-.- 0 -I..o.e. t-- ... -- ¡OO 100 50 10 - - . 6 4 3 U.S. Standard Sieve Numbe,. Hydrometer , 100 2 11'. 1 " 1'.3/8 3 4 6 81014 16 20 30 40 50 70 100 140 200 80 70 ... .c .2' . ~ 60 >- CD .. .c at .. ~ :to ØI ~ 50 .!: IL ë . U 40 ! 3 u .. c . U Ii IL 30 ~ L 20 10 0 -~ 500 100 50 10 5 1 0.6 Grain Size In Millimeters Sand 0.1 0.05 0.01 0.005 00 0.001 Cobbles Gravel Coarse Fine !::o.r M.!!. Silt or Clay I EXPLORATION ELEVATION PLOT UNIFIED SOIL SAMPLE PLASTICITY - NUMBER OR DEPTH SYMBO CLASSIFICATION DESCRIPTION LL PL PI B-3 18" 8M Liqht yellow-brown silty sand . I GEOTECHNICS INCORPORATED PROJECT NO,OllO-OOl-O FIGURE B-2 ",',' ':";:'..,;,~, .' '. -.-:>il.;':..",:~ --,': 'co.!"" "", ~;Y¡;Ìi~,:;,;;,;~2,v POTASSIUM CHLORIDE EXTRACT. I j~~i!l~~~4;)£~f§':';¡ì;: """:AMMONIUM ACETATE EXTRACT :.. ' "",,' Potassium, ppm ," .,:.. Calcium, ppm Magnesium, ppm Sodium, ppm . . . ~ 0 . " SOIL ANALYSIS RESULTS MAY 17, 1993 GEOTECHNICS INC 7915 SILVERTON AVE, #315 SAN DIEGO, CA 92126 SATURATION EXTRAC"( Saturation Percentage pH, units ECe, mmhoslcm Calcium, meq/J Magnesium, meq/J Sodium, meq/J Chloride, meq/J Boron, ppm '. ' .,' ~~~~m Al:>SOrptiory RaÜ<) DPTA EXTRACT' Zinc, ppm Manganese, ppm Iron, ppm : Copper, ppm BASE SATURATlON%" Potassium, % I ì\ Calcium, %! , Magnesium ,% '\ Sodium % 8 8 GRI SERVICF SOIL PLANT AND WATER ANALYSIS LAB#: DATE SUBMllTED: PROJECT: 12015 5-13-93 HOME DEPOT RESUlT& 28 4.0 0.4 0.6 0.4 1.3 3.5 0.4 COMMENT& SANDY LOAM VERY ACID ACCEPTABLE ACCEPTABLE ACCEPTABLE ACCEPTABLE ACCEPTABLE ACCEPTABLE ACCEPTABLE '.',.. 67 OPTIMUM 486 LOW 338 HIGH 41 ACCEPTABLE 0.56 LOW 2.7 LOW 32.7 OPTIMUM 0.59 OPTIMUM RESULT& SUGGESTED RANGE 3.1 3 - 7 43.4 65 - 75 50.3 12 - 20 3.2 . 0 - 5 If you should have any questions please feel free to contact us at any time. Sincerely, -ZZ~~, ¿!Ii:nVs{'- AGRI SERVICE 2142 '8' INDUSTRIAL COURT. VISTA, CALIFORNIA 92083 (619) 727.5451 I I I I I I I I I I I I I I I I I I I ~ Geotechnics ~ Incorporated AS-GRADED GEOTECHNICAL REPORT HOME DEPOT STORE #660 1001 EL CAMINO REAL ENCINITAS, CALIFORNIA prepared for Home Depot U.S.A., Incorporated 601 South Placentia Fullerton, CA 92631 Attention: Ms. Debbie Hanks by Geotechnics Incorporated 9951 Business Park Avenue, Suite B San Diego, CA 92131 September 14, 1995 Project No. 0110-001-04 Doc. #4-0362 P.o. Box 26500-224 . San Diego California. 92196 Phone (619) 536-1000 . Fax (619) 536-8311 Principals: Anthony F. Belfast Michael P. Imbriglio W. Lee Vanderhurst I I I I I I I I I I I I I I I I I I I TABLE OF CONTENTS 1.0 INTRODUCTION ................................................1 2.0 .PURPOSE AND SCOPE OF SERVICES.............................. 1 3.0 SITE DESCRIPTION .............................................2 3.0 GEOLOGIC CONDITIONS ......................................... 2 4.0 EARTHWORKOPERATIONS.......................................3 4.1 In-Situ Densification ......................................... 3 4.2 Preparation and Stabilization of Existing Ground. . . . . . . . . . . . . . . . . . .. 5 4.3 Site Grading ..............................................5 4.4 Fill Soil Types .............................................6 4.5 Fill Placement .............................................6 4.6 Cut and Fill Slopes .........................................7 4.7 Stabilization Fill Slopes ......................................7 5.0 GEOTECHNICAL EVALUATION AND RECOMMENDATIONS. . . . . . . . . . . . . .. 8 5.1 Compaction...............................................8 5.2 Slope Stability .............................................8 5.3 Foundations ..............................................9 6.0 LIMITATIONS ..................................................9 APPENDICES REFERENCES .............................................. AppendixA LABORATORYTESTING ...................................... AppendixB FIELD DENSITY TESTING ..................................... AppendixC Geotechnics Incorporated I I I I I I I I I I I I I I I I I I I AS-GRADED GEOTECHNICAL REPORT Home Depot Store #660, 1001 EI Camino Real Encinitas, California 1.0 INTRODUCTION This report summarizes the results of the testing and observation services performed by Geotechnics Incorporated during site preparation and grading, trench backfill, and construction of pavements and sidewalks for the planned Home Depot facility. Site grading included construction of the building pad with cut and fill slopes, adjacent parking lots, and street improvements to EI Camino Real and Olivenhain Road. During preparation of the building pad, an in-situ densification process using numerous stone columns was performed by Hayward Baker Incorporated. Our geotechnical services were performed between May 26, 1994 and May 20, 1995. The grading contractor for this project was Erreca's Incorporated. Grading and improvement plans were prepared by the Austin Hansen Group, and engineering staking services were provided by Stuart Engineering. The grading and improvement plans were adapted for use as the base maps for our geotechnical work. 2.0 PURPOSE AND SCOPE OF SERVICES This report and the associated geotechnical services were performed in accordance with the provisions of our Proposal No. 4-075, dated May 18, 1994. Field personnel were provided for this project to observe the grading of the site and conduct tests. The observation and testing assists us in developing professional opinions regarding the earthwork. Our services did not include supervision or direction of the actual work of the contractor, his employees, or agents. Our services included the following. Laboratory testing to determine pertinent engineering characteristics of the soil and bedrock materials. Observation and mapping of the geologic conditions exposed during excavation and grading of the site. Observation of stone column densification and subsurface exploration following site treatment. Geotechnics Incorporated I I I I I I I I I I I I I I I I I I Home Depot U.S.A., Incorporated September 14, 1995 Project No. 0110-001-04 Doc. #4-0362 Page 2 Observation and testing of fill placement during the site grading, and stabilization fill slope construction. Preparation of this report which summarizes our findings, recommendations. opinions and 3.0 SITE DESCRIPTION The subject site consists of a previously ungraded parcel of land located southeast of the intersection of EI Camino Real and Olivenhain Road, fronting on EI Camino Real, in Encinitas, California. Encinitas creek is located adjacent to the north property boundary, with undeveloped land to the east and south of the site. Prior to grading, the site topography sloped gently to the north with a steeper natural slope on the south side of the site. The approximate site boundary is shown on the As-Graded Geotechnical Maps, Plates 1 through 5. 3.0 GEOLOGIC CONDITIONS The subject site is situated in the coastal plain section of the Peninsular Range Province, and consists of Cenozoic sedimentary bedrock materials and Quaternary alluvial sediments. Specifically, the site is underlain by the Torrey Sandstone, Delmar Formation, and alluvium. The majority of the site is underlain by alluvium, with the southern slope area exposing the Torrey Sandstone and Delmar Formation. Specifically, the Eocene age Torrey Sandstone consists of a light brown to yellow, slightly silty, fine to medium grained sandstone. The material is classified as SM and SP using the Unified Soil Classification. The sandstone, as exposed on-site in the upper portion of the south cut slope, is slightly cemented and massively bedded. The Delmar Formation was exposed in the lower portions of the south cut slopes and in the southern one-fourth of the building pad. The formation generally consists of interbedded siltstone and claystone, is classified as a ML to CL, and is massive to thickly bedded. A mixture of the excavated materials exhibited a high expansion potential. Compacted fill materials were derived from the on-site Delmar Formation, Torrey Sandstone, alluvium, and topsoil excavations, and from imported sources. The imported fill soils Geotechnics Incorporated Home Depot U.S.A., Incorporated September 14, 1995 Project No. 0110-001-04 Doc. #4-0362 Page 3 I I I I I I I I I I I I I I I I I consisted of a red-brown fine to medium grained silty sand, classified as an SM, and were utilized primarily in the stabilization fill slope paralleling EI Camino Real. No evidence of faulting or groundwater seepage within the bedrock was observed during in- grading geologic observations. Shallow groundwater was encountered during removal excavations made for the parking and building pad areas, and in street subgrade for the EI Camino Real widening. Groundwater seepage was observed during the stone column installation, at the building pad subgrade elevation approximately 10 feet below finish pad grade. Perched groundwater or seepage may become present in time in either the fill or bedrock materials, due to increased irrigation, rainfall, changes in surface drainage, or subsequent grading and improvements. 4.0 EARTHWORK OPERATIONS In order to decrease the settlement potential of alluvium which occurs under the building pad area, in-situ densification was performed. Haywood Baker Incorporated, a specialty geotechnical contractor, used the vibro-replacement technique to density the alluvium to depths of up to approximately elevation 40 feet. Subsequent to densification, the building pad and parking area were graded. Grading was performed along the adjacent EI Camino Real to widen the roadway and to provide an entry lane. Related improvements included upgrading utilities in the roadway and subsequent backfilling of trenches. A portion of Olivenhain Road, near EI Camino Real was widened, and temporary pavement placed. 