Loading...
1994-4117 G Street Address �k Category Serial # Name Description Plan ck. # Year recdescv NORTH COUNTY COMPACTION ENGINEERING, INC. March 13, 1995 Project No. CE -5079 Alan Mayo 1722 Kettering Street Irvine, CA 92714 Subject: Report of Certification of Compacted Fill Ground Proposed Dwelling Lot #24, Wildflower Estates Encinitas, California Dear Mr. Mayo: In response to your request, the following report has been prepared to indicate results of soil testing, observations and inspection of earthwork construction at the subject site. Testing and inspection services were performed from February 7, 1995 through March 9, 1995. Briefly, our findings reveal filled ground has been compacted a minimum of ninety percent (90 %). Therefore, we recommend construction continue as scheduled. S-0O2F, Our firm was retained to observe grading operations with regard to current standard practices and to determine the degree of compaction of placed fill. Grading plans were prepared by K & S Engineering of San Diego, California. Grading operations were performed by Greg Whilock Grading & Excavating. Reference is made to our previously submitted report entitled, "Preliminary Soils Investigation '', dated September 20, 1994. Approximate locations and depth of filled ground and extent of earthwork construction covered in this report are indicated on the attached Plate No. One entitled, "Test Location Sketch ". P.O. BOX 302002 • ESCONDIDO, CA 92030 (619) 480 -1116 1 i NORTH COUNTY COMPACTION ENGINEERING, INC. March 13, 1995 Project No. CE -5079 Page 2 Grading operations were Performed in order to create a level building Pad to accommodate the proposed dwelling and swimming pool. Should the finished pad be altered in any way, we should be contacted to provide additional recommendations. The site was graded in accordance with recommendations set forth in our previously submitted report. The site was graded to approximately conform to project plans. Actual pad size and elevation may differ. Finish grade operations are to be completed at a later date. Representative soil samples were collected and returned to the laboratory for testing. The following tests were performed and are tabulated on the attached Plate No. Three. 1. Optimum Moisture/Maximum Density (ASTM U -1557) 2. Expansion Potential Test 3. Direct Shear Test, 0_U.G_O0-a Native soils encountered were clayey - sands and gravelly- clays. Fill soils were imported and generated from the on -site excavation. The building site contained a transition from cut to fill. However, cut areas located within the building area were over excavated a minimum of 4 feet and brought to grade with compacted soil. Over excavation was carried a minimum of 10 feet beyond exterior building perimeter. Hence, no consideration need be given this characteristic. Oversize material consisting of rock and boulders was left above ground as _landscape material. Oversize material is defined as rock and boulders in excess of 12 inches in size. It should not be placed in structural fills. It may be placed in nonstructura-1 . f i_ l l.s designated and silr vised by North County COMPAC TION ENGINEERING, INC. Expansive soils were observed during grading. However, they were capped with a minimum of 48 inches of nonexpansive, imported soils. The non- expansive bearing cap was constructed in accordance with the recommendations presented in our Preliminar,v soils report. kk6 NORTH COUNTY do COMPACTION ENGINEERING, INC. di March 13, 1995 Project No. CE -5079 Page 3 During earthwork construction, native areas to receive fill were scarafied, watered and compacted to a minimum of ninety percent (90 %) of maximum density. The key was approximately 25 feet wide, a minimum of 3 feet in depth and inclined into the slope. Subsequent fill soils were placed, watered and compacted in 6 inch lifts. Benches were constructed in natural ground at intermediate levels to properly support the fill. To determine the degree of compaction, field density tests were performed in accordance with ASTM D -1556 or D -2922 at the approximate horizontal locations designated on the attached Plate No. One entitled, "Test Location Sketch''. A tabulation of test results and their vertical locations are presented on the attached Plate No. Two entitled, ''Tabulation of Test Results". Fill soils found to have a relative compaction of less than ninety percent (90 %) were reworked until proper compaction was achieved. 13ECOMMSNDAT I T S AND CON Continuous inspection was not requested to verify .fill soils were placed in accordance with current standard practices regarding grading operations and earthwork construction. Therefore, as'eco- nomically feasible as possible, part -time inspection was provided. Hence, the following recommendations are based on the assumption that all areas tested are representative of the entire project. 1) Compacted fill and natural ground within the defined building areas have adequate .strength to safely support the proposed loads. `l_) Slopes may be considered stable with relation to deep seated failure, provided they are proper 1y maintained. Slopes should be planted with light groundcover (no gorilla i_eeplant) indigenous to the area. Drainage should be diverted away from the slopes to prevent water flowing on the face of slope. This will reduce the probability of failure as a result of erosion. 3) Continuous footings having a minimum width of 12 inches and founded a minimum of 12 inches and 16 inches below Lowest. adjacent grade for one and two story, respectively, will have an estimated allowable bearing value of 2000 lbs. per square. foot,. NORTH COUNTY COMPACTION ENGINEERING, INC. March 13 1995 Protect No. CE -5079 Page 4 4) All foundations should be constructed in accordance with recommendation "6B. Foundations ", of our preliminary soils report, dated September 20, 1994. 