Loading...
1995-198 ES Street Address 'lS/ ~ c{ Category I L{OOro9 Serial # q3--- ({ 5 IJLL) ~I Name Description Plan ck. # Year recdescv 8APPLIED ENGINEERING .UP C.J. Randle, P.E., Vice President 1529 Grand Avenue, Suite A San Marcos, California 92069 Phone: (619) 471-6000 Fax: (619) 736-0185 ,_.-~,/ January 16, 1996 Mr. Barry Stone CAR CARE USA 615 W EI Norte Parkway, Escondido, California 92026 Subject: Addendum, Limited Geotechnical and Engineering Recommendations For the Perimeter Retaining Wall 350 Encinitas Blvd, Encinitas California Dated January 4, 1996 ,Dear Mr. Stone, The following information is to be considered on the structural design of the proposed retaining wall indicated in subject Limited Geotechnical and Engineering Recommendations. Seismic Design Consideration: The values shown on the subject Limited Geotechnical & Engineering Recommendation for Lateral Earth Pressures, Lateral Resistance and Allowable Bearing Capacity, may be used for the static design of the subject retaining walls. For seismic considerations, the values mention above, may be increased by one-third when considering loads of short duration such as wind or seismic loading. If you have any questions regarding this report, please do not hesitate to contact this office. We appreciate this opportunity to be of service. Respectfully submitted, APPLIED ENGINEERING GROUP 0 Œ @ ru WI ŒIID JAN 18 1996 ENGINEERING SERVICES CITY OF ENCINITAS Charles 1. Randle, P.E. RC.E.22096 Vice-President Distribution: (3) Addressee . . . "', r. /' / / ~~~-h\.. '~)rt-- 5l~ h\'V\\ L ~ W-- L,-'P'IO~ APPLIED ENGINEERING GROUP C.J'. Randle, P.E., Vice President 1529 Grand Avenue, Suite A San Marcos, California 92069 Phone: (619)471-6000 Fax: (619) 736-0185 illŒ@ŒOWŒ(ID JAN 0 8 1996 ENGINEERING SERVICES CITY OF ENCINITAS January 4, 1996 Mr. Barry Stone CAR CARE USA 615 W. EI Norte Parkway, Escondido, California 92026 Subject: Limited Geotechnical and Engineering Recommendations For the Perimeter Retaining Wall 350 Encinitas Blvd, Encinitas California Introduction In accordance with your authorization, we have performed a limited geotechnical investigation at the subject site. This report presents the results of our limited investigation and provides recommendations for the construction of the retaining walls located on the perimeter of subject property. Accompanyin~ Illustrations Table. and Appendices Figure 1 - Site Location Map Figure 2 - Site Plan Appendix A - Laboratory Test Results Appendix B - Retaining Wall Backdrain Sketch Appendix C - Back Cut Detail Pw:pose and Scope The purpose of our investigation was to evaluate the on-site geotechnical conditions and their effects on the proposed retaining walls locacted along the West and East property lines and to propose recommendations for the design and construction of said walls. The scope of our services included: - 1 - . . . Reconnaissance of existing site conditions including the collection of in-place and bulk samples from the slope area. . Laboratory testing of representative soil samples to evaluate their pertinent engineering properties (Appendix B). . Geotechnical analysis of the data obtained. . Preparation of this report presenting our findings, conclusions, and recommendations relative to the proposed retaining walls. Site Description and Proposed Construction Investigation The subject property is located on the North side ofEncinitas Blvd, East of Saxony Road in The City of Encinitas. The Property consists of a 145,000 square foot, roughly triangular lot with a height difference of20 feet fÌ"om the back of the property to the street Their is an existing Cribwall along the East property line variable height It is proposed to construct retaining walls along the East and West side of the property with height up to 17 feet. Investigation and Laboratory Testing On December 20, 1995, an engineer fÌom this office made a site visit to observe the subject site and collect soil samples ftom bedrock exposures on the slope. Bulk and in-place block samples were collect~d from exposed bedrock. The samples were transported to a geotechnical laboratory for analyses. Soil and Geologic Units As encountered in our limited investigation and based on our knowledge of the area, the site is underlain by sandstone. The sandstone consists of light brown sandstone. Faulting The primary seismic hazard affecting the site is considered to be ground shaking due to an earthquake on one of the major regional faults. The project site is located approximately 9 miles east of the Rose Canyon fault zone. Recent trenching studies in downtown San Diego and Rose Canyon has resulted in the classification of those portions of the Rose Canyon fault as active in accordance with California Division of Mines and Geology Special Publications 42. Significant ground shaking in the Encinitas area may also occur due to an earthquake on the Coronado Bank fault located offshore approximately 16 miles west of the site, and the Elsinore fault located approximately 20 miles northeast of the site. -2- . . Ground Water Ground water was not observed during our investigation at the site. Ground water is not anticipated to be a significant concern to the project provided the recommendations for drainage of the site included in this report are implemented. However, on some sites, shallow ground water or seepage may occur due to irrigation where such conditions did not previously exist. CONCLUSIONS AND RECOMMENDATIONS Retainin~ Wall It is our understanding that the proposed retaining wall will be located along the property lines and will be constructed to support a cut slope. A level and 2: 1 slope backfill above the retaining wall is being proposed at different locations along the wall, this conditions should be address during the wall's design. The retaining wall base should be founded in native competent material and embedded a minimum of 18 inches down from the proposed finished grade. Retaining wall base excavation should be observed and approved by this office before any reinforcment steel is place. The retaining wall shall be returned into the existing slope at each end. An-ene foot wide gravel drain should be installed at the back of the retaining wall (between the backcut soil and wall backfill) and the full height and rapped with a Mirafy 140N or siJ:nilar geofabric, to prevent infiltration of fines. A 4" perforated PVC pipe shall be installed at the bottom of said gravel filter with a solid 4 inch PVC outlet every 20 feet. The elevation of the perforated pipe shall be such that it allows the water to drain to the face of the wall (Appendix B). Based on our analysis, the existing cribwalilocated on a part of the easterly property, does not impact the proposed wall construction. For construction of wall in this area, the back cut recommendations should be follow, (Appendix C). Back cut: The slope backcut for the construction of the retaining wall, are proposed to be from a vertical cut to a slope of 1/2:1 as determine on site during construction observations by this firm. For backcuts over 8 feet, the cut shall be performed in 60 foot maximum slots and the separation between each slot shall not be less than 60 feet. Vertical cut can be limited to 6 feet with the upper cut limited to a 1 unit horizontal to 4 units vertical. CALOSHA standards must be observed throughout the excavation and backfill operations, (Appendix C). - 3 - . . Design Parameters: The recommended design parameters for the retaining walls are listed below: 40° OPSF 115 PCF 26 PCF 38 PCF 640 PCF 4000 PSF2- .- 0.40 230 PSF . r'f/ W ~j "'-\'-,; ~ ,-( ~~ tJu ú fØ(l- Drain~ge: \ r ~ ~ ({:>\ l <---- All surface drainage should be maintained away ITom the top and base orlbe r~ng wall t~:~ '), --~' Angel of Internal fiiction Cohesion Wet Density Equivalent Fluid Pressure (level Backfill) Equivalent Fluid Pressure (2: 1 Sloped Backfill) Passive Resistance Bearing Capacity Friction Coeficionon Traffic Surcharge (2 feet) Construction Observation The recommendations provided in this report are based on preliminary design information for the proposed facilities and site conditions disclosed by reconnaissance of surface features. The interpolated subsurface conditions should be checked in the field during construction. Construction activities should be observed by a representative of this firm so that construction is performed in accordance with the recommendations of this report. In addition, final project drawings should be reviewed by this office prior to construction. The recommendations contained in this report are based on our field study, laboratory tests, and our understanding of the proposed construction. If conditions are encountered at the site which are different from those assumed in the preparation of this report, our firm should immediately notified so that we may review the situation and make supplementaIy recommendations. In addition, if the scope of the proposed structure changes from that described in this report, our firm should be notified. This report has been prepared in accordance with generally accepted soil and foundation engineering practices within the greater southern California area. Professional judgements presented herein are based partly on our evaluation of the technical information gathered, partly on our understanding of the proposed construction, and partly on our general experience in the geotechnical field. Our engineering and geotechnical work and judgments rendered meet current professional standards. We do not direct the contractor's operations, and we cannot be responsible for the safety of other than our own personnel on the site; therefor, the safety of others is the responsibility of the contractor. The -4- . . contractor should notifY the owner if he considers any of the recommended actions presented herein to be unsafe. If you have any questions regarding this report, please do not hesitate to contact this office. We appreciate this opportunity to be of service. Respectfully submitted, APPLIED ENGINEERING GROUP Charles J. Randle, P.E. R. C.E. 22096 Vice-President Distribution: (3) Addressee - 5 - . . ~ ~ 0 ~ 11) V) ~ ~ ~ ~ ..) ~ :;) (J II 0 Sc.Al-1i!!' R/~uez.,4 6"-: ~ ~ ... ~ ~ èS ~ ~ ~ ~ ~ ~ oJ ~ ~ V) ~ M e14 ~ ¡f'P ~ ~ ~ ~ ~ ~ ~ ~ ~ "" ~ DRIVe- FlGURE \ I:NCINITAS AUTO CENTER ENCINI,T AS, CA SCALE: 1" = 60' . 3' 14"W 146.37' / .. / !!! ttJ. t-.. . / / ~ ~ .. ~ ° t-.. CV ~ ' PROPOSED RETAINING WALLS -........ ~ . ~ 4~ ~ 7 >'°"-.... /:" O~, ~~ ----..s Iy C¡ ., 7 .. e ~ ~¡YlìA ~~ ~. ~lS . '-= e ~ '$",,- 6>0 < ~ ~ "~'h '6# .... ~\() ....