4.1 In-Situ Densification The alluvium in the building pad and perimeter area was densified in-place by the construction of stone columns. This construction was performed by Hayward Baker Incorporated, a specialty contractor in ground stabilization. The stone columns were constructed using the vibro-replacement technique, which displaces alluvial soils with vertical columns of crushed rock. The crushed rock is placed using air pressure through an electrically vibrated probe, that is advanced into the alluvial soils to a maximum depth of approximately 40 feet below surface grade. The probe is first advanced to design depth using a crane, then stone is forced out of the tip while the probe is vibrated with an integral electric motor. As the probe is removed, a series of downward advances are used to force the stone out laterally, while air pressure feeds additional stone. Geotechnics Incorporated Home Depot U.S.A., Incorporated September 14, 1995 Project No. 0110-001-04 Doc. #4-0362 Page 4 I I I I I I I I I I I I I I I I I The columns were constructed on a 10 feet by 10 feet grid, as designed by Haywood Baker, Incorporated. Columns located on the north side of the building generally went to the 40 foot design depth, however, along the south side the columns encountered the Delmar Formation at depths less than 40. feet, and were stopped by refusal upon contact with the bedrock. The approximate boundaries of the stone columns are 20 feet outside of the north building line, 10 feet outside of the west building line, 10 feet inside the south building line, and 5 feet outside the east garden center building line. The two southern rows parallel to the south building line were deleted during construction by Hayward Baker, primarily due to the occurrence of shallow Delmar Formation bedrock which resulted in minimal penetration of the stone column equipment. The easternmost row was also deleted by Hayward Baker, parallel to and outside of the east garden center building line. In order to evaluate the in-situ densification operation, Geotechnics Incorporated reviewed electronic cone penetration data taken before and after densification, reviewed settlement monument data, and provided observation of the densification operation. During our observations, we recorded the start/end time, the depth of treatment, and the estimate of stone placed for each stone column location. Settlement monument data was evaluated from the time of placement of fill over the treated areas to approximately 5 months after completion of the pad fill. Three settlement monuments were installed in the building pad area at approximately the elevation of the top of the stone columns, to measure settlement of the underlying alluvial soils as compacted fill was placed to finish grade. The monuments are located approximately 15 feet inside the north footing line of the building, with the approximate locations shown on the As-Graded Geotechnical Maps. They were installed at the completion of the stone column work, at approximately 10 feet below finish pad grade. Each monument consisted of a vertical 3/4-inch diameter iron pipe with an 18"x18" steel plate welded to the bottom of the pipe, and a larger PVC pipe sleeved over the iron pipe. The monuments were installed by Geotechnics Incorporated, and backfilled with crushed rock by the grading contractor. The crushed rock was placed in an approximate 3 foot radius around the pipe, concurrently with the adjacent compacted fill. The elevations of the top of the iron pipes were surveyed by Stuart Engineering at regular intervals. Sections of pipe were added as the overlying fill was placed to finish grade. The monuments were surveyed between August 4, 1994, and January 29, 1995. Geotechnics Incorporated I I I I I I I I I I I I I I I I I Home Depot U.S.A., Incorporated September 14, 1995 Project No. 0110-001-04 Doc. #4-0362 Page 5 4.2 Preparation and Stabilization of Existing Ground The site was cleared of surface obstructions and stripped of vegetation. Prior to placing fill, existing topsoil material was either excavated or scarified in place, moisture conditioned and compacted. In the northeast quarter of the building pad, and under the two dikes located outside of the parking area, the subgrade alluvial soils were stabilized with a layer of geotextile covered with open-graded rock. Approximately 12 to 18 inches of 3/4 to 1 inch rock was used, over a geotextile, as specified in the referenced geotechnical reports. The building pad stabilization was located at the stone column subgrade elevation, ten feet below finish pad grade, to assist heavy construction equipment. Pavement area subgrade stabilization was performed on a portion of the parking area east of the building pad, and for portions of the EI Camino Real road widening. These subgrade excavations exposed very wet and unstable subgrade soils that were stabilized with a layer of crushed rock over geotextile. Approximately 18 to 24 inches of subgrade soils were excavated below the pavement section depth, and replaced with geotextile and 3/4 to 1 inch crushed rock. The approximate limits of the stabilized areas are shown on the As-Graded Geotechnical Maps. 4.3 Site Gradina Generally, grading operations consisted of the excavation of the southern cut slope and filling of the building pad and parking areas. Site grading was performed using typical cut and fill mass grading techniques with heavy earth-moving equipment. Grading began with excavation of the south cut slope and filling to subgrade elevations for the parking area north of the building pad. The building pad was excavated approximately 10 feet below finish grade to construct a subgrade working pad for the in-situ densification. Site grading was stopped during the vibro- replacement operations in the building pad. After in-situ densification, the building pad subgrade soils were scarified approximately 12 inches and compacted, prior to the placement of fill to finish grade. The two planned cut slopes, one located south and adjacent to the building pad, and the second adjacent to EI Camino Real, were then excavated during site grading operations. Each cut slope was also partially constructed as a stabilization fill, as a result of geologic conditions exposed in the slopes, (refer to Section 4.7). Grading was completed with the construction of the two Geotechnics Incorporated Home Depot U.S.A., Incorporated September 14, 1995 Project No. 0110-001-04 Doc. #4-03,52 Page 6 I I I I I I I I I I I I I I I I I dike features located on the north and east sides of the parking Jot. The dikes were constructed to impound storm drain runoff from the site in small basins, and included a subdrains under the dikes that drain north towards the creek area. The subdrains were included as a part of the grading plan, and were designed by the civil engineer. 4.4 Fill Types The various materials used as fill are tabulated in Figure 1 of Appendix B, "Laboratory Test Results". All soil materials for the site grading were derived from on-site or immediately adjacent sources, with the exception of imported fill soils used in the EI Camino Real stabilization fill. The fills generally consist of silty fine to medium grained sand (SM), and silty clays (CL). Brief descriptions of the soil types used are included in Figure B-1. Other imported materials include stabilization gravel, pavement section aggregate base and asphalt, and utility trench 'shade' sand. The maximum det13ities and optimum moistures of the soils were determined in the laboratory by ASTM method 01557-91, (Modified Proctor). 4.5 Fill Placement Fill soils for site grading were typically placed in 6- to 8-inch lifts, brought to approximate optimum moisture content and compacted. The equipment used for compaction consisted of self-propelled rubber tired compactors, water trucks, scrapers, and other heavy equipment. In-place moisture and density tests were made in accordance with ASTM 02922-91, D 3017-88 (Nuclear Gauge Method). The results of these tests are tabulated in Table 2 of Appendix C, "Field Density Test Results". The locations and elevations indicated for the tests presented on the Geotechnical Maps, are based on field survey stakes and estimates from the grading plan topography, and should only be considered rough estimates. The estimated locations and elevations should not be utilized for the purpose of preparing cross sections showing test locations, or in any case, for the purpose of after-the-fact evaluating of the sequence of fill placement. The approximate location of the as-graded cut/fill transition lines for the subject on-site grading are shown on the As-Graded Geotechnical Maps, Plates 1 and 2. Geotechnics Incorporated Home Depot U.S.A., Incorporated September 14, 1995 Project No. 0110-001-04 Doc. ,,'4-0362 P2Ige 7 I I I I I I I I I I I I I I I I I 4.6 Cut and Fill Slopes Cut and fill slopes with a maximum height of 78 and 12 feet, respectively, were constructed in general accordance with the project plans and specifications, at Zì slope ratio of 2: 1 (horizontal:vertical) or flatter. The two cut slopes exposed tile Torrey Sandstone at the upper elevations, and the Delmar Formation claystone in the :ower portions. The Delmar Formation was also exposed at the building pad grade, Qui the south side of the pad. The lower portions of both cut slopes exposing Delmar Formation were constructed as stabilization fills. No adverse soil or geoîogic conditions were observed in the finish cut slopes. 