5) Footings located on or adjacent to slopes should be founded at a depth such that the horizontal_ distance from the bottom outside face of footing to the face of the slope is a minimum of 8 feet. 6) Plumbing trenches should be backfilled with a nonexpansive soil having a swell of less than 2% and a minimum sand equivalent of 30. Backfill soils should be inspected and compacted to a minimum of ninety percent (90 %). 7) Completion of grading operations were left at rough grade. Therefore, we recommend a landscape architect be contacted to . Drainage ov'de finish grade and drainage r 1 g p g e recommendations recommendations should include concrete sidewalks placed on all sides of structure a minimum of 4 feet in width and have a minimum fall of 2% away from foundation zone. To further protect water penetration of the zone, rani gutters should be installed to divert run -off. Landscape planter areas within 4 feet of the foundation should be avoided. 8) Unless requested, recommendations for future improvements (additions, recreational_ slabs, addition<a].grading, etc.) were not included in this report. Prior to cons tri_iction, we should be contacted to update condition and provide additional. recommendations. 9) Prior to construction of the proposed pool, the pool con- tractor should be contacted for concrete and reinforcement, design. It should be noted, the proposed pool will protrude through the non - expansive cap and bear into on -site expansive soils. Therefore, the pool_ should be designed with regard to expansive soils. Prior to pouring of concrete, North County (:; OMPACTION ENGINEFRING, INC. should be contacted to inspect foundation recommendations for compliance to those set forth. During placement of concrete, North County COMPACTION ENGINEERING, INC. and /or a qualified concrete inspector should be present to document construction of foundations. NORTH COUNTY COMPACTION ENGINEERING, INC. Mc -,rc:h 13, 1995 Project No. CE -5079 Page 5 Foundation recommendations presented in this report should be considered minimal. Therefore, we recommend the project architect and structural engineer review this report to assure recommen- dations pre sented herein will be suitable with regard to the type of construction planned. UNCERTAINTY AND LT,�LITATIONS In the event foundation excavation and steel placement inspection is required and /or requested, an additional cost of $160.00 will be invoiced to perform the field inspection and prepare a Final Conformance Letter. If foundations are constructed in more than one phase, $110.00 for each additional inspection. will be invoiced. It is the responsibility of the owner and /or his representative to carry out recommendations set forth in this report. San Diego County is Located in a high -risk area with regard to earthquake. Earthquake resistant projects are economically un- feasible. Therefore, damage as a result of earthquake is probable and we assume no liability. We assume the on -site safety of our personnel only. We cannot assume liability of personnel other than our own. It is the re- sponsibility of the owner and contractor to insure construction operations are conducted in a safe manner and in conformance with regulations governed by CAL-OSHA and /or local agencies. Should you have any further questions, please do not hesitate to contact us. This opportunity to be of service is sincerely appreciated. Respectfully submitted, VV USS /in North COMPACTION INC. GER �F / , L o. GE713 iY�w�liC C %C� 1xp. 9- -97 Ronald K. Adams Dale R. R President Registere Ci Eli '1 � 9393 Geotechnic _ C1► ��� 00713 E OF RKA: kla c:c (3) s u bmi tted (2) f:i_lcd NORTH COUNTY COMPACTION ENGINEERING, INC. SOIL TESTING & INSPECTION SERVICES TEST PIT LOCATION PLAN P D POS ED SWELL FAM1L( DWIF —DJ U LDT ?-H W1LD1= LDWER C' \ 10LET RIDGL_ CNICIIIITAIc), E-A Div 2LL4 -991 -U4 1`b" CDT SL�Pti - 25 TEST L_OLATIDIM 33 ) ( 37 Pf�GPOSED �,2�; f, 301 19 \ 13 ' ) 2 ) � 3 2.y' r- I LL � :�:; `J �,: � SLDPE s ROJECT NO. CE^- -5-0 79 PLATE NO. O U E- NORTH COUNTY COMPACTION ENGINEERING, INC. TAB ION Q�? TEST RSII_I T� R DAM HQRZ VER`P • _ MU DRY DENS Y SOIL PERCENT 1 02/07/95 See 187.0 16.6 117.8 IT 96.5 2 Plate 189.0 17.6 118.1 II 96.7 3 One 188.0 15.0 119.3 II 97.8 4 02/08/95 194.0 18. 1 103.6 I 91.6 5 193.0 17.5 104.7 I 92.7 6 192.0 19.6 102. 7 I 90.9 It 190.0 20.5 103. 5 I 91.6 8 196.0 20.5 113.4 II 93.0 9 198.0 18.6 114.1 II 93.5 10 199.0 18.5 115. 0 II 94.2 11 201.0 19.6 113.4 II 93.0 12 202. 0 19.6 110.7 II 90.7 13 02/09/95 198.0 17.1 115.0 III 97.4 14 200.0 18.7 113.2 II 92.8 15 202.0 17.4 112.7 II 92.4 16 02/10/95 200.0 20.0 109.4 TIT 92.7 17 201.0 18.2 112.6 III 95.4 18 203.0 15.4 116.2 III 98.5 19 204.0 17.0 113.4 III 96.1 20 02/15/95 201.0 19.6 102.3 III 90.9 21 203.0 20.6 112.7 II 92.4 22 205.0 18.5 114.5 II 93.9 23 202.0 17.3 113.8 II 93.3 24 204.0 19.6 111.4 III 94.4 25 02/22/95 214.0 14.3 112.7 IT 92.4 26 " 215.0 13.0 113.5 IT 93.0 27 02 /28 /95 205. 0 07.8 1.09. 0 IV 97.7 28 206.0 09.5 107.5 IV 96.3 29 205.0 11.0 106.2 IV 95.2 30 206.0 11.5 108.8 IV 97.5 31 205.0 09.7 105.0 IV 94.1 32 206.5 10.2 104.0 IV 93.2 33 205.0 10.4 109.7 IV 98.3 34 206.5 09.1 106.2 IV 95.2 35 03/02/ 205.0 09.3 104.4 IV 93.5 36 206.0 09.7 107.0 IV 95.9 37 206.0 11.0 104.2 TV 93.4 38 03/09/95 222 . ORFG 10.2 109.6 IV 98.2 39 215.ORFG 07.5 102.5 IV 91.9 40 208.ORFG 10.4 103.4 IV 92.7 41 208.ORFG 08.8 106.0 IV 95.0 42 208.ORFG 07.5 105.2 IV 94.3 REMARKS: RFG = Rough Finish Grade PROJECT NO. CE -5079 PLATE NO. TWO NORTH COUNTY COMPACTION ENGINEERING, INC. OPTIMUM MOISTURE /MAXIMUM DENSITY SOIL DE'' TYPL +' MAX. DRY DENSITY OPTIMUM MOISTURE (lb /cu, ft.) S% dry wt) Red Brown Silty Gravelly -Clay I 113.0 17.2 Yellow Brown Gravelly Clayey -Sand II 122.0 1 9 Orange Brown Silty Gravelly Clay III 118.0 15.4 Light Gray -White Silty -Sand (Import) IV 111.6 15.7 EXPANSION POTENTIAL SAMPLE NO, IV CONDITION Remold 90% INITIAL MOISTURE ( %) 15.7 AIR DRY MOISTURE ( %) 4.8 FINAL MOISTURE ( %) 21.5 FINAL DRY DENSITY (pcf) 100.4 LOAD (psf) 150 SWELL ( %) .000 EXPANSION INDEX Less than 5 DIRECT SHEAR 5 AL T LE N ��_ IV CONDITION Remold 90% ANGLE INTERNAL FRICTION 32 COHESION INTERCEPT (PCF) 190 PROJECT NO_ CE -5079 PLATE.. NO. THREE. K&S ENGINEERING Planning Engineering Surveying HYDROLOGICAL ANALYSIS FOR WILDFLOWER LOT 24 IN CITY OF ENCINITAS JN 9442 November 21, 1994 NOV 23 1994 CITY 0F!