~ 55°11'59" E ~ ,.~ 62.54' Fl6URE.. 2- ENCI NIT AS AUTO CENTER 350 ENCINITAS BLVD. ENCINITAS, CA 92024 ~ ...... . N 'lit II) au t ,.. C") .. ,.. ,.. 0 N 0 Z , . . . APPENDIX A LABORATORY TESTING PROCEDURES Maximum DIY Densi~ and Optimum Moisture Tests. The maximum dry density and optimum moisture of selected materials was evaluated in accordance with ASTM method of test D1557-78A Sample Maximum Optimum Location Densi~ Moisture Sample B-1 115.0 PCF 13.0% Direct Shear Test. The direct shear tests were performed in accordance with ASTM method D3080. Sample Friction Location Angle Cohesion Sample B-1 58° OPSF . . 8rAINING WALL DRAIN. DETAIL SOIL BACKFILL. COMPACTED TO 80 PERCENT RELATIVE COMPACTlON* RaT AINING WALL II1IIIIII &i.jJ~§~~- 0 ¡:--~~ ~~~~- 0 " MIN. 0 ~~~~~~ " OVERLAP :':'~-::' FtL TEA FA8RtC ENVELOPE . . 0 . :==--~ (MIRAFt 1.0N 0" AP'ROVED 0 . ~~§j EQUIVAUNT}** ~. MIN~ . I~ 3/..-1.1/~ CLEAN GRAVEL" WALL. W A TERPROOFINCI PE" ARCHITECT" SPECaFICA TION. W ALL FOOTING rn "..(MIN.) DIAMETER PERFORATED PVC PIPi (SCHIDULI ..., 0"" EQUIV ALENT) WI11f PERFORATION. ORIENTEI) DOWN A8 DetCnD MINIMUM 1 PERCENT GRADIENT TO SUITABLE OUTLET FINISH GRADE ~~~~~~~~~~~~~~~ .-::'::§;~~~~OMPAC"'D FI~:::== -- ~ ~ ~ ~ ~~ ~ ~ ~: ~g~~~~:f:f~~:f ~ N().T TO SCALE COMPEiÉNT BEDROCK OR MATERIAL AS EVALUATED BY THE GEOTECHNICAL CONSUL TANT * BASED ON ASnt D 1557 A?f€ND\ )( B . . EXIST. CR\6WALL SAND ~TONE ~ \ \ \ \ \ \ \ \ - \ \ \ \ \ 0 ~ PROPOSED Re:T. WALt- - IÒ BACKc.u T DE T A \ L Ã'FfEN,DI X C 8 HYDROLOGY AND HYDRAULICS REPORT FOR: CAR CARE U.S.A. , c/o BARRY STONE 615 W. EL NORTE PARKWAY SAN DIEGO, CA 92121 DATE PREPARED: JUNE 14, 1995 REVISED AUGUST 17, 1995 WAYNf;~ &?~577 DATE: ~/23/C)S 8 ? 1!1> V PE 609 \ ::' :, AUG 2 3 1995 8 8 TABLE OF CONTENTS I. INTRODUCTION . . . . . . . 1 II. DISCUSSION . . . . . . . . . 1-2 III. CONCLUSION . . . . . . . . . 2 IV. HYDROLOGY . . . . . . 3-15 V. HYDRAULICS . . . . . . . . . . 16-37 VI. APPENDIX . . . . . . . . 38-43 VII. EXHIBIT "A" . . . . . . . . . . . . 44 FOLDOUT 8 8 PE 609 I. INTRODUCTION The subject property is a 2.34 acre commercially zoned parcel located at 350 Encinitas Blvd. The geographic location is 33°03'01" North latitude and 117°17'00" West longitude. The site currently slopes at approximately 10% in a southerly direction across vacant land with mature, natural vegetation to Encinitas Blvd. There are no existing structures intercepting the storm flow before it reaches Encinitas Blvd. The purpose of this report is to quantify the 100 year storm runoff generated by the proposed development. Then determine the size and location of the drainage structures necessary to intercept, contain and convey Ql00 to an acceptable point of connection to the City of Encinitas existing storm drain in Encinitas Blvd. II. DISCUSSION The modified rational method was utilized to determine the 100 year runoff quantity. In the developed condition, the area tributary to the drainage structures shown on the corresponding grading plan is limited to the property boundary with the exception of a sliver of land along the easterly boundary. This section of land drains toward the southwest and crosses onto the subject property. It is then collected in a back-of-wall ditch and conveyed to catch basins which intercept the storm flow and discharge it onsite at various locations along the wall. (See exhibit "A") The property adjacent to the west and north is currently being developed. Based on a review of the grading plans by San Diego Land surveying and Engineering, it appears that no runoff originating thereon flows across the proprty line onto the subject property. 8 8 Car Care/PE609 June 19, 1995 page 2 storm runoff originating on roof tops, parking areas and landscaped areas will sheet flow until it is collected in either a "V" gutter, curb and gutter, back-of-wall drain, or earthen swale and conveyed to a catch basin or area drain where it enters the proposed underground storm drain system (See exhibit "A" and hydrology calculations herein) Catch basins, inlets, back-of-wall drains and area drains are si~ed to intercept 100% if Q100. III. CONCLUSION Based on the calculations contained herein, it is the professional opinion of Pasco Engineering that the storm drain system as proposed on the corresponding grading plan is adequate to intercept. contain and convey Q100 to an acceptable point of connection to the storm drain in Encinitas Blvd. 8 IV. HYDROLOGY 8 33 8 8 4 ** ************************************************************************* RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) copyright 1982-92 Advanced Engineering Software (aes) Ver. 1.3A Release Date: 3/06/92 License ID 1388 Analysis prepared by: PASCO ENGINEERING, INC. 535 NORTH HWY 101, SUITE A SOLANA BEACH, 'CA. 92075 PH: (619) 259-8212 FAX: (619) 259-4812 ************************* DESCRIPTION OF STUDY ************************** * HYDROLOGY ANALYSIS FOR: CAR CARE USA. * * 100 YEAR STORM * * SEE EXHIBIT "A" * 6-22-95 MS * ************************************************************************* - -------------------------------------------------------------------------- FILE NAME: 609G.DAT TIME/DATE OF STUDY: 15:28 6/22/1995 USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: - -------------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = SPECIFIED MINIMUM PIPE SIZE(INCH) = 4.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED 2.500 FOR FRICTION SLOPE = .95 * ************************************************************************** - -------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< FLOW PROCESS FROM NODE 2.41 TO NODE 2.40 IS CODE = 21 = ========================================================================== SOIL CLASSIFICATION IS "C" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5000 INITIAL SUBAREA FLOW-LENGTH = 55.00 UPSTREAM ELEVATION = 158.00 DOWNSTREAM ELEVATION = 153.70 ELEVATION DIFFERENCE = 4.30 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 5-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 SUBAREA RUNOFF(CFS) = .12 4.036 5- 8 8 OTAL AREA(ACRES) = .04 TOTAL RUNOFF(CFS) = .12 ** ************************************************************************* LOW PROCESS FROM NODE 2.40 TO NODE 2.30 IS CODE = 3 ---------------------------------------------------------------------------- - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 4.000 DEPTH OF FLOW IN 4.0 INCH PIPE IS 1.4 INCHES PIPEFLOW VELOCITY(FEETjSEC.) = 4.3 UPSTREAM NODE ELEVATION = 152.70 DOWNSTREAM NODE ELEVATION = 151.20 FLOWLENGTH(FEET) = 25.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 4.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = .12 TRAVEL TIME(MIN.) = .10 TC(MIN.) = 1 5.10 * ************************************************************************** FLOW PROCESS FROM NODE 2.40 TO NODE 2.30 IS CODE = 8 - -------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = SOIL CLASSIFICATION IS "C" INDUSTRIAL DEVELOPMENT RUNOFF SUBAREA AREA(ACRES) = .02 TOTAL AREA(ACRES) = .05 TC(MIN) = 5.10 6.506 COEFFICIENT = .9000 SUBAREA RUNOFF(CFS) = TOTAL RUNOFF(CFS) = .10 .22 *************************************************************************** --------------------------------------------------------------------------- FLOW PROCESS FROM NODE 2.30 TO NODE 2.20 IS CODE = 3 =========================================================================== »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 6.0 INCH PIPE IS PIPEFLOW VELOCITY(FEETjSEC.) = 4.8 UPSTREAM NODE ELEVATION,= 151.20 DOWNSTREAM NODE ELEVATION = 146.60 FLOWLENGTH(FEET) = 90.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = .22 TRAVEL TIME(MIN.) = .32 TC(MIN.) = 1.7 INCHES 1 5.41 **************************************************************************** FLOW PROCESS FROM NODE 2.30 TO NODE 2.20 IS CODE = 8 ---------------------------------------------------------------------------- ============================================================================ »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 8 it? 8 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = SOIL CLASSIFICATION IS "C" INDUSTRIAL DEVELOPMENT RUNOFF SUBAREA AREA(ACRES) = .11 TOTAL AREA(ACRES) = .16 TC(MIN) = 5.41 6.259 COEFFICIENT = .9000 SUBAREA RUNOFF(CFS) = TOTAL RUNOFF(CFS) = .62 .84 * ************************************************************************** - -------------------------------------------------------------------------- FLOW PROCESS FROM NODE 2.20 TO NODE 2.10 IS CODE = 3 = ========================================================================== »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 6.0 INCH PIPE IS PIPEFLOW VELOCITY(FEET/SEC.) = 13.9 UPSTREAM NODE ELEVATION = 146.60 DOWNSTREAM NODE ELEVATION = 136.00 FLOWLENGTH(FEET) = 30.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA (CFS) = .84 TRAVEL TIME(MIN.) = .04 TC(MIN.) = 2.1 INCHES 1 5.45 *************************************************************************** --------------------------------------------------------------------------- FLOW PROCESS FROM NODE 2.20 TO NODE 2.10 IS CODE = 8 --------------------------------------------------------------------------- --------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.232 SOIL CLASSIFICATION IS "C" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 SUBAREA AREA(ACRES) = .01 SUBAREA RUNOFF(CFS) = TOTAL AREA(ACRES) = .17 TOTAL RUNOFF(CFS) = TC(MIN) = 5.45 .06 .90 **************************************************************************** ---------------------------------------------------------------------------- FLOW PROCESS FROM NODE 2.10 TO NODE 2.00 IS CODE = 9 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- »»>COMPUTE "V" GUTTER FLOW TRAVELTIME THRU SUBAREA««< UPSTREAM NODE ELEVATION = 128.00 DOWNSTREAM NODE ELEVATION = 122.