4.7 Stabilization Fill Slopes Stabilization fill slopes were constructed in the lower portions of the planned CfJt slopes, where claystone of the Delmar Formation was exposed during grading. They were built at the same grade, 2: 1 (horizontal:vertical) as the planned cut slope. The large cut slope located south of the building pad was stabilized from approximately elevation 128 to the slope toe. The smaller slope located adjacent to EI Camino Real was constructed as a stabilization fill from approximately elevation 124' or the top of slope, to the toe of slope grade. The stabilization fill extended from approximately station 63+30 to 68+00 along the east side of EI Camino Real. Both stabilization fills were constructed with a minimum horizontal width of approximately 15 feet from the slope face, and a key was excavated along the toe. The fill keys were constructed approximately 2 feet below adjacent plan grades at the toe, and 3 feet at the back or heel of the key. A backdrain was installed along the back of each stabilization fiI[ key, outletting by a solid pipe into storm drain inlet boxes. The backdrains consist of a -4 inch diameter perforated PVC pipe with a gravel and geotextile wrapping, in accordance with the recommendations of the referenced geotechnical reports. WifJlfn the EI Camino Real stabilization slope, two areas of geotextile panels were added to the backdrain to collect seepage near the top of the slopes. The approximate locations of the stabilization fills, fill keys, and backdrains are shown on the As-Graded Geotechnical Maps. Geotechnics Incorporated Home Depot U.S.A., Incorporated September 14, 1995 Project No. 0110-001-04 Doc. #4-0352 Page 8 I I I I I I I I I I I I I I I I I 5.0 GEOTECHNICAL EVALUATION AND RECOMMENDATIONS In our opinion, grading and compaction was performed in general accordance with the intent of the referenced project geotechnical recommendations, and with the requirements of the City of Encinitas. The conclusions and recommendations contained herein are based on aUf observations and testing performed between May 26, 1994 and May 20, 1995. representations are made as to the quality and extent of materials not observed. No 5.1 Compaction Based upon our observations and testing, it is our professional opinion that fill, trench backfill, and wall backfill soils were placed in substantial accordance with the compaction criteria of 90 percent of the maximum density (ASTM D1557-9~). Pavement section subgrade, base, and asphalt materials were compacted to the criteria of 95 percent of the maximum density. 5.2 Slope Stability Fill and cut slopes were constructed as discussed in Sections 4.6 to approximate maximum heights of 12 and 78 feet, respectively, at 2:1 (horizontal:vertical) or flatter. Slope stability was evaluated based on the referenced geotechnical investigations (lCG, 1991 and Geotechnics Incorporated, July 2, 1993), and site observations of geologic conditions exposed during grading. Additional recommendations for the stabilization of slopes were provided during grading in referenced geotechnical reports (Geotechnics Incorporated, March 9, 1995). In general, slopes should be stable with regard to deep-seated failure with a factor of safety of at least 1.5. Slope analysis was based on our best estimate of the prevailing geologic conditions, groundwater conditions and soil strength characteristics. It should be realized that site conditions can be complex and variable due to changes in stratigraphy, geologic structure, and changes in groundwater. It is possible that conditions can differ from those anticipated in our analysis. In addition, cuts or retaining walls constructed at the toe of slopes could decrease slope stability. Any changes to constructed slope heights, ratios, retaining walls, or addition of surcharge should be evaluated by the geotechnical consultant. Geotechnics Incorporated Home Depot U.S.A., Incorporated September 14, 1995 Project No. 01 íQ-CQ1-04 Doc. M-0362 P~ge 9 I I I I I I I I I I I I I I I I I Man-made and natural slopes will weather over time as a result of wetting and drying, biologic forces and gravity. As a result, the outer two to three feet of slope face may undergo minor down-slope creep over the years. While it is not possible to completely eliminate this effect, it can be minimized by establishing deep-rooted vegetation on the slope, maintaining the drainage patterns established during construction, and b:j~ rodent control. We recommend vegetation which is adapted to semi-arid cf,imates, therefore requiring minimal irrigation. 5.3 Foundations Based on the conditions observed and tested, the foundation recommendations provided in the previously issued foundation report (Geotechnics Incorporated, May 23, 1994) remain applicable. In our opinion, settlement of the structure on the improvement ground should be with the limits of 3/8-inch between columns as estimated by Haywood Baker (1994). 6.0 LIMITATIONS Our services were performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable soils engineers and geologists practicing in this or similar localities. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report. The samples taken and used for testing, the observations made and the in-place field testing performed are believed representative of the entire project; however, soil and geologic conditions can vary significantly between tested or observed locations. This report is issued with the understanding that it is the responsibility of the owner, or of his representative, to ensure that the information and recommendations contained herein are brought to the attention of the architect and engineer for the project and incorporated into the plans, and the necessary steps are taken to see that the contractor and subcontractors carry out such recommendations in the field. The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether they be due to natural Geotechnics Incorporated I I I I I I I I I I I I I I I I I I Home Depot U.S.A., Incorporated September 14, 1995 Project No. 0110-001-04 Doc. #4-0362 Page 10 processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control. *** GEOTECHNICS INCORPORATED ~2~ Anthony F. Belfast P.E. C 40333 Principal q~w.~ Kenneth W. Shaw, C.E.G. 1251 Project Geologist AFB/KWS/kws Geotechnics Incorporated I I I I I I I I I I I I I I I I I APPENDIX A References The Austin Hansen Group, January 31, 1994, Grading and Erosion Control Plan for Encinitas Home Depot Surcharge and Wetland Mitigation Grading Plan, sheets 2 and 3 of 12. The Austin Hansen Group, September 6, 1994, Precise Grading Plan for Encinitas Home Depot, DR. No. 91-044, sheets 15 and 16 of 22. Geotechnics Incorporated, July 2, 1993, Additional Recommendations for Slope Construction and Infiltration Basins, Proposed Home Depot, Encinitas, California, Project No. 0110- 001-00, Doc. #3-0169. Geotechnics Incorporated, July 9, 1993, Geotechnical Review of Grading and Erosion Control, Surcharge and Wetland Mitigation Plan, Proposed Home Depot, Encinitas, California, Project No. 0110-001-00, Doc. #3-0241. Geotechnics Incorporated, May 23, 1994, Updated Foundation Recommendations, Proposed Encinitas Home Depot, Store #660, Project No. 0110-001-04, Doc. #4-0193. Geotechnics Incorporated, August 30, 1994, Recommendations for Storm Drain Bedding in Slopes, The Home Depot, Encinitas, California, Project No. 0110-001-04, Doc. #4- 0317. Geotechnics Incorporated, August 31, 1994, Revised Pavement Section Recommendations, Driveway and Parking Areas, Home Depot Store #660, En cinita s, California, Project No. 0110-001-04, Doc. #4-0319. Geotechnics Incorporated, September 14, 1994, Settlement Monument Status and Pavement Section for East Stabilization Area, Home Depot Store #660, 1001 EI Camino Real, Encinitas, California, Project No. 0110-001-04, Doc. #4-0340. Geotechnics Incorporated, January 16, 1995, Pavement Design Recommendations, EI Camino Real Improvements for the Home Depot, West Side of EI Camino Real, STA: 64+61 to 80+27, Encinitas, California, Project No. 0110-001-04, Doc. #5-0030. Geotechnics Incorporated, January 18, 1995, Pavement Design Recommendations, EI Camino Real Improvements for the Home Depot, East Side of EI Camino Real, En cinita s, California, Project No. 0110-001-04, Doc. #5-0038. Geotechnics Incorporated, February 21, 1995, Use of Gravel Backfill in Utility Trenches, EI Camino Real and Olivenhain Road Improvements, Home Depot Store #660, Encinitas, California, Project No. 0110-001-04, Doc. #5-0086. Geotechnics Incorporated I I I I I I I I I I I I I I I I I APPENDIX A, CONTINUED Geotechnics Incorporated, March 9, 1995, Slope Stabilization Recommendations, EI Camino Real Improvements for the Home Depot, East Side of EI Camino Real, STA: 63+75 to 64+75, Encinitas, California, Project No. 0110-001-04, Doc. #5-0119. Geotechnics Incorporated, June 9, 1995, Dry Utility Joint Trench Crossing" EI Camino Real Improvements for the Home Depot, Encinitas, California, Project No. 0110-001-04, Doc. #5-0267. Greenberg Farrow Architecture, July 11, 1994, The Home Depot Encinitas Building and Site work Specifications and other Documents, partial release. Haywood Baker, March 8, 1994, Preliminary Proposal for Site Improvement for the Planned Home Depot, Encinitas, California. ICG Incorporated, May 30, 1991, Geotechnical Investigation, Home Depot, EI Camino Real and Olivenhain Road, En cinita s, California, Job No. 05-7454-007-00-00, Log No. 1- 648. Geotechnics Incorporated APPENDIX B I I I I I I I I I I I I I I I I I LA80RA TORY TESTING Selected representative samples of soils encountered were tested using test methods of the American Society for Testing and Materials, or other generally accepted standards. A brief description of the tests performed follows: Classification: Soils were classified visually according to the Unified Soil Classifica~ion System. Visual classification was supplemented by laboratory testing of selected samples and classification in accordance with ASTM 02487. Maximum Density Optimum Moisture: The maximum density and optimum moisture for representative soil samples were determined by using test method ASTM D1557-78, modified Proctor. The test results are summarized in Figure 8-1. HVEEM Density: The HVEEM densities for representative asphaltic concrete samples \.vere determined by using test method ASTM D1562. These test results are also summarized in Figure 8-1. They are reported in the maximum density column of the table for convenience. Expansion Index: The expansion index of a selected sample was performed in accordance with ASTM 04829-88 (U8C test method). The result is provided on Figure 8-2. Geotechnics Incorporated I I I I I I I I I I I I I I I I I Sample Description Max. Dry Moisture No. Density (pcf) Content (%) 1 light brown silty sand (SM). 120.0 11.2 2 Brown silty sand (SM). 118.6 11.6 3 Olive green clay (CL). 110.4 13.2 4 light olive brown clayey sand (SC). 122.0 11.2 5 light brown silty fine sand (SM). 