-z:NC!�4!TAS S. EIS C.E. 48592 p XP. DATE r OF CAVV - 7801 Mission Center Court, Suite 200 San Diego, California 92108 (619) 296-5565 Fax (619) 296-5564 t TABLE OF CONTENTS 1. SITE DESCRIPTION 2. HYDROLOGY DESIGN MODELS 3. HYDROLOGIC CALCULATIONS .......................... APPENDIX A 4. HYDROLOGY MAPS .... ............................... APPENDIX B 5. TABLES AND CHARTS . ............................... APPENDIX C 1. SITE DESCRIPTION THE SITE CONSISTS OF STEEP ROLLING TERRAIN. WATER SHEET FLOWS SOUTHERLY TOWARD THE SOUTHERLY PROPERTY LINE. THE OFF SITE DRAINAGE IS INTERCEPTED AND CONTAINED BY THE STREET CURB THEN DIRECTED ALONG THE CURB WESTERLY INTO A CONCRETE SPILLWAY WHERE RUNOFF WILL BE DISSIPATED BY RIP RAP. 2. HYDROLOGY DESIGN MODELS A. DESIGN METHODS THE RATIONAL METHOD IS USED IN THIS HYDROLOGY STUDY; THE RATIONAL FORMULA IS AS FOLLOWS: Q = CIA, WHERE : Q= PEAK DISCHARGE IN CUBIC FEET /SECOND C = RUNOFF COEFFICIENT (DIMENSIONLESS) I = RAINFALL INTENSITY IN INCHES /HOUR A = TRIBUTARY DRAINAGE AREA IN ACRES *1 ACRE INCHES /HOUR = 1.008 CUBIC FEET /SEC THE OVERLAND FLOW METHOD IS ALSO USED IN THIS HYDROLOGY STUDY; THE OVERLAND FLOW FORMULA IS AS FOLLOWS: T [1.8 (1.1 —C) (L) • 5 ] / ( S %) 1/3 C = RUNOFF COEFFICIENT L = OVERLAND TRAVEL DISTANCE IN FEET S = SLOPE IN PERCENT T TIME IN MINUTES B. DESIGN CRITERIA — FREQUENCY, 100 YEAR STORM. — LAND USE PER SPECIFIC PLAN AND TENTATIVE MAP. — RAIN FALL INTENSITY PER COUNTY OF SAN DIEGO 1993 HYDROLOGY DESIGN MANUAL. C. REFERENCES — COUNTY OF SAN DIEGO 1993, HYDROLOGY MANUAL. — COUNTY OF SAN DIEGO 1992 REGIONAL STANDARD DRAWING. — HAND BOOK OF HYDRAULICS BY BRATER & KING, SIXTH EDITION. APPENDIX A (3. HYDROLOGIC CALCULATIONS) SAN DIEGO COUNTY R A T I O N A L- H Y D R O L O G Y PROGRAM PACKAGE LOT 24- DEVELOPED CONDITION B SIN A- 100 -YR EVENT F LE= LOT24A Rational Hydrology Study Date: 11 -23 -1994 --------------------------------------------------------------------------- *USER SPECIFIED HYDROLOGY INFORMATION* --------------------------------------------------------------------------- Rational method hydrology program based on San Diego County Flood Control Division 1985 Hydrology Manual Storm Event(Year) = 100.00 Map data precipitation entered: 6 HOUR, Precipitation(Inches) = 2.700 24 Hour Precipitation(Inches) = 4.500 Adjusted 6 Hour Precipitation (Inches) = 2.700 P6/P24 = 60.0 % San Diego Hydrology Manual "C" Values Used Runoff Coefficients by RATIONAL METHOD ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.000 to Point /Station 2.000 * ** INITIAL AREA EVALUATION * ** USER specified "C" value of .6500 given for subarea Area Type is defined by USER RUNOFF COEFFICIENT "C" Time of concentration computed by the Natural Watersheds nomograph, (App. X -A) TC = (11.9 *Length(Mi) ^3) /(Elevation Change)] ^.385 *60(MIN /HR) Initial Subarea Flow Dist. = 55.00 Highest Elevation = 226.40 Lowest Elevation = 209.70 Elevation Difference = 16.70 TC = [(11.9* .0104 * *3) /( 16.70)]* *..385 = .270 100.00 Year Rainfall Intensity(In. /Hr.) = 46.700 Subarea(Acres) _ .10 Subarea Runoff(CFS) = 3.04 Total Area(Acres) _ .10 Total Runoff(CFS) = 3.04 TC (MIN) _ .27 �I ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + +f + + + + + + + + + + + + ++ Process from Point /Station 2.000 to Point /Station 3.000 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 207.20 Downstream point elevation = 205.70 Flow length(Ft.) = 56.00 Mannings N = .011 No. of pipes = 1 Required pipe flow (CFS) = 3.04 Nearest 3 Inch Pipe Diameter (In.) = 9.00 Calculated Individual Pipe flow (CFS) = 3.04 Normal flow depth in pipe = 7.00 (In.) Flow top width inside pipe = 7.49 (In.) Velocity = 8.242 (Ft /S) Travel time (Min.) _ .11 TC(min.) _ . I I 0 SAN DIEGO COUNTY R A T I O N A L- H Y D R O L O G Y PROGRAM PACKAGE 0 Rational Hydrology Study Date: 11 -23 -1994 --------------------------------------------------------------------------- LOT 24 - DEVELOPED CONDITION BASIN A, 100 -YR EVENT FILE = LOT24A --------------------------------------------------------------------------- *USER SPECIFIED HYDROLOGY INFORMATION* --------------------------------------------------------------------------- Rational method hydrology program based on San Diego County Flood Control Division 1985 Hydrology Manual Storm Event(Year) = 100.00 Map data precipitation entered: 6 HOUR, Precipitation(Inches) = 2.700 24 Hour Precipitation(Inches) = 4.500 Adjusted 6 Hour Precipitation (Inches) = 2.700 P6/P24 = 60.0 % San Diego Hydrology Manual "C" Values Used Runoff Coefficients by RATIONAL METHOD ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 1.000 to Point /Station 2.000 * ** INITIAL AREA EVALUATION * ** USER specified "C" value of .6500 given for subarea Initial Subarea Flow Dist. = 55.00 Highest Elevation = 226.40 Lowest Elevation = 209.70 Elevation Difference = 16.70 Time of concentration calculated by the Urban Areas overland flow method (APP X -C) = 1.926 Min. TC = [1.8* (1.1 -C) *DISTANCE ^.5) / (% SLOPE^ (1/3) ] TC = [1.8* (1.1- .6500)*( 55.00 ^.5) / ( 30.36^ (1/3) ] )= 1.926 IL'VZJVVs 100.00 Year Rainfall Intensity (In. /Hr. ) = 13.164 CAP. = I. SCFS Subarea(Acres) _ .10 Subarea Runoff(CFS) _ .86 Total Area(Acres) _ .10 Total Runoff(CFS) _ .86 TC(MIN) = 1.93 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 2.000 to Point /Station 3.000 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 