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 150.00 "V" GUTTER WIDTH(FEET) = 8.00 GUTTER HIKE(FEET) = PAVEMENT LIP(FEET) = .010 MANNING'S N = .0150 PAVEMENT CROSSFALL(DEClMAL NOTATION) = .00200 MAXIMUM DEPTH(FEET) = .15 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.621 SOIL CLASSIFICATION IS "C" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 TRAVELTIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC) = AVERAGE FLOWDEPTH(FEET) = .07 FLOODWIDTH(FEET) = .050 2.65 13.63 8 8 7 "V" GUTTER FLOW TRAVEL TIME(MIN) = .94 TC(MIN) = SUBAREA AREA(ACRES) = .00 SUBAREA RUNOFF(CFS) = SUMMED AREA(ACRES) = .17 TOTAL RUNOFF(CFS) = END OF SUBAREA "V" GUTTER HYDRAULICS: DEPTH (FEET) = .07 FLOODWIDTH(FEET) = 13.63 FLOW VELOCITY(FEETjSEC.) = 2.65 DEPTH*VELOCITY = 6.39 .00 .90 .17 * ************************************************************************** »»>ADDITION OF 'SUBAREA TO MAINLINE PEAK FLOW««< FLOW PROCESS FROM NODE 2.10 TO NODE 2.00 IS CODE = 8 - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 5.621 SOIL CLASSIFICATION IS "C" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 SUBAREA AREA(ACRES) = .29 SUBAREA RUNOFF(CFS) = 1.47 TOTAL AREA(ACRES) = .46 TOTAL RUNOFF(CFS) = 2.37 TC(MIN) = 6.39 * ************************************************************************** FLOW PROCESS FROM NODE 2.10 TO NODE 2.00 IS CODE = 1 - -------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT TIME OF CONCENTRATION(MIN.) = 6.39 RAINFALL INTENSITY(INCHjHR) = 5.62 TOTAL STREAM AREA(ACRES) = .46 PEAK FLOW RATE(CFS) AT CONFLUENCE = STREAM 1 ARE: 2.37 * ************************************************************************** FLOW PROCESS FROM NODE 6.20 TO NODE 6.10 IS CODE = 21 - -------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- SOIL CLASSIFICATION IS "C" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 INITIAL SUBAREA FLOW-LENGTH = 1.00 UPSTREAM ELEVATION = 159.50 DOWNSTREAM ELEVATION = 159.40 ELEVATION DIFFERENCE = .10 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 5-MINUTES 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 6.587 SUBAREA RUNOFF(CFS) = .00 TOTAL AREA(ACRES) = .00 .167 TOTAL RUNOFF(CFS) = .00 8 8 f} * ************************************************************************** FLOW PROCESS FROM NODE 6.10 TO NODE 6.00 IS CODE = 6 - -------------------------------------------------------------------------- »»>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA««< = ========================================================================== UPSTREAM ELEVATION = 159.40 STREET LENGTH(FEET) = 138.00 STREET HALFWIDTH(FEET) = 50.00 DOWNSTREAM ELEVATION = CURB HEIGHT(INCHES) = 6. 151.10 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = INTERIOR STREET CROSSFALL(DECIMAL) = .002 OUTSIDE STREET CROSSFALL(DECIMAL) = .002 20.00 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 2 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = STREET FLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = .16 HALF STREET FLOODWIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET/SEC.) = PRODUCT OF DEPTH&VELOCITY = .72 STREETFLOW TRAVELTIME(MIN) = .50 TC(MIN) = 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.196 SOIL CLASSIFICATION IS "C" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 SUBAREA AREA(ACRES) = .13 SUBAREA RUNOFF(CFS) = SUMMED AREA (ACRES) = .13 TOTAL RUNOFF(CFS) = END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = .16 HALFSTREET FLOODWIDTH(FEET) = 1.50 FLOW VELOCITY(FEETjSEC.) = 4.63 DEPTH*VELOCITY = .72 .37 4.63 5.50 .72 .73 *************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 5.10 IS CODE = 3 --------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< --------------------------------------------------------------------------- --------------------------------------------------------------------------- DEPTH OF FLOW IN 6.0 INCH PIPE IS PIPEFLOW VELOCITY(FEETjSEC.) = 6.2 UPSTREAM NODE ELEVATION = 148.60 DOWNSTREAM NODE ELEVATION = 147.25 FLOWLENGTH{FEET) = 30.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER (INCH) = 6.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA (CFS) = .73 TRAVEL TIME{MIN.) = .08 TC(MIN.) = 3.5 INCHES 1 5.58 *************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 5.10 IS CODE = 8 --------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< =========================================================================== 8 8 e:; 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = 6.138 SOIL CLASSIFICATION IS "C" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 SUBAREA AREA(ACRES) =. .12 SUBAREA RUNOFF(CFS) = .66 TOTAL AREA(ACRES) = .25 TOTAL RUNOFF(CFS) = 1.39 TC(MIN) = 5.58 * ************************************************************************** - -------------------------------------------------------------------------- FLOW PROCESS FROM NODE 5.10 TO NODE 5.00 IS CODE = 3 = ========================================================================== »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< DEPTH OF FLOW IN 9.0 INCH PIPE IS PIPEFLOW VELOCITY(FEETjSEC.) = 7.3 UPSTREAM NODE ELEVATION = 147.25 DOWNSTREAM NODE ELEVATION = 145.10 FLOWLENGTH(FEET) = 48.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA (CFS) = 1.39 TRAVEL TIME(MIN.) = .11 TC(MIN.) = 4.0 INCHES 1 5.69 * ************************************************************************** FLOW PROCESS FROM NODE 5.10 TO NODE 5.00 IS CODE = 8 - -------------------------------------------------------------------------- ========================================================================== »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = SOIL CLASSIFICATION IS "C" INDUSTRIAL DEVELOPMENT RUNOFF SUBAREA AREA(ACRES) = .27 TOTAL AREA(ACRES) = .52 TC(MIN) = 5.69 6.062 COEFFICIENT = .9000 SUBAREA RUNOFF(CFS) = 1.47 TOTAL RUNOFF(CFS) = 2.87 *************************************************************************** --------------------------------------------------------------------------- FLOW PROCESS FROM NODE 5.11 TO NODE 5.00 IS CODE = 8 --------------------------------------------------------------------------- --------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = SOIL CLASSIFICATION IS "c" MULTI-UNITS DEVELOPMENT RUNOFF SUBAREA AREA(ACRES) = .00 TOTAL AREA(ACRES) = .53 TC(MIN) = 5.69 6.062 COEFFICIENT = .6000 SUBAREA RUNOFF(CFS) = .04 TOTAL RUNOFF(CFS) = 2.90 *************************************************************************** FLOW PROCESS FROM NODE 5.12 TO NODE 5.00 IS CODE = 8 --------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 8 8 /0 == ========================================================================= 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = SOIL CLASSIFICATION IS "c" ULTI-UNITS DEVELOPMENT RUNOFF SUBAREA AREA(ACRES) = .02 TOTAL AREA(ACRES) = .55 TC(MIN) = 5.69 6.062 COEFFICIENT = .6000 SUBAREA RUNOFF(CFS) = .07 TOTAL RUNOFF(CFS) = 2.98 * ************************************************************************** FLOW PROCESS FROM NODE 5.13 TO NODE 5.00 IS CODE = 8 - -------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = SOIL CLASSIFICATION IS "c" MULTI-UNITS DEVELOPMENT RUNOFF SUBAREA AREA(ACRES) = .02 TOTAL AREA(ACRES) = .57 TC(MIN) = 5.69 6.062 COEFFICIENT = .6000 SUBAREA RUNOFF(CFS) = .07 TOTAL RUNOFF(CFS) = 3.05 * ************w************************************************************* FLOW PROCESS FROM NODE 5.14 TO NODE 5.00 IS CODE = 8 - -------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = SOIL CLASSIFICATION IS "c" MULTI-UNITS DEVELOPMENT RUNOFF SUBAREA AREA(ACRES) = .04 TOTAL AREA(ACRES) = .61 TC(MIN) = 5.69 6.062 COEFFICIENT = .6000 SUBAREA RUNOFF(CFS) = .15 TOTAL RUNOFF(CFS) = 3.19 * ************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 4.00 IS CODE = 3 - -------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< = ========================================================================== DEPTH OF FLOW IN 9.0 INCH PIPE IS PIPEFLOW VELOCITY(FEETjSEC.) = 14.3 UPSTREAM NODE ELEVATION = 145.10 DOWNSTREAM NODE ELEVATION = 126.00 FLOWLENGTH(FEET) = 126.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA (CFS) = 3.19 TRAVEL TIME(MIN.) = .15 TC(MIN.) = 4.5 INCHES 1 5.83 *************************************************************************** FLOW PROCESS FROM NODE 5.00 TO NODE 4.00 IS CODE = 8 --------------------------------------------------------------------------- 8 8 /I = ========================================================================== »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.963 SOIL CLASSIFICATION IS "C" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 SUBAREA AREA(ACRES) = .15 SUBAREA RUNOFF(CFS) = .81 TOTAL AREA(ACRES) = .76 TOTAL RUNOFF(CFS) = 4.00 TC(MIN) = 5.83 * ************************************************************************** FLOW PROCESS FROM NODE 5.01 TO NODE 4.00 IS CODE = 8 - -------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< = ========================================================================== 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = SOIL CLASSIFICATION IS "C" MULTI-UNITS DEVELOPMENT RUNOFF SUBAREA AREA(ACRES) = .02 TOTAL AREA(ACRES) = .78 TC(MIN) = 5.83 5.963 COEFFICIENT = .6000 SUBAREA RUNOFF(CFS) = .07 TOTAL RUNOFF(CFS) = 4.07 * ************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 3.00 IS CODE = 3 - -------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- DEPTH OF FLOW IN 12.0 INCH PIPE IS PIPEFLOW VELOCITY(FEET/SEC.) = 8.1 UPSTREAM NODE ELEVATION = 126.00 DOWNSTREAM NODE ELEVATION = 123.00 FLOWLENGTH(FEET) = 105.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 4.07 TRAVEL TIME(MIN.) = .22 TC(MIN.) = 7.4 INCHES 1 6.05 *************************************************************************** FLOW PROCESS FROM NODE 4.00 TO NODE 3.00 IS CODE = 8 --------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< --------------------------------------------------------------------------- --------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.825 SOIL CLASSIFICATION IS "c" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 SUBAREA AREA(ACRES) = .44 SUBAREA RUNOFF(CFS) = 2.31 TOTAL AREA(ACRES) = 1.22 TOTAL RUNOFF(CFS) = 6.38 TC(MIN) = 6.05 *************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 2.00 IS CODE = 3 8 1'2 8 - -------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< = ============~============================================================= DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.1 UPSTREAM NODE ELEVATION = 123.00 DOWNSTREAM NODE ELEVATION = 122.00 FLOWLENGTH(FEET) = 66.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 6.38 TRAVEL TIME(MIN.) = .16 TC(MIN.) = 1 6.21 * ************************************************************************** FLOW PROCESS FROM NODE 3.00 TO NODE 2.00 IS CODE = 1 - -------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< = ========================================================================== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT TIME OF CONCENTRATION(MIN.) = 6.21 RAINFALL INTENSITY(INCH/HR) = 5.73 TOTAL STREAM AREA(ACRES) = 1.22 PEAK FLOW RATE(CFS) AT CONFLUENCE = STREAM 2 ARE: 6.38 ** CONFLUENCE DATA ** STREAM RUNOFF NUMBER (CFS) 1 2.37 2 6.38 Tc (MIN. ) 6.39 6.21 INTENSITY (INCH/HOUR) 5.621 5.730 AREA (ACRE) .46 1.22 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 8.70 6.21 5.730 2 8.63 6.39 5.621 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.70 Tc (MIN.) = 6.21 TOTAL AREA(ACRES) = 1. 