113.7 13.7 6 Olive brown sandy clay (CL). 115.0 13.1 7 Imported red brown silty sand (SM). 121.3 12.1 8 Imported orange brown fine sand (SP). 113.0 12.0 9 Gray brown Class II aggregate base (B). 127.1 8.3 10 Gray brown fine sand (SW). 105.0 15.0 11 Brown silty sand (SM). 118.5 10.0 12 Brown clayey sand (SC). 118.5 11.0 13 light olive brown clayey sand (SC). 110.8 17.6 14 Olive brown clayey sand (SC). 126.0 9.5 15 Brown clayey sand (SC). 123.4 9.3 16 light olive brown clayey sand (SC). 121.0 9.7 17 Brown fine silty sand (SM). 122.2 11.3 18 Gray brown (Ready Mix) Class II aggregate base (B). 132.7 8.3 19 Olive green claystone (CL). 115.0 13.8 20 Olive green to orange brown mottled claystone (CL). 109.1 17.7 21 Gray brown Class II aggregate base (B). 139.0 5.4 22 Black, red and olive green mottled claystone (CL). 109.0 13.5 23 Palomar Class II aggregate base (B). 142.4 4.0 24 Gray brown Class II aggregate base (B). 135.7 6.7 25 AR4000 1/2' asphaltic concrete (AC). 146.3 N/A 26 AR4000 1/2' asphaltic concrete (AC). 147.1 N/A 27 AR4000 0/.' asphaltic concrete (AC). 148.7 N/A 28 Gray brown fine sand (SW). 105.0 15.0 - Maximum Density Tests Home Depot Encinitas Home Depot USA Geotechnics Incorporated Project No. 0110-001-04 Document No. 4-0362 Figure B-1 I I I I I I I I I I I I I I I I I I EXPANSION TEST RESULTS UNIFORM BUILDING CODE TEST METHOD 29-2 SAMPLE cut slope in claystone EXPANSION INDEX 109 UBC TABLE NO. 29-C, CLASSIFICATION OF EXPANSIVE SOIL EXPANSION INDEX POTENTIAL EXPANSION 0-20 Very low 21-50 Low 51-90 Medium 91-130 High Above 130 Very high Geotechnics Incorporated Laboratory Test Results Home Depot Store #660 Home Depot USA Project No. 0110-001-04 Document No. 4-0362 Figure No. B-2 Test Test Elevation! Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method I [ft] [pct] [%] [pct] [%J [%J 1 5/26/94 81 1 120.0 3.5 102.7 86 90 2 ;\JU I 2 5/26/94 81 1 120.0 8.8 108.3 90 90 NU 3 5/26/94 83 1 120.0 7.6 109.8 92 90 NU 4 5/26/94 82 1 120.0 8.2 110.8 92 90 NU 5 5/26/94 82 1 120.0 10.3 105.3 88 90 6 NU I 6 5/26/94 82 1 120.0 7.0 107.5 90 90 NU 7 5/26/94 83 1 120.0 10.4 106.9 89 90 8 NU 8 5/26/94 83 1 120.0 13.1 108.6 91 90 NU I 9 5/27/94 82 3 110.4 15.9 100.6 91 90 NU 10 5/27/94 82 3 110.4 17.8 97.6 88 90 11 NU 11 5/27/94 82 3 110.4 18.2 97.8 89 90 12 NU 12 5/27/94 83 5 113.7 17.7 104.2 92 90 NU I 13 5/27/94 82 3 110.4 20.4 101.3 92 90 NU 14 5/27/94 83 3 110.4 17.5 102.1 92 90 NU 15 5/27/94 81 3 110.4 16.1 99.1 90 90 NU I 16 5/31/94 83 1 120.0 8.3 111.7 93 90 NU 17 5/31/94 83 1 120.0 10.0 112.4 94 90 NU 18 5/31/94 84 2 118.6 13.1 107.9 91 90 NU 19 5/31/94 83 1 120.0 10.7 112.7 94 90 NU I 20 5/31/94 84 3 110.4 19.6 95.6 87 90 21 NU 21 5/31/94 85 2 118.6 10.1 105.3 89 90 24 NU 22 5/31/94 84 2 118.6 11.1 106.2 90 90 NU I 23 5/31/94 85 2 118.6 10.9 104.5 88 90 25 NU 24 6/1/94 85 2 118.6 9.6 107.3 90 90 NU 25 6/1/94 85 1 120.0 10.8 112.8 94 90 NU I 26 6/1/94 84 2 118.6 5.2 106.9 90 90 NU 27 6/1/94 86 2 118.6 15.6 106.5 90 90 NU 28 6/1/94 86 2 118.6 13.9 106.5 90 90 NU 29 6/1/94 87 1 120.0 11.6 109.1 91 90 NU I 30 6/1/94 86 5 113.7 19.5 104.3 92 90 NU 31 6/1/94 87 5 113.7 17.7 104.6 92 90 NU 32 6/1/94 87 1 120.0 12.1 109.5 91 90 NU I 33 6/2/94 87 2 118.6 12.0 106.2 90 90 ¡\JU 34 6/2/94 88 1 120.0 11.2 109.5 91 90 NU 35 6/2/94 86 1 120.0 11.5 110.0 92 90 NU 36 6/2/94 87 2 118.6 12.5 107.1 90 90 NU I 37 6/2/94 89 1 120.0 12.2 109.7 91 90 NU 38 6/2/94 89 1 120.0 11.9 109.7 91 90 NU 39 6/2/94 90 2 118.6 12.3 108.1 91 90 NU I 40 7/5/94 83 3 110.4 11.7 103.6 94 90 NU 41 7/5/94 83 3 110.4 16.5 103.0 93 90 NU 42 7/5/94 85 3 110.4 8.7 104.1 94 90 NU 43 7/27/94 82 1 120.0 6.3 108.5 90 90 NU I 44 7/27/94 82 1 120.0 4.6 108.1 90 90 NU 45 7/27/94 82 1 120.0 4.2 109.3 91 90 NU 46 7/27/94 83 4 122.0 14.7 114.6 94 90 NU I 47 7/27/94 83 4 122.0 13.5 113.7 93 90 NU 48 7/27/94 82 4 122.0 6.2 114.3 94 90 NU 49 7/27/94 81 4 122.0 9.2 118.2 97 90 NU 50 7/29/94 83 2 118.6 8.1 101.8 86 90 52 NU I I Geotechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-1 I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method [ft] [pet] [%] [pet] [%] [%] 51 7/29/94 83 1 120.0 7.9 106.1 88 90 53 NU I 52 7/29/94 83 1 120.0 9.1 108.8 91 90 NU 53 7/29/94 83 2 118.6 10.2 106.5 90 90 NU 54 7/29/94 84 1 120.0 7.4 113.2 94 90 NU 55 7/29/94 84 2 118.6 9.4 106.7 90 90 NU I 56 7/29/94 84 2 118.6 9.9 106.0 89 90 57 NU 57 7/29/94 84 2 118.6 9.5 108.0 91 90 NU 58 7/29/94 85 1 120.0 9.8 113.0 94 90 NU I 59 7/29/94 86 1 120.0 11.4 109.3 91 90 NU 60 7/29/94 85 2 118.6 11.6 111.0 94 90 NU 61 7/29/94 85 2 118.6 9.5 108.4 91 90 NU 62 7/29/94 86 2 118.6 10.5 106.1 90 90 NU I 63 7/29/94 87 2 118.6 9.1 106.1 90 90 NU 64 7/29/94 86 2 118.6 9.0 107.6 91 90 NU 65 7/29/94 87 2 118.6 8.5 107.1 90 90 NU I 66 7/29/94 86 2 118.6 11.6 107.9 91 90 NU 67 7/29/94 87 3 110.4 14.0 100.9 91 90 NU 68 7/29/94 86 3 110.4 14.5 101.0 91 90 NU 69 8/1/94 86 3 110.4 16.3 100.7 91 90 NU I 70 8/1/94 87 3 110.4 18.5 104.5 95 90 NU 71 8/1/94 87 3 110.4 22.8 99.6 90 90 NU 72 8/1/94 86 3 110.4 17.4 103.4 94 90 NU I 73 8/1/94 86 3 110.4 13.6 100.3 91 90 NU 74 8/1/94 88 2 118.6 14.6 106.8 90 90 NU 75 8/1/94 89 1 120.0 15.7 108.7 91 90 NU 76 8/1/94 88 6 115.0 17.9 104.7 91 90 NU I 77 8/1/94 88 3 110.4 16.9 102.3 93 90 NU 78 8/1/94 89 3 110.4 18.2 101.5 92 90 NU 79 8/2/94 88 3 110.4 20.0 1 02.4 93 90 NU I 80 8/2/94 89 3 110.4 18.0 101.9 92 90 NU 81 8/2/94 90 6 115.0 17.2 103.6 90 90 NU 82 8/2/94 88 6 115.0 15.9 104.9 91 90 NU 83 8/2/94 89 3 110.4 22.4 101.5 92 90 NU I 84 8/2/94 90 3 110.4 24.2 98.9 90 90 NU 85 8/2/94 90 6 115.0 20.5 103.0 90 90 NU 86 8/2/94 91 6 115.0 17.2 103.6 90 90 NU I 87 8/2/94 91 6 115.0 19.4 105.2 91 90 NU 88 8/2/94 92 3 110.4 22.0 102.0 92 90 NU 89 8/2/94 92 6 115.0 16.8 105.8 92 90 NU I 90 8/3/94 80 4 122.0 11.2 115.0 94 90 NU 91 8/3/94 80 4 122.0 10.1 117.9 97 90 NU 92 8/3/94 80 4 122.0 11.2 112.2 92 90 NU 93 8/3/94 82 4 122.0 10.0 117.4 96 90 NU I 94 8/4/94 83 4 122.0 6.1 116.4 95 90 NU 95 8/4/94 81 4 122.0 8.8 117.3 96 90 NU 96 8/4/94 81 4 122.0 11.4 115.4 95 90 NU I 97 8/4/94 82 1 120.0 9.5 111.4 93 90 NU 98 8/4/94 83 1 120.0 12.3 111.4 93 90 NU 99 8/4/94 84 1 120.0 11.1 112.0 93 90 NU 100 8/4/94 84 2 118.6 11.5 108.8 92 90 NU I I Geotechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Eneinitas Doc. # 4-0362 Home Depot USA Figure C-2 I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method I [ft] [pct] [%] [pct] [%] [%] 101 8/4/94 83 4 122.0 9.7 111.1 91 90 NU I 102 8/4/94 84 4 122.0 12.4 110.3 90 90 NU 103 8/4/94 84 4 122.0 12.0 112.5 92 90 NU 104 8/4/94 85 4 122.0 10.8 114.3 94 90 NU 105 8/5/94 84 4 122.0 11.1 112.8 92 90 NU I 106 8/5/94 85 4 122.0 13.7 110.7 91 90 NU 107 8/5/94 84 2 118.6 12.4 108.3 91 90 NU 108 8/5/94 85 6 115.0 12.4 106.1 92 90 NU I 109 8/9/94 86 3 110.4 14.9 99.9 90 90 NU 110 8/9/94 86 3 110.4 16.6 99.3 90 90 NU 111 8/9/94 83 6 115.0 14.1 104.3 91 90 NU 112 8/9/94 84 3 110.4 15.8 99.6 90 90 NU I 113 8/9/94 85 3 110.4 18.0 100.9 91 90 NU 114 8/9/94 86 6 115.0 15.1 104.9 91 90 NU 115 8/9/94 86 5 113.7 15.4 102.4 90 90 NU I 116 8/9/94 86 2 118.6 12.4 106.2 90 90 NU 117 8/9/94 86 6 115.0 16.5 103.2 90 90 NU 118 8/9/94 87 6 115.0 17.3 103.1 90 90 NU 119 8/9/94 83 3 110.4 13.7 101.9 92 90 NU I 120 8/9/94 84 4 122.0 9.0 110.6 91 90 NU 121 8/9/94 84 6 115.0 16.2 105.2 91 90 NU 122 8/9/94 85 6 115.0 15.2 105.3 92 90 NU I 123 8/9/94 86 4 122.0 10.1 112.1 92 90 NU 124 8/9/94 87 2 118.6 16.1 107.3 90 90 NU 125 8/10/94 85 6 115.0 13.2 105.0 91 90 NU 126 8/10/94 86 1 120.0 14.4 109.2 91 90 NU I 127 8/10/94 88 3 110.4 14.6 101.4 92 90 NU 128 8/10/94 89 5 113.7 21.1 102.3 90 90 NU 129 8/10/94 88 2 118.6 10.1 106.6 90 90 NU I 130 8/10/94 89 5 113.7 11.9 102.5 90 90 NU 131 8/10/94 90 5 113.7 13.8 101.9 90 90 NU 132 8/10/94 86 5 113.7 17.0 102.2 90 90 NU 133 8/10/94 87 5 113.7 19.7 102.0 90 90 NU I 134 8/10/94 86 6 115.0 14.8 105.1 91 90 NU 135 8/10/94 87 6 115.0 13.7 104.9 91 90 NU 136 8/10/94 87 6 115.0 11.4 105.2 91 90 NU I 137 8/10/94 83 6 115.0 14.6 106.8 93 90 NU 138 8/11/94 84 6 115.0 16.0 106.7 93 90 NU 139 8/11/94 88 3 110.4 18.7 102.8 93 90 NU 140 8/11/94 89 4 122.0 15.2 110.5 91 90 NU I 141 8/11/94 88 6 115.0 13.3 103.8 90 90 NU 142 8/11/94 89 3 110.4 17.6 100.3 91 90 NU 143 8/11/94 86 6 115.0 14.4 104.7 91 90 NU I 144 8/11/94 87 2 118.6 14.4 107.2 90 90 NU 145 8/11/94 88 6 115.0 15.9 104.5 91 90 NU 146 8/11/94 89 4 122.0 14.8 109.7 90 90 NU 147 8/11/94 90 1 120.0 11.5 108.5 90 90 NU I 148 8/11/94 91 3 110.4 19.8 100.5 91 90 NU 149 8/11/94 91 6 115.0 13.7 105.0 91 90 NU 150 8/11/94 91 6 115.0 16.3 104.8 91 90 NU I I Geotechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-3 I I I I I I I I I I I I I I I I I I I I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method [ft] [pct] [%] [pet] [%] [%] 151 8/11/94 90 6 115.0 17.6 105.1 91 90 NU 152 8/11/94 91 3 110.4 20.1 97.5 88 90 153 NU 153 8/12/94 91 3 110.4 19.9 100.9 91 90 NU 154 8/12/94 88 2 118.6 7.4 107.0 90 90 NU 155 8/12/94 89 5 113.7 17.8 102.4 90 90 NU 156 8/12/94 90 6 115.0 13.8 103.5 90 90 NU 157 8/16/94 93 4 122.0 11.4 111.0 91 90 NU 158 8/16/94 94 1 120.0 10.9 109.5 91 90 NU 159 8/16/94 95 4 122.0 9.3 110.1 90 90 NU 160 8/16/94 96 2 118.6 11.7 106.1 90 90 NU 161 8/16/94 98 3 110.4 5.4 99.6 90 90 NU 162 8/16/94 99 3 110.4 5.0 100.6 91 90 NU 163 8/16/94 100 2 118.6 5.6 105.9 89 90 167 NU 164 8/16/94 102 5 113.7 6.0 103.6 91 90 NU 165 8/16/94 100 5 113.7 5.3 102.4 90 90 NU 166 8/16/94 102 3 110.4 7.1 101.5 92 90 NU 167 8/16/94 100 2 118.6 10.4 106.8 90 90 NU 168 8/16/94 102 2 118.6 12.4 107.9 91 90 NU 169 8/16/94 103 2 118.6 11.7 107.3 90 90 NU 170 8/16/94 105 1 120.0 9.2 108.2 90 90 NU 171 8/16/94 106 2 118.6 8.5 106.5 90 90 NU 172 8/16/94 108 5 113.7 9.6 102.3 90 90 NU 173 8/17/94 110 4 122.0 8.4 110.6 91 90 NU 174 8/17/94 111 1 120.0 8.4 109.6 91 90 NU 175 8/17/94 112 5 113.7 8.9 102.6 90 90 NU 176 8/17/94 111 6 115.0 7.4 103.9 90 90 NU 177 8/17/94 113 4 122.0 13.1 111.0 91 90 NU 178 8/17/94 115 4 122.0 16.0 109.8 90 90 NU 179 8/17/94 115 4 122.0 14.9 109.7 90 90 NU 180 8/17/94 117 1 120.0 13.5 109.1 91 90 NU 181 8/17/94 116 2 118.6 14.3 106.6 90 90 NU 182 8/17/94 119 6 115.0 15.9 103.2 90 90 NU 183 8/17/94 121 5 113.7 16.2 101.7 90 90 NU 184 8/17/94 123 5 113.7 17.9 102.0 90 90 NU 185 8/17/94 125 5 113.7 16.4 102.8 90 90 NU 186 8/19/94 89 2 118.6 11.0 106.1 90 90 NU 187 8/19/94 88 4 122.0 9.3 112.8 92 90 NU 188 8/19/94 89 2 118.6 13.7 108.5 91 90 NU 189 8/19/94 91 2 118.6 14.9 108.1 91 90 NU 190 8/22/94 89 2 118.6 10.6 106.6 90 90 NU 191 8/22/94 91 2 118.6 9.9 106.7 90 90 NU 192 8/22/94 91 2 118.6 15.0 108.4 91 90 NU 193 8/23/94 91 2 118.6 12.3 104.9 88 90 195 NU 194 8/23/94 94 5 113.7 10.9 103.9 91 90 NU 195 8/23/94 91 2 118.6 11.9 106.7 90 90 NU 196 8/23/94 89 4 122.0 9.5 110.1 90 90 NU 197 8/23/94 91 4 122.0 7.5 111.2 91 90 NU 198 8/23/94 92 1 120.0 10.3 109.3 91 90 NU 199 8/23/94 92 2 118.6 10.6 106.7 90 90 NU 200 8/23/94 92 1 120.0 10.9 108.1 90 90 NU ~otechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-4 I I I I I I I I I I I I I I I I I I I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method [ftJ [pet] [%J [pet] [%] [%] 201 8/24/94 86 3 110.4 15.3 98.4 89 90 203 NU 202 8/24/94 88 6 115.0 14.6 103.3 90 90 NU 203 8/24/94 86 3 110.4 15.0 100.8 91 90 NU 204 8/25/94 94 6 115.0 . 