207.20 Downstream point elevation = 205.70 Flow length(Ft.) = 56.00 Mannings N = .011 No. of pipes = 1 Required pipe flow (CFS) = 86 Nearest 3 Inch Pipe Diameter (In.) = 6.00 `-- SSE Calc Individual Pipe flow (CFS) _ . Normal flow depth in pipe = 4.02 (In.) Flow top width inside pipe = 5.64 (In.) Velocity = 6.126 (Ft /S) Travel time (Min.) _ . TC(min.) = 2.08 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 2.000 to Point /Station 3.000 * ** CONFLUENCE OF MINOR STREAMS * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 12.533 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 1 are: Time of concentration(min.) = 2.08 Rainfall intensity (in. /hr /) = 12.53 Total flow area (Acres) _ .10 Total runoff (CFS) at confluence point = .86 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 4.000 to Point /Station 3.000 * ** INITIAL AREA EVALUATION * ** USER specified "C" value of .7000 given for subarea Initial Subarea Flow Dist. = 120.00 Highest Elevation = 222.00 Lowest Elevation = 207.20 Elevation Difference = 14.80 Time of concentration calculated by the Urban Areas overland flow method (APP X -C) = 3.414 Min. TC = [1.8 *(1.1 -C) *DISTANCE ^.5) /(% SLOPE ^(1 /3)] TC = [1.8 *(1.1- .7000) *( 120.00 ^.5) /( 12.33 ^(1 /3)])= 3.414 100.00 Year Rainfall Intensity (In. /Hr. ) = 9.099 � �� „ X`20 � S Subarea(Acres) _ .11 Subarea Runoff(CFS) _ .68 Total Area (Acres) _ .11 Total Runoff (CFS) _ .68 CA = t•S ��S TC(MIN) = 3.41 ++++++++++++++ t+++++++++++++++++++ t+++++++++ + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + ++ Process from Point /Station 4.000 to Point /Station 3.000 * ** CONFLUENCE OF MINOR STREAMS * ** * ** Compute Various Confluenced Flow Values * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 9.099 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 2 are: Time of concentration(min.) = 3.41 Rainfall intensity (in. /hr /) = 9.10 Total flow area (Acres) _ .11 Total runoff (CFS) at confluence point = . Confluence information: Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) ---------------------------------------------------------------------------- 1 .86 2.08 12.533 2 .68 3.41 9.099 QSMX (1) _ +1.000 *1.000* .9) +1.000* .609* .7) 1.267 QSMX (2 ) _ + .726 *1.000* .9) +1.000 *1.000* .7) 1.296 Rainfall intensity and time of concentration used for 2 streams. Individual stream flow values are: .86 .68 Possible confluenced flow values are: 1.27 1.30 Individual Stream Area values are: .10 .11 Computed confluence estimates are: Runoff(CFS) = 1.30 Time(min.) = 3.414 Total main stream study area (Acres) _ . ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 3.000 to Point /Station 5.000 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 205.70 Downstream point elevation = 204.90 Flow length(Ft.) = 28.00 Mannings N = .011 No. of pipes = 1 Required pipe flow (CFS) = 1.30 Nearest 3 Inch Pipe Diameter (In.) = 9.00 E- ` W 8" Pv � 9 d CAS Calculated Individual Pipe flow (CFS) = 1.30 Normal flow depth in pipe = 3.91 (In.) Flow top width inside pipe = 8.92 (In.) Velocity = 7.026 (Ft /S) Travel time (Min.) _ .07 TC(min.) = 3.48 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 3.000 to Point /Station 5.000 * ** CONFLUENCE OF MINOR STREAMS * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 8.987 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 1 are: Time of concentration(min.) = 3.48 Rainfall intensity (in. /hr /) = 8.99 Total flow area (Acres) _ .21 Total runoff (CFS) at confluence point = 1.30 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 6.000 to Point /Station 5.000 * ** INITIAL AREA EVALUATION * ** USER specified "C" value of .7000 given for subarea Initial Subarea Flow Dist. = 75.00 Highest Elevation = 215.00 Lowest Elevation = 207.40 Elevation Difference = 7.60 Time of concentration calculated by the Urban Areas overland flow method (APP X -C) = 2.881 Min. TC = [1.8 *(1.1 -C) *DISTANCE ^.5) /(% SLOPE ^(1 /3)] TC = [1.8 *(1.1- .7000) *( 75.00 ^.5) /( 10.13 ^(1 /3)])= 2.881 100.00 Year Rainfall Intensity(In. /Hr.) = 10.150 � �Z Subarea(Acres) _ .09 Subarea Runoff(CFS) _ .66 Total Area (Acres) _ .09 Total Runoff (CFS) _ . 66 CA P Z - c - "F TC (MIN) = 2.88 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + +++ + ++ Process from Point /Station 6.000 to Point /Station 5.000 * ** CONFLUENCE OF MINOR STREAMS * ** * ** Compute Various Confluenced Flow Values * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 10.150 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 2 are: Time of concentration(min.) = 2.88 Rainfall intensity (in. /hr /) = 10.15 Total flow area (Acres) _ . Total runoff (CFS) at confluence point = .66 Confluence information: Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) ---------------------------------------------------------------------------- 1 1.30 3.48 8.987 2 .66 2.88 10.150 QSMX(1) _ +1.000 *1.000* 1.3) + .885 *1.000* .7) 1.881 QSMX (2 ) _ +1.000* .828* 1.3) +1.000 *1.000* .7) 1.734 Rainfall intensity and time of concentration used for 2 streams. Individual stream flow values are: 1.30 .66 Possible confluenced flow values are: 1.88 1.73 Individual Stream Area values are: .21 .09 Computed confluence estimates are: Runoff(CFS) = 1.88 Time(min.) = 3.480 Total main stream study area (Acres) _ . ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 5.000 to Point /Station 7.000 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 204.90 Downstream point elevation = 203.90 Flow length(Ft.) = 62.00 Mannings N = .011 No. of pipes = 1 Required pipe flow (CFS) = 1.88 Nearest 3 Inch Pipe Diameter (In.) = 9.00 use 8`1 4 i/c cue_- _94 ors Calculated Individual Pipe flow (CFS) = 1.88 Normal flow depth in pipe = 5.86 (In.) Flow top width inside pipe = 8.58 (In.) Velocity = 6.181 (Ft /S) Travel time (Min.) _ .17 TC(min.) = 3.65 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 5.000 to Point /Station 7.000 * ** CONFLUENCE OF MINOR STREAMS * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 8.719 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 1 are: Time of concentration(min.) = 3.65 Rainfall intensity (in. /hr /) = 8.72 Total flow area (Acres) _ .30 Total runoff (CFS) at confluence point = 1.88 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 8.000 to Point /Station 7.000 * ** INITIAL AREA EVALUATION * ** USER specified "C" value of .7000 given for subarea Initial Subarea Flow Dist. = 55.00 Highest Elevation = 208.00 Lowest Elevation = 207.40 Elevation Difference = .60 Time of concentration calculated by the Urban Areas overland flow method (APP X -C) = 5.187 Min. TC = (1.8 (1.1 - C) *DISTANCE ^.5) / (% SLOPE^ (1 ) TC = [1.8 *(1.1 .7000) *( 55.00 ^.5) /( 1.09 ^(1 /3)])= 5.187 100.00 Year Rainfall Subarea( Acres•005 .24 �— 2 �� x 12 � + up s Total Area (Acres) _ .05 Total Runoff (CFS) _ .24 TC (MIN) = 5.19 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 8.000 to Point /Station 7.000 * ** CONFLUENCE OF MINOR STREAMS * ** * ** Compute Various Confluenced Flow Values * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 6.947 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 2 are: Time of concentration(min.) = 5.19 Rainfall intensity (in. /hr /) = 6.95 Total flow area (Acres) _ . Total runoff (CFS) at confluence point = . Confluence information: Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) ---------------------------------------------------------------------------- 1 1.88 3.65 8.719 2 .24 5.19 6.947 QSMX (1) _ +1.000 *1.000* 1.9) +1.000* .703* .2) 2.049 QSMX (2 ) _ + .797 *1.000* 1.9) +1.000 *1.000* .2) 1.737 Rainfall intensity and time of concentration used for 2 streams. Individual stream flow values are: 1.88 .24 Possible confluenced flow values are: 2.05 1.74 Individual Stream Area values are: .30 .05 Computed confluence estimates are: Runoff(CFS) = 2.05 Time(min.) = 3.647 Total main stream study area (Acres) _ . ++ f+++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 7.000 to Point /Station 9.000 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 203.90 Downstream point elevation = 189.00 Flow length(Ft.) = 43.00 Mannings N = .011 No. of pipes = 1 Required pipe flow (CFS) = 2.05 Nearest 3 Inch Pipe Diameter (In.) = 6.00 Calculated Individual Pipe flow (CFS) = 2.05 Normal flow depth in pipe = 3.09 (In.) Flow top width inside pipe = 6.00 (In.) -4 USG 3 f ✓ c- Velocity = 20.122 (Ft /S) Travel time (Min.) _ .04 TC(min.) = 3.68 End of computations.. , TOTAL STUDY AREA(ACRES) _ .35 0 ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** SAN DIEGO COUNTY R A T I O N A L- H Y D R O L O G Y PROGRAM PACKAGE 0 Rational Hydrology Study Date: 11 -23 -1994 --------------------------------------------------------------------------- LOT 24 - DEVELOPED CONDITION BASIN B, 100 -YR EVENT FILE = LOT24B --------------------------------------------------------------------------- *USER SPECIFIED HYDROLOGY INFORMATION* --------------------------------------------------------------------------- Rational method hydrology program based on San Diego County Flood Control Division 1985 Hydrology Manual Storm Event(Year) = 100.00 Map data precipitation entered: 6 HOUR, Precipitation(Inches) = 2.700 24 Hour Precipitation(Inches) = 4.500 Adjusted 6 Hour Precipitation (Inches) = 2.700 P6/P24 = 60.0 % San Diego Hydrology Manual "C" Values Used Runoff Coefficients by RATIONAL METHOD +++++++++++++++++++++++++++++++++++++++++++ t +ff + + + + + +f + + + + +t + + + + + + + + + + + + + ++ Process from Point /Station 10.000 to Point /Station 11.000 * ** INITIAL AREA EVALUATION * ** USER specified "C" value of .8000 given for subarea Initial Subarea Flow Dist. = 45.00 Highest Elevation = 210.30 Lowest Elevation = 207.60 Elevation Difference = 2.70 Time of concentration calculated by the Urban Areas overland flow method (APP X -C) = 1.994 Min. TC = (1.8 *(1.1 -C) *DISTANCE ^.5)/(% SLOPE ^(1 /3)] TC = (1.8 *(1.1- .8000) *( 45.00 ^.5) /( 6.00 ^(1 /3)])= 1.994 100.00 Year Rainfall Intensity(In. /Hr.) = 12.873 Subarea(Acres) _ . Subarea Runoff(CFS) _ . Total Area(Acres) _ . Total Runoff(CFS) _ . TC (MIN) = 1.99 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 11.000 to Point /Station 12.000 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 205.60 Downstream point elevation = 203.40 Flow length(Ft.) = 34.00 Mannings N = .011 No. of pipes = 1 Required pipe flow (CFS) = . Nearest 3 Inch Pipe Diameter (In.) = 6.00 - ose Calculated Individual Pipe flow (CFS) = . Normal flow depth in pipe = 2.44 (In.) Flow top width inside pipe = 5.90 (In.) Velocity = 7.817 (Ft /S) Travel time (Min.) = . TC(min.) = 2.07 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + +t + + + + + + + + ++ Process from Point /Station 11.000 to Point /Station 12.000 * ** CONFLUENCE OF MINOR STREAMS * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 12.580 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 1 are: Time of concentration(min.) = 2.07 Rainfall intensity (in. /hr /) = 12.58 Total flow area (Acres) _ .06 Total runoff (CFS) at confluence point = .59 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 23.000 to Point /Station 12.000 * ** INITIAL AREA EVALUATION * ** USER specified "C" value of .8500 given for subarea Initial Subarea Flow Dist. = 210.00 Highest Elevation = 226.40 Lowest Elevation = 207.40 Elevation Difference = 19.00 Time of concentration calculated by the Urban Areas overland flow method (APP X -C) = 3.130 Min. TC = (1.8 *(1.1 -C) *DISTANCE ^.5) /(% SLOPE ^(1 /3)] TC = [1.8 *(1.1- .8500) *( 210.00 ^.5) /( 9.05 ^(1 /3)])= 3.130 100.00 Year Rainfall Intensity(In. /Hr.) = 9.624 Subarea(Acres) _ .14 Subarea Runoff(CFS) = 1.15 Total Area (Acres) _ .14 Total Runoff (CFS) = 1.15 Z4 N. P,4" uoS TC (MIN) = 3.13 i ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 23.000 to Point /Station 12.000 * ** CONFLUENCE OF MINOR STREAMS * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 9.624 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 2 are: Time of concentration(min.) = 3.13 Rainfall intensity (in. /hr /) = 9.62 Total flow area (Acres) _ . Total runoff (CFS) at confluence point = 1.15 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 14.000 to Point /Station 13.000 * ** INITIAL AREA EVALUATION * ** USER specified "C" value of .6500 given for subarea Initial Subarea Flow Dist. = 70.00 Highest Elevation = 225.00 Lowest Elevation = 207.70 Elevation Difference = 17.30 Time of concentration calculated by the Urban Areas overland flow method (APP X -C) = 2.327 Min. TC = (1.8 *(1.1 -C) *DISTANCE ^.5) /(% SLOPE ^(1 /3)] TC = [1.8 *(1.1- .6500) *( 70.00 ^.5) /( 24.71 ^(1 /3)])= 2.327 100.00 Year Rainfall Intensity(In. /Hr.) = 11.652 Subarea(Acres) _ .05 Subarea Runoff(CFS) _ .37` IZ K Total Area (Acres) _ .05 Total Runoff (CFS) _ .37 TC (MIN) = 2.33 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 13.000 to Point /Station 12.000 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 203.70 Downstream point elevation = 203.40 Flow length(Ft.) = 22.00 Mannings N = .011 No. of pipes = 1 Required pipe flow (CFS) _ . Nearest 3 Inch Pipe Diameter (In.) = 6.00 e- 6 Calculated Individual Pipe flow (CFS) _ . Normal flow depth in pipe = 2.93 (In.) Flow top width inside pipe = 6.00 (In.) Velocity = 3.902 (Ft /S) Travel time (Min.) _ .09 TC(min.) = 2.42 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 13.000 to Point /Station 12.000 * ** CONFLUENCE OF MINOR STREAMS * ** * ** Compute Various Confluenced Flow Values * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 11.358 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 3 are: Time of concentration(min.) = 2.42 Rainfall intensity (in. /hr /) = 11.36 Total flow area (Acres) _ .05 Total runoff (CFS) at confluence point = .37 Confluence information: Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) ---------------------------------------------------------------------------- 1 .59 2.07 12.580 2 1.15 3.13 9.624 3 .37 2.42 11.358 QSMX (1) _ +1.000 *1.000* .6) +1.000* .660* 1.1) +1.000* .854* .4) 1.660 QSMX (2 ) _ + .765 *1.000* .6) +1.000 *1.000* 1.1) + .847 *1.000* .4) 1.909 QSMX (3 ) _ + .903 *1.000* .6) +1.000* .773* 1.1) +1.000 *1.000* .4) 1.787 Rainfall intensity and time of concentration used for 3 streams. Individual stream flow values are: .59 1.15 .37 Possible confluenced flow values are: 1.66 1.91 1.79 Individual Stream Area values are: .06 .14 .05 Computed confluence estimates are: Runoff(CFS) = 1.91 Time(min.) = 3.130 Total main stream study area (Acres) _ .25 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 12.000 to Point /Station 15.000 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 203.40 Downstream point elevation = 202.40 Flow length(Ft.) = 84.00 Mannings N = .011 No. of pipes = 1 Required pipe flow (CFS) = 1.91 Nearest 3 Inch Pipe Diameter (In.) = 9.00 4,--"sue Calculated Individual Pipe flow (CFS) = 1.91 Normal flow depth in pipe = 6.64 (In.) Flow top width inside pipe = 7.91 (In.) Velocity = 5.461 (Ft /S) Travel time (Min.) _ .26 TC(min.) = 3.39 I ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 12.000 to Point /Station 15.000 * ** CONFLUENCE OF MINOR STREAMS * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 9.147 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 1 are: Time of concentration(min.) = 3.39 Rainfall intensity (in. /hr /) = 9.15 Total flow area (Acres) _ . Total runoff (CFS) at confluence point = 1.91 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 17.000 to Point /Station 16.000 * ** INITIAL AREA EVALUATION * ** USER specified "C" value of .8000 given for subarea Initial Subarea Flow Dist. = 45.00 Highest Elevation = 208.00 Lowest Elevation = 207.40 Elevation Difference = .60 Time of concentration calculated by the Urban Areas overland flow method (APP X -C) = 3.291 Min. TC = (1.8* (1.1 -C) *DISTANCE ^.5) / (% SLOPE^ (1/3) ] TC = [1.8 *(1.1- .8000) *( 45.00 ^.5) /( 1.33 ^(1 /3)])= 3.291 100.00 Year Rainfall Intensity(In. /Hr.) = 9.316 Subarea (Acres) _ .07 Subarea Runoff (CFS) _ . d — i " X IV' IUpf Total Area (Acres) _ .07 Total Runoff (CFS) _ . Lpe _ 5 f c TC (MIN) = 3.29 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 16.000 to Point /Station 15.000 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 205.40 Downstream point elevation = 202.40 Flow length(Ft.) = 25.00 Mannings N = .011 No. of pipes = 1 Required pipe flow (CFS) _ . Nearest 3 Inch Pipe Diameter (In.) = 6.00 - Calculated Individual Pipe flow (CFS) _ . Normal flow depth in pipe = 1.91 (In.) Flow top width inside pipe = 5.59 (In.) Velocity = 9.391 (Ft /S) Travel time (Min.) _ . TC(min.) = 3.34 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 16.000 to Point /Station 15.000 * ** CONFLUENCE OF MINOR STREAMS * ** * ** Compute Various Confluenced Flow Values * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 9.236 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 2 are: Time of concentration(min.) = 3.34 Rainfall intensity (in. /hr /) = 9.24 Total flow area (Acres) _ .07 Total runoff (CFS) at confluence point = .51 Confluence information: Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) ---------------------------------------------------------------------------- 1 1.91 3.39 9.147 2 .51 3.34 9.236 QSMX (1) _ +1.000 *1.000* 1.9) + .990 *1.000* .5) 2.411 QSMX (2 ) _ +1.000* .985* 1.9) +1.000 *1.000* .5) 2.387 Rainfall intensity and time of concentration used for 2 streams. Individual stream flow values are: 1.91 .51 Possible confluenced flow values are: 2.41 2.39 Individual Stream Area values are: .25 .07 Computed confluence estimates are: Runoff(CFS) = 2.41 Time(min.) = 3.386 Total main stream study area (Acres) _ .31 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 15.000 to Point /Station 18.000 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 202.40 Downstream point elevation = 201.90 Flow length(Ft.) = 28.00 Mannings N = .011 No. of pipes = 1 Required pipe flow (CFS) = 2.41 Nearest 3 Inch Pipe Diameter (In.) = 9.00 - .