69 *************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 1.00 IS CODE = 3 --------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< =========================================================================== DEPTH OF FLOW IN 12.0 INCH PIPE IS 8.6 INCHES 8 8 /3 PIPEFLOW VELOCITY(FEETjSEC.) = 14.4 UPSTREAM NODE ELEVATION = 122.00 DOWNSTREAM NODE ELEVATION = 120.00 FLOWLENGTH(FEET) = 24.00 MANNING'S N = .013 ESTIMATED PIPE DIAMETER (INCH) = 12.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA (CFS) = 8.70 TRAVEL TIME(MIN.) = .03 TC(MIN.) = 1 6.23 * ************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 1. 00 IS CODE = 8 - -------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = SOIL CLASSIFICATION IS "C" INDUSTRIAL DEVELOPMENT RUNOFF SUBAREA AREA(ACRES) = .20 TOTAL AREA(ACRES) = 1.89 TC(MIN) = 6.23 5.713 COEFFICIENT = .9000 SUBAREA RUNOFF(CFS) = 1.03 TOTAL RUNOFF(CFS) = 9.73 * ************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 1. 00 IS CODE = 1 - -------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT TIME OF CONCENTRATION(MIN.) = 6.23 RAINFALL INTENSITY(INCH/HR) = 5.71 TOTAL STREAM AREA(ACRES) = 1.89 PEAK FLOW RATE(CFS) AT CONFLUENCE = STREAM 1 ARE: 9.73 * ************************************************************************** FLOW PROCESS FROM NODE 7.10 TO NODE 7.00 IS CODE = 21 - -------------------------------------------------------------------------- »»>RATIONAL METHOD INITIAL SUBAREA ANALYSIS««< = ========================================================================== SOIL CLASSIFICATION IS "c" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9000 INITIAL SUBAREA FLOW-LENGTH = 230.00 UPSTREAM ELEVATION = 142.00 DOWNSTREAM ELEVATION = 123.75 ELEVATION DIFFERENCE = 18.25 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 5-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 SUBAREA RUNOFF(CFS) = 2.61 TOTAL AREA(ACRES) = .44 2.737 TOTAL RUNOFF(CFS) = 2.61 8 8 ;4 * ************************************************************************** FLOW PROCESS FROM NODE 7.11 TO NODE 7.00 IS CODE = 8 " - -------------------------------------------------------------------------- »»>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW««< - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- 100 YEAR RAINFALL INTENSITY(INCHjHOUR) = SOIL CLASSIFICATION IS "c" MULTI-UNITS DEVELOPMENT RUNOFF SUBAREA AREA(ACRES) = .03 TOTAL AREA(ACRES) = .47 TC(MIN) = 5.00 6.587 COEFFICIENT = .6000 SUBAREA RUNOFF(CFS) = .12 TOTAL RUNOFF(CFS) = 2.73 * ************************************************************************** FLOW PROCESS FROM NODE 7.00 TO NODE 1. 00 IS CODE = 3 - -------------------------------------------------------------------------- »»>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA««< »»>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)««< - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- DEPTH OF FLOW IN 12.0 INCH PIPE IS PIPEFLOW VELOCITY(FEETjSEC.) = 5.8 UPSTREAM NODE ELEVATION 7 122.00 DOWNSTREAM NODE ELEVATION = 120.00 FLOWLENGTH(FEET) = 150.00 MANNING'S N = .012 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 2.73 TRAVEL TIME(MIN.) = .43 TC(MIN.) = 6.9 INCHES 1 5.43 **************************************************************************** FLOW PROCESS FROM NODE 7.00 TO NODE 1. 00 IS CODE = 1 ---------------------------------------------------------------------------- »»>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE««< »»>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES««< =========================================================================== TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT TIME OF CONCENTRATION(MIN.) = 5.43 RAINFALL INTENSITY(INCHjHR) = 6.25 TOTAL STREAM AREA(ACRES) = .47 PEAK FLOW RATE(CFS) AT CONFLUENCE = STREAM 2 ARE: 2.73 ** CONFLUENCE DATA ** STREAM RUNOFF Tc NUMBER (CFS) (MIN. ) 1 9.73 6.23 2 2.73 5.43 INTENSITY (INCHjHOUR) 5.713 6.247 AREA (ACRE) 1.89 .47 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER 1 2 (CFS) 11. 63 12.23 8 (MIN. ) 5.43 6.23 (INCH/HOUR) 6.247 5.713 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.23 Tc(MIN.) = TOTAL AREA(ACRES) = 2.36 8 /5 6.23 - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) = TOTAL AREA(ACRES) = 12.23 2.36 Tc (MIN.) = 6.23 - -------------------------------------------------------------------------- - -------------------------------------------------------------------------- END OF RATIONAL METHOD ANALYSIS 8 V. HYDRAULICS 8 /& 8 8 /7 **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 3.1A Release Date: 2/17/92 License ID 1388 Analysis prepared by: PASCO ENGINEERING 535 NORTH HWY 101, SUITE A SOLANA BEACH, CA. 92075 PHONE: (619) 259-8212 FAX (619) 259-4812 ---------------------------------------------------------------------------- TIME/DATE OF STUDY: 9:10 6/14/1995 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- ************************** DESCRIPTION OF STUDY ************************** * STREET DEPTH OF FLOW CALCULATION * * Q100, AT NODE 4. * * SEE EXHIBIT "A" * ************************************************************************** **************************************************************************** »»STREETFLOW MODEL INPUT INFORMATION«« ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEET/FEET) = .162000 CONSTANT STREET FLOW(CFS) = .88 AVERAGE STREETFLOW FRICTION FACTOR (MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .050000 OUTSIDE STREET CROSSFALL(DECIMAL) = .050000 CONSTANT SYMMETRICAL'CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ============================================================================ STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = .16 HALFSTREET FLOOD WIDTH(FEET) = 1.50 AVERAGE FLOW VELOCITY(FEET/SEC.) = 7.59 PRODUCT OF DEPTH&VELOCITY = 1.19 8 . /6 ************************** DESCRIPTION OF STUDY ************************** * STREET DEPTH OF FLOW CALCULATIONS * * Q100, AT NODE 2. * * SEE EXHIBIT "A" * ************************************************************************** **************************************************************************** »»STREETFLOW MODEL INPUT INFORMATION«« ---------------------------------------------------------------------------- CONSTANT STREET GRADE(FEETjFEET) = .027000 CONSTANT STREET FLOW (CFS) = 1.20 AVERAGE STREET FLOW FRICTION FACTOR(MANNING) = .015000 CONSTANT SYMMETRICAL STREET HALF-WIDTH(FEET) = 12.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INTERIOR STREET CROSSFALL(DECIMAL) = .017000 OUTSIDE STREET CROSSFALL(DEClMAL) = .017000 CONSTANT SYMMETRICAL CURB HEIGHT(FEET) = .50 CONSTANT SYMMETRICAL GUTTER-WIDTH(FEET) = 1.50 CONSTANT SYMMETRICAL GUTTER-LIP(FEET) = .03125 CONSTANT SYMMETRICAL GUTTER-HIKE(FEET) = .12500 FLOW ASSUMED TO FILL STREET ON ONE SIDE, AND THEN SPLITS ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- STREET FLOW MODEL RESULTS: ---------------------------------------------------------------------------- STREET FLOW DEPTH(FEET) = .24 HALFSTREET FLOOD WIDTH(FEET) = 6.42 AVERAGE FLOW VELOCITY(FEETjSEC.) = 2.54 PRODUCT OF DEPTH&VELOCITY = .61 ---------------------------------------------------------------------------- ---------------------------------------------------------------------------- 8 . It') * ************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) copyright 1982-92 Advanced Engineering Software (aes) Ver. '3.1A Release Date: 2/17/92 License ID 1388 Analysis prepared by: PASCO ENGINEERING 535 NORTH HWY 101, SUITE A SOLANA BEACH, CA. 92075 PHONE: (619) 259-8212 FAX (619) 259-4812 --------------------------------------------------------------------------- --------------------------------------------------------------------------- --------------------------------------------------------------------------- TIME/DATE OF STUDY: 9:41 6/14/1995 ************************** DESCRIPTION OF STUDY ************************** FLOWBY INLET SIZE CALCULATION. * CAPACITY OF CURB OPENING FOR TYPE "c" INLET AT NODE 4. * SEE EXHIBIT "A" * ************************************************************************** *************************************************************************** »>FLOWBY CATCH BASIN INLET CAPACITY INPUT INFORMATION«« --------------------------------------------------------------------------- Curb Inlet capacities are approximated based on the Bureau of Public Roads nomograph plots for flowby basins and sump basins. STREETFLOW(CFS) = .88 GUTTER FLOWDEPTH(FEET) = .15 BASIN LOCAL DEPRESSION(FEET) = .30 FLOWBY BASIN WIDTH(FEET) = 4.00 »»CALCULATED BASIN WIDTH FOR TOTAL INTERCEPTION = 6.6 »»CALCULATED ESTIMATED INTERCEPTION(CFS) = .6 ============================================================================ 8 . tD **************************************************************************** HYDRAULIC ELEMENTS - I PROGRAM PACKAGE (C) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 3.1A Release Date: 2/17/92 License ID 1388 Analysis prepared by: PASCO ENGINEERING 535 NORTH HWY 101, SUITE A SOLANA BEACH, CA. 92075 PHONE: (619) 259-8212 FAX (619) 259-4812 --------------------------------------------------------------------------- TIME/DATE OF STUDY: 12: 6 6/14/1995 --------------------------------------------------------------------------- --------------------------------------------------------------------------- ************************** DESCRIPTION OF STUDY ************************** BACK-OF-WALL DRAIN CAPACITY CALCULATION. * Q100. DRAIN TO BE AT TOP-BACK OF ALL RETAINING WALLS. * SEE EXHIBIT "A", AND GRADING PLAN BACK-OF-WALL DRAIN DETAIL. * ************************************************************************** *************************************************************************** »>PIPEFLOW HYDRAULIC INPUT INFORMATION«« --------------------------------------------------------------------------- PIPE DIAMETER(FEET) = .500 PIPE SLOPE (FEET/FEET) = .0350 PIPEFLOW(CFS) ,= .15 MANNINGS FRICTION FACTOR = .015000 --------------------------------------------------------------------------- --------------------------------------------------------------------------- CRITICAL-DEPTH FLOW INFORMATION: --------------------------------------------------------------------------- CRITICAL CRITICAL CRITICAL CRITICAL CRITICAL CRITICAL CRITICAL CRITICAL DEPTH (FEET) = .19 FLOW AREA(SQUARE FEET) = .070 FLOW TOP-WIDTH(FEET) = .487 FLOW PRESSURE + MOMENTUM(POUNDS) = FLOW VELOCITY(FEET/SEC.) = 2.149 FLOW VELOCITY HEAD(FEET) = FLOW HYDRAULIC DEPTH(FEET) = FLOW SPECIFIC ENERGY(FEET) = .97 .07 .14 .26 --------------------------------------------------------------------------- --------------------------------------------------------------------------- NORMAL-DEPTH FLOW INFORMATION: --------------------------------------------------------------------------- NORMAL DEPTH(FEET) = .14 FLOW AREA(SQUARE FEET) = .04 FLOW TOP-WIDTH(FEET) = .446 FLOW PRESSURE + MOMENTUM(POUNDS) = FLOW VELOCITY(FEET/SEC.) = FLOW VELOCITY HEAD(FEET) = HYDRAULIC DEPTH(FEET) = FROUDE NUMBER = 1.926 SPECIFIC ENERGY(FEET) = 1.15 3.424 .182 .10 .32 ----------------------------------------------------------------------------- ----------------------------------------------------------------------------- 8 8 tt 61 veN / !