14.7 103.5 90 90 NU 205 8/25/94 95 3 110.4 18.9 101.3 92 90 NU 206 8/26/94 90 2 118.6 10.5 105.4 89 90 210 NU 207 8/26/94 92 2 118.6 10.2 105.6 89 90 211 NU 208 8/26/94 93 6 115.0 14.9 103.8 90 90 NU 209 8/28/94 97 2 118.6 10.8 106.4 90 90 NU 210 8/28/94 90 6 115.0 14.7 103.7 90 90 NU 211 8/28/94 92 2 118.6 11.3 107.1 90 90 NU 212 8/29/94 91 6 115.0 15.2 104.0 90 90 NU 213 8/29/94 92 3 110.4 15.8 100.6 91 90 NU 214 8/30/94 94 6 115.0 16.7 103.7 90 90 NU 215 8/30/94 93 3 110.4 17.5 99.9 90 90 NU 216 9/2194 83 4 122.0 12.0 109.7 90 90 NU 217 9/2194 84 1 120.0 11.7 108.2 90 90 NU 218 9/2194 85 2 118.6 13.0 107.4 91 90 NU 219 9/2194 86 2 118.6 13.3 106.4 90 90 NU 220 9/6/94 85 4 122.0 10.3 112.7 92 90 NU 221 9/6/94 86 4 122.0 8.6 113.1 93 90 NU 222 9/6/94 88 6 115.0 9.1 103.6 90 90 NU 223 9/6/94 89 2 118.6 9.9 105.7 89 90 224 NU 224 9/6/94 89 2 118.6 11.0 107.3 90 90 NU 225 9/7/94 112 7 121.3 5.4 115.9 96 90 NU 226 9/7/94 114 7 121.3 8.9 110.5 91 90 NU 227 9/7/94 116 7 121.3 9.8 111.9 92 90 NU 228 9/7/94 118 7 121.3 10.5 112.2 92 90 NU 229 9/7/94 112 7 121.3 8.0 116.8 96 90 NU 230 9/7/94 117 7 121.3 10.2 113.8 94 90 NU 231 9/7/94 120 7 121.3 9.6 113.0 93 90 NU 232 9/7/94 119 7 121.3 10.3 113.2 93 90 NU 233 9/8/94 88 1 120.0 10.1 107.2 89 90 234 NU 234 9/8/94 88 1 120.0 9.6 108.0 90 90 NU 235 9/8/94 82 2 118.6 18.0 104.9 88 90 236 NU 236 9/8/94 82 2 118.6 17.6 106.2 90 90 NU 237 9/9/94 84 2 118.6 17.5 106.5 90 90 NU 238 9/9/94 93 3 110.4 15.9 100.8 91 90 NU 239 9/9/94 93 6 115.0 14.6 104.0 90 90 NU 240 9/9/94 93 3 110.4 17.1 100.4 91 90 NU 241 9/9/94 93 2 118.6 11.5 108.0 91 90 NU 242 9/9/94 93 6 115.0 16.1 105.0 91 90 NU 243 9/9/94 93 5 113.7 13.0 103.4 91 90 NU 244 9/12194 93 6 115.0 15.8 104.4 91 90 NU 245 9/12194 93 5 113.7 13.6 103.3 91 90 NU 246 9/13/94 93 6 115.0 15.6 103.5 90 90 NU 247 9/13/94 93 6 115.0 16.3 105.8 92 90 NU 248 9/13/94 85 3 110.4 15.0 100.3 91 90 NU 249 9/13/94 86 3 110.4 15.2 99.9 90 90 NU 250 9/14/94 88 2 118.6 10.5 107.3 90 90 NU ~eotechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-5 I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method I [ftJ [pet] [%J [pet] [%J [%J 251 9/14/94 90 1 120.0 12.3 107.7 90 90 NU I 252 3/2195 120 15 123.4 8.5 113.3 92 90 NU 253 3/2195 122 15 123.4 8.6 115.9 94 90 NU 254 3/10/95 82 11 118.5 8.6 105.2 89 90 255 NU 255 3/10/95 82 11 118.5 9.2 107.0 90 90 NU I 256 3/14/95 119 20 109.1 18.6 98.4 90 90 NU 257 3/14/95 120 11 118.5 14.1 110.5 93 90 NU 258 3/14/95 121 11 118.5 16.8 110.1 93 90 NU I 259 3/14/95 122 11 118.5 15.5 109.7 93 90 NU 260 3/14/95 123 15 123.4 12.6 113.7 92 90 NU 261 3/14/95 125 15 123.4 13.5 113.3 92 90 NU 262 3/14/95 126 15 123.4 13.9 114.5 93 90 NU I 263 3/14/95 127 15 123.4 14.4 112.1 91 90 NU 264 3/14/95 124 15 123.4 10.9 111.2 90 90 NU 265 3/14/95 125 15 123.4 11.3 111.9 91 90 NU I 266 3/15/95 80 12 118.5 12.4 106.6 90 90 NU 267 3/15/95 82 12 118.5 10.5 106.7 90 90 NU 268 3/17/95 121 11 118.5 12.9 107.5 91 90 NU 269 4/6/95 84 15 123.4 11.4 112.8 91 90 NU I AC-1 11/18/94 FG 25 146.3 N/A 143.3 98 95 NU AC-2 11/18/94 FG 25 146.3 N/A 150.7 103 95 NU I AC-3 11/18/94 FG 25 146.3 N/A 148.6 102 95 NU AC-4 11/18/94 FG 25 146.3 N/A 145.9 100 95 NU AC-5 11/18/94 FG 25 146.3 N/A 141.7 97 95 [\jU AC-6 11/18/94 FG 25 146.3 N/A 156.0 107 95 NU I AC-7 11/18/94 FG 25 146.3 N/A 146.1 100 95 NU AC-8 11/18/94 FG 25 146.3 N/A 141.9 97 95 NU AC-9 11/21/94 FG 25 146.3 N/A 144.0 98 95 NU I AC-10 11/21/94 FG 25 146.3 N/A 145.5 99 95 NU AC-11 11/21/94 FG 25 146.3 N/A 141.5 97 95 NU AC-12 11/21/94 FG 25 146.3 N/A 140.2 96 95 NU AC-13 11/21/94 FG 25 146.3 N/A 142.2 97 95 NU I AC-14 11/21/94 FG 25 146.3 N/A 147.4 101 95 NU AC-15 11/21/94 FG 25 146.3 N/A 141.2 97 95 NU AC-16 11/21/94 FG 25 146.3 N/A 142.0 97 95 NU I AC-17 11/21/94 FG 25 146.3 N/A 141.0 96 95 NU AC-18 11/21/94 FG 25 146.3 N/A 141.7 97 95 NU AC-19 11/21/94 FG 25 146.3 N/A 139.8 96 95 NU I AC-20 11/21/94 FG 25 146.3 N/A 144.0 98 95 NU AC-21 11/21/94 FG 25 146.3 N/A 137.3 94 95 NU AC-22 11/21/94 FG 25 146.3 N/A 143.2 98 95 NU AC-23 11/21/94 FG 25 146.3 N/A 143.2 98 95 NU I AC-24 11/21/94 FG 25 146.3 N/A 140.7 96 95 NU AC-25 11/21/94 FG 25 146.3 N/A 139.6 95 95 NU AC-26 11/21/94 FG 25 146.3 N/A 147.9 101 95 NU I AC-27 11/21/94 FG 25 146.3 N/A 140.0 96 95 NU AC-28 11/21/94 FG 25 146.3 N/A 142.0 97 95 NU AC-29 11/21/94 FG 25 146.3 N/A 141.8 97 95 NU AC-30 11/21/94 FG 25 146.3 N/A 143.1 98 95 NU I I Geotechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-6 I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method I [ft] [pet] [%] [pet] [%] [%] AC-31 11/21/94 FG 25 146.3 N/A 139.9 96 95 NU I AC-32 11/21/94 FG 25 146.3 N/A 142.1 97 95 NU AC-33 2/27/95 FG 26 147.1 N/A 141.9 96 95 NU AC-34 2/27/95 FG 26 147.1 N/A 140.8 96 95 NU AC-35 2/27/95 FG 26 147.1 N/A 142.1 97 95 NU I AC-36 2/27/95 FG 26 147.1 N/A 135.2 92 95 NU AC-37 2/27/95 FG 26 147.1 N/A 142.6 97 95 NU AC-38 2/27/95 FG 26 147.1 N/A 136.8 93 95 NU I AC-39 2/27/95 FG 26 147.1 N/A 139.8 95 95 NU AC-40 2/27/95 FG 26 147.1 N/A 137.5 93 95 NU AC-41 2/27/95 FG 26 147.1 N/A 141.1 96 95 NU AC-42 2/28/95 FG 26 147.1 N/A 143.1 97 95 NU I AC-43 2/28/95 FG 26 147.1 N/A 140.3 95 95 NU AC-44 2/28/95 FG 26 147.1 N/A 141.0 96 95 NU AC-45 2/28/95 FG 26 147.1 N/A 147.5 100 95 NU I AC-46 2/28/95 FG 26 147.1 N/A 156.1 106 95 NU AC-47 2/28/95 FG 26 147.1 N/A 137.4 93 95 NU AC-48 2/28/95 FG 26 147.1 N/A 143.1 97 95 NU AC-49 2/28/95 FG 26 147.1 NA 136.4 93 95 NU I AC-50 2/28/95 FG 26 147.1 NA 137.4 93 95 NU AC-51 2/28/95 FG 26 147.1 NA 135.8 92 95 NU AC-52 2/28/95 FG 26 147.1 NA 133.2 91 95 NU I AC-53 2/28/95 FG 26 147.1 NA 139.8 95 95 NU AC-54 2/28/95 FG 26 147.1 NA 139.7 95 95 NU AC-55 2/28/95 FG 26 147.1 NA 143.1 97 95 NU AC-56 2/28/95 FG 26 147.1 NA 135.0 92 95 NU I AC-57 4/18/95 FG 27 148.7 NA 142.1 96 95 NU AC-58 4/18/95 FG 27 148.7 NA 143.3 96 95 NU AC-59 4/18/95 FG 27 148.7 NA 137.0 92 95 NU I AC-60 4/18/95 FG 27 148.7 NA 141.0 95 95 NU AC-61 4/18/95 FG 27 148.7 NA 138.1 93 95 NU AC-62 4/18/95 FG 27 148.7 NA 139.0 93 95 NU AC-63 4/18/95 FG 27 148.7 NA 137.4 92 95 NU I AC-64 4/18/95 FG 27 148.7 NA 141.5 95 95 NU AC-65 4/20/95 FG 27 148.7 NA 142.4 96 95 NU AC-66 4/20/95 FG 27 148.7 NA 142.0 95 95 NU I AC-67 4/20/95 FG 27 148.7 NA 143.7 97 95 NU AC-68 4/20/95 FG 27 148.7 NA 143.7 97 95 NU AC-69 4/20/95 FG 27 148.7 NA 140.8 95 95 NU I AC-70 4/20/95 FG 27 148.7 NA 142.6 96 95 NU AC-71 4/20/95 FG 27 148.7 NA 142.7 96 95 NU AC-72 4/20/95 FG 27 148.7 NA 141.3 95 95 NU AC-73 4/20/95 FG 27 148.7 NA 147.8 99 95 NU I AC-74 4/20/95 FG 27 148.7 NA 143.4 96 95 NU AC-75 4/20/95 FG 27 148.7 NA 140.9 95 95 NU AC-76 4/24/95 FG 26 147.1 NA 141.4 96 95 NU I AC-77 4/24/95 FG 26 147.1 NA 146.9 100 95 NU AC-78 4/24/95 FG 26 147.1 NA 138.3 94 95 NU AC-79 4/24/95 FG 26 147.1 NA 139.5 95 95 NU AC-80 4/24/95 FG 26 147.1 NA 146.5 100 95 NU I I Geotechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Eneinitas Doc. # 4-0362 Home Depot USA Figure C-7 I I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method I [ft] [pet] [%] [pet] [%] [%] AC-81 4/24/95 FG 26 147.1 NA 139.8 95 95 NU I AC-82 4/24/95 FG 26 147.1 NA 141.2 96 95 NU AC-83 4/24/95 FG 26 147.1 NA 140.6 96 95 NU AC-84 4/28/95 FG 27 148.7 NA 140.5 94 95 NU AC-85 4/28/95 FG 27 148.7 NA 142.6 96 95 NU I AC-86 4/28/95 FG 27 148.7 NA 144.8 97 95 NU AC-87 4/28/95 FG 27 148.7 NA 147.7 99 95 NU AC-88 4/28/95 FG 27 148.7 NA 142.2 96 95 NU I AC-89 4/28/95 FG 27 148.7 NA 141.7 95 95 NU AC-90 4/28/95 FG 27 148.7 NA 145.6 98 95 NU AC-91 4/28/95 FG 27 148.7 NA 142.3 96 95 NU AC-92 4/28/95 FG 27 148.7 NA 147.3 99 95 NU I AC-93 4/28/95 FG 27 148.7 NA 145.7 98 95 NU AC-94 4/28/95 FG 26 147.1 NA 143.6 98 95 NU AC-95 4/28/95 FG 26 147.1 NA 141.2 96 95 NU I AC-96 4/28/95 FG 26 147.1 NA 140.8 96 95 NU AC-97 4/28/95 FG 26 147.1 NA 145.9 99 95 NU AC-98 4/28/95 FG 26 147.1 NA 142.0 97 95 NU AC-99 4/28/95 FG 26 147.1 NA 141.9 96 95 NU I AC-100 5/15/95 FG 27 148.7 NA 145.3 98 95 NU AC-101 5/15/95 FG 27 148.7 NA 143.9 97 95 NU AC-102 5/16/95 FG 27 148.7 NA 142.4 96 95 NU I AC-103 5/16/95 FG 27 148.7 NA 147.7 99 95 NU AC-104 5/16/95 FG 27 148.7 NA 139.7 95 95 NU AC-105 5/16/95 FG 27 148.7 NA 146.3 98 95 NU AC-106 5/16/95 FG 27 148.7 NA 146.9 99 95 NU I AC-107 5/16/95 FG 27 148.7 NA 144.0 97 95 NU AC-108 5/16/95 FG 26 147.1 NA 144.6 98 95 NU AC-109 5/16/95 FG 26 147.1 NA 149.0 101 95 NU I AC-110 5/16/95 FG 26 147.1 NA 139.5 95 95 NU AC-111 5/16/95 FG 26 147.1 NA 141.8 96 95 NU AC-112 5/16/95 FG 26 147.1 NA 146.9 100 95 NU AC-113 5/16/95 FG 26 147.1 NA 143.7 98 95 NU I AC-114 5/16/95 FG 26 147.1 NA 141.1 96 95 NU AC-115 5/16/95 FG 26 147.1 NA 145.0 99 95 NU AC-116 5/16/95 FG 26 147.1 NA 139.4 95 95 NU I AC-117 5/16/95 FG 26 147.1 NA 144.8 98 95 NU AC-118 5/16/95 FG 26 147.1 NA 140.9 96 95 NU 8-1 11/15/94 92 9 127.1 7.1 124.0 98 95 NU I 8-2 11/15/94 90 9 127.1 7.2 128.6 101 95 NU 8-3 11/15/94 87 9 127.1 7.0 122.8 97 95 NU 8-4 11/15/94 86 9 127.1 7.4 123.9 97 95 NU I 8-5 11/17/95 90 9 127.1 7.0 124.6 98 95 NU 8-6 11/17/95 91 9 127.1 