�sc- o'" p✓ Calculated Individual Pipe flow (CFS) = 2.41 Normal flow depth in pipe = 6.82 (In.) Flow top width inside pipe = 7.71 (In.) Velocity = 6.712 (Ft /S) Travel time (Min.) _ .07 TC(min.) = 3.46 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 15.000 to Point /Station 18.000 * ** CONFLUENCE OF MINOR STREAMS * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 9.028 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 1 are: Time of concentration(min.) = 3.46 Rainfall intensity (in. /hr /) = 9.03 Total flow area (Acres) _ . Total runoff (CFS) at confluence point = 2.41 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 19.000 to Point /Station 18.000 * ** INITIAL AREA EVALUATION * ** USER specified "C" value of .8000 given for subarea Initial Subarea Flow Dist. = 120.00 Highest Elevation = 208.80 Lowest Elevation = 207.40 Elevation Difference = 1.40 Time of concentration calculated by the Urban Areas overland flow method (APP X -C) = 5.619 Min. TC = (1.8 *(1.1 -C) *DISTANCE ^.5) /(% SLOPE ^(1 /3)] TC = [1.8* (1.1- .8000)*( 120.00 1.17^(1/3)])= 5.619 100.00 Year Rainfall Intensity(In. /Hr.) = 6.598 Subarea (Acres) _ .13 Subarea Runoff (CFS) _ .69 r-- j 2 "x a `�ju0 S Total Area(Acres) _ .13 Total Runoff (CFS ) _ .69 L.P P TC(MIN) = 5.62 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 19.000 to Point /Station 18.000 * ** CONFLUENCE OF MINOR STREAMS * ** * ** Compute Various Confluenced Flow Values * ** ---------------------------------------------------------------------------- 100.00 Year Rainfall Intensity(In. /Hr.) = 6.598 ALONG THE MAIN STREAM NUMBER: 1 The flow values used for the stream: 2 are: Time of concentration(min.) = 5.62 Rainfall intensity (in. /hr /) = 6.60 Total flow area (Acres) _ . Total runoff (CFS) at confluence point = . Confluence information: Stream runoff Time Intensity Number (CFS) (min.) (inch /hour) ---------------------------------------------------------------------------- 1 2.41 3.46 9.028 2 .69 5.62 6.598 QSMX (1) _ +1.000 *1.000* 2.4) +1.000* .615* .7) = 2.833 QSMX (2 ) _ + .731 *1.000* 2.4) +1.000 *1.000* .7) 2.448 Rainfall intensity and time of concentration used for 2 streams. Individual stream flow values are: 2.41 .69 Possible confluenced flow values are: 2.83 2.45 Individual Stream Area values are: .31 .13 Computed confluence estimates are: Runoff(CFS) = 2.83 Time(min.) = 3.455 Total main stream study area (Acres) _ . ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + ++ Process from Point /Station 18.000 to Point /Station 20.000 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 201.90 Downstream point elevation = 199.00 Flow length(Ft.) = 39.00 Mannings N = .011 No. of pipes = 1 Required pipe flow (CFS) = 2.83 Nearest 3 Inch Pipe Diameter (In.) = 9.00 W= LJ se o'l ✓ Calculated Individual Pipe flow (CFS) = 2.83 Normal flow depth in pipe = 4.66 (In.) Flow top width inside pipe = 8.99 (In.) Velocity = 12.249 (Ft /S) Travel time (Min.) _ . TC(min.) = 3.51 End of computations.. , TOTAL STUDY AREA(ACRES) _ . ********************************************* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** SAN DIEGO COUNTY R A T I O N A L- H Y D R O L O G Y PROGRAM PACKAGE --------------------------------------------------------------------------- LOT 24 - DEVELOPED CONDITION BASIN C - 100 -YR EVENT FILE= LOT24C --------------------------------------------------------------------------- *USER SPECIFIED HYDROLOGY INFORMATION* --------------------------------------------------------------------------- Rational method hydrology program based on San Diego County Flood Control Division 1985 Hydrology Manual Storm Event(Year) = 100.00 Map data precipitation entered: 6 HOUR, Precipitation(Inches) = 2.700 24 Hour Precipitation(Inches) = 4.500 Adjusted 6 Hour Precipitation (Inches) = 2.700 P6/P24 = 60.0 % San Diego Hydrology Manual "C" Values Used Runoff Coefficients by RATIONAL METHOD ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 19.000 to Point /Station 21.000 * ** INITIAL AREA EVALUATION * ** USER specified "C" value of .8500 given for subarea Initial Subarea Flow Dist. = 75.00 Highest Elevation = 208.80 Lowest Elevation = 207.40 Elevation Difference = 1.40 Time of concentration calculated by the Urban Areas overland flow method (APP X -C) = 3.165 Min. TC = [1.8 *(1.1 -C) *DISTANCE .5)/(% SLOPE"(1 /3)] TC = [1.8 *(1.1- .8500) *( 75.00".5)/( 1.87"(1/3)])= 3.165 100.00 Year Rainfall Intensity(In. /Hr.) = 9.554 Subarea(Acres) _ .11 Subarea Runoff (CFS ) _ .92 Total Area(Acres) _ .11 Total Runoff(CFS) _ .92 CftALt7I TC(MIN) = 3.17 ++++++++++++++++++++++++++++++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ Process from Point /Station 21.000 to Point /Station 22.000 * ** PIPEFLOW TRAVEL TIME (PROGRAM ESTIMATED SIZE) * ** Upstream point elevation = 204.90 Downstream point elevation = 194.00 Flow length(Ft.) = 31.00 Mannings N = .011 No. of pipes = 1 Required pipe flow (CFS) _ .92 Nearest 3 Inch Pipe Diameter (In.) = 6.00 -�CL Calculated Individual Pipe flow (CFS) _ .92 Normal flow depth in pipe = 1.97 (In.) Flow top width inside pipe = 5.64 (In.) Velocity = 16.330 (Ft /S) Travel time (Min.) _ .03 TC(min.) = 3.20 End of computations.. , TOTAL STUDY AREA(ACRES) _ .11 APPENDIX B (4 . HYDROLOGY MAP) APPENDIX C (5. TABLES AND CHARTS) r r� 1� I nl 1 / �U '_J I X v N Ln Ln t V a w • ' t,�_ •* • � ••_ �' mil• O � cz Ln IL ®w � ��' ,� i � � �"� � •tom 1 � �, \.,' \ , �� —` O C.