/yO/ZAU¿ICS Q-t.Ct/tA T/t)A.J..S:. lJODE: ~ - ex /.,¿/ 8~ i'A ~ Ow = ð. 73 eJP'S ; /h!1f1¿, ~~::; ð.S I"'T: ~y .. /ll ' y /8' 8~~ ,c:;,rcl-I 1J19:$ IN I4J / TZ/I,PrIC ~71i tI:!£. : p =: 3,~~ - - Þ. . (I, t' . ð . -- ----- o.v:¡' -.--- p~ - tJ-E crs = /.56" .B. t) (0.21)/.5" /,.5 ~-,-------- p== /, 55 r=-r - , 'to . . , . .';; . Aft/I?; p' E f 2. Tð . .A.P.PAt.ÔYIM~# 6~Te Æ~6ê. '- f/¡f 1,., ";- f.56 .x Z -ð./O. ,e:-r; _.-_._....,---,-",_._,.J,...,.~~--= '! 1',- ,! =,;;'~ - . .--.-,......&.. j?~,.._:_.- 3:~Q_t:: T--1._.P~I9I¿ I: ~~._(~_S"._~_J~?O I ---_...~-_.__...,--,-:;;r-,.__...~_.. ,.-,-..,-"--.,.....-."..- ,,".-- ._._._~-_. .~ I{?~ :/$11 ß~ Mfill 8A6IN 1V/l7#ffK; 6~'17!' /$ ',4Pe6)c//I!õ I 7.2:~ (~.Ë_._Il.t¿(t(.d:~-_._pe-P C~...Pitt? 11L~--_.li!.!~LL. t) { Q ).1- r~AA P=..3.0 ¡;;;I.S- . ~ p.=. ~ /.'5 D = I- 0 .7.3 CF~ _)1,'5 = 0.. /4:3 1="-' l 3,0 {4-.5D) ø 'ø / ß " y / ß . Beø~ CA-n::#, ßA6/,.} " 16 0,1::., . 8 i& C}ltEck' /fiP~C/TY OF TYPE '~/J lVt.ET e A/oDES A/CQE' / .r I, .t. 14 &00 = /. 03 CFS / RV,4¡¿-. -z:I=PTIi I'D'~ 0.2.0 FT Q P}¿e"{i) = 3, ¿J bl.s X 2. - /, ðz fr- ..3. ¿> (ð, zj /.5 X 2- ?k'eQ -= 7. 6£5 p-T ß;rJ4/¿"'" /0. 8~ FT ,., .::5/NCé I¿J,ß~ FT > 7.f.,8 PT TYP¿;:-~. 1A./¿c7 /S D~ ~J/ 77/ 6r:?-,.:J TE. .77/é CC/£.ð CJ??EM"(/G ÆJ It.{, GC~I/C TO PROT6CT AGA/A/6r ð¡/E.RF¿¿)1t) S#O4/¿O TJ.I-t3 6R/;ré eeCcM46 CLôG6éÐ. , I .2 /) / #? /7///111, -Tì.&:'"/7 rJ-l liD If == A. -? A =r", /V 'ODE : X-'t- U'/t:O = . c.. - C"çS ; n,rrl'('" £'/1;;..'1'1'7 (./. (;..1"1 r-/, -1f*" - 7õ¡ry¡¿, (JIM PtJ;lf? TJ/é SI/8/l£éA rRll3(/ß¡Q-f/ 77J ¡f)tJ~ .e IS ~,4/ CP.s. HtJWEI/ER TI-/E éíMÆD PCJ~T/OA/ ðF Th'é /A./t.éT 'f§ O¡.)¿tf ø:SPD,USll3œ FÖ¡¿ APPPCJK/#.4/C"GY HAlf ¿:JF Q(b I NI-I/L£" AN ¿;P~/A./6 01\),7"7-/'e EA..sT .=sloe ðp me /"ut£r åJlU- AccepT Th'/fr ;::::(:)¡€/"/ð/U 0;:= /?Ié -&'- 4-/ crs Ft.-C>?ù/A/6 DovJ/lJ J7-Ie eAï5T ð/Ðé ðr- T71e PU/ulœ.., ¡JODé 4- : ( .y- - EQ ulJrlO¡l) R. Q I. :2 2- eGo -= 3,6 (l::/'~) X Z - 3.0 t74/'.:5) x: = t,.øtJ ~T - :5T¡lif:é:ET DePTH ð¡::= F¿CJþV e /-.'bDE' 2..:::: t). U- rT (. <;.e:e-' 'f. ¡rLCt!¿A17()rV rlf/!; sa no/'J ) ßJVAIL. = 7. tJ r:=T .', 5/A)Cé' 7,0 PT > (P. gO rT rl/~l:3" L'" /)JC£T 1$ è),K. ¿..)/7JI GMTE. TIlt!! Ct/2e or~A.JII..Jt; ¡A)/ú ,C"Ú'A.JCi7éW /I::: OJ/IT AT /r..HJDêf / . 0.100 = 0.88 CF.s " D =- 0. It? FT í ¡::ttJ{Jo N/LJpt = 0'00 !I-"r. -== D.b cr-.:s 8'1' Ct/,ee O/'t:71J//'-J(; 0(00 For<- 6/ZA-fF .. ð.88 - ¡J,b = ¿J, ~8 c:r:S P, Cl Ô, 2,6' rÜ';~'" 3.ð (vI,:; == 2.ð {o-:;bf'; PA/¡4tt.- ~ 2.. (J FT ,.. .31/..) Cé z.. tJ rT '/ /,4 FT ;tyPe ê' //JŒT /s ð,t:. C),A:/J/;t..J6 Ø¡¿~ !NTl372ce-oT 0,6 cr-s ¡. ¿;,r;w.æ /...5 C/l~/lð{£ tJF II/J~/I~ 'T77C J?éJ#A'/¡V!M o. UlCP5 . /V¡ t//.T e'j ~ 7?J "q-¿¿¿;/A.J F/J12.. G/?/1/C.) /,5" FT ;::: /,,¡c, rT . 8 '23 ** *************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4.5A Release Date: 2/20/92 License ID 1388 Analysis prepared by: PASCO ENGINEERING, INC. 535 NORTH HWY 101, SUITE A SOLANA BEACH, CA. 92075 PHONE (619) 259-8212; FAX (619) 259-4812 ************************* DESCRIPTION OF STUDY ************************** * Hydraulic Grade Line Analysis for Storm Drain Line "A". * * See Exhibit "A". * * 100 Year storm. 8-8-95 ms * ************************************************************************* -- --------------------------------------------------------------------------- ILE NAME: 609HGL.DAT IME/DATE OF STUDY: 13: 0 8/ 8/1995 ** *************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM (POUNDS) 1. 00- 1. 93* 295.49 1. 33 Dc 240.82 } FRICTION 2.00- 1. 97* 299.53 1. 33 Dc 240.82 } JUNCTION 3.00- 1.65* 243.04 .99 Dc 211. 09 } FRICTION 4.00- 2.88* 303.37 .99 Dc 211. 09 } JUNCTION 5.00- 5.39* 340.04 .87 127.26 } FRICTION 6.00- 5.53* 347.18 .96 Dc 124.35 } JUNCTION 7.00- 6.14* 317.40 .62 71. 70 } FRICTION 8.00- 4.30* 226.96 .85 Dc 62.55 } JUNCTION 9.00- 4.93* 242.42 .32 94.52 } FRICTION+BEND } HYDRAULIC JUMP 10.00- 1.47 72.55 .32* 94.39 } FRICTION 11. 00- .77 Dc 44.42 .32* 92.65 } FRICTION+BEND 8 24 . 12.00- .77 Dc 44.42 } FRICTION 13.00- .77*Dc 44.42 } JUNCTION 14.00- 1.14* 35.95 } FRICTION } HYDRAULIC JUMP 15.00- .50*Dc 14.73 } JUNCTION 16.00- .67* 12.04 } FRICTION } HYDRAULIC JUMP 17.00- .36*Dc 6.43 .37* 77.84 .77*Dc 44.42 .32 19.20 .50*Dc 14.73 .23 8.46 .36*Dc 6.43 -- --------------------------------------------------------------------------- XIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 10 -- --------------------------------------------------------------------------- OTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST ONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA ESIGN MANUALS. ** *************************************************************************** OWN STREAM PIPE FLOW CONTROL DATA: ODE NUMBER = 1.00 FLOWLINE ELEVATION = 116.57 IPE FLOW = 12.28 CFS PIPE DIAMETER = 18.00 INCHES SSUMED DOWNSTREAM CONTROL HGL = 118.500 -- --------------------------------------------------------------------------- 1.00 : HGL = < 118.500>¡EGL= < 119.250>¡FLOWLINE= < 116.570> ** *************************************************************************** LOW PROCESS FROM NODE PSTREAM NODE 2.00 1.00 TO NODE ELEVATION = 2.00 IS CODE = 1 116.67 (FLOW IS UNDER PRESSURE) -- --------------------------------------------------------------------------- ALCULATE FRICTION IPE FLOW = IPE LENGTH = F=(Q/K)**2 = F=L*SF = ( LOSSES (LACFCD) : 12.28 CFS PIPE DIAMETER = 10.00 FEET MANNING'S N = « 12.28)/( 105.043»**2 = .01367 10.00)*( .01367) = .137 18.00 INCHES .01300 -- --------------------------------------------------------------------------- 2.00 : HGL = < 118.637>¡EGL= < 119.386>¡FLOWLINE= < 116.670> ** *************************************************************************** LOW PROCESS FROM NODE PSTREAM NODE 3.00 2.00 TO NODE ELEVATION = 3.00 IS CODE = 5 117.00 (FLOW IS UNDER PRESSURE) -- --------------------------------------------------------------------------- ALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH ( FT .) (FT/SEC) UPSTREAM 8.70 12.00 10.00 117.00 .99 11. 077 DOWNSTREAM 12.28 18.00 116.67 1. 33 6.949 LATERAL #1 2.50 12.00 80.00 117.00 .68 3.183 LATERAL #2 .00 .00 .00 .00 .00 .000 Q5 1.08===Q5 EQUALS BASIN INPUT=== CFCD AND OCEMA FLOW JUNCTION FORMULAE USED: Y=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4»/«A1+A2)*16.1) PSTREAM: MANNING'S N = .01300¡ FRICTION SLOPE = .05963 8 '6 ?- . OWNSTREAM: MANNING'S N = .01300¡ FRICTION SLOPE = .01367 VERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .03665 UNCTION LENGTH = 3.50 FEET RICTION LOSSES = .128 FEET ENTRANCE LOSSES = .150 FEET UNCTION LOSSES = (DY+HV1-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) UNCTION LOSSES = ( .889)+( .128)+( .150) = 1.167 -- --------------------------------------------------------------------------- 3.00 : HGL = < 118.648>¡EGL= < 120.554>¡FLOWLINE= < 117.000> ** *************************************************************************** LOW PROCESS FROM NODE PSTREAM NODE 4.00 3.00 TO NODE ELEVATION = 4.00 IS CODE = 1 117.25 (FLOW IS UNDER PRESSURE) -- --------------------------------------------------------------------------- ALCULATE FRICTION IPE FLOW = IPE LENGTH = F=(Q/K)**2 = F=L*SF = ( LOSSES (LACFCD) : 8.70 CFS PIPE DIAMETER = 24.84 FEET MANNING'S N = « 8.70)/( 35.628»**2 = .05963 24.84)*( .05963) = 1.481 12.00 INCHES .01300 -- --------------------------------------------------------------------------- ODE 4.00 : HGL = < 120.130>¡EGL= < 122.035>¡FLOWLINE= < 117.250> ** *************************************************************************** LOW PROCESS FROM NODE PSTREAM NODE 5.00 4.00 TO NODE ELEVATION = 5.00 IS CODE = 5 117.50 (FLOW IS UNDER PRESSURE) -- --------------------------------------------------------------------------- ALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 6.38 12.00 40.00 117.50 .96 8.123 DOWNSTREAM 8.70 12.00 117.25 .99 11. 077 LATERAL #1 .00 .00 .00 .00 .00 .000 LATERAL #2 .00 .00 .00 .00 .00 .000 Q5 2.32===Q5 EQUALS BASIN INPUT=== CFCD AND OCEMA FLOW JUNCTION FORMULAE USED: Y=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4»/«A1+A2)*16.1) PSTREAM: MANNING'S N = .01300¡ FRICTION SLOPE = .03207 OWNSTREAM: MANNING'S N = .01300¡ FRICTION SLOPE = .05963 VERAGED FRICTION'SLOPE IN JUNCTION ASSUMED AS .04585 UNCTION LENGTH = 3.00 FEET RICTION LOSSES = .138 FEET ENTRANCE LOSSES = .381 FEET UNCTION LOSSES = (DY+HV1-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) UNCTION LOSSES = (1.360)+( .138)+( .381) = 1.879 -- --------------------------------------------------------------------------- 5.00 : HGL = < 122.889>¡EGL= < 123.914>¡FLOWLINE= < 117.500> ** *************************************************************************** LOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 1 PSTREAM NODE 6.00 ELEVATION = 119.51 (FLOW IS UNDER PRESSURE) -- --------------------------------------------------------------------------- ALCULATE FRICTION LOSSES(LACFCD): IPE FLOW = 6.38 CFS IPE LENGTH = 67.23 FEET PIPE DIAMETER = MANNING'S N = 12.00 INCHES .01300 . 