5.3 118.1 93 95 8-9 NU 8-7 11/17/95 91 9 127.1 6.3 122.5 96 95 NU 8-8 11/17/95 87 9 127.1 6.0 125.5 99 95 NU I 8-9 11/17/95 91 9 127.1 5.9 125.3 99 95 NU 8-10 11/17/95 89 9 127.1 6.2 124.2 98 95 NU 8-11 11/17/95 86 9 127.1 6.6 126.7 100 95 NU I Geotechnics CompactionTest Results Project No. 0110-001-04 I Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-a I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method I [ft] [pct] [%] [pct] [%] [%] 8-12 11/17/95 85 9 127.1 6.8 127.6 100 95 NU I 8-13 11/17/95 87 9 127.1 6.2 121.4 96 95 NU 8-14 11/17/95 91 9 127.1 6.9 126.3 99 95 NU 8-15 11/17/95 88 9 127.1 7.8 127.0 100 95 NU 8-16 11/17/95 84 9 127.1 7.3 123.1 97 95 NU I 8-17 11/17/95 92 9 127.1 10.9 118.8 93 95 8-20 NU 8-18 11/17/95 92 9 127.1 12.1 120.8 95 95 NU 8-19 11/17/95 92 9 127.1 10.2 124.9 98 95 NU I 8-20 11/17/95 92 9 127.1 10.4 121.3 95 95 NU 8-21 2/2/95 92 9 127.1 7.8 128.3 101 95 NU 8-22 2/9/95 91 9 127.1 8.9 122.7 97 95 NU 8-23 2/9/95 91 9 127.1 9.6 124.1 98 95 NU I 8-24 2/9/95 91 9 127.1 9.0 121.0 95 95 NU 8-25 2/10/95 91 9 127.1 9.2 121.3 95 95 NU 8-26 2/10/95 92 9 127.1 7.9 121.8 96 95 NU I 8-27 2/17/95 92 9 127.1 9.6 119.5 95 95 NU 8-28 2/18/95 93 9 127.1 8.9 122.2 96 95 NU 8-29 2/18/95 93 9 127.1 6.9 122.0 96 95 NU 8-30 2/25/95 94 9 127.1 6.2 126.2 99 95 NU I 8-31 2/25/95 95 9 127.1 5.5 125.7 99 95 NU 8-32 2/25/95 98 9 127.1 4.9 127.1 100 95 NU 8-33 2/25/95 94 9 127.1 7.7 127.3 100 95 NU I 8-34 2/25/95 97 9 127.1 5.7 124.2 98 95 NU 8-35 2/25/95 93 9 127.1 6.4 122.5 96 95 NU 8-36 2/25/95 93 9 127.1 6.6 118.5 93 95 8-49 NU 8-37 2/25/95 93 9 127.1 6.3 121.2 95 95 NU I 8-38 2/25/95 93 9 127.1 7.6 128.4 101 95 NU 8-39 2/25/95 92 9 127.1 6.5 125.8 99 95 NU 8-40 2/25/95 90 9 127.1 5.9 122.8 97 95 NU I 8-41 2/25/95 93 9 127.1 7.0 120.8 95 95 NU 8-42 2/25/95 93 9 127.1 6.3 119.6 94 95 8-50 NU 8-43 2/25/95 93 9 127.1 6.5 123.3 97 95 NU 8-44 2/25/95 90 9 127.1 8.2 119.6 94 95 8-51 NU I 8-45 2/25/95 96 9 127.1 9.3 125.6 99 95 NU 8-46 2/25/95 100 9 127.1 6.8 122.1 96 95 NU 8-47 2/25/95 90 9 127.1 7.6 126.9 100 95 NU I 8-48 2/25/95 92 9 127.1 6.9 125.5 99 95 NU 8-49 2/25/95 93 9 127.1 6.2 120.5 95 95 NU 8-50 2/25/95 93 9 127.1 6.1 121.9 96 95 NU I 8-51 2/25/95 90 9 127.1 7.8 120.2 95 95 NU 8-52 3/28/95 123 21 139.0 4.5 124.1 89 95 8-58 NU 8-53 3/28/95 120 21 139.0 5.6 123.1 89 95 8-59 NU 8-54 3/28/95 111 21 139.0 5.0 129.0 93 95 8-60 NU I 8-55 3/28/95 97 9 127.1 10.2 122.3 96 95 NU 8-56 3/28/95 95 9 127.1 9.7 120.6 95 95 NU 8-57 3/28/95 86 9 127.1 10.4 123.1 97 95 NU I 8-58 3/28/95 123 21 139.0 5.8 133.5 96 95 NU 8-59 3/28/95 120 21 139.0 6.2 133.1 96 95 NU 8-60 3/28/95 111 21 139.0 5.3 132.5 95 95 NU 8-61 3/29/95 124 9 127.1 5.7 121.1 95 95 NU I I Geotechnics CompactionTest Results Project No. 0110-001-04 In corp ora te d Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-9 I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method I [ftJ [pct) [%] [pct) [%] [%] 8-62 3/29/95 88 9 127.1 11.1 124.1 98 95 NU I 8-63 3/30/95 123 9 127.1 10.5 123.3 97 95 NU 8-64 4/5/95 82 9 127. 1 7.4 123.6 97 95 NU 8-65 4/5/95 81 9 127.1 7.2 124.0 98 95 NU 8-66 4/6/95 81 9 127.1 7.0 118.0 93 95 8-72 NU I 8-67 4/6/95 105 9 127.1 9.3 127.1 100 95 NU 8-68 4/6/95 85 9 127.1 7.5 122.2 96 95 NU 8-69 4/6/95 84 9 127.1 8.5 125.0 98 95 NU I 8-70 4/6/95 92 9 127.1 7.4 124.3 98 95 NU 8-71 4/7/95 106 9 127.1 6.5 121.5 96 95 NU 8-72 4/7/95 81 9 127.1 8.6 126.5 100 95 NU 8-73 4/10/95 81 9 127.1 5.5 123.4 97 95 NU I 8-74 4/10/95 81 9 127.1 8.3 121.3 95 95 NU 8-75 4/12/95 124 9 127.1 8.4 125.8 99 95 NU 8-76 4/12/95 118 9 127.1 7.2 123.2 97 95 NU I 8-77 4/13/95 82 9 127.1 7.0 126.8 100 95 NU 8-78 4/13/95 85 9 127.1 7.2 126.9 100 95 NU 8-79 4/13/95 80 9 127.1 8.1 123.2 97 95 NU 8-80 4/13/95 108 9 127.1 8.4 123.6 97 95 NU I 8-81 4/13/95 116 9 127.1 9.1 126.2 99 95 NU 8-82 4/13/95 121 9 127.1 8.5 124.8 98 95 NU 8-83 4/13/95 123 9 127.1 6.3 124.7 98 95 NU I 8-84 4/13/95 123 9 127.1 9.6 126.0 99 95 NU 8-85 4/13/95 124 9 127.1 8.6 121.4 96 95 NU 8-86 4/14/95 98 9 127.1 9.0 122.3 96 95 NU 8-87 4/26/95 86 9 127.1 8.8 126.9 100 95 NU I 8-88 4/26/95 83 9 127.1 6.7 127.1 100 95 NU 8-89 4/26/95 82 9 127.1 9.0 127.2 100 95 NU 8-90 4/27/95 107 9 127.1 6.5 124.9 98 95 NU I 8-91 4/27/95 98 9 127.1 6.3 123.7 97 95 NU 8-92 5/5/95 92 23 142.4 4.2 136.9 96 95 NU 8-93 5/5/95 92 23 142.4 5.4 138.7 97 95 NU 8-94 5/5/95 92 23 142.4 4.6 138.5 97 95 NU I 8-95 5/5/95 92 23 142.4 5.1 138.7 97 95 NU CG-1 1 0/26/95 86 3 110.4 6.6 99.4 90 90 NU I CG-2 10/26/95 89 6 115.0 8.2 105.6 92 90 NU CG-3 1 0/26/95 87 2 118.6 11.5 107.6 91 90 NU CG-4 10/27/95 86 2 118.6 6.6 107.6 91 90 NU CG-5 10/27/95 90 2 118.6 8.8 106.9 90 90 NU I CG-6 10/27/95 91 5 113.7 10.3 101.0 89 90 CG-7 NU CG-7 10/27/95 91 5 113.7 9.6 102.7 90 90 NU CG-8 10/27/95 92 5 113.7 12.9 102.7 90 90 NU I CG-9 10/28/95 91 5 113.7 12.7 102.8 90 90 NU CG-10 10/28/95 90 5 113.7 13.9 103.2 91 90 NU CG-11 10/28/95 85 5 113.7 13.1 102.9 91 90 NU I 0-1 10/5/95 81 5 113.7 10.2 101.3 89 90 0-2 NU 0-2 10/5/95 81 5 113.7 11.1 102.5 90 90 NU 0-3 10/5/95 85 2 118.6 12.9 107.0 90 90 NU I I Geotechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure.C-10 I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method [ftJ [pct] [%J [pct] [%J [%J E-1 10/20/94 92 2 118.6 10.6 106.6 90 90 NU I E-2 10/20/94 93 1 120.0 11.1 109.2 91 90 NU E-3 10/21/94 92 1 120.0 9.9 108.7 91 90 NU E-4 10/21/94 91 2 118.6 8.7 106.6 90 90 NU E-5 12/20/94 92 6 115.0 17.9 103.3 90 90 NU I E-6 12/20/94 92 3 110.4 19.3 99.4 90 90 NU E-7 12/20/94 92 6 115.0 16.1 103.7 90 90 NU E-8 12/20/94 93 3 110.4 18.5 100.4 91 90 NU I E-9 12/22/94 96 2 118.6 14.0 108.0 91 90 NU E-10 12/22/94 97 3 110.4 17.0 92.6 84 90 E-11 NU E-11 12/22/94 97 3 110.4 17.1 100.2 91 90 NU I 1-1 11/1/94 88 2 118.6 11.4 107.3 90 90 NU 1-2 11/2/94 86 2 118.6 9.2 107.0 90 90 NU 1-3 11/3/94 88 1 120.0 8.6 108.9 91 90 NU I 1-4 11/3/94 88 6 115.0 9.9 105.0 91 90 NU 1-5 12/19/94 84 4 122.0 7.1 110.7 91 90 NU 1-6 12/19/94 90 6 115.0 8.2 101.6 88 90 1-7 NU 1-7 12/19/94 90 6 115.0 7.5 103.7 90 90 NU I 1-8 2/17/95 105 6 115.0 14.9 106.3 92 90 NU 1-9 4/13/95 109 9 127.1 7.4 121.8 96 90 NU I JT-1 1/27/95 103 11 118.5 11.1 111.7 94 90 NU JT-2 2/10/95 89 4 122.0 11.0 110.6 91 90 NU JT-3 2/10/95 91 4 122.0 10.4 111.4 91 90 NU JT-4 2/10/95 92 3 110.4 18.6 101.4 92 90 NU I JT-5 2/10/95 95 3 110.4 11.5 97.9 89 90 JT-7 NU JT-6 2/10/95 98 6 115.0 9.9 105.7 92 90 NU JT-7 2/10/95 95 6 115.0 10.9 104.1 91 90 NU I JT-8 2/25/95 90 15 123.4 11.7 112.2 91 90 NU JT-9 3/1/95 82 20 109.1 15.3 99.7 91 90 NU JT-10 3/1/95 84 20 109.1 16.0 99.6 91 90 NU JT-11 3/7/95 91 17 122.2 16.1 109.1 89 90 JT-13 NU I JT-12 3/7/95 91 18 132.7 4.2 121.1 91 90 NU JT-13 3/7/95 91 17 122.2 15.7 110.2 90 90 NU JT-14 3/28/95 123 11 118.5 11.0 108.9 92 90 NU I JT-15 4/3/95 122 19 115.0 11.0 104.6 91 90 NU JT-16 4/3/95 123 15 123.4 8.3 112.9 91 90 NU JT-17 4/3/95 87 9 127.1 4.5 114.8 90 90 NU JT-18 4/4/95 90 18 132.7 3.9 127.0 96 90 NU I JT-19 4/5/95 87 18 132.7 3.5 125.6 95 90 NU JT -20 4/5/95 124 11 118.5 11.2 108.0 91 90 NU JT-21 5/2/95 115 11 118.5 7.4 108.4 91 90 NU I JT -22 5/2/95 120 19 115.0 14.2 105.5 92 90 NU JT-23 5/2/95 121 11 118.5 9.4 108.4 91 90 NU JT -24 5/2/95 121 19 115.0 7.6 102.7 89 90 JT-25 NU JT-25 5/2/95 121 19 115.0 11.1 104.0 90 90 NU I RC-1 2/18/95 123 28 105.0 9.6 98.7 94 90 NU I RC-2 2/18/95 122 28 105.0 8.5 98.5 94 90 NU I Geotechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-11 I Test Test Elevation/ 80il Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method [ft] [pct] [%] [pct] [%] [%] RC-3 2/18/95 122 28 105.0 11.1 96.6 92 90 NU I RC-4 2/18/95 124 11 118.5 11.0 106.2 90 90 NU RC-5 2/19/95 124 28 105.0 17.3 95.2 91 90 NU RC-6 2/19/95 124 20 109.1 12.9 99.8 91 90 NU I RC-7 2/19/95 115 28 105.0 11.9 97.9 93 90 NU RC-8 2/19/95 117 28 105.0 9.3 97.7 93 90 NU RC-9 2/19/95 113 28 105.0 17.7 98.1 93 90 NU RC-10 2/19/95 108 28 105.0 14.8 99.0 94 90 NU I RC-11 2/19/95 82 28 105.0 9.8 99.6 95 90 NU RC-12 2/19/95 80 28 105.0 12.7 98.7 94 90 NU RC-13 2/19/95 124 11 118.5 12.2 104.5 88 90 RC-34 NU I RC-14 2/19/95 122 11 118.5 11.9 106.7 90 90 NU RC-15 2/19/95 86 28 105.0 14.4 101.8 97 90 NU RC-16 2/19/95 82 28 105.0 11.9 100.8 96 90 NU RC-17 2/19/95 121 11 118.5 8.0 99.9 84 90 RC-18 NU I RC-18 2/19/95 121 20 109.1 13.5 101.8 93 90 NU RC-19 2/20/95 117 20 109.1 15.6 100.7 92 90 NU RC-20 2/20/95 112 11 118.5 15.5 110.4 93 90 NU I RC-21 2/20/95 105 15 123.4 11.8 113.0 92 90 NU RC-22 2/20/95 99 28 105.0 10.7 105.4 100 90 NU RC-23 2/20/95 89 11 118.5 10.3 110.4 93 90 NU RC-24 2/20/95 92 28 105.0 10.2 100.8 96 90 NU I RC-25 2/21/95 98 11 118.5 10.8 107.0 90 90 NU RC-26 2/21/95 80 28 105.0 13.3 99.9 95 90 NU RC-27 2/21/95 79 28 105.0 17.1 97.5 93 90 NU I RC-28 2/21/95 91 11 118.5 12.8 107.0 90 90 NU RC-29 2/21/95 84 11 118.5 12.5 103.4 87 90 RC-30 NU RC-30 2/21/95 84 11 118.5 12.0 106.6 90 90 NU RC-31 2/21/95 82 11 118.5 10.4 108.8 92 90 NU I RC-32 2/21/95 80 11 118.5 11.6 109.7 93 90 NU RC-33 2/21/95 82 11 118.5 11.8 108.8 92 90 NU RC-34 2/21/95 124 11 118.5 10.9 107.9 91 90 NU I RC-35 3/2/95 95 15 123.4 10.4 114.9 93 90 NU RC-36 4/4/95 104 20 109.1 21.7 98.5 90 90 NU RC-37 4/5/95 107 11 118.5 15.2 108.1 91 90 NU I 80-1 10/10/94 88 1 120.0 10.9 109.1 91 90 NU 80-2 10/10/94 90 1 120.0 12.0 108.7 91 90 NU 80-3 10/10/94 86 4 122.0 10.2 110.8 91 90 NU I 80-4 10/10/94 88 2 118.6 8.6 106.9 90 90 NU 80-5 10/10/94 89 8 113.0 8.6 104.3 92 90 NU 80-6 10/12/94 89 4 122.0 13.8 110.5 91 90 NU 80-7 10/12/94 90 4 122.0 11.9 110.7 91 90 NU I 80-8 10/13/94 90 3 110.4 17.7 101.7 92 90 NU 80-9 10/13/94 91 4 122.0 11.0 111.2 91 90 NU 80-10 10/13/94 91 3 110.4 14.2 99.9 90 90 NU I 80-11 10/13/94 89 3 110.4 18.0 101.8 92 90 NU 80-12 10/13/94 91 3 110.4 15.4 98.1 89 90 80-13 NU 80-13 10/13/94 91 3 110.4 16.3 100.2 91 90 NU 80-14 10/17/94 90 4 122.0 14.7 109.1 89 90 80-15 NU I I Geotechnics CompactionTest Results Project No. 0110-001-04 Incorpðorated Home Depot Encinitas Doc. # 4-0362 Home Depot U8A Figure C-12 I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method [ft] [pct] [%] [pct] [%] [% SO-15 10/17/94 90 4 122.0 14.5 110.8 91 90 