� _ O-C M 12 / ( - 7 (f CL. N z N s Lai ul� Id o e, -,o I _ . I w W o N a< W C J U y O z u1 • M H �z w. O u r U x 0 O J ►t a p a s - LLA O O N C1 a < M w U — ZLa J < Uy N O M W< O b. LA. ZZ us O La 0 ti y <� �oCC Cm So t m O W J uQLA. zc l a a w a a Revised 1/85 APPENDIX XI -E I M-1 P O 7 to am 1p; � �. L.B. � ry ,1 ` CO V j • , °� o�� ��= I � :• J` ��� ``-� — � m "�. en 1;r w Ica • \ \ cm _�,.. ° _ LU l _ ✓ 1 x - 0 0 Z V U z O cc 1►-1 _ DN i Foo C>r < 2 Ls. J u N f — F X11 O tf1 tt1 L•] � O O ts_ Z 2 O W O • S v V1 O l— O °n =j < i z m =5G-O 21, OuiJ f-m l V O < z o A N V W ' a N Revised 1/85 — APPENDIX XI -H aJ O 04- t O T7 r C N O '' 4-3 4- ~ C p •r O O O aQ x A ?• S_ ^\ r Z7 0 > C T U S_ t0 (0 0 Q C i- W Z - 0 co U r O q O C t O O N O r 4-) Lv U r . C• >1 r - to a t r_ _54 r C C- tO CJ a-•) m U (:1 L r Cj O 11 W 4- O •r U to z S- S_ i j C C < t0 N •r 4- 4- O a � d d Ste - tv G * d Ln O a O L) -=_ E^ �O� i-) C N O tL r to C C O 0 i-� N ^' d C S- O O C r T O 'C C am -0 O� rtS •r y N +) S- O _ ` d r O td .0 N O +-) 4- 4-) CJ C ^ O C r S. O. 4--L _C C 11 � a C C •r N •r \ (0 C ro C S_ •r - 0 O • r r a U O- E C U U O O S_ C 'O U O- L^ O d a C r •r •r •r 4- a M IW CJ •r •r •r O N w r r +1 U S- w U U S- t 0 O a a rd L4 c7 C O C. 4j a) O C +J Cr C 11 m CL + _P -) S. LO S_ •r Z S- . +J to C •r C tZ L 3 O_ a i O C N C E Cu •r t0 C a Cl. S_ -r- O LP! O - 0 .0 en ..-. to C •r •r l O L1. O O U E ar S= •r- S. +J S_ S •r r b LL_ . O 0 4- O CO CO �• r4 L O .0 S_ .0 U r C Cj t1J r S- E 4J L3J '� 'r v 4J 4J N a r C +� .r. ml Ln LO C to � r' U Ln C S_ O m M N N O 4J u II O GJ C in -r-.) � II O Et N O•r Ci1 Q 4J +_3 b-0 N II m O r O M r- 4-) S- zr -a _C r- O r 4- S_ r U (D l0 ti7 4J r- t O CL CL •� ^ M Ln C O r N M ct C - 6 -Hour Precipitation (inches) O Ln o Ln o LO O LO o LO O N La tl ttl Q C.• C•9 M N N r r LO L ' ,Ln \ td r"� _ .�.. • �L .iii -- i i .L .I� i i I M Ln L7 4J $ C is C aZ �O t••1 0. O ''lip il7llil� ')'I :" I i!i III ! I N Z fr ' ': cS _: ; i. l I - _ =1 i_ /J // I.. ! t i t i! I I I' l i L i l - 1 ri r1 110 CZ - - — -^—«— u - - - _ - �- -- r - Cn of i t 0 • �a ors �YLWr�w uswa� ■tt ■ ■ ■t .,/N ■I.tgl q/tN■� t1N . I' � Yt■�At■/ Ate �i ■ttYM ■tl■ ■t■1■ JI /t■ /�' e �ttl■■�■/ttlN II .Nt/I /t ■tl/ A■ B ■ tN ME N / �Al■■ ���■ WINE ME ME MOMMUMMIS N■NITIMMINIt�■�■■N■w■satrt i�tra■rA■aotttr �sA■to��■ N■ N■■■■iN■ pt ■h /It1.■I■■/.■Y/A■ttNltt■t!q■1 .■ttt■I /■ MMK-dE M r ENEEME WEEMINDIUM ttOttttttl■ t■ ttt■ N ■■ ■■■tttrtgt ■tIi/N/ttlr/i■q■tr I■ttiq.0l� ■t■it■■I■■ tY■NN■■ ■N■Y�■twrrnr.N�ru■o�Nt ■ t ■tatq ■■■�tt■•/IARtt■►�tolmtstN� �� ■O' /N� ■■trltMV�� /�ttr' � ■■■•et■r■rArA ONW, �.t■rvA■®r.S■r w����■�� ►w tt■■■t■ttAOtt■INtt07WAW / NEW, WEIW tt Al= M00W../ts �OiIN�Y�M/�/M . t■ t■■ wNm�or ■N■NSrATAr.N W�wnearvur•�r.■�■ MNNtt/.t■■/N'/■N■■■t WMMWI EIRM - 4NMMMAVAErAMWMWAN=IWA=NMW tttlNN■■ •I.■ /■t ■1t ■U"0W../ ../ st■R ME �q� /'I�ArI�t� ■NYt ■t�■IIA■■• J �■1 iusvwAuw.s . wts. s■■ t�V'Ar /r %�■i��AtV.O�YtIIitt■1■ // .�w.n•.�rau�nu�oJSa , � �u�� , ■ass i�/a.■■r.RS��uw.oraN■�. a J .ice ■a■■�tt■■■■Nt �rrA�/t►.N�s�t■�■rttr.■■N� .*■t■■■� Ntts■■wtta tv.►rtrp•.■o►�tattr�t■�•wt■s•. a® wt■■■■tt► � �■u� s■niisw.a�►y��ri■�rw�v�t a,��■i■ .aN■■�r ttt�wt�r w ■rrso•IIvtN�AR■r�■sw�is�■rwt■tr. u�w■NtaN.rrw•ra■t .vtt� strtt��t�■. .�■ J�■ ■■■■�Nta■■wNn�rssa�t.ttrtr� tti■■s'w■■■►.t■■ Neu ■■■NSir�rr.�■r.N�w.�gi■N►.iw■rw ��ta .�■tw■ ■■ NO■ t■ stt■ wNrrr�rrrrau��u�Nr .■ti�.�t�■�►�■to .�t■tttro / / sir■ r■ srri�v� ®.�NSi��w_/tvit■■�■�wttti■ti� , ■ ��wraw ■■rrrrrrrau■i�radr�w�r.�t�ras . J �■■a■i■�� s■ ��rravi•.•. riavas ■�■..�v.�■■�.�r�ria■■►.a�e a■rr .wr �rwr /I•iII /■IiNN•■� u►.Nr.�tr- .m�.�tMNiitoar w ■■o■�■rr■■rri -i►is ��■a�■ %ir.��r��:.-�A■r�mrr �■■■r _ �sr ■tt4attt�trrrir��twt■trv�tw.at■ :uw�w■tro "�■r�a■ � NNt� ■► %1i5C0 iq ■ONINI. /■�L■I�/'i ■Nr��■�►- /� /!�-r��• OdI YI! �Idq�■■■■ r/ Y.A /"stlR/ ■t ■!� ■Mt /_Nt ■ ■ ■■� / ■ ■N J ..A � ltNNt/ / -' �I��tt■ N■■ S■ r/ IitN. 1/■�i \tt ►. / ■■ttC "Ntlt■■■5NB■t ■■ ,` �% �i■ t■■ N■■■ It ■/A ■MNB ■tRS/t .�/� t��/�■■ / �N�NNMt = q�/ �iu�iiii��w�r�a�i ■ aari�� t �� � ■■���H ■ /r /YI.Y.■�itri� ■/i�Ni ■/�- �O�/■%� /fib \ t■■y■!■ ■N ■A. ■d /YR!■�SdpN �f■iN■tt /r�tH J �M ■ ttt ■N �■ % ■t�itltt ■tNt■1!iA ■t ■tttt � O tNP/ I�■ /A►ltt�it ■ ■/SAt ■• ■t!�■■Nt/N■�■� ■■�N ■ /Y.�%II■'� ■I�/i ■Nr�!■ ■■t■I �At■■t■Y t■It1 an Nth■ tNNi.%► �//■ iA/ �t ■tS'� ■■■ttN�Ntt�■tt���tt ■ ■LlY N � ■■N■Mwr■ts.�w:r r _ay.Nrs/■��■r:.dr■■■s��utrt�m , �� Y� tr"/ Ji/ 7lim' ittr�/ tttM ,ittt■t ■■t�'otltq■tt■tIt ■t■■ -� � ■% V�YOiOV�NtNitN ■ ■ ■ ■r�■I■NNNt■IY■t ■■Y_t� � NO■ N�// 5/ I/ Lf�iiV�Q� /�iN■���r�N�■ /NNpBN� "--� �� ■■■■ sviir�� .v�s�r�.a■�tr_.�tm■■ts■a. �.r■sNt ■ t■ t■ ttrifrr_ w�r:�av- ..�tuu�o�•��..ut�■�� ■■A■� ottsiiirr _.r�t■•sw■tN�.•c.:..ttw.� / /�Y/ 1��_ �■1■t■i!�_wA���a�Nt■IN /��/Niti■ tl ■ ■■t•NtOtt■■�tltl tt■ /ii/ /��N ■/��i� � �f ■t��tt ■�N ■■N�t■t■tllt ommummtNWttttlitttt� ttl� /, /�/V�� l YNttt■■ ■t ■■■t ■t■Ntt ■■< ■ ■tNft ■ ■ ■ ■tN r/ � ■ Ntt■ tltti■■ t■ tt ■• ■t ■ ■ttttNt■NNNt■ ■ttiOt ■ ■ ■tNs LETTER TO GRADE. o BY _ 207.70TG .. �F 4 . 11 244.201E 07.80TG DATE:;!'�,. 452.9 03.391 •-- o'"'. K d„ 208 � 2' 2 2 100 =4` 6, CFS . : 207.90TG 1`' O ` `; r"' s , 1100 -13. FPS �•''� 2 a, (. -,►. r - ---M RAP. ,�, , «, �► •3.121 , T=1.4! A18* FILTER 0 39 ,LF' US' =ETA IL SH 1 :�N EADER 7? 2 tia ' cQ '��' }' E - �""; �' 12 � p Q 207.40T 8 r' c'� '� ? `�Oj i 1. A r �c 202.401E 4 i M 0�1 2kX24 58.91 Z 2 7.40TG �o i �o w.� z p f �$ • q 0 .13 , 2 .00 , 7.50FL 13 1 0 .0 0 QL � � •�� Pt � 4 x�.; � ti I•`� ° � 1 � i � `* ,+ a 08.00FF Az- CFS =1 FPS' (� • I d (�? , V� FS i fi. T G 0 op y RIP P FANG 207.4fl <c .� 6 3 ,�F ® 204.901E , / • 1 T =.4� 3/8" 'FILTER 35. 69� USE LE SPREADER � "*'' + 4-D sl 212 6 SEE DETAIL SHE�T 1 I 1 I , 1. 7 7 ©0 � OTC g:4 �6 j A tip . ---- a te• ?r' D Wi 1 ` w ,i ,, . W 5 ry , w.i„ , } RAP, RAP'S C �'` °, 4 p , T�.�,# ;" 3,,, FILTER •ti p ?p , C'p sr p CATCH BASINS _RE 12 "X 12" 1 USEVEL SREADER .O �° ? y y "; UNLESS OTHERWi NOTED , ' SEE DETAIL S III