8 u F=(Q/K)**2 = « 6.38)/( 35.628»**2 = F=L*SF = ( 67.23)*( .03207) = 2.156 .03207 -- --------------------------------------------------------------------------- 6.00 : HGL = < 125.045>;EGL= < 126.069>;FLOWLINE= < 119.510> ** *************************************************************************** LOW PROCESS FROM NODE PSTREAM NODE '7.00 6.00 TO NODE ELEVATION = 7.00 IS CODE = 5 119.51 (FLOW IS UNDER PRESSURE) -- --------------------------------------------------------------------------- ALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 4.07 12.00 45.00 119.51 .85 5.182 DOWNSTREAM 6.38 12.00 119.51 .96 8.123 LATERAL #1 2.31 6.00 5.00 119.51 .50 11.765 LATERAL #2 .00 .00 45.00 .00 .00 .000 Q5 .00===Q5 EQUALS BASIN INPUT=== CFCD AND OCEMA FLOW JUNCTION FORMULAE USED: Y=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4»/«A1+A2)*16.1) PSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .01305 OWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .03207 VERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .02256 UNCTION LENGTH = 1.00 FEET RICTION LOSSES = .023 FEET ENTRANCE LOSSES = .000 FEET * CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. * COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. -- --------------------------------------------------------------------------- 7.00 : HGL = < 125.652>;EGL= < 126.069>;FLOWLINE= < 119.510> ** *************************************************************************** LOW PROCESS FROM NODE PSTREAM NODE 8.00 7.00 TO NODE ELEVATION = 8.00 IS CODE = 1 122.77 (FLOW IS UNDER PRESSURE) -- --------------------------------------------------------------------------- ALCULATE FRICTION LOSSES(LACFCD): IPE FLOW = 4.07 CFS PIPE DIAMETER = IPE LENGTH = . 108.40 FEET MANNING'S N = F=(Q/K)**2 = « 4.07)/( 35.628»**2 = .01305 F=L*SF = ( 108.40)*( .01305) = 1.415 12.00 INCHES .01300 -- --------------------------------------------------------------------------- 8.00 : HGL = < 127.067>;EGL= < 127.484>;FLOWLINE= < 122.770> ** *************************************************************************** LOW PROCESS FROM NODE PSTREAM NODE 9.00 8.00 TO NODE ELEVATION = 9.00 IS CODE = 5 123.04 (FLOW IS UNDER PRESSURE) -- --------------------------------------------------------------------------- ALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FT/SEC) UPSTREAM 3.19 12.00 85.00 123.04 .77 4.062 DOWNSTREAM 4.07 12.00 122.77 .85 5.182 LATERAL #1 .00 .00 .00 .00 .00 .000 LATERAL #2 .00 .00 .00 .00 .00 .000 Q5 8 8 .88===Q5 EQUALS BASIN INPUT=== ~:-7 CFCD AND OCEMA FLOW JUNCTION FORMULAE USED: Y=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))j«A1+A2)*16.1) PSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .00802 OWNSTREAM: MANNING'S N = .01300; FRICTION SLOPE = .01305 VERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .01053 UNCTION LENGTH = 3.25 FEET RICTION LOSSES = .034 FEET ENTRANCE LOSSES = .083 FEET UNCTION LOSSES = (DY+HV1-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) UNCTION LOSSES = ( .629)+( .034)+( .083) = .746 -- --------------------------------------------------------------------------- 9.00 : HGL = < 127.974>;EGL= < 128.230>;FLOWLINE= < 123.040> ** *************************************************************************** LOW PROCESS FROM NODE PSTREAM NODE 10.00 9.00 TO NODE ELEVATION = 10.00 IS CODE = 3 126.70 (HYDRAULIC JUMP OCCURS) -- --------------------------------------------------------------------------- ALCULATE PIPE-BEND LOSSES(OCEMA): IPE FLOW = 3.19 CFS ENTRAL ANGLE = 12.177 DEGREES IPE LENGTH = 21.25 FEET PIPE DIAMETER = 12.00 INCHES MANNING'S N = .01300 -- --------------------------------------------------------------------------- YDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ORMAL DEPTH(FT) = -- --------------------------------------------------------------------------- .77 .32 CRITICAL DEPTH(FT) = -- --------------------------------------------------------------------------- -- --------------------------------------------------------------------------- PSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .32 -- --------------------------------------------------------------------------- -- --------------------------------------------------------------------------- RADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -- --------------------------------------------------------------------------- ISTANCE FROM CONTROL (FT) .000 1.486 3.147 5.031 7.205 9.778 12.928 16.989 21. 250 FLOW DEPTH (FT) .316 .316 .316 .316 .316 .316 .316 .316 .316 VELOCITY (FTjSEC) 14.983 14.986 14.989 14.992 14.995 14.998 15.001 15.004 15.006 SPECIFIC ENERGY (FT) 3.804 3.805 3.807 3.808 3.809 3.811 3.812 3.813 3.814 PRESSURE+ MOMENTUM (POUNDS) 94.39 94.40 94.42 94.44 94.46 94.47 94.49 94.51 94.52 -- --------------------------------------------------------------------------- YDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS -- --------------------------------------------------------------------------- -- --------------------------------------------------------------------------- OWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.93 == =========================================================================== RES SURE FLOW PROFILE COMPUTED INFORMATION: -- --------------------------------------------------------------------------- ISTANCE FROM CONTROL (FT) .000 21.250 PRESSURE HEAD (FT) 4.934 1. 468 VELOCITY (FTjSEC) 4.062 4.062 SPECIFIC ENERGY (FT) 5.190 1.724 PRESSURE+ MOMENTUM (POUNDS) 242.42 72.55 ::'6 8 8 -- ----------------~----END OF HYDRAULIC JUMP ANALYSIS------------------------ RESSURE+MOMENTUM BALANCE OCCURS AT 18.51 FEET UPSTREAM OF NODE 9.00 I DOWNSTREAM DEPTH = 1.914 FEET, UPSTREAM CONJUGATE DEPTH = .316 FEET -- --------------------------------------------------------------------------- 127.016>¡EGL= < 130.504>¡FLOWLINE= < 10.00 : HGL = < 126.700> ** *************************************************************************** 10.00 TO NODE ELEVATION = 11.00 IS CODE = 1 133.79 (FLOW IS SUPERCRITICAL) LOW PROCESS FROM NODE PSTREAM NODE 11.00 -- --------------------------------------------------------------------------- ALCULATE FRICTION LOSSES(LACFCD): IPE FLOW = 3.19 CFS IPE LENGTH = 41.14 FEET PIPE DIAMETER = MANNING'S N = 12.00 INCHES .01300 -- --------------------------------------------------------------------------- CRITICAL DEPTH(FT) = ORMAL DEPTH(FT) = .32 .77 -- --------------------------------------------------------------------------- -- --------------------------------------------------------------------------- PSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .32 -- --------------------------------------------------------------------------- -- --------------------------------------------------------------------------- RADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -- --------------------------------------------------------------------------- FLOW DEPTH (FT) .320 .320 .319 .319 .318 .318 .317 .317 .316 .316 .316 VELOCITY (FTjSEC) 14.692 14.724 14.756 14.788 14.820 14.852 14.885 14.917 14.950 14.983 14.983 SPECIFIC ENERGY (FT) 3.674 3.688 3.703 3.717 3.731 3.745 3.760 3.774 3.789 3.804 3.804 PRESSURE+ MOMENTUM (POUNDS) 92.65 92.84 93.03 93.22 93.41 93.60 93.80 93.99 94.19 94.38 94.39 ISTANCE FROM CONTROL (FT) .000 1. 455 3.086 4.940 7.084 9.627 12.747 16.778 22.476 32.256 41.140 -- --------------------------------------------------------------------------- 11. 00 : HGL = < 134.110>¡EGL= < 137.464>¡FLOWLINE= < ODE 133.790> ** *************************************************************************** 11. 00 TO NODE ELEVATION = LOW PROCESS FROM NODE PSTREAM NODE 12.00 12.00 IS CODE = 3 142.09 (FLOW IS SUPERCRITICAL) -- --------------------------------------------------------------------------- ALCULATE PIPE-BEND LOSSES(OCEMA): IPE FLOW = 3.19 CFS ENTRAL ANGLE = 18.391 DEGREES IPE LENGTH = 48.15 FEET PIPE DIAMETER = 12.00 INCHES MANNING'S N = .01300 -- --------------------------------------------------------------------------- ORMAL DEPTH(FT) = CRITICAL DEPTH(FT) = .32 .77 -- --------------------------------------------------------------------------- -- --------------------------------------------------------------------------- PSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .37 -- --------------------------------------------------------------------------- -- --------------------------------------------------------------------------- RADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -- --------------------------------------------------------------------------- ISTANCE FROM CqNTROL(FT) .000 FLOW DEPTH (FT) .367 VELOCITY (FTjSEC) 12.184 SPECIFIC ENERGY (FT) 2.674 PRESSURE+ MOMENTUM (POUNDS) 77.84 8 1.173 2.519 4.083 5.935 8.182 11.002 14.730 20.120 29.587 48.150 .362 .357 .352 .347 .341 .336 .331 .326 .321 .320 ~8 ?í 12.422 12.669 12.924 13.190 13.466 13.752 14.050 14.359 14.681 14.692 2.760 2.851 2.947 3.050 3.159 3.275 3.398 3.529 3.670 3.674 79.23 80.67 82.17 83.73 85.36 87.06 88.82 90.66 92.58 92.65 12.00 : HGL = < -- --------------------------------------------------------------------------- 142.090> 142.457>¡EGL= < 144.764>¡FLOWLINE= < ** *************************************************************************** LOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 1 PSTREAM NODE 13.00 ELEVATION = 144.49 (FLOW IS SUPERCRITICAL) -- --------------------------------------------------------------------------- ALCULATE FRICTION LOSSES(LACFCD): IPE FLOW = 3.19 CFS IPE LENGTH = 13.92 FEET PIPE DIAMETER = MANNING'S N = 12.00 INCHES .01300 .32 -- --------------------------------------------------------------------------- .77 ORMAL DEPTH(FT) = CRITICAL DEPTH(FT) = == =========================================================================== PSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .77 == =========================================================================== RADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ ISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FTjSEC) ENERGY (FT) MOMENTUM (POUNDS) .000 .765 4.946 1. 145 44.42 .037 .720 5.267 1.151 44.65 .164 .675 5.653 1. 172 45.39 .416 .630 6.117 1.212 46.74 .847 .585 6.679 1. 278 48.82 1.547 .540 7.368 1. 384 51.79 2.674 .495 8.221 1. 545 55.92 4.542 .450 9.296 1.793 61. 