NU I SO-16 10/19/94 90 6 115.0 12.4 104.8 91 90 NU SO-17 10/19/94 92 2 118.6 15.1 107.1 90 90 NU SO-18 10/19/94 93 6 115.0 13.3 104.7 91 90 NU SO-19 10/19/94 87 1 120.0 11.6 108.9 91 90 NU I SO-20 10/19/94 87 2 118.6 9.6 105.7 89 90 SO-21 NU SO-21 10/19/94 87 2 118.6 12.1 106.3 90 90 NU SO-22 10/19/94 87 6 115.0 13.9 105.6 92 90 NU I SO-23 10/21/94 80 6 115.0 14.0 104.6 91 90 NU SO-24 10/21/94 78 3 110.4 14.4 97.8 89 90 SO-25 NU SO-25 10/21/94 78 3 110.4 14.5 99.7 90 90 NU SO-26 10/24/94 81 6 115.0 10.9 104.9 91 90 NU I SO-27 10/25/94 83 6 115.0 9.8 107.3 93 90 NU SO-28 1 0/25/94 81 6 115.0 7.9 108.3 94 90 NU SO-29 1 0/25/94 82 3 110.4 11.7 98.6 89 90 SO-32 NU I SO-30 10/25/94 81 3 110.4 9.3 101.3 92 90 NU SO-31 10/25/94 79 6 115.0 10.5 106.5 93 90 NU SO-32 10/25/94 82 3 110.4 11.0 99.4 90 90 NU SO-33 10/25/94 83 6 115.0 10.4 105.3 92 90 NU I SO-34 10/27/94 82 3 110.4 19.6 94.2 85 90 SO-35 NU SO-35 10/27/94 82 2 118.6 16.2 105.6 89 90 SO-36 NU SO-36 10/27/94 82 1 120.0 15.3 107.9 90 90 NU I SO-37 10/28/94 83 2 118.6 12.9 106.7 90 90 NU SO-38 1 0/28/94 86 1 120.0 11.0 109.3 91 90 NU SO-39 10/28/94 87 4 122.0 9.2 110.7 91 90 NU SO-40 10/28/94 88 5 113.7 15.1 103.5 91 90 NU I SO-41 10/28/94 88 4 122.0 7.0 118.9 97 90 NU SO-42 10/28/94 89 2 118.6 15.1 106.5 90 90 NU SO-43 10/28/94 87 4 122.0 12.4 111.1 91 90 NU I SO-44 10/31/94 91 4 122.0 11.7 113.3 93 90 NU SO-45 10/31/94 83 5 113.7 15.4 102.5 90 90 NU SO-46 10/31/94 89 3 110.4 16.9 100.9 91 90 NU SO-47 10/31/94 92 5 113.7 14.8 102.1 90 90 NU I SO-48 10/31/94 93 3 110.4 11.0 98.4 89 90 SO-49 NU SO-49 11/1/94 93 3 110.4 11.1 100.4 91 90 NU SO-50 11/1/94 91 5 113.7 19.7 102.0 90 90 NU I SO-51 11/1/94 92 5 113.7 17.9 103.7 91 90 NU SO-52 11/1/94 93 4 122.0 8.8 119.2 98 90 NU SO-53 11/2/94 85 5 113.7 6.0 100.4 88 90 SO-61 NU I SO-54 11/2/94 92 6 115.0 10.4 105.5 92 90 NU SO-55 11/3/94 91 5 113.7 12.4 103.3 91 90 NU SO-56 11/3/94 94 1 120.0 15.6 108.2 90 90 NU SO-57 11/3/94 88 3 110.4 17.4 90.1 82 90 SO-58 NU I SO-58 11/3/94 88 3 110.4 17.6 99.0 90 90 NU SO-59 11/3/94 90 6 115.0 15.1 105.9 92 90 NU SO-60 11/4/94 93 6 115.0 9.6 105.1 91 90 NU I SO-61 11/4/94 86 6 115.0 9.2 102.0 89 90 SO-62 NU SO-62 11/4/94 86 2 118.6 9.9 107.2 90 90 NU SO-63 11/7/94 90 3 110.4 19.3 95.4 86 90 SO-64 NU SO-64 11/7/94 90 3 110.4 19.3 99.3 90 90 NU I I Geotechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-13 I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method [ftJ [pct] [Ok] [pct] [Ok] [Ok] SO-65 11/8/94 98 4 122.0 12.6 110.9 91 90 NU I SO-66 11/8/94 105 1 120.0 13.0 108.5 90 90 NU SO-67 12/20/94 92 4 122.0 11.6 110.7 91 90 NU SO-68 12/23/94 90 6 115.0 12.9 105.4 92 90 NU I SO-69 12/23/94 91 6 115.0 15.0 105.5 92 90 NU SO-70 12/23/94 92 6 115.0 18.4 104.3 91 90 NU SO-71 12/23/94 90 6 115.0 11.9 105.3 92 90 NU SO-72 12/23/94 91 3 110.4 19.6 98.8 90 90 NU I SO-73 1/30/95 120 2 118.6 9.7 108.4 91 90 NU SO-74 1/30/95 122 2 118.6 10.1 108.6 92 90 NU SO-75 2/28/95 119 2 118.6 16.4 97.8 82 90 SO-76 NU I SO-76 2/28/95 119 2 118.6 14.8 106.4 90 90 NU SO-77 4/10/95 119 19 115.0 14.6 104.0 90 90 NU SG-1 11/4/94 87 4 122.0 10.1 111.0 91 90 NU I SG-2 11/7/94 86 2 118.6 5.8 106.6 90 90 NU SG-3 11/7/94 90 4 122.0 8.3 110.3 90 90 NU SG-4 11/7/94 86 4 122.0 7.3 109.8 90 90 NU I SG-5 11/8/94 88 4 122.0 8.2 113.9 93 90 NU SG-6 11/8/94 90 5 113.7 17.2 102.0 90 90 NU SG-7 11/8/94 89 6 115.0 9.9 105.8 92 90 NU SG-8 11/8/94 89 2 118.6 10.5 107.0 90 90 NU I SG-9 11/9/94 88 2 118.6 9.3 108.9 92 95 SG-14 NU SG-10 11/9/94 90 2 118.6 12.2 108.8 92 95 SG-15 NU SG-11 11/9/94 87 1 120.0 7.3 111.2 93 95 SG-16 NU I SG-12 11/9/94 85 2 118.6 5.6 108.4 91 95 SG-17 NU SG-13 11/9/94 84 4 122.0 10.1 117.5 96 95 NU SG-14 11/14/94 88 2 118.6 11.5 113.7 96 95 NU SG-15 11/14/94 90 4 122.0 11.2 116.9 96 95 NU I SG-16 11/14/94 87 6 115.0 11.2 109.4 95 95 NU SG-17 11/14/94 85 6 115.0 8.4 109.8 95 95 NU SG-18 11/14/94 91 6 115.0 12.1 111.2 97 95 NU I SG-19 11/14/94 90 2 118.6 12.6 113.2 95 95 NU SG-20 11/14/94 87 2 118.6 8.0 113.6 96 95 NU SG-21 11/14/94 86 5 113.7 12.2 108.0 95 95 NU SG-22 11/14/94 90 2 118.6 10.0 113.4 96 95 NU I SG-23 11/14/94 85 6 115.0 8.4 110.6 96 95 NU SG-24 11/14/94 84 1 120.0 9.2 115.3 96 95 NU SG-25 11/15/94 87 6 115.0 10.0 111.7 97 95 NU I SG-26 11/15/94 91 4 122.0 12.2 118.3 97 95 NU SG-27 11/15/94 91 6 115.0 12.0 109.3 95 95 NU SG-28 11/15/94 90 5 113.7 12.5 107.6 95 95 NU SG-29 11/15/94 86 4 122.0 11.3 116.5 95 95 NU I SG-30 11/15/94 91 1 120.0 11.2 115.0 96 95 NU SG-31 11/15/94 91 1 120.0 11.9 114.7 96 95 NU SG-32 11/15/94 83 2 118.6 14.0 112.0 94 95 SG-33 NU I SG-33 11/15/94 83 2 118.6 14.1 114.1 96 95 NU SG-34 12/21/94 92 6 115.0 14.3 104.4 91 90 NU SG-35 12/21/94 92 4 122.0 7.4 111.5 91 90 NU SG-36 12/21/94 92 6 115.0 10.1 104.7 91 90 NU I SG-37 12/21/94 90 2 118.6 9.3 107.3 90 90 NU I Geotechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-14 I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method [ft] [pct] [%] [pct] [%] [%J SG-38 12/21/94 90 4 122.0 9.2 113.2 93 90 NU I SG-39 12/27/94 92 5 113.7 14.6 102.7 90 90 NU SG-40 12/27/94 92 6 115.0 10.8 104.5 91 90 NU SG-41 12/29/94 92 3 110.4 22.4 102.6 93 95 SG-44 NU SG-42 12/29/94 92 2 118.6 13.2 110.1 93 95 SG-43 NU I SG-43 12/29/94 92 6 115.0 14.0 111.4 97 95 NU SG-44 12/29/94 92 6 115.0 13.6 111.7 97 95 NU SG-45 12/29/94 92 6 115.0 16.4 110.5 96 95 NU I SG-46 12/29/94 92 5 113.7 18.0 107.5 95 95 NU SG-47 1/18/95 92 1 120.0 10.2 108.2 90 90 NU SG-48 1/31/95 92 6 115.0 20.5 106.4 93 90 NU SG-49 1/31/95 93 3 110.4 23.8 96.1 87 90 SG-63 NU I SG-50 1/31/95 93 3 110.4 22.9 94.1 85 90 SG-58 NU SG-51 1/31/95 93 1 120.0 13.7 106.8 89 90 SG-57 NU SG-52 1/31/95 92 3 110.4 22.6 96.0 87 90 SG-56 NU I SG-53 1/31/95 90 3 110.4 20.2 100.7 91 90 NU SG-54 1/31/95 90 2 118.6 18.7 106.0 89 90 SG-64 NU SG-55 1/31/95 90 1 120.0 14.7 106.4 89 90 SG-59 NU SG-56 2/1/95 92 3 110.4 16.1 101.6 92 90 NU I SG-57 2/1/95 93 3 110.4 17.3 98.3 89 90 SG-62 NU SG-58 2/1/95 93 5 113.7 16.6 102.8 90 90 NU SG-59 2/1/95 90 6 115.0 14.0 105.8 92 90 NU I SG-60 2/1/95 90 6 115.0 14.7 104.2 91 90 NU SG-61 2/1/95 90 3 110.4 15.5 100.5 91 95 SG-65 NU SG-62 2/1/95 93 3 110.4 16.9 100.8 91 90 NU I SG-63 2/1/95 93 3 110.4 21.6 100.3 91 90 NU SG-64 2/1/95 90 2 118.6 18.5 107.0 90 90 NU SG-65 2/1/95 90 3 110.4 13.6 105.5 96 90 NU SG-66 2/1/95 90 3 110.4 18.9 100.1 91 95 SG-79 NU I SG-67 2/1/95 90 3 110.4 17.4 106.1 96 95 NU SG-68 2/1/95 90 5 113.7 15.3 107.9 95 95 NU SG-69 2/2/95 90 3 110.4 18.8 102.7 93 95 SG-87 NU I SG-70 2/2/95 90 3 110.4 9.0 104.2 94 95 SG-75 NU SG-71 2/2/95 90 3 110.4 14.3 102.9 93 95 SG-74 NU SG-72 2/2/95 92 13 110.8 16.5 106.5 96 95 NU SG-73 2/2/95 92 2 118.6 13.6 112.9 95 95 NU I SG-74 2/2/95 90 3 110.4 9.6 104.9 95 95 NU SG-75 2/3/95 90 6 115.0 11.0 109.4 95 95 NU SG-76 2/3/95 90 14 126.0 8.9 122.9 98 95 NU I SG-77 2/3/95 90 2 118.6 10.2 113.9 96 95 NU SG-78 2/3/95 90 6 115.0 11.7 111.5 97 95 NU SG-79 2/3/95 90 13 110.8 16.3 104.9 95 95 NU SG-80 2/3/95 91 6 115.0 15.0 109.3 95 90 NU I SG-81 2/3/95 90 2 118.6 11.3 107.6 91 90 NU SG-82 2/3/95 90 6 115.0 10.9 109.9 96 95 NU SG-83 2/3/95 90 3 110.4 12.4 105.5 96 95 NU I SG-84 2/3/95 90 1 120.0 15.1 114.9 96 95 NU SG-85 2/3/95 95 3 110.4 18.3 100.4 91 90 NU SG-86 2/3/95 97 3 110.4 18.9 100.9 91 90 NU SG-87 2/3/95 90 13 110.8 18.2 104.9 95 95 NU I I Geotechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-15 I I I I I I I I I I I I I I I I I I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method [ft] [pet] [%] [pet] [%] [%] SG-88 2/3/95 95 5 113.7 16.5 108.5 95 95 NU SG-89 2/3/95 93 4 122.0 9.4 115.6 95 95 NU SG-90 2/4/95 93 13 110.8 12.4 105.8 95 95 NU SG-91 2/4/95 95 13 110.8 12.0 105.2 95 95 NU SG-92 2/4/95 96 6 115.0 16.5 110.1 96 95 NU SG-93 2/4/95 95 3 110.4 18.7 100.3 91 90 NU SG-94 2/4/95 100 2 118.6 12.2 108.7 92 90 NU SG-95 2/4/95 103 2 118.6 13.8 108.0 91 90 NU SG-96 2/4/95 99 4 122.0 12.5 118.4 97 95 NU SG-97 2/4/95 90 13 110.8 17.6 104.7 95 95 NU . SG-98 2/4/95 93 3 110.4 19.1 101.0 91 90 NU SG-99 2/20/95 115 2 118.6 10.1 109.9 93 90 NU SG-100 2/20/95 123 19 115.0 14.9 103.7 90 90 NU SG-101 2/20/95 125 19 115.0 12.9 104.3 91 90 NU SG-102 2/21/95 87 2 118.6 9.9 112.4 95 90 NU SG-103 2/21/95 99 15 123.4 8.1 123.8 100 90 NU SG-104 2/21/95 105 15 123.4 13.1 112.8 91 90 NU SG-105 2/21/95 84 15 123.4 8.6 114.2 93 90 NU SG-106 2/21/95 83 15 123.4 9.3 115.7 94 90 NU SG-107 2/24/95 95 15 123.4 9.3 113.5 92 90 NU SG-108 2/24/95 91 15 123.4 8.9 112.9 91 90 NU SG-109 2/24/95 91 15 123.4 8.5 119.3 97 90 NU SG-110 3/9/95 97 18 132.7 4.3 125.4 94 90 NU SG-111 3/9/95 97 18 132.7 3.1 123.3 93 90 NU SG-112 3/9/95 104 18 132.7 4.1 122.0 92 95 SG-183 NU SG-113 3/9/95 100 18 132.7 3.8 121.8 92 95 SG-187 NU SG-114 3/15/95 126 18 132.7 11.0 120.4 91 95 SG-154 NU SG-115 3/20/95 123 20 109.1 13.4 100.8 92 90 NU SG-116 3/20/95 124 19 115.0 6.2 103.7 90 90 NU SG-117 3/20/95 124 15 123.4 8.7 111.6 90' 90 NU SG-118 3/20/95 124 11 118.5 5.1 106.4 90 90 NU SG-119 3/20/95 121 20 109.1 3.6 99.9 92 90 NU SG-120 3/20/95 121 11 118.5 9.7 108.3 91 90 NU SG-121 3/20/95 115 20 109.1 21.4 98.1 90 90 NU SG-122 3/20/95 112 17 122.2 11.5 113.2 93 90 NU SG-123 3/27/95 100 20 109.1 24.3 97.7 90 90 NU SG-124 3/27/95 99 19 115.0 18.4 107.1 93 90 NU SG-125 3/27/95 93 20 109.1 18.5 99.5 91 90 NU SG-126 3/27/95 92 20 109.1 22.7 101.4 93 90 NU SG-127 3/27/95 87 11 118.5 17.6 106.3 90 90 NU SG-128 3/27/95 87 11 118.5 13.2 108.8 92 90 NU SG-129 3/27/95 83 15 123.4 11.0 111.9 91 90 NU SG-130 3/28/95 82 11 118.5 12.7 105.3 89 90 SG-139 NU SG-131 3/28/95 83 15 123.4 10.1 114.6 93 90 NU SG-132 3/28/95 87 15 123.4 9.9 111.8 91 95 SG-138 NU SG-133 3/28/95 83 15 123.4 11.5 114.4 93 95 SG-156 NU SG-134 3/29/95 82 15 123.4 12.1 111.6 90 90 NU SG-135 3/29/95 81 12 118.5 17.2 108.0 91 90 NU SG-136 3/29/95 101 19 115.0 14.2 106.3 92 95 SG-148 NU SG-137 3/29/95 123 19 115.0 12.8 104.5 91 90 NU ~eotechnics Compaction Test Results Project No. 0110-001-04 . Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-16 I I I I I I I I I I I I I I I I I SG-138 SG-139 SG-140 SG-141 SG-142 SG-143 SG-144 SG-145 SG-146 SG-147 SG-148 SG-149 SG-150 SG-151 SG-152 SG-153 SG-154 SG-155 SG-156 SG-157 SG-158 SG-159 SG-160 SG-161 SG-162 SG-163 SG-164 SG-165 SG-166 SG-167 SG-168 SG-169 SG-170 SG-171 SG-172 SG-173 SG-174 SG-175 SG-176 SG-177 SG-178 SG-179 SG-180 SG-181 SG-182 SG-183 SG-184 SG-185 SG-186 SG-187 Test No. Test Date 3/29/95 3/29/95 4/3/95 4/3/95 4/3/95 4/4/95 4/4/95 4/4/95 4/5/95 4/5/95 4/5/95 4/5/95 4/5/95 4/6/95 4/7/95 4/7/95 4/7/95 4/7/95 4/7/95 4/7/95 4/7/95 4/7/95 4/7/95 4/7/95 4/7/95 4/7/95 4/7/95 4/7/95 4/10/95 4/10/95 4/10/95 4/10/95 4/11/95 4/11/95 4/11/95 4/11/95 4/11/95 4/13/95 4/13/95 4/13/95 4/13/95 4/13/95 4/13/95 4/13/95 4/13/95 4/14/95 4/14/95 4/14/95 4/14/95 4/14/95 Elevation/ Soil Max. Dry Location Type Density [ft} [pct} 87 82 92 92 92 86 82 82 113 97 100 100 90 88 98 94 126 86 83 83 83 82 103 88 86 84 94 94 84 95 82 102 87 122 121 114 114 124 124 124 124 111 91 109 96 104 111 124 124 100 19 12 6 9 2 11 15 17 11 15 20 20 19 22 11 15 18 15 15 12 12 12 20 15 12 11 11 12 11 11 11 15 19 11 16 19 19 15 15 15 15 15 11 15 15 18 15 15 20 18 115.0 118.5 115.0 127.1 118.6 118.5 123.4 122.2 118.5 123.4 109.1 109.1 115.0 109.0 118.5 123.4 132.7 123.4 123.4 118.5 118.5 118.5 109.1 123.4 118.5 118.5 118.5 118.5 118.5 118.5 118.5 123.4 115.0 118.5 121.0 115.0 115.0 123.4 123.4 123.4 123.4 123.4 118.5 123.4 123.4 132.7 123.4 123.4 109.1 132.7 Geotechnics Incorporated Moisture Content [%} 14.6 12.6 18.8 6.3 15.5 10.4 7.5 10.1 8.5 10.7 20.7 20.6 9.5 14.5 7.6 10.4 8.4 8.6 5.9 15.6 14.1 15.9 20.9 12.3 11.1 9.0 12.2 10.0 10.9 9.2 6.6 11.6 18.6 8.4 7.0 14.1 14.9 7.3 8.1 5.8 9.1 7.1 9.5 11.5 11.1 4.3 10.4 6.7 16.9 3.5 Dry Density [pct} 109.1 106.1 103.1 123.7 109.6 106.9 113.9 116.6 106.7 114.8 102.5 104.6 110.6 105.4 107.4 114.0 126.7 112.0 122.7 112.7 114.7 113.1 107.2 114.1 113.0 103.6 103.8 113.5 107.6 107.0 109.9 112.5 106.0 114.8 115.7 107.4 108.8 117.0 118.6 125.5 117.2 118.0 109.0 112.3 114.3 126.0 112.4 110.7 103.3 118.2 Relative Required Retest Compaction Compaction Number [%} [%} 95 90 90 97 92 90 92 95 90 93 94 96 96 97 91 92 95 91 99 95 97 95 98 92 95 87 88 96 91 90 93 91 92 97 96 93 95 95 96 102 95 96 92 91 93 95 91 90 95 89 CompactionTest Results Home Depot Encinitas Home Depot USA 90 90 90 90 90 90 90 90 90 90 95 95 95 95 90 90 95 90 95 95 95 95 95 90 95 90 90 95 90 90 90 90 90 95 95 95 95 90 90 90 90 90 90 90 90 95 90 90 95 95 SG-149 SG-166 SG-167 SG-174 SG-189 Test Method I I I ¡ ¡ NU ;\JU ,\ U NU NU NU NU NU NU ¡\AU NU NU NU NU NU NU NU NU NU NU NU NU \IU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU NU Project No. 0110-001-04 Doc. # 4-0362 Figure C-17 Test Test Elevation/ 50il Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method I [ft] [pct] [%] [pct] [%] [%] 5G-188 4/14/95 94 11 118.5 10.1 113.4 96 95 NU I 5G-189 4/14/95 100 18 132.7 3.3 121.4 91 95 5G-190 NU 5G-190 4/14/95 100 18 132.7 3.4 122.8 93 90 NU 5G-191 4/21/95 125 15 123.4 9.6 116.1 94 90 NU I 5G-192 4/25/95 94 11 118.5 11.3 111.8 94 95 5G-193 NU 5G-193 4/25/95 93 11 118.5 9.4 112.7 95 95 NU 5G-194 4/25/95 121 15 123.4 10.6 116.3 94 95 5G-195 NU 5G-195 4/25/95 124 15 123.4 9.3 116.5 94 95 5G-196 NU I 5G-196 4/25/95 125 15 123.4 9.1 118.7 96 95 NU 5G-197 4/25/95 84 15 123.4 8.5 117.3 95 95 NU 5G-198 4/26/95 115 19 115.0 12.9 111.1 97 95 NU I 5G-199 5/1/95 92 19 115.0 18.6 106.6 93 90 NU 5G-200 5/1/95 90 3 110.4 21.3 103.0 93 90 NU 5G-201 5/1/95 91 4 122.0 10.4 115.2 94 90 NU 5G-202 5/1/95 91 1 120.0 9.1 112.5 94 90 NU I 5G-203 5/15/95 83 15 123.4 6.0 119.5 97 95 NU 5G-204 5/17/95 122 24 135.7 5.6 134.1 99 95 NU 5G-205 5/18/95 122 24 135.7 6.1 131.4 97 95 NU I 5G-206 5/18/95 123 24 135.7 5.1 123.8 91 95 5G-207 NU 5G-207 5/18/95 123 24 135.7 6.3 128.6 95 95 NU 5G-208 5/19/95 102 24 135.7 6.9 129.0 95 95 NU 5G-209 5/19/95 102 24 135.7 6.2 128.9 95 95 NU I 5G-21 0 5/20/95 101 24 135.7 7.0 130.0 96 95 NU 55-1 10/3/94 89 1 120.0 14.6 108.0 90 90 NU I 55-2 10/3/94 90 4 122.0 13.8 110.5 91 90 NU 55-3 10/3/94 88 3 110.4 14.9 102.0 92 90 NU 55-4 10/3/94 88 4 122.0 17.3 109.0 89 90 55-5 NU 55-5 10/3/94 88 4 122.0 14.5 110.1 90 90 NU I 55-6 10/3/94 89 2 118.6 17.4 105.7 89 90 55-7 NU 55-7 1 0/3/94 89 2 118.6 16.8 106.9 90 90 NU 55-8 10/3/94 89 5 113.7 20.3 103.2 91 90 NU I 55-9 10/4/95 91 6 115.0 14.7 105.6 92 90 NU 55-10 10/4/95 92 8 113.0 11.9 108.2 96 90 NU 5S-11 10/4/95 90 2 118.6 13.4 107.5 91 90 NU 55-12 10/4/95 92 6 115.0 12.3 105.0 91 90 NU I 55-13 10/4/95 94 6 115.0 10.1 104.1 91 90 NU 55-14 10/4/95 92 2 118.6 12.0 107.1 90 90 NU 55-15 10/4/95 92 4 122.0 11.4 110.8 91 90 NU I 55-16 10/4/94 95 2 118.6 13.7 107.9 91 90 NU 55-17 10/4/94 91 5 113.7 17.4 103.5 91 90 NU 55-18 10/4/94 92 4 122.0 14.4 111.4 91 90 NU 55-19 10/4/94 96 5 113.7 17.9 103.7 91 90 NU I 55-20 1 0/5/94 92 4 122.0 13.3 111.1 91 90 NU 55-21 10/5/94 89 3 110.4 14.8 101.8 92 90 NU 55-22 1 0/5/94 88 3 110.4 14.9 102.6 93 90 NU I 55-23 1 0/5/94 90 2 118.6 12.9 108.4 91 90 NU 55-24 1 0/5/94 89 2 118.6 10.8 107.9 91 90 NU 55-25 1 0/5/94 89 2 118.6 10.6 107.9 91 90 NU 55-26 1 0/5/94 91 7 121.3 11.9 111.6 92 90 NU I I Geotechnics Compaction Test Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot U5A Figure C-18 I Test Test Elevation/ 8oil Max. Dry Moisture Dry Relative Required Retest Test No. Date Location Type Density Content Density Compaction Compaction Number Method [ft] [pct] [%] [pct] [%] [%] 88-27 11/21/94 88 4 122.0 9.0 111.6 91 90 NU I 88-28 11/22/94 88 4 122.0 9.6 114.9 94 90 NU 88-29 12/8/94 88 1 120.0 8.6 109.0 91 90 NU 88-30 12/8/94 90 2 118.6 8.6 107.7 91 90 NU I W-1 11/23/94 99 2 118.6 9.6 107.6 91 90 NU W-2 11/28/94 86 28 105.0 12.4 101.1 96 90 NU W-3 . 11/28/94 88 28 105.0 9.3 100.5 96 90 NU I W-4 11/29/94 91 4 122.0 12.2 111.8 92 90 NU W-5 11/29/94 87 28 105.0 11.9 100.7 96 90 NU W-6 11/29/94 88 28 105.0 10.5 100.3 96 90 NU I W-7 11/29/94 89 28 105.0 11.4 98.4 94 90 NU W-8 11/29/94 90 28 105.0 13.9 97.4 93 90 NU W-9 11/29/94 92 1 120.0 13.2 109.1 91 90 NU W-10 11/29/94 91 7 121.3 12.8 108.8 90 90 NU I W-11 11/30/94 89 28 105.0 10.9 97.9 93 90 NU W-12 11/30/94 91 4 122.0 9.7 118.0 97 90 NU W-13 11/30/94 92 4 122.0 12.0 115.5 95 90 NU I W-14 11/30/94 87 28 105.0 8.6 99.6 95 90 NU W-15 12/1/94 89 28 105.0 7.4 100.9 96 90 NU W-16 12/1/94 88 28 105.0 9.2 98.4 94 90 NU W-17 12/1/94 90 6 115.0 15.0 104.5 91 90 NU I W-18 12/1/94 86 28 105.0 10.2 99.2 94 90 NU W-19 12/1/94 88 28 105.0 9.9 98.7 94 90 NU W-20 12/2/94 87 28 105.0 6.3 100.1 95 90 NU I W-21 12/2/94 88 28 105.0 10.2 100.7 96 90 NU W-22 12/2/94 92 3 110.4 12.6 101.1 92 90 NU W-23 12/2/94 93 5 113.7 10.5 103.6 91 90 NU W-24 12/2/94 92 3 110.4 13.6 98.3 89 90 W-35 NU I W-25 12/5/94 94 28 105.0 9.9 93.6 89 90 W-26 NU W-26 12/5/94 94 28 105.0 9.5 95.5 91 90 NU W-27 12/6/94 96 28 105.0 10.4 96.0 91 90 NU I W-28 12/6/94 95 28 105.0 8.6 95.7 91 90 NU W-29 1217/94 98 6 115.0 12.9 105.2 91 90 NU W-30 1217/94 93 6 115.0 12.1 103.7 90 90 NU W-31 1217/94 91 28 105.0 8.8 97.1 92 90 NU I W-32 1217/94 93 4 122.0 10.0 112.7 92 90 NU W-33 12/9/94 89 2 118.6 10.4 108.2 91 90 NU W-34 12/9/94 96 6 115.0 12.6 105.2 91 90 NU I W-35 12/12/94 92 6 115.0 9.8 104.5 91 90 NU W-36 12/13/94 88 28 105.0 10.8 98.5 94 90 NU W-37 12/14/94 92 28 105.0 8.6 102.2 97 90 NU W-38 12/15/94 94 6 115.0 9.5 106.0 92 90 NU I W-39 12/22/94 95 28 105.0 9.2 99.5 95 90 NU W-40 12/22/94 97 2 118.6 13.5 107.0 90 90 NU W-41 1/30/95 101 28 105.0 12.7 102.8 98 90 NU I W-42 1/31/95 103 28 105.0 12.4 101.1 96 90 NU W-43 2/3/95 106 20 109.1 19.1 99.6 91 90 NU W-44 2/3/95 112 11 118.5 16.4 109.1 92 90 NU W-45 2/3/95 114 11 118.5 15.2 110.7 93 90 NU I I Geotechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot U8A Figure C-19 I I I I I I I I I I I I I I I I I I Test Test Elevation/ Soil Max. Dry Moisture Dry Relative Required Retest Test No. Date location Type Density Content Density Compaction Compaction Number Method [ft] [pct] [%] [pct] [%] [%] W-46 2/6/95 116 28 105.0 7.7 101.7 97 90 NU W-47 2/6/95 116 28 105.0 10.0 101.4 97 90 NU W-48 2/6/95 117 11 118.5 15.9 107.1 90 90 NU W-49 2/8/95 121 11 118.5 11.2 107.0 90 90 NU W-50 2/8/95 122 11 118.5 7.7 108.5 92 90 NU W-51 2/8/95 123 11 118.5 8.9 106.7 90 90 NU W-52 2/8/95 122 28 105.0 8.1 99.8 95 90 NU W-53 2/19/95 92 28 105.0 15.7 96.8 92 90 NU W-54 2/19/95 118 28 105.0 15.9 94.6 90 90 NU W-55 2/19/95 102 28 105.0 10.7 105.1 100 90 NU W-56 2/19/95 95 15 123.4 7.6 114.6 93 90 NU W-57 2/23/95 124 15 123.4 10.1 115.9 94 90 NU W-58 2/23/95 123 28 105.0 16.2 96.5 92 90 NU W-59 2/24/95 120 28 105.0 17.1 97.3 93 90 NU W-60 2/24/95 122 15 123.4 10.8 112.7 91 90 NU W-61 2/24/95 123 15 123.4 9.2 112.4 91 90 NU W-62 2/24/95 98 11 118.5 11.2 108.4 91 90 NU W-63 2/28/95 121 28 105.0 7.9 99.3 95 90 NU W-64 2/28/95 124 11 118.5 8.9 109.6 92 90 NU W-65 2/28/95 123 15 123.4 9.3 116.3 94 90 NU W-66 2/28/95 123 15 123.4 9.8 113.4 92 90 NU W-67 2/28/95 111 16 121.0 13.1 111.8 92 90 NU W-68 3/1/95 100 11 118.5 15.5 108.4 91 90 NU W-69 3/1/95 102 16 121.0 15.2 111.0 92 90 NU W-70 3/9/95 99 15 123.4 8.8 124.2 101 90 NU W-71 3/27/95 121 15 123.4 11.4 112.1 91 90 NU W-72 3/27/95 123 15 123.4 11.2 113.1 92 90 NU W-73 3/28/95 122 11 118.5 11.3 109.8 93 90 NU W-74 3/28/95 118 15 123.4 8.8 115.9 94 90 NU W-75 3/29/95 121 11 118.5 11.3 108.5 92 90 NU W-76 3/29/95 122 15 123.4 10.6 110.9 90 90 NU W-77 3/29/95 123 28 105.0 15.8 102.9 98 90 NU W-78 3/29/95 124 15 123.4 10.8 113.1 92 90 NU W-79 3/30/95 108 28 105.0 18.6 104.2 99 90 NU W-80 3/30/95 110 15 123.4 14.4 115.6 94 90 NU W-81 3/30/95 111 20 109.1 17.8 102.3 94 90 NU W-82 3/31/95 112 15 123.4 9.7 124.6 101 90 NU W-83 3/31/95 109 28 105.0 16.3 103.0 98 90 NU W-84 4/5/95 103 19 115.0 15.4 103.3 90 90 NU W-85 4/6/95 122 17 122.2 11.2 115.6 95 90 NU W-86 4/6/95 124 15 123.4 12.2 116.8 95 90 NU W-87 4/6/95 123 15 123.4 11.6 117.9 96 90 NU W-88 4/12/95 121 11 118.5 12.2 106.2 90 90 NU W-89 4/21/95 122 22 109.0 12.7 101.0 93 90 NU W-90 4/21/95 124 15 123.4 10.1 114.3 93 90 NU WB-1 12/30/94 93 6 115.0 15.9 108.5 94 90 NU WB-2 12/30/94 94 6 115.0 13.6 108.3 94 90 NU ~otechnics CompactionTest Results Project No. 0110-001-04 Incorporated Home Depot Encinitas Doc. # 4-0362 Home Depot USA Figure C-20 NoText NoText NoText NoText NoText NoText