55 7.875 .405 10.681 2.178 69.21 13.920 .367 12.184 2.674 77.84 13.00 : HGL = < - ---------------------------------------------------------------------------- 144.490> 145.255>¡EGL= < 145.635>¡FLOWLINE= < * **************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 14.00 13.00 TO NODE ELEVATION = 14.00 IS CODE = 5 144.82 (FLOW IS AT CRITICAL DEPTH) - ---------------------------------------------------------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH (FT.) (FTjSEC) UPSTREAM 1.39 12.00 40.00 144.82 .50 1.770 DOWNSTREAM 3.19 12.00 144.49 .77 4.948 LATERAL #1 .00 .00 .00 .00 .00 .000 LATERAL #2 .00 .00 .00 .00 .00 .000 Q5 1.80===Q5 EQUALS BASIN INPUT=== 8 8 ,D * **************************************************************************** CFCD AND OCEMA FLOW JUNCTION FORMULAE USED: Y=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4»j«A1+A2)*16.1) PSTREAM: MANNING'S N = .01300¡ FRICTION SLOPE = .00152 OWNSTREAM: MANNING'S N = .01300¡ FRICTION SLOPE = .00922 VERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00537 UNCTION LENGTH = 4.00 FEET RICTION LOSSES = .021 FEET ENTRANCE LOSSES = .076 FEET UNCTION LOSSES = (DY+HV1-HV2)+(FRICTION LOSS)+(ENTRANCE LOSSES) UNCTION LOSSES = ( .272)+( .021)+( .076) = .370 - ---------------------------------------------------------------------------- 14.00 : HGL = < 145.956>¡EGL= < 146.005>¡FLOWLINE= < 144.820> FLOW PROCESS FROM NODE UPSTREAM NODE 15.00 14.00 TO NODE ELEVATION = 15.00 IS CODE = 1 146.70 (HYDRAULIC JUMP OCCURS) - ---------------------------------------------------------------------------- CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 1.39 CFS PIPE LENGTH = 47.00 FEET PIPE DIAMETER = MANNING'S N = 12.00 INCHES .01300 - ---------------------------------------------------------------------------- HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS - ---------------------------------------------------------------------------- NORMAL DEPTH(FT) = .30 CRITICAL DEPTH(FT) = .50 - ---------------------------------------------------------------------------- - ---------------------------------------------------------------------------- UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .50 - ---------------------------------------------------------------------------- - ---------------------------------------------------------------------------- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - ---------------------------------------------------------------------------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FTjSEC) ENERGY (FT) MOMENTUM (POUNDS) .000 .499 3.549 .695 14.73 .049 .479 3.740 .696 14.77 .214 .459 3.951 .702 14.89 .534 .439 4.188 .711 15.10 1. 063 .419 4.452 .727 15.42 1. 888 .399 4.751 .750 15.85 3.158 .379 5.089 .782 16.41 5.149 .359 5.475 .825 17.12 8.492 .339 5.918 .884 18.01 15.206 .319 6.432 .962 19.11 47.000 .318 6.472 .969 19.20 - ---------------------------------------------------------------------------- HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS = ============================================================================ DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.14 = ============================================================================ PRESSURE FLOW PROFILE COMPUTED INFORMATION: - ---------------------------------------------------------------------------- DISTANCE FROM CONTROL (FT) .000 3.539 PRESSURE HEAD (FT) 1. 136 1. 000 VELOCITY (FTjSEC) 1.770 1.770 SPECIFIC ENERGY (FT) 1.185 1. 049 PRESSURE+ MOMENTUM (POUNDS) 35.95 29.27 8 8 'J/) == =========================================================================== == =========================================================================== RADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: SSUMED DOWNSTREAM PRESSURE HEAD(FT} = 1. 00 -- --------------------------------------------------------------------------- ISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FTjSEC) ENERGY (FT) MOMENTUM (POUNDS) 3.539 1.000 1.769 1.049 29.27 4.790 .950 1.803 1.000 26.92 5.992 .900 1.867 .954 24.73 7.157 .850 1.954 .909 22.68 8.279 .800 2.064 .866 20.81 9.351 .749 2.201 .825 19.14 10.356 .699 2.369 .786 17.69 11.268 .649 2.575 .752 16.48 12.045 .599 2.830 .723 15.56 12.616 .549 3.147 .703 14.95 12.852 .499 3.549 .695 14.73 47.000 .499 3.549 .695 14.73 - ----------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM' BALANCE OCCURS AT 9.33 FEET UPSTREAM OF NODE 14.00 I DOWNSTREAM DEPTH = .750 FEET, UPSTREAM CONJUGATE DEPTH = .318 FEET - ---------------------------------------------------------------------------- NODE 15.00 : HGL = < 147.199>¡EGL= < 147.395>¡FLOWLINE= < 146.700> * **************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 16.00 15.00 TO NODE ELEVATION = 16.00 IS CODE = 5 146.70 (FLOW IS AT CRITICAL DEPTH) - ---------------------------------------------------------------------------- CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY ( CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.} (FTjSEC) UPSTREAM .73 12.00 .00 146.70 .36 1. 310 DOWNSTREAM 1. 39 12.00 146.70 .50 3.550 LATERAL #1 .66 6.00 45.00 146.70 .41 3.361 LATERAL #2 .00 .00 .00 .00 .00 .000 Q5 .00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELT~1)-Q3*V3*COS(DELTA3}- Q4*V4*COS(DELTA4}}j«A1+A2}*16.1) UPSTREAM: MANNING'S N = .01300¡ FRICTION SLOPE = .00068 DOWNSTREAM: MANNING'S N = .01300¡ FRICTION SLOPE = .00614 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS .00341 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = .003 FEET ENTRANCE LOSSES = .000 FEET ** CAUTION: TOTAL ENERGY LOSS COMPUTED USING (PRESSURE+MOMENTUM) IS NEGATIVE. ** COMPUTER CHOOSES ZERO ENERGY LOSS FOR TOTAL JUNCTION LOSS. - ---------------------------------------------------------------------------- 16.00 : HGL = < 147.368>¡EGL= < 147.395>¡FLOWLINE= < 146.700> * **************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 17.00 16.00 TO NODE ELEVATION = 17.00 IS CODE = 1 148.16 (HYDRAULIC JUMP OCCURS) 8 8 "3'2- -- --------------------------------------------------------------------------- ALCULATE FRICTION LOSSES(LACFCD): IPE FLOW = .73 CFS IPE LENGTH = 35.59 FEET PIPE DIAMETER = MANNING'S N = 12.00 INCHES .01300 -- --------------------------------------------------------------------------- YDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ORMAL DEPTH(FT) = -- --------------------------------------------------------------------------- .36 .21 CRITICAL DEPTH(FT) = == =========================================================================== PSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .36 -- --------------------------------------------------------------------------- -- --------------------------------------------------------------------------- RADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: -- --------------------------------------------------------------------------- ISTANCE FROM CONTROL (FT) .000 .036 .151 .372 .735 1. 301 2.169 3.527 5.802 10.363 35.590 FLOW DEPTH (FT) .356 .342 .328 .314 .300 .285 .271 .257 .243 .229 .228 VELOCITY (FT/SEC) 2.911 3.076 3.259 3.463 3.691 3.947 4.237 4.567 4.946 5.383 5.424 SPECIFIC ENERGY (FT) .488 .489 .493 .500 .511 .527 .550 .581 .623 .679 .685 PRESSURE+ MOMENTUM (POUNDS) 6.43 6.45 6.51 6.60 6.75 6.94 7.19 7.52 7.92 8.41 8.46 ------------------------------------------------------------------------------ YDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS --------------------------------------------------------------------------- --------------------------------------------------------------------------- OWN STREAM CONTROL ASSUMED FLOWDEPTH(FT) = .67 --------------------------------------------------------------------------- --------------------------------------------------------------------------- RADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ ISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 .668 1.309 .695 12.04 .696 .637 1.383 .666 11.09 1.379 .606 1.467 .639 10.21 2.043 .574 1.563 .612 9.41 2.685 .543 1.674 .587 8.69 3.295 .512 1.802 .563 8.05 3.865 .481 1.952 .540 7.51 4.377 .450 2.129 .520 7.06 4.808 .419 2.340 .504 6.73 5.119 .388 2.594 .492 6.51 5.245 .357 2.905 .488 6.43 35.590 .357 2.905 .488 6.43 -- ---------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ RESSURE+MOMENTUM BALANCE OCCURS AT 2.91 FEET UPSTREAM OF NODE 16.00 I DOWNSTREAM DEPTH = .532 FEET, UPSTREAM CONJUGATE DEPTH = .228 FEET ODE ------------------------------------------------------------------------------ 148.160> 17.00 : HGL = < 148.516>¡EGL= < 148.648>¡FLOWLINE= < ****************************************************************************** 8 UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 17.00 ASSUMED UPSTREAM CONTROL HGL = 8 ':.<-) all FLOWLINE ELEVATION = 148.16 148.52 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOWANALYSIS = ============================================================================ 8 8 ? ¡ 'j'f" * **************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-92 Advanced Engineering Software (aes) Ver. 4.5A Release Date: 2/20/92 License ID 1388 Analysis prepared by: PASCO ENGINEERING, INC. 535 NORTH HWY 101, SUITE A SOLANA BEACH, CA. 92075 PHONE (619) 259-8212¡ FAX (619) 259-4812 ************************** DESCRIPTION OF STUDY ************************** HYDRAULIC GRADE LINE ANALYSIS FOR STORM DRAIN LINE "B". * SEE EXHIBIT "A". * 100 YEAR STORM. 8-9-95 MS * ************************************************************************** - ---------------------------------------------------------------------------- FILE NAME: 609HGLB.DAT TIME/DATE OF STUDY: 10:21 8/ 9/1995 * **************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM MODEL PRESSURE PRESSURE+ FLOW PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) 1.65* 74.75 .49 FRICTION+BEND 1.11* FRICTION+BEND } HYDRAULIC .71 Dc FRICTION+BEND .71*Dc NODE NUMBER 2.03- } 2.10- } 2.20- } 2.30- RUN PRESSURE+ MOMENTUM (POUNDS) 42.62 48.35 JUMP 35.92 .49 42.48 .51* 41. 21 35.92 .71*Dc 35.92 - ---------------------------------------------------------------------------- MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 10 - ---------------------------------------------------------------------------- NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. * **************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2.03 FLOWLINE ELEVATION = 117.00 PIPE FLOW = 2.73 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 118.650 - ---------------------------------------------------------------------------- NODE 2.03 : HGL = < 118.650>¡EGL= < 118.838>¡FLOWLINE= < 117.000> * **************************************************************************** 8 FLOW PROCESS FROM NODE PSTREAM NODE 2.10 2.03 TO NODE ELEVATION = 8 -- -- :/":) 2.10 IS CODE = 3 117.73 (FLOW IS UNDER PRESSURE) - ---------------------------------------------------------------------------- CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 2.73 CFS PIPE DIAMETER = 12.00 CENTRAL ANGLE = 16.695 DEGREES MANNING'S N = .01300 PIPE LENGTH = 29.14 FEET BEND COEFFICIENT(KB) = FLOW VELOCITY = 3.48 FEET/SEC. VELOCITY HEAD = .188 B=KB*(VELOCITY HEAD) = ( .108)*( .188) = .020 S F= ( Q / K) * * 2 = «, 2 . 7 3 ) / ( 3 5 . 6 2 8) ) * * 2 = . 0 0 5 8 7 HF=L*SF = ( 29.14)*( .00587) = .171 TOTAL HEAD LOSSES = HB + HF = ( .020)+( .171) = .191 INCHES .10767 FEET NODE - ---------------------------------------------------------------------------- 117.730> 2.10 : HGL = < 118.841>¡EGL= < 119.029>¡FLOWLINE= < * **************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2.20 2.10 TO NODE ELEVATION = 2.20 IS CODE = 3 120.16 (HYDRAULIC JUMP OCCURS) - ---------------------------------------------------------------------------- CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 2.73 CFS CENTRAL ANGLE = 6.305 DEGREES PIPE LENGTH = 97.33 FEET PIPE DIAMETER = 12.00 INCHES MANNING'S N = .01300 - ---------------------------------------------------------------------------- HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = - ---------------------------------------------------------------------------- .71 .49 CRITICAL DEPTH(FT) = - ---------------------------------------------------------------------------- - ---------------------------------------------------------------------------- UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .51 - ---------------------------------------------------------------------------- - ---------------------------------------------------------------------------- GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - ---------------------------------------------------------------------------- DISTANCE FROM CONTROL (FT) .000 1. 680 3.582 5.762 8.310 11. 358 15.131 20.053 27.070 39.226 97.330 FLOW DEPTH (FT) .512 .510 .508 .506 .503 .501 .499 .497 .495 .493 .493 VELOCITY (FT/SEC) 6.749 6.784 6.818 6.854 6.889 6.925 6.962 6.998 7.035 7.073 7.076 SPECIFIC ENERGY (FT) 1. 219 1. 225 1. 230 1. 235 1. 241 1.247 1. 252 1. 258 1. 264 1. 270 1.271 PRESSURE+ MOMENTUM (POUNDS) 41. 21 41. 34 41.47 41.61 41.74 41. 88 42.02 42.17 42.32 42.46 42.48 - ---------------------------------------------------------------------------- HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS = ============================================================================ DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.11 = ============================================================================ PRESSURE FLOW PROFILE COMPUTED INFORMATION: - ---------------------------------------------------------------------------- DISTANCE FROM CONTROL (FT) PRESSURE HEAD (FT) VELOCITY (FT/SEC) SPECIFIC ENERGY (FT) PRESSURE+ MOMENTUM (POUNDS) 8 8 r,1 ~ v' .000 5.990 1.111 1.000 3.476 3.476 1. 299 1.188 48.35 42.89 == =========================================================================== RADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: SSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1. 00 -- --------------------------------------------------------------------------- -- --------------------------------------------------------------------------- -- --------------------------------------------------------------------------- ISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) 5.990 1.000 3.475 1.188 42.89 7.325 .971 3.504 1.162 41.62 8.494 .942 3.558 1.138 40.50 9.559 .912 3.630 1.117 39.50 10.530 .883 3.717 1.098 38.61 11.406 .854 3.820 1.081 37.83 12.180 .825 3.938 1.066 37.18 12.836 .796 4.072 1.053 36.65 13.354 .767 4.224 1.044 36.25 13.700 .737 4.396 1.038 36.01 13.829 .708 4.588 1.035 35.92 97.330 .708 4.588 1.035 35.92 - ----------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 6.43 FEET UPSTREAM OF NODE 2.10 I DOWNSTREAM DEPTH = .990 FEET, UPSTREAM CONJUGATE DEPTH = .493 FEET - ---------------------------------------------------------------------------- ODE 2.20 : HGL = < 120.672>¡EGL= < 121.379>¡FLOWLINE= < 120.160> * **************************************************************************** FLOW PROCESS FROM NODE 2.20 TO NODE 2.30 IS CODE = 3 UPSTREAM NODE 2.30 ELEVATION = 120.97 (FLOW IS SUPERCRITICAL) - ---------------------------------------------------------------------------- CALCULATE PIPE-BEND LOSSES(OCEMA): PIPE FLOW = 2.73 CFS CENTRAL ANGLE = 18.453 DEGREES PIPE LENGTH = 32.21 FEET PIPE DIAMETER = 12.00 INCHES MANNING'S N = .01300 - ---------------------------------------------------------------------------- NORMAL DEPTH(FT) = .49 CRITICAL DEPTH(FT) = .71 = ============================================================================ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = .71 = ============================================================================ GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: - ---------------------------------------------------------------------------- DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL (FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM (POUNDS) .000 .708 4.590 1. 035 35.92 .086 .686 4.750 1. 037 35.97 .371 .664 4.925 1.041 36.13 .910 .643 5.117 1. 049 36.40 1.790 .621 5.327 1. 062 36.80 3.143 .599 5.557 1. 079 37.34 5.192 .577 5.811 1. 102 38.03 8.358 .555 6.091 1.132 38.89 13.587 .534 6.402 1.170 39.94 23.922 .512 6.746 1. 219 41. 20 8 8 :; '¡ 32.210 .512 6.749 1. 219 41.21 - ---------------------------------------------------------------------------- NODE 2.30 : HGL = < 121.678>¡EGL= < 122.005>¡FLOWLINE= < 120.970> * **************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2.30 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 120.97 121.68 FOR DOWNSTREAM RUN ANALYSIS - ---------------------------------------------------------------------------- - ---------------------------------------------------------------------------- END OF GRADUALLY VARIED FLOW ANALYSIS -- VI. APPENDIX 8 /'6 :,I, ON .,~/C\ :'// ""t C") - ( ( ...c:: '" '" c:: 'õ ~ . - TABLE 11. - - I NTERI'RETATI ONS FOR LAND l'>!ANAGEl'>!ENT- -Continucd . !ap ymbal Soil - aD2 C lpine coarse sandy loam, 9 to 15 percent slopes, eroded. bB ~. rlsbad gravelly loamy sand, 2 to 5 percent slopes------ 'hr rlsbad gravelly loamy sand,S to 9 percent slopes------ 'nD rlsbad gravelly loamy sand, 9 to 15 percent slopes----- bE r-- rlsbaa graveî1y loamy sand, 15 to 30 percent slopes---- cC ~. rlsbad-Urban land complex, 2 to 9 percent slopes------- cE r rlsbad-Urban land complex, 9 to 30 percent slopes------ eC ~ rrizo very gravelly sand, 0 to 9 percent slopes-------- fB ~ esterton fine sandy loam, 2 to 5 percent slopes-------- fC esterton fine sandy loam,S to 9 percent slopes-------- fD2 ~: esterton fine sandy loam, 9 to 15 percent slopes, eroded. gC r esterton-Urban land complex, 2 to 9 percent slopes: Chesterton------------------------------------------- Urban 1and------------------------------------------- ino fine sandy loam, 0 to 2 percent slopes------------- ~ ino fine sandy loam, 2 to 5 percent slopes------------- ino silt loam, saline, 0 to 2 percent slopes----------- eneba coarse sandy loam,S to 15 percent slopes, eroded. eneba coarse sandy loam, 15 to 30 percent slopes, eroded. eneba coarse sandy loam, 30 to 65 percent slopes, eroded. eneba rocky coarse sandy loam, 9 to 30 percent slopes, eroded. eneba very rocky coarse sandy loam, 30 to 75 percent slopes. eneba-Fallbrook rocky sandy loams, 9 to 30 percent slopes, eroded: Cieneba---------------------------------------------- Fallbrook-------------------------------------------- eneba-Fallbrook rocky sandy loarns, 30 to 65 percent slopes, eroded: Cieneba---------------------------------------------- Fallbrook-------------------------------------------- ayey alluvial land------------------------------------- astal beaches------------------------------------------ rralitos loamy sand, 0 to 5 percent slopes------------- rralitos loamy sand, 5 to 9 percent slopes------------- rralitos loamy sand, 9 to 15 percent slopes------------ ouch coarse sandy loam, 5 to 30 percent slopes--------- ouch coarse sandy loam, 30 to 50 percent slopes-------- ouch rocky coarse sandy loam, 5 to 30 percent slopes. ouch rocky coarse sandy loam, 30 to 70 percent slopes. ouch stony fine sandy loam, 30 to 75 percent slopes. D ablo clay, D ablo clay, 0 ablo clay, D ablo clay, 0 ablo clay, :hA :hB :kA 102 lE2 IGZ mEZ mrG nEZ nGZ a r sB sC sO tE tF uE uG vG laC laD )aE )aE2 )aF 2 to 9 percent slopes----------------------- 9 to 15 percent slopes--~------------------- 15 to 30 percent slopes--------------------- 15 to 30 percent slopes, eroded------------- 30 to 50 percent slopes--------------------- lee foo notes at end of table. Hydro- logic group Erodibility ß Moderate 2--- C C C C D D A D D D Severe 2 - -- -- Severe 7----- Severe 2----- Severe 2----- Severe 2 Severe 9----- Severe 9----- Severe 9----- D D C C C. ß Severe 16---- Severe 16---- l'>-Ioderate 2--- Severe 16---- B Severe 16---- B Severe 1----- B Severe 16---- ß Severe 1----- B C Severe 16---- Severe 16---- ß C D A A A A B B ß Severe 1----- Severe 1----- Moderate 2--- Severe 2 Severe 2----- Severe 2----- Severe 2----- Severe 16---- Severe 1----- Severe 16---- B Severe 1----- B Severe 1----- D D D D D Slight-------- Slight-------- Moderate------ Moderate 1--- Severe 1----- ~ Limi tat ions for conversion from brush to grass SI ight. 4/ SI ight. Sliohf" Sli£ht. Slight. Slight. Slight. t-Ioderate. Slight. Slight. Moderate. Severe. Severe. Severe. Severe. Severe. Severe. Severe. Severe. Severe. Slight. Slight. Slight. Sli ght . Slight. Moderate. Moderate. Moderate. Moderate. Sli ght. 1/ Slight. r/ Slight. r/ Slight. r/ Moderate-:- y 33 .---, r- .- COUIlTY OF SAN DIEGO DEPARTMENT OF SANITATION & ,FLOOD C O~lTROL --..--,...-, .,.,-. .-- - 330 45' 30' I 45' I 15' : t Prepnf!d br '- " p /2.()JCCT t-tJ CA T1 0 AJ u.s. DEPARTMENll" OF COMMERCE NATIO:<fAL OCEM;IC M(D AT! OSPJlEKIC AD~:I:<fJSTRATION SPECIAL STUDIES DRA:<fCH. OFFICE Of" II UROLOGY. NATIONAL WEATtlER SERVJCE 1-4 .... I » . '"'-J 3D' 118' 45' 30' - ----, - ~ ~ ..----.. .. " ,; -- I 15' 11]0 3D' IS' 8 1160 I , I I j:-! NATIONAL OCI'M>tC AND A,.:'¡OSI'IIEIlIC AO)IINISTRATION I SPECIAL STUDIES U~A~CII. OffiCE Of' IIJO1:QLOCY. NATIONAL WEATtlER SERVICE 301 -1 H . H I )~ I COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION & FLOOD CONTROL 451 301 151 ,330 -- ,-t- 45' prcru +'<1 b, u.s. DEPARTMENlr OF CO~MERCE 1111U w -. '- -. ----.' ----- ----~--~ . P{2..~ (PeA-noN I.!j , '. ~i ' 116. )Ii' )0. )0' l!t ' ~ . 8 43 TABLE 2 / ' "' V RUNOFF COEFFICIENTS (RATIONAL METHOD) . " , I ì '-" DEVELOPED AREAS (URBAN) Coeff i c i en~..f Soi I Grpup (1) Land Use A B C D Residential: Single Fami ly .40 .45 .50 .55 Multi-Units .45 .50 ~ .70 Mobi Ie homes .45 .50 .55 .65 Rural (lots greater than 1/2 acre) .30 .35 .40 .45 Conmerci al (2) .70 .75 .80 .85 SOO;.. Impervi ous Industrial (2) .80 .85 @ .95 9OCk Impervi ous l NOTES: (l)Soil Group ma~s are available at the offices of the Department of Public Works. (2)Where actual conditions deviate significantly from the tabulated impervious- ness values of 8OCk or 9OCk. the values given for coefficient C. may be revised by multiplying 80% or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Consider commercial property on D soil.-group. Actual imperviousness "" 50% Tabulated imperviousness = 8OCk Revised C = 50 x 0.85 = 0.53 80 IV-A-9 APPENDIX IX-B Rev. 5/81 